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CLOSED-FORM EXPRESSIONS FOR THE MOMENTS OF THE

BINOMIAL PROBABILITY DISTRIBUTION ∗

ANDREAS KNOBLAUCH†

Abstract. This work develops closed form expressions for the raw and central moments of the
binomial probability distribution. For this I first derive a recursive formula for the raw moments
from the moment generating function. Then it is shown that the recursion involved is essentially
the same as for the Stirling numbers of the second kind. From this fact it is then possible to derive
the closed formulae. Finally, I discuss an application of these formulae to the analysis of neural
associative memory.
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1. The binomial probability and its moments. A random variable X is
called binomially distributed with parameters n and p if the random variable takes
value x ∈ {0, 1, 2, . . . , n} with probability

pB(x; n, p) =

(

n

x

)

px(1 − p)n−x .(1.1)

The moment generating function GB(s) := EpB
esX of the binomial probability can

then be computed using the binomial sum (a + b)n =
∑n

k=0

(

n
k

)

akbn−k,

GB(s; n, p) =

n
∑

x=0

(

n

x

)

(pes)
x
(1 − p)n−x = (pes + 1 − p)n .(1.2)

The d-th raw moment EpB
Xd equals the d-th derivative of the generating function

GB(s) at s = 0 (e.g., [14]). For example, the mean value is µ := EpB
X = n(pes +

1 − p)n−1pes|s=0 = np and the second raw moment is EpB
X2 = np((n − 1)(pes +

1 − p)n−2pes + (pes + 1 − p)n−1es)|s=0 = np(np + 1 − p). Higher-order moments for
larger d can be computed, in principle, by continuing this procedure, but computing
higher-order derivatives of GB(s) becomes tedious with increasing d. In the following
we aim at finding a recursive formula without referring to higher order derivatives of
GB(s) (see also [2] for a related approach).

2. Recursive formulae. For computing the higher-order derivatives of the mo-
ment generating function GB(s) for larger d we can define auxiliary functions

Hd(s) := (pes)d with derivative H ′

d(s) = dHd(s) ,(2.1)

Fd(s) := ndGB(s; n − d, p) with derivative(2.2)

F ′

d(s) = nd+1(pes + 1 − p)n−d−1H1(s) = Fd+1(s)H1(s) , and(2.3)

Kd(s) := Fd(s)Hd(s) with derivative(2.4)

K ′

d(s) = F ′

d(s)Hd(s) + dFd(s)Hd(s) = Kd+1(s) + dKd(s) ,(2.5)
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2 A. KNOBLAUCH

where nd = n(n− 1) · · · (n− d+1) denotes a falling factorial or Pochhammer symbol.
Since GB(s) = K0(s) we can obtain the higher-order derivatives of the moment gen-

erating function GB(s) recursively from eq. 2.5, for example G
(0)
B = K0, G

(1)
B = K1,

G
(2)
B = K2 + K1, G

(3)
B = K3 + 2K2 + K2 + K1 = K3 + 3K2 + K1. Thus, we can prove

the following

Lemma 2.1. The d-th derivative G
(d)
B of the moment generating function GB(s)

of the binomial probability pB(x; n, p) can be written as a weighted sum of functions
Ki(s),

G
(d)
B (s) =

d
∑

i=0

bdiKi(s) .(2.6)

for appropriate coefficients bdi. The coefficients can be computed recursively from

b0i = δi0(2.7)

bdi = ibd−1,i + bd−1,i−1 .(2.8)

where δij is the usual Kronecker symbol (1 for i = j, and 0 otherwise). For conve-
nience we further define bdi = 0 for d < 0 or i < 0 or i > d.

Proof. Eq. 2.7 follows from G
(0)
B = K0 (see eq. 2.4). Eq. 2.8 can then be shown

inductively using eq. 2.6 with eq. 2.5,

G
(d+1)
B (s) =

d
∑

i=0

bdi(Ki+1 + iKi) =

d+1
∑

i=1

bd,i−1Ki +

d
∑

i=0

bdiiKi

=

d+1
∑

i=0

(ibdi + bd,i−1)Ki .

From this lemma and Ki(0) = nipi we can give recursive formulae for the raw
and central moments as summarized by the following theorem.

Theorem 2.2. The d-th raw and central moment of a binomially distributed
random variable X with pr[X = x] = pB(x; n, p), expectation µ := np, and q := 1 − p

are

EpB
Xd =

d
∑

i=0

bdip
ini .(2.9)

=

d
∑

j=0

(−q)j

d
∑

i=j

(

i

j

)

bdin
i(2.10)

EpB
(X − µ)d =

d
∑

i=0

(

d

i

)

(−µ)d−iEpB
X i .(2.11)

Eqs. 2.10,2.11 can be obtained from the binomial sum (see section 1). Eq. 2.10 is
written as polynomial in q which is useful for some applications (see section 5). The
first few values of the coefficients bdi are shown in table 2.1.
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bdi i=0 1 2 3 4 5 6 7 8 9 10
d=0 1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0 0 0 0 0
3 0 1 3 1 0 0 0 0 0 0 0
4 0 1 7 6 1 0 0 0 0 0 0
5 0 1 15 25 10 1 0 0 0 0 0
6 0 1 31 90 65 15 1 0 0 0 0
7 0 1 63 301 350 140 21 1 0 0 0
8 0 1 127 966 1701 1050 266 28 1 0 0
9 0 1 255 3025 7770 6951 2646 462 36 1 0

10 0 1 511 9330 34105 42525 22827 5880 750 45 1
Table 2.1

Values of the binomial moment coefficients bdi for 0 ≤ d, i ≤ 10. These coefficients can be used
to compute the moments of the binomial probability (see eq. 2.9), and are identical to the Stirling
numbers of the second kind (see section 3).

3. Relation to Stirling numbers of the second kind. The coefficients bdi

for computing the binomial moments (eq. 2.9) are actually Stirling numbers of the
second kind: The Stirling number of the second kind S(d, i) is defined as the number
of ways of partitioning a set of d elements into i nonempty sets, and one can show that
S(d, i) obeys the same recurrence relations eqs. 2.7,2.8 as bdi (e.g., [1, 17, 9]). Closed
formula for the Stirling numbers of the second kind are well known, for example,

bdi = S(d, i) =
(−1)i

i!

i
∑

k=0

(−1)k

(

i

k

)

kd .(3.1)

Thus, inserting this into the formulae of theorem 2.2 gives us already closed-form
expressions for the moments of the binomial probability. However, these formulae can
still be simplified using a generalization of the following generating function (e.g., see
[17])

nd =

d
∑

i=0

bdin
i .(3.2)

The generalization is given by the following lemma.
Lemma 3.1.

d
∑

i=j

(

i

j

)

bdin
i =

(

n

j

) j
∑

k=0

(−1)k

(

j

k

)

(n − k)d .(3.3)

Proof. Instead of eq. 3.3 we prove the equivalent equation

C(d, j, n) :=
d

∑

i=j

ijbdin
i = nj

j
∑

k=0

(−1)k

(

j

k

)

(n − k)d(3.4)

by induction over j. For j = 0 the lemma is identical to eq. 3.2. For larger j we
compute using ibdi = bd+1,i − bd,i−1 (see eq. 2.8)

C(d, j + 1, n) =

d
∑

i=j+1

ij+1bdin
i =

d
∑

i=j+1

ijibdin
i − j

d
∑

i=j+1

ijbdin
i
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=
d

∑

i=j+1

ijbd+1,in
i −

d
∑

i=j+1

ijbd,i−1n
i − j

d
∑

i=j+1

ijbdin
i .

The three sums can be written individually

S1 :=

d
∑

i=j+1

ijbd+1,in
i = C(d + 1, j, n) − j!bd+1,jn

j − (d + 1)jnd+1

S2 :=

d
∑

i=j+1

ijbd,i−1n
i

= n

d
∑

i=j+1

(i − 1)jbd,i−1(n − 1)i−1 + jn

d
∑

i=j+1

(i − 1)j−1bd,i−1(n − 1)i−1

= n

d−1
∑

i=j

ijbd,i(n − 1)i + jn

d−1
∑

i=j

ij−1bd,i(n − 1)i

= nC(d, j, n − 1) − ndj(n − 1)d

+jnC(d, j − 1, n − 1) − jn(j − 1)j−1bd,j−1(n − 1)j−1 − jndj−1(n − 1)d

S3 := j

d
∑

i=j+1

ijbdin
i = jC(d, j, n) − jjjbdjn

j ,

where we used bdd = 1 for d ≥ 0. For the second sum S2 we used ij = ((i − j) +
j)(i−1)j−1. Fortunately, in S1−S2−S3 all the non-C terms cancel out: The b terms
cancel out because with bd+1,j = jbd,j + bd,j−1 (eq. 2.8) we have

−j!njbd+1,j + j!njbd,j−1 + jj!njbdj = j!nj(−bd+1,j + bd,j−1 + jbdj) = 0 .

The remaining non-C and non-b terms cancel out because

−(d + 1)jnd+1 + djnd+1 + jdj−1nd+1 = nd+1dj−1(−(d + 1) + (d − j + 1) + j) = 0 .

Thus, using the induction hypothesis, we have simply

C(d, j + 1, n) = C(d + 1, j, n) − nC(d, j, n − 1) − jnC(d, j − 1, n− 1) − jC(d, j, n)

= nj

j
∑

k=0

(

j

k

)

(−1)k(n − k)d+1

−n(n − 1)j

j
∑

k=0

(

j

k

)

(−1)k(n − (k + 1))d

−jn(n − 1)j−1
j−1
∑

k=0

(

j − 1

k

)

(−1)k(n − (k + 1))d

−jnj

j
∑

k=0

(

j

k

)

(−1)k(n − k)d

=

j+1
∑

k=0

ak(n − k)d .
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In the last line we have simply summed over the (n − k)d terms. Thus, our proof is
finished if we can show that ak = nj+1

(

j+1
k

)

(−1)k for k = 0, 1, . . . , j + 1. The highest
coefficient aj+1 gets contributions only from the second sum,

aj+1 = −nj+1(−1)j(n − (j + 1))d = nj+1

(

j + 1

j + 1

)

(−1)k .

The lowest coefficient a0 gets contributions only from the first and fourth sum,

a0 = njn − jnj = nj+1 = nj+1

(

j + 1

0

)

(−1)0 .

The remaining intermediary coefficients ak for k = 1, 2, . . . , j get contributions from
all four sums,

ak = nj

(

j

k

)

(−1)k(n − k) − nj+1

(

j

k − 1

)

(−1)k−1

−jnj

(

j − 1

k − 1

)

(−1)k−1 − jnj

(

j

k

)

(−1)k

= (−1)knj

(

j

k

)

((n − k) + (n − j)
k

j − k + 1
+ j

k

j
− j)

= (−1)knj

(

j

k

)

(n − j)(j + 1)

j − k + 1
= nj+1

(

j + 1

k

)

(−1)k .

Thus, we have proven eq. 3.4.
A useful variant of lemma 3.1 including an offset µ is

(

n

j

) j
∑

k=0

(−1)k

(

j

k

)

(n − µ − k)d = nj

d
∑

i=j

(

i

j

)

bdi(n − µ − j)i−j .(3.5)

4. Closed formulae. The following theorem summarizes the main results of
this work:

Theorem 4.1. Let X be a binomially distributed random variable with probability
function pB(x; n, p) (see eq. 1.1). Further let q := 1 − p and let bdi Stirling numbers
of the second kind (see table 2.1 and eqs. 2.7,2.8,3.1). Then the d-th raw moment of
the binomial probability pB can be written

EpB
Xd =

d
∑

i=0

bdip
ini(4.1)

=

d
∑

i=0

(−p)i

(

n

i

) i
∑

k=0

(−1)k

(

i

k

)

kd(4.2)

=
d

∑

j=0

(−q)j

d
∑

i=j

(

i

j

)

bdin
i(4.3)

=

d
∑

j=0

(−q)j

(

n

j

) j
∑

k=0

(−1)k

(

j

k

)

(n − k)d .(4.4)

For the d-th raw moment the following bounds are true,

(np)d ≤ EpB
Xd ≤ nd .(4.5)
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For an arbitrary offset µ we have

EpB
(X − µ)d =

d
∑

i=0

(

d

i

)

(−µ)d−iEpB
X i(4.6)

=

d
∑

j=0

(−p)j

(

n

j

) j
∑

k=0

(−1)k

(

j

k

)

(k − µ)d(4.7)

=

d
∑

j=0

(−q)jnj

d
∑

i=j

(

i

j

)

bdi(n − µ − j)i−j(4.8)

=

d
∑

j=0

(−q)j

(

n

j

) j
∑

k=0

(−1)k

(

j

k

)

(n − µ − k)d .(4.9)

In particular, for µ = EpB
X = np we obtain the d-th central moment of the binomial

probability pB. For z − d ≥ µ ≥ EpB
X the following bound is true,

|EpB
(X − µ)d| ≤

d
∑

j=0

d
∑

i=j

(

i

j

)

bdi(nq)i (∼ (nq)d for fixed d and nq → ∞) .(4.10)

Proof. Eqs. 4.1,4.2 follow from eqs. 2.9,3.1. Eqs. 4.3,4.4 follow from eqs. 2.10,3.3.
The bounds of eq. 4.5 follows simply from pd ≤ pi ≤ 1 and eq. 3.2 because eq. 4.1
is obviously a sum of non-negative numbers. Eq. 4.6 is eq. 2.11. Eq. 4.7 follows by
inserting eq. 4.2 into 4.6 and applying the binomial sum (see section 1). Similarly,
eq. 4.9 follows from inserting eq. 4.4 into eq. 4.6. Eq. 4.8 follows from eq. 4.9 with
eq 3.5. Eq. 4.10 follows from eq. 4.8 because nj ≤ nj and (n − µ − j)i−j ≤ (nq)i−j

for n ≥ µ + d and µ ≥ EpB
X = np.

5. Related work and application to the analysis of neural associative

networks. Computing the higher-order moments of a binomially distributed random
variable is rarely emphasized. Standard textbooks give expressions for the moment
generating function (eq. 1.2) and some lower-order moments such as mean, variance,
and, perhaps, skewness and kurtosis, but higher-order moments are usually neglected
(e.g., see [14, 16]). For some applications it may be sufficient to approximate a
binomial random variable by either a Gaussian or a Poissonian where closed-form
expressions for higher-order moments are known. For example, for large variance
np(1 − p) → ∞, according to the DeMoivre-Laplace theorem, the binomial probabil-
ity becomes similar to a Gaussian with same mean and variance. Likewise, for n → ∞
and finite np → λ < ∞ the binomial becomes Poissonian. However, for applications
as described below, these approximations are not appropriate and it is necessary to
find an exact formula.

A previous attempt [2] to compute the higher-order moments of the binomial
distribution revealed recursive expressions similar to those developed in section 2,
but was restricted to the special case p = 0.5. Moreover, the recursive form was not
appropriate for efficient computation or application in further analyses. In contrast to
[2], this work provides general recursive and non-recursive (or closed-form) expressions
for the higher-order moments of the binomial distribution.

My main motivation to obtain a closed formula for the binomial moments comes
from analyzing storage capacity and retrieval error probabilities in neural associative
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memory networks [21, 12, 4, 18, 6]. Associative memories are systems that contain
information about a finite set of associations between pattern vector pairs {(uµ 7→
vµ) : µ = 1, ..., M} [10]. Given a possibly noisy address pattern ũ the problem is
to find a target pattern vµ for which the corresponding address pattern uµ is most
similar to ũ.

Neural associative networks have wide applications both for artificial intelligence
(e.g., visual object recognition [10, 15]) and modeling the brain (e.g., [13, 6, 22, 5, 19,
20]). In neural implementations the associations are stored in a matrix A describing
the synaptic connections between two cell populations u and v. Here the retrieval
result v̂µ may differ from the original pattern vµ. This is due to retrieval noise being
an increasing function of the memory load or the number of stored associations. In
general the probability of a retrieval error can be computed from the neuron potential
distribution as obtained by propagating the address pattern ũ through the synaptic
matrix A.

One of the most efficient models is the so-called Willshaw network with binary
neurons and synapses [21]. Here the synaptic matrix is simply A = ∨M

µ=1u
µ,Tvµ and

the retrieval error probabilities can be computed from the so-called Willshaw-Palm
distribution of neuron potentials x = ũTA. Since the Willshaw-Palm distribution is
more difficult to formulate, many analyses of neural associative memory actually rely
on a binomial approximation (e.g., [21, 12, 11, 3, 18]). However, it is unclear for which
network parameters this approximation is sufficiently accurate. In a further paper [8]
(see also [7]) I will compute the moments of the Willshaw-Palm distribution from
the binomial moments. For this it is sufficient to replace qj in eqs. 4.4,4.9 by some
more complex term q(j). With this it will be possible to compare the exact potential
distribution to the binomial approximation and determine asymptotic conditions when
they become identical.
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