
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Modeling Regularity to Improve Scalability of
Model-Based Multiobjective Optimization
Algorithms

Yaochu Jin, Aimin Zhou, Qingfu Zhang, Bernhard
Sendhoff, Edward Tsang

2008

Preprint:

This is an accepted article published in Multiobjective Problem Solving from
Nature. The final authenticated version is available online at: https://doi.org/[DOI
not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Modeling Regularity to Improve Scalability of

Model-based Multi-objective Optimization

Algorithms

Yaochu Jin1, Aimin Zhou2, Qingfu Zhang2, Bernhard Sendhoff1, and
Edward Tsang2

1 Honda Research Institute Europe
Carl-Legien-Str. 30
63073 Offenbach, Germany
{yaochu.jin,bernhard.sendhoff}@honda-ri.de

2 Department of Computer Science
University of Essex
Wivenhoe Park, Colchester, CO4 3QS, UK
{azhou,qzhang,edward}@essex.ac.uk

Summary. Model-based multi-objective optimization is one class of meta-heuristics
for solving multi-objective optimization problems, where a probabilistic model is
built from the current distribution of the solutions and new candidate solutions
are generated from the model. One main difficulty in model-based optimization is to
construct a probabilistic model that is able to effectively capture the structure of the
problems to enable efficient search. This chapter advocates a new type of probabilis-
tic models that takes the regularity in the distribution of Pareto-optimal solutions
into account. We compare our model to two other model-based multi-objective algo-
rithms on a number of test problems to demonstrate that our algorithm is scalable to
high-dimensional optimization problems with or without linkage among the design
variables.

1 Introduction

The last decade has witnessed a great success of evolutionary algorithms
and other population-based meta-heuristic search methods in solving multi-
objective optimization problems [8]. Nevertheless, several challenges still re-
main to be addressed for population-based search methods to deal with hard,
real-world optimization problems. One of these challenges is algorithms’ abil-
ity to efficiently solve optimization problems of a high search dimension, which
is often known as the scalability of optimization algorithms.

For evolutionary multi-objective algorithms to be scalable to high search
dimensions, they must be able to effectively take advantage of domain knowl-
edge of the problem at hand during the search. Unfortunately, major search

yaochu
Text Box
To appear in: J. Knowles et al (Eds.), Multiobjective Problem Solving from Nature, Springer, 2008

2 Jin, Zhou, Zhang, Sendhoff, and Tsang

operators of conventional evolutionary algorithms, such as crossover and mu-
tation, are not efficient in taking problem-specific knowledge into account in
search. To address this weakness, several approaches have been suggested for
incorporating domain knowledge into evolutionary algorithms to guide the
sampling process [13], among which model-based optimization methods, such
as the estimation of distribution algorithms(EDAs) [6, 18], have widely been
studied. It should be noticed that existing EDAs have mainly been developed
to solve scalar optimization problems, which are not necessarily suited for
solving multi-objective problems.

Another weakness of evolutionary algorithms that use crossover and mu-
tation for generating new candidate solutions is that they do not explicitly
exploit the correlation between design variables (also known as variable link-
age) [10]. Model-based algorithms are believed to be able to learn the linkage
among variables. However, the ability of learning linkage can be at the cost
of scalability, if the probabilistic model is not chosen appropriately.

This chapter presents a methodology for incorporating additional knowl-
edge into building probabilistic models for solving continuous multi-objective
problems. The domain knowledge we use here is the regularity in the dis-
tribution of Pareto-optimal solutions, which has largely been overlooked in
developing evolutionary multi-objective optimization algorithms. Since regu-
larity is a general property for a large class of multi-objective problems, the
proposed framework is applicable to a wide range of real-world problems.

The remainder of the chapter is organized as follows. A brief introduction
to solving multi-objective optimization problems using a probabilistic model,
together with a short discussion on the main difficulties of model-based al-
gorithms is presented in Section 2. Three model-based multi-objective opti-
mization algorithms, including the one that takes regularity into account, are
described in details in Section 3. Section 4 provides the experimental setup,
such as parameter settings of algorithms, the test functions, and the perfor-
mance indicators for quantitatively evaluating the performance of the algo-
rithms. Comparison results of the three models with respect to algorithms’
scalability and ability to handle variable linkages are presented in Section 5.
A summary and conclusions of the chapter are provided in Section 6.

2 Probabilistic Modeling for Multi-objective

Optimization

The basic idea of population-based search using a probabilistic model is first
to estimate the probability distribution of the solutions previously generated
over and then generate new candidate solutions by sampling the probabilistic
model, as show in Fig. 1.

A large family of probabilistic models can be used to estimate the dis-
tribution of continuous and discrete functions [18]. In this chapter, we limit
our discussions to continuous optimization problems, where Gaussians or a

Modeling Regularity to Improve Scalability 3

Initialization

Evaluation

Loop

Parent
Terminate

Evaluation

Offspring

Selection Building a model

from the model
Sampling new solutions

Fig. 1. A generic framework for model-based optimization algorithms using a pop-
ulation.

mixture of Gaussians are employed to model the distribution of the function
to be optimized.

It would be ideal if we could use a full, joint probability distribution model,
i.e., a probabilistic model that considers dependency between all variables.
Unfortunately, accurate estimation of a full joint distribution model in a
high-dimensional space remains an open problem. In order to estimate the
distribution accurately, a huge number of data samples are needed, which is
impractical in solving real-world problems due to the fact that calculation
of the function value for a given design (often known as fitness evaluation
in evolutionary optimization) is computationally very expensive. In this con-
text, EDAs that require a huge population size are of very limited practical
importance.

Several techniques have been adopted to address the curse of dimension-
ality. The simplest way to cope with high dimensionality is to neglect the
linkage between variables and build a univariate distribution model for each
variable [22, 30]. Unfortunately, such models are not able to capture the de-
pendency between variables and they are not recommendable if there are
strong correlations between the variables. One popular approach is to use
factorized univariate or multivariate distributions, which are able to capture
the independence between the variables. A multivariate factorized probability
distribution is a probabilistic model in the form of a product of probabil-
ity density functions. Both univariate factorization [3, 19] and multivariate
factorization [3, 19, 4] have been employed for model-based optimization.

A natural extension to models consisting of a single factorized probability
distribution is to use a weighted sum of single factorized distributions, which
is usually known as mixture of Gaussians. Such models can often be obtained
by dividing the search space into a number of subspaces and then a single

4 Jin, Zhou, Zhang, Sendhoff, and Tsang

factorized distribution is constructed for each cluster [4]. This method is of
particular interest for multi-modal scalar optimization and multi-objective
optimization, where more than one solution needs to be achieved.

Although multivariate factorization is able to capture the dependency
among at least two variables, it is not straightforward to select a model that is
optimal for a given problem [5]. Another approach to factorization is to map
the high-dimensional search space onto a latent space of a lower dimensional-
ity and then a univariate or multivariate factorized distribution can be built.
The mapping from the high-dimensional design space to the low-dimensional
latent space can often be realized using dimension reduction techniques such
as the principal component analysis [1]. Model-based optimization algorithm
using a distribution model in latent space has been reported in [7, 27, 24].
One main difficulty is to determine the dimension of the latent space.

2.1 Modeling Regularity in Multi-objective Optimization

As previously discussed, incorporation of knowledge into search process helps
to improve the search performance, especially the scalability of the search
algorithms to high search dimensionality. In addition to domain knowledge
that is specific to each particular problem, regularity in the distribution of
the Pareto-optimal solutions is a nice property that holds for a large class of
multi-objective optimization problems. So far, this nice property has largely
been overlooked. The importance of taking advantage of regularity in evo-
lutionary multi-objective optimization was first advocated in [14], where it
is suggested that the success of local search in multi-objective optimization
can most probably be attributed to the fact that local search is able to im-
plicitly exploit the regular distribution of Pareto-optimal solutions. In that
work, piece-wise linear models are constructed in the design space using the
nondominated solutions achieved by an evolutionary algorithm. It has been
demonstrated that the quality of the solutions generated from the linear mod-
els are better than the original solutions.

The regularity property can be induced from the Karush-Kuhn-Tucker
condition [21, 26], which indicates that under certain smoothness conditions,
the Pareto-optimal set in the design space of a continuous multi-objective
optimization problem is an (m−1)-dimensional piecewise continuous manifold,
where m is the number of the objectives.

The question now is how to efficiently exploit the regularity property using
model-based multi-objective optimization. Although it is believed that model-
based optimization is able to learn the problem structure, it must be pointed
out that the model’s ability to capture the problem structure heavily depends
on the model in use. This is particularly true for multi-objective optimization,
where the final solution is a Pareto front consisting of multiple solutions rather
than a single optimum.

Most existing model-based multi-objective optimization algorithms for
solving continuous problems employ Gaussian distributions with few excep-

Modeling Regularity to Improve Scalability 5

tions, e.g., in [24], where a Voronoi mesh has been adopted. The most impor-
tant a priori knowledge that can be derived from the regularity condition is
that the Pareto front in the original n-dimensional search space can be mod-
eled in an (m − 1)-dimensional space without any information loss, where n
is the dimensionality of the search space and in most cases, we have m ≪ n.
This knowledge removes exactly the main obstacle in latent variable based
models, where the dimension of the latent space must be specified. Besides,
knowing that the Pareto front is a principal curve or surface, we believe that
first-order or second-order polynomials might be more efficient than Gaussian
models in modeling the regular distribution of the Pareto-optimal solutions.

Take bi-objective optimization problems as an example. The regularity
property has two implications. First, the Pareto front can be described by one
or a few sections of one-dimensional model, regardless how large the design
space is. Second, a linear curve is more efficient in leading the population to
the final Pareto front, as illustrated in Fig. 2.

x2

x1

x2

x1

(a) (b)

Fig. 2. Modeling Pareto set using (a) linear models; (b) Gaussian models.

The idea of modeling regularity in model-based multi-objective optimiza-
tion has most recently been exploited by the authors and very competitive re-
sults have been achieved [31, 32, 33, 34] compared to some of the state-of-the-
art evolutionary multi-objective optimization such as NSGA-II [9], GDE3 [17],
and MIDEA [2]. In the following, we are going to compare one model-based
multi-objective algorithm that exploits regularity to two other model-based
multi-objective optimization algorithms with respect to scalability to search
dimension, ability to handle variable linkage, and sensitivity to population
size.

3 Three Model-based Algorithms

3.1 Regularity-based Latent Principal Curve Model (LPCM)

Modeling in a latent space is an attractive idea because the dimension of the
latent space is usually much lower than that of the design space. According

6 Jin, Zhou, Zhang, Sendhoff, and Tsang

to the regularity condition, the Pareto front of an m-objective optimization
problem can be modeled in an (m−1)-dimensional space. For this purpose, the
local principal curve analysis (LPCA) algorithm [15] has been employed. One
elegant property of LPCA is that it simultaneously groups the population into
a number of clusters while mapping it from the n-dimensional design space to
the (m − 1)-dimensional latent space.

The points in the k-th cluster (denoted by Ck) can be described by a
uniform distribution on a (m − 1)-dimensional manifold Mk:

P k(S) =

{

1

V k , if S ∈ Mk,
0, else

(1)

where S is an (m − 1)-dimensional random vector in the latent space, V k is
the volume of Mk bounded by:

ak
i ≤ si ≤ bk

i , i = 1, · · · , (m − 1), (2)

and

ak
i = min X∈Ck(X − X̄k)T Uk

i , (3)

bk
i = max X∈Ck(X − X̄k)T Uk

i , (4)

where X̄k is the mean of the points in Ck, Uk
i is the i-th principal component

of the data in cluster Ck.
While the uniform distribution defined in Eqn.(1) is used to capture the

regularity (centroid) in the distribution of the population, local dynamics of
the population is described by an n-dimensional zero-mean Gaussian distri-
bution in the design space:

Nk(X) =
1

(2π)n/2|Σk|n/2
exp

{

−1

2
XT ΣkX

}

, (5)

where Σk = δk I, I is an n×n dimensional identity matrix, and δk is calculated
by:

δk =
1

n − m + 1

n
∑

i=m

λk
i , (6)

where λk
i are the i-th largest eigenvalue of the covariance matrix of the points

in cluster k. Here, we assume that the inequality n > m− 1 always holds. An
illustration of the principal curve and the Gaussian models in a one dimen-
sional latent space is provided in Fig. 3, where the population is divided into
two clusters.

During the sampling process, the probability at which the model of cluster
k is chosen is determined by

p(k) =
V k

∑K
k=1

V k
, (7)

Modeling Regularity to Improve Scalability 7

Cluster 1 Cluster 2

Fig. 3. Modeling the distribution of the population using a uniformly distributed
principal curve and a Gaussian perturbation.

where V k is the volume of the (m − 1)-dimensional manifold. In case of a
curve, it is the length of the curve.

The sampling process consists of three steps. In the first step, a point is
generated on (m − 1)-dimensional manifold Mk according to Eqn.(1), and is
then mapped onto the n-dimensional design space. Assume S is an (m − 1)-
dimensional random vector generated in Mk for the k-th cluster, it is mapped
onto the n-dimensional design space in the following way, if the manifold Mk

is a first-order principal curve:

X1 = Θk
0 + Θk

1 S (8)

where X1 is an n-dimensional random vector, Θk
0 is the mean of data in cluster

C(X)k, and Θk
1 is n × (m− 1)-dimensional matrix, which is composed of the

eigenvectors corresponding to the (m − 1) largest eigenvalues.
In the second step, an n-dimensional random vector X2 is generated from

the Gaussian distribution defined in Eqn.(5). Finally, the following new can-
didate solution is generated:

X = X1 + X2. (9)

This process continues until all offspring are generated.

3.2 Univariate Factorized Gaussian Model (UGM)

The basic idea on using a univariate factorized normal distribution for model-
ing the population has been considered in [2]. Before constructing the models,
the population is divided into K clusters. For this purpose, the leader cluster-
ing algorithm [12] is employed, as suggested in [2]. In this clustering algorithm,
it is not necessary to define the number of clusters, however, a threshold that
defines the radius of the clusters must be given, which basically determines the
number of clusters. One major drawback of the leader algorithm is that the
clustering result is sensitive to the choice of the initial cluster center (leader).
For cluster k, k = 1, 2, ..., K, a Gaussian model is then constructed for each
search dimension:

pk
i (xi) =

1

δk
i

√
2π

exp

{

− (xi − µk
i)2

2(δk
i)2

}

, (10)

8 Jin, Zhou, Zhang, Sendhoff, and Tsang

where µk
i and δk

i are the mean and standard deviation of the Gaussian model
for variable i = 1, ..., n. The mean and standard deviation of the univariate
Gaussian distribution for cluster k can be calculated according to the individ-
uals that are assigned to the cluster.

During the sampling process, one of the K clusters is chosen randomly at a
probability of 1/K. For the chosen cluster, one new candidate solution is gen-
erated using the n Gaussian models for each design variable. This procedure
repeats until all the offspring solutions are generated.

3.3 Marginalized Multivariate Gaussian Model (MGM)

Univariate factorized Gaussian models neglect any correlation between the
variables. As a result, the model cannot effectively learn the problem struc-
ture if there is dependency among the variables. To address problem, a joint
Gaussian distribution model is considered in this model. However, building
an accurate full joint distribution model in a high-dimensional space is almost
intractable. For this reason, the population is first grouped into a number clus-
ters and then a joint distribution model is built for each cluster. To cluster
the population, the k-means clustering algorithm [12] is adopted. Therefore,
the number (K) of clusters needs to be predefined by the user.

For k-th cluster, the following joint distribution model is constructed:

pk(X) =
1

(2π)n/2|Σk|n/2
exp

{

−1

2
(X − Λk)T (Σk)−1(X − Λk)

}

, (11)

where X is an n-dimensional design vector, Λk is an n-dimensional vector
of the mean value and Σk is an n × n covariance matrix estimated by the
individuals in the k-th cluster.

Different to the univariate factorized model, the probability of sampling
the model of the k-th cluster is calculated as follows:

p(k) =
Nk

∑K
k=1

Nk
, (12)

where Nk is the number of individuals in the k-th cluster.

3.4 The General Algorithm Framework

For a fair comparison, all three algorithms use the same selection strategy, i.e.,
the MaxiMin sorting selection algorithm suggested in [28], which is a variant
of the crowded non-dominated sorting selection proposed in [9]. The first steps
in the MaxiMin sorting are the same as those in the crowded non-dominated
sorting. First, the parent and offspring populations are combined. Second, the
combined population is sorted according to the non-dominance ranks. During
the ranking, non-dominated solutions in the combined population are assigned

Modeling Regularity to Improve Scalability 9

with a rank 1, which belongs to the first non-dominated front. These individ-
uals are removed temporarily from the population and the non-dominated
individuals in the rest of the population are identified, which consists of the
second non-dominated front of the population and are assigned with a rank
2. This procedure repeats until all individuals in the combined population
are assigned with a rank from 1 to R, assuming that R non-dominated fronts
can be identified in total. Instead of calculating the crowding distance as
done in NSGA-II, selection starts directly after non-dominated sorting. Dur-
ing selection, solutions on the first non-dominated front are passed to the
parent population of the next generation. If the number of solutions on the
first non-dominated front is smaller than the population size, those on the
second non-dominated front are moved to the parent population. However,
it can happen that only part of the solutions on a non-dominated front can
be selected. Let us assume there are L solutions on the j-th non-dominated
front, and only M solutions are to be selected, where M < L. In NSGA-II, M
solutions with the largest crowding distances are selected. In the MaxiMin se-
lection method, the extreme solutions on the concerned non-dominated front
is selected. Then, the solution that has the maximal distance to the selected
solutions from the same non-dominated front are selected first. This process
is continued until the parent population is filled up. An illustrative example
is provided in Fig. 4. Assume that we need to select 10 solutions from 20
in the combined population. We first select the 6 solutions on the first non-
dominated front. On the second non-dominated front, there are 6 solutions,
from which 4 will be selected. According to the MaxiMin method, the two
extreme solutions A and B are first selected. Then, solution C is selected be-
cause the minimal distance from solution C to those selected from the second
non-dominated front (A and B) is the largest. Afterwards, solution D is se-
lected because its minimal distance to the selected solutions (A, B, and C)
is the maximal. It has been shown that the MaxiMin approach can lead to
more diverse population with a lower computational complexity compared to
the crowded non-dominated sorting selection method [28].

A

C

D

1st non−dominated front

4th non−dominated front

3rd non−dominated front

2nd non−dominated front
B

f1

f2

Fig. 4. MaxiMin non-dominated selection.

10 Jin, Zhou, Zhang, Sendhoff, and Tsang

It should be noted that the reproduction strategy in our work is also differ-
ent to that in MIDEA [2]. In this work, all solutions in the parent population
is used to construct the probabilistic model, whereas in MIDEA, only a por-
tion of individuals in the parent population is used. In addition, the number
of new candidate solutions (offspring) generated from the model equals the
number of parents, while in MIDEA, only those solutions that are not used
in model building are replaced by newly generated offspring.

A generic diagram of the model-based multi-objective optimization algo-
rithms studied in this work is presented in Fig. 5.

Loop

Initialization

Evaluation

Parent
Terminate

MaxMin Selection

sorting
Non−dominated

and offspring
Combining parent

Clustering the population

Building a model

Sampling from the model
OffspringEvaluation

Fig. 5. A generic diagram of the model-based optimization algorithms.

4 Experimental Setup

4.1 Parameter Settings

To investigate the scalability of the algorithms’ performance to the search
dimension, we have performed simulations on the test problems with a di-
mension of 10, 20, 30, 40, 50, 60, 70, 80, 90, 100. The sensitivity of the search
performance to the size of the population is also studied. To this end, we
have used a population size of 20,30,40,50,60,70,80,90,100,200,400, 600,800,
and 1000. The baseline for comparison is the maximum number of fitness
evaluations, which is listed in Table 1.

In UGM, the clustering of the population is conducted in the objective
space using the leader algorithm, as recommended in [2]. The threshold used in
clustering is set to 0.2, and a maximum of 10 clusters is allowed. For MGM, the
population is clustered using the k-means algorithm, and the cluster number
is set to 3 if the population size is smaller than or equal to 50, otherwise, the
cluster number is set to 5. Note, however, that clustering for MGM is done
in the design space. The reason why population clustering is carried out in

Modeling Regularity to Improve Scalability 11

different spaces is that the leader algorithm produces better results in the
objective space while the k-means algorithm shows more stable results in the
parameter space.

In LPCM, the clustering of the population is conducted using the local
principal component analysis algorithm, where the number of clusters is pre-
defined to 3 for a population size smaller than or equal to 50. In case of a
population size larger than 50, the number of clusters is defined to be 5.

Table 1. Maximum Evaluations

Pop Size Max Evaluation Max Gen

20 20000 1000
30 30000 1000
40 40000 1000
50 50000 1000
60 30000 500
70 35000 500
80 40000 500
90 45000 500
100 50000 500
200 60000 300
400 60000 150
600 60000 100
800 60000 75
1000 60000 60

4.2 Test Functions

The performance of the algorithms are studied on six test functions. Three
of them are taken directly from the widely used ZDT test functions [35],
namely, ZDT1, ZDT2, and ZDT3, whose Pareto front is convex, concave and
discontinuous. Note that the ZDT test functions are slightly modified so that
the Pareto front in the design space is shifted to:

x2 = · · · = xn = 0.2, x1 ∈ [0, 1].

In the ZDT test functions, there is no dependency among the design variables.
To investigate how the algorithms can deal with variable linkage, three addi-
tional test functions derived from the ZDT test functions are also considered,
which are termed ZDT1.2, ZDT2.2, and ZDT3.2. The Pareto front of these
three test functions in the objective space is completely the same as the corre-
sponding ZDT functions. However, there is a nonlinear dependency between
the design variables. The mathematical description of the six test functions
are presented in Table 2.

12 Jin, Zhou, Zhang, Sendhoff, and Tsang

Table 2. Test Instances

Test function Search space Objectives

ZDT1 [0, 1]n f1(x) = x1

f2(x) = g(x)[1−
p

f1(x)/g(x)]

g(x) = 1 + 9(
n

P

i=2

(xi − 0.2)2)/(n − 1)

ZDT2 [0, 1]n f1(x) = x1

f2(x) = g(x)[1− (f1(x)/g(x))2]

g(x) = 1 + 9(
n

P

i=2

(xi − 0.2)2)/(n − 1)

ZDT3 [0, 1]n f1(x) = x1

f2(x) = g(x)[1−
p

f1(x)/g(x)− x1

g(x)
sin(10πx1)]

g(x) = 1 + 9(
n

P

i=2

(xi − 0.2)2)/(n − 1)

ZDT1.2 [0, 1]n f1(x) = x1

f2(x) = g(x)[1−
p

x1/g(x)]

g(x) = 1 + 9(
n

P

i=2

(x2
i − x1)

2)/(n − 1)

ZDT2.2 [0, 1]n f1(x) =
√

x1

f2(x) = g(x)[1− (f1(x)/g(x))2]

g(x) = 1 + 9(
n

P

i=2

(x2
i − x1)

2)/(n − 1)

ZDT3.2 [0, 1]n f1(x) = x1

f2(x) = g(x)[1−
p

x1/g(x) − x1

g(x)
sin(10πx1)]

g(x) = 1 + 9(
n

P

i=2

(x2
i − x1)

2)/(n − 1)

4.3 Performance Indicators

To evaluate the performance of the algorithms, we adopted two performance
indicators(PIs). The first PI is the inverted generational distance (IGD)[25],
which is derived from the generational distance (GD) suggested in [29, 9]. IGD
can be expressed as follows:

D(P, P ∗) =
1

|P ∗|
∑

x∈P∗

||x − x′||2, (13)

where P is the nondominated set achieved by the optimization algorithm,
P ∗ is a reference Pareto-optimal set uniformly sampled from the true Pareto
front, x is a solution in reference set P ∗, and x′ is a solution in set P that
has the minimal distance to x. If the reference set represents the true Pareto

Modeling Regularity to Improve Scalability 13

front adequately well, IGD can effectively measure the accuracy as well as the
diversity of the achieved set P . The inverted generational distance is called
D-metric hereafter.

The second PI we adopted in the comparison is the difference of the hy-
pervolume (I-Metric for short) between the reference set P ∗ and the achieved
set P [16]:

I−H(P) = IH(P ∗) − IH(P), (14)

where IH(P ∗) and IH(P) are the hypervolume of P and P ∗, respectively.

5 Simulation Results

5.1 Scalability to Search Dimension: Without Dependency

The first set of simulations has been performed to study the scalability of
the three algorithms to search dimension for a given population size (100) on
the three test functions without variable linkage. The simulation results on
ZDT1, ZDT2, and ZDT3 are provided in Figs. 6, 7, and 8, respectively, where
the best and worst Pareto fronts from 30 independent runs according to the
D-metrics are plotted. It can be seen from the figures that the results from
LPCM, UGM, and MGM, which are presented on the left, the middle, and the
right panels of the figures, are quite similar when the dimension changes from
20 to 100, though degradation in the performance of the MGM is a little more
serious than that of LPCM and UGM. This observation can be confirmed by
the D-metric and the I-metric of the results listed in Table 3 and Table 4,
respectively, in which the mean and standard deviation of 30 runs are listed.

The results indicate that both LPCM and UGM have very good scalability
to search dimension for problems without variable linkage. It is worth noticing
that the performance of MGM is also quite good, probably due to the fact
that the distribution of the Pareto front in ZDT1, ZDT2, and ZDT3 is quite
easy to model.

Table 3. Mean and Std. of the D-metric for test functions without variable linkage.

Instance Method Search Dimension

20 40 60 80 100

LPCM 0.0043±0.0001 0.0044±0.0001 0.0047±0.0001 0.0051±0.0001 0.0057±0.0002

ZDT1 UGM 0.0043±0.0002 0.0044±0.0002 0.0046±0.0002 0.0049±0.0002 0.0053±0.0002

MGM 0.0046±0.0002 0.0046±0.0002 0.0052±0.0004 0.0069±0.0011 0.0091±0.0013

LPCM 0.0040±0.0000 0.0042±0.0001 0.0045±0.0001 0.0048±0.0001 0.0054±0.0002

ZDT2 UGM 0.0044±0.0001 0.0045±0.0001 0.0047±0.0002 0.0051±0.0002 0.0056±0.0002

MGM 0.0045±0.0006 0.0043±0.0002 0.0048±0.0005 0.0061±0.0010 0.0096±0.0021

LPCM 0.0051±0.0000 0.0053±0.0001 0.0056±0.0001 0.0060±0.0001 0.0069±0.0003

ZDT3 UGM 0.0054±0.0003 0.0058±0.0002 0.0069±0.0006 0.0080±0.0008 0.0098±0.0012

MGM 0.0056±0.0003 0.0055±0.0003 0.0058±0.0004 0.0064±0.0005 0.0081±0.0011

14 Jin, Zhou, Zhang, Sendhoff, and Tsang

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(LPCM,20)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(UGM,20)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(MGM,20)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(LPCM,40)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(UGM,40)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(MGM,40)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(LPCM,60)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(UGM,60)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(MGM,60)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(LPCM,80)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(UGM,80)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(MGM,80)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(LPCM,100)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(UGM,100)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(MGM,100)

Fig. 6. Best and worst non-dominated set on ZDT1. Population size=100. The
number of design variables ranges from 20 (top row) to 100 (bottom row).

Modeling Regularity to Improve Scalability 15

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(LPCM,20)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(UGM,20)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(MGM,20)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(LPCM,40)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(UGM,40)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(MGM,40)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(LPCM,60)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(UGM,60)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(MGM,60)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(LPCM,80)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(UGM,80)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(MGM,80)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(LPCM,100)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(UGM,100)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(MGM,100)

Fig. 7. Best and worst non-dominated set on ZDT2. Population size=100. The
number of design variables ranges from 20 (top row) to 100 (bottom row).

16 Jin, Zhou, Zhang, Sendhoff, and Tsang

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(LPCM,20)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(UGM,20)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(MGM,20)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(LPCM,40)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(UGM,40)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(MGM,40)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(LPCM,60)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(UGM,60)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(MGM,60)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(LPCM,80)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(UGM,80)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(MGM,80)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(LPCM,100)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(UGM,100)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(MGM,100)

Fig. 8. Best and worst non-dominated set on ZDT3. Population size=100. The
number of design variables ranges from 20 (top row) to 100 (bottom row).

Modeling Regularity to Improve Scalability 17

Table 4. Mean and Std. of the I-metric for test functions without variable linkage.

Instance Method Search Dimension

20 40 60 80 100

LPCM 0.0048±0.0001 0.0058±0.0001 0.0069±0.0002 0.0083±0.0004 0.0098±0.0005

ZDT1 UGM 0.0048±0.0002 0.0056±0.0003 0.0064±0.0003 0.0076±0.0004 0.0087±0.0004

MGM 0.0061±0.0008 0.0061±0.0006 0.0081±0.0011 0.0120±0.0022 0.0163±0.0023

LPCM 0.0049±0.0001 0.0061±0.0002 0.0075±0.0003 0.0090±0.0004 0.0108±0.0006

ZDT2 UGM 0.0050±0.0001 0.0059±0.0002 0.0071±0.0003 0.0083±0.0004 0.0099±0.0005

MGM 0.0075±0.0021 0.0063±0.0010 0.0083±0.0014 0.0120±0.0025 0.0202±0.0046

LPCM 0.0043±0.0003 0.0080±0.0008 0.0129±0.0014 0.0185±0.0018 0.0265±0.0033

ZDT3 UGM 0.0093±0.0061 0.0186±0.0040 0.0311±0.0058 0.0428±0.0079 0.0565±0.0096

MGM 0.0151±0.0041 0.0107±0.0033 0.0147±0.0034 0.0210±0.0044 0.0328±0.0075

5.2 Scalability to Search Dimension: With Dependency

Simulations are also conducted on the three test functions with nonlinear
linkage among the design variables. The best and worst Pareto fronts from
30 independent runs according to the D-metric for the three test functions,
ZDT1.2, ZDT2.2, and ZDT3.2 are presented in Fig. 9, Fig. 10, and Fig. 11,
respectively. From the figures (left panel), we find that there is a slight perfor-
mance decrease of LPCM on ZDT1.2 and ZDT2.2, comparing its performance
on the three ZDT functions without variable linkage. The performance de-
crease on ZDT3.2 seems more obvious, nevertheless, the best achieved Pareto
front still approximates the true Pareto front very well. This indicates that
the performance of LPCM scales well to the search dimension.

If we look at the results of UGM (middle panel), the performance becomes
very poor. For all the three test functions, no single run is able to achieve
a complete Pareto front, regardless of the search dimension. This strongly
indicates that UGM is not suited for solving problems in which variable linkage
exists.

We can see from the figures (right panel) that for test functions ZDT1.2
and ZDT2.2, MGM is able to achieve the entire Pareto front when the search
dimension is low (20). However, the performance degrades seriously as the
search dimension increases. This suggests that although MGM is able to cap-
ture the linkage between the design variables, the modeling accuracy decreases
rapidly when the dimension becomes high.

The above observations made from the plot of the Pareto fronts can be
confirmed the D-metric and the I-metric of the results form 30 independent
runs, as listed in Table 5 and Table 6, respectively.

5.3 Sensitivity to Population Size

In solving hard real-world problems, the computational cost is often very high.
One of the common approach is to parallelize the fitness evaluation using a
computer cluster or even grid computing techniques [20]. Nevertheless, it is
always desirable if the performance of an algorithm is not sensitive to the
population size. To check the algorithms sensitivity to population size, we

18 Jin, Zhou, Zhang, Sendhoff, and Tsang

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(LPCM,20)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(UGM,20)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(MGM,20)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(LPCM,40)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(UGM,40)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(MGM,40)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(LPC,60)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(UGM,60)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(MGM,60)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(LPCM,80)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(UGM,80)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(MGM ,80)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(LPCM,100)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(UGM ,100)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(MGM,100)

Fig. 9. Best and worst non-dominated set on ZDT1.2. Population size=100. The
number of design variables ranges from 20 (top row) to 100 (bottom row).

Modeling Regularity to Improve Scalability 19

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(LPCM,20)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(UGM,20)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(MGM,20)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(LPCM,40)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(UGM,40)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(MGM,40)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(LPCM,60)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(UGM,60)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(MGM,60)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(LPCM,80)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(UGM,80)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(MGM,80)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(LPCM,100)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(UGM,100)

0 0.2 0.4 0.6 0.8 1.0
0

0.4

0.8

1.2

1.6

f
1

f 2

(MGM,100)

Fig. 10. Best and worst non-dominated set on ZDT2.2. Population size=100. The
number of design variables ranges from 20 (top row) to 100 (bottom row).

20 Jin, Zhou, Zhang, Sendhoff, and Tsang

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(LPCM,20)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(UGM,20)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(MGM,20)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(LPCM,40)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(UGM,40)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(MGM,40)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(LPCM,60)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(UGM,60)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(MGM,60)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(LPCM,80)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(UGM,80)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(MGM,80)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(LPCM,100)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(UGM,100)

0 0.2 0.4 0.6 0.8 1.0
−1.0

−0.3

0.4

1.1

1.8

f
1

f 2

(MGM,100)

Fig. 11. Best and worst non-dominated set on ZDT3.2. Population size=100. The
number of design variables ranges from 20 (top row) to 100 (bottom row).

Modeling Regularity to Improve Scalability 21

Table 5. Mean and Std. of the D-metric for test functions with variable linkage.

Instance Method Search Dimension

20 40 60 80 100

LPCM 0.0045±0.0001 0.0049±0.0001 0.0058±0.0011 0.0091±0.0044 0.0120±0.0072

ZDT1.2 UGM 0.1494±0.0266 0.2165±0.0213 0.2443±0.0224 0.2552±0.0134 0.2676±0.0151

MGM 0.0138±0.0179 0.2032±0.0540 0.3526±0.0130 0.3624±0.0133 0.3637±0.0125

LPCM 0.0042±0.0001 0.0046±0.0001 0.0051±0.0002 0.0063±0.0033 0.0070±0.0020

ZDT2.2 UGM 0.1845±0.0232 0.2222±0.0176 0.2408±0.0106 0.2512±0.0114 0.2508±0.0119

MGM 0.0339±0.0269 0.1916±0.0236 0.2626±0.0125 0.2690±0.0100 0.2718±0.0119

LPCM 0.0051±0.0001 0.0109±0.0211 0.0077±0.0027 0.0103±0.0032 0.0126±0.0037

ZDT3.2 UGM 0.0554±0.0296 0.0975±0.0284 0.1186±0.0090 0.1221±0.0014 0.1232±0.0008

MGM 0.0868±0.0370 0.1059±0.0700 0.1428±0.0603 0.1690±0.0288 0.1993±0.0329

Table 6. Mean and Std. of the I-metric for test functions with variable linkage.

Instance Method Search Dimension

20 40 60 80 100

LPCM 0.0057±0.0001 0.0073±0.0005 0.0102±0.0029 0.0173±0.0090 0.0223±0.0134

ZDT1.2 UGM 0.1494±0.0224 0.2072±0.0176 0.2323±0.0182 0.2434±0.0117 0.2551±0.0126

MGM 0.0241±0.0291 0.2020±0.0422 0.3293±0.0117 0.3391±0.0121 0.3425±0.0114

LPCM 0.0066±0.0004 0.0091±0.0006 0.0115±0.0011 0.0160±0.0106 0.0195±0.0078

ZDT2.2 UGM 0.2957±0.0249 0.3354±0.0173 0.3542±0.0101 0.3647±0.0107 0.3648±0.0114

MGM 0.0869±0.0614 0.3053±0.0233 0.3751±0.0117 0.3822±0.0091 0.3854±0.0105

LPCM 0.0065±0.0029 0.0402±0.0562 0.0423±0.0221 0.0649±0.0212 0.0795±0.0239

ZDT3.2 UGM 0.1778±0.0689 0.2832±0.0503 0.3188±0.0124 0.3282±0.0049 0.3319±0.0029

MGM 0.2602±0.0834 0.3003±0.1485 0.3895±0.1072 0.4487±0.0613 0.5098±0.0552

compared the performance of LPCM, UGM and MGM using different pop-
ulation sizes, ranging from 20 to 1000, refer to Table 1. As we can see from
Table 1, the allowed maximum number of fitness evaluations for large popu-
lation sizes is larger than that allowed for small population sizes to improve
the convergence. However, our simulation results still suggest that an overly
large population size is not desirable when the number of fitness evaluations
is limited.

The results in terms of the D-metric are presented in Figs. 12, 13, and
14 for ZDT1, ZDT2, and ZDT3, respectively.

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

LPCM

dimension

D
−

m
et

ric

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

UGM

dimension

D
−

m
et

ric

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

MGM

dimension

D
−

m
et

ric

Fig. 12. Results on ZDT1 using different population sizes.

22 Jin, Zhou, Zhang, Sendhoff, and Tsang

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

LPCM

dimension

D
−

m
et

ric

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

UGM

dimension

D
−

m
et

ric

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

MGM

dimension

D
−

m
et

ric

Fig. 13. Results on ZDT2 using different population sizes.

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

LPCM

dimension

D
−

m
et

ric

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

UGM

dimension

D
−

m
et

ric

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

MGM

dimension

D
−

m
et

ric
Fig. 14. Results on ZDT3 using different population sizes.

From the figures, we can observe that among the three algorithms, LPCM
shows very robust performance for a wide range of population sizes on the
ZDT functions without variable linkage, though a too large population size is
not recommended for solving high-dimensional problems. UGM method, on
the other hand, performs quite well with a medium to large population size.
However, a population smaller than 60 turns out to be insufficient for the
UGM. By contrast, the MGM is quite sensitive to the population size and a
population size smaller than 60 or larger than 200 should not be used.

Simulation results on the test functions with variable linkage are plotted
in Fig. 15, Fig. 16, and Fig. 17, respectively.

LPCM distinguishes itself with the other two algorithms more on the
test functions with variable linkage. In solving problems with variable link-
age, LPCM still performs very well with different population sizes for high-
dimensional problems. On ZDT3.2, the performance is not very satisfactory
for small population sizes. Contrary to that, UGM performs poorly in most
cases, except for the case in which a very large population size is used for
a low-dimensional problem. The bad performance of UGM can obviously be
attributed to the fact that UGM is not able to efficiently solve problems with
variable linkage. From the figures, we can see that MGM works well on low-
dimensional problems, though it is quite clear that MGM is not suited for

Modeling Regularity to Improve Scalability 23

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

LPCM

dimension

D
−

m
et

ric

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

UGM

dimension

D
−

m
et

ric

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

MGM

dimension

D
−

m
et

ric

Fig. 15. Results on ZDT1.2 using different population sizes.

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

LPCM

dimension

D
−

m
et

ric

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

UGM

dimension

D
−

m
et

ric

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

MGM

dimension

D
−

m
et

ric
Fig. 16. Results on ZDT2.2 using different population sizes.

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

LPCM

dimension

D
−

m
et

ric

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

UGM

dimension

D
−

m
et

ric

20
60

100
600

1000

10

40

70

100
0

0.1

0.2

0.3

0.4

pop size

MGM

dimension

D
−

m
et

ric

Fig. 17. Results on ZDT3.2 using different population sizes.

solving high-dimensional problems with variable linkage, despite that it is
theoretically able to capture correlations between variables.

6 Conclusion

This chapter presents a model-based multi-objective optimization method
that is able to explicitly take advantage of the regularity in the distribution of
Pareto-optimal solutions. By using the regularity condition, the dimensional-
ity of the latent space in which the model is constructed is greatly reduced. In

24 Jin, Zhou, Zhang, Sendhoff, and Tsang

addition, a principal curve or surface model is used instead of a joint Gaussian
distribution or a factorized Gaussian distribution model.

Simulation studies on comparing the scalability of the three multi-objective
optimization algorithms, i.e., LPCM, UGM, and MGM, are conducted on six
test problems with or without linkage among the design variables. From the
simulation results, we demonstrate that LPCM exhibits excellent scalability
to the increase in search dimension for problems with or without variable
linkage. We also show that LPCM is in principle insensitive to population size
ranging from 20 to 1000. We show that UGM is also scalable to the search
dimension for problems without linkage among design variables. However, the
performance of UGM deteriorates drastically when linkage exists among the
design variables.

It is somehow surprising that MGM also shows quite good performance
on high-dimensional test problems without variable linkage, though it is more
sensitive to the population size than LPCM and UGM. While MGM shows
better performance than UGM on low-dimensional problems with variable
linkage, its performance is as poor as that of UGM for high-dimensional prob-
lems, regardless of the population size used.

From our comparative studies, we conclude that explicitly taking the reg-
ularity in the distribution of Pareto-optimal solutions into account is very
helpful in improving the scalability of model-based multi-objective optimiza-
tion algorithms.

Our future work is to compare the performance of the algorithms on more
complex test problems where stronger correlations exist, such as those sug-
gested in [23, 11]. In addition, the scalability of the algorithms to the number
of objectives [?] is also an interesting issue to further investigate.

References

1. C.M. Bishop. Neural Networks for Pattern Recognition. Oxford University
Press, 1996.

2. P. A. N. Bosman and D. Thierens. The naive MIDEA: A baseline multi-objective
EA. In Third International Conference on Evolutionary Multi-Criterion Opti-
mization, LNCS 3410, pages 428–442. Springer, 2005.

3. P.A.N Bosman and D. Thierens. Expanding from discrete to continuous esti-
mation of distribution algorithms: The IDEA. In Parallel Problem Solving from
Nature, pages 767–776, 2000.

4. P.A.N. Bosman and D. Thierens. Advancing continuous IDEAs with mixture
of distributions and facorization selection metrics. In Genetic and Evolutionary
Computation Workshop on Optimization by Building and Using Probabilistic
Models, pages 208–212, 2001.

5. P.A.N. Bosman and D. Thierens. Learning probabilistic models for enhanced
evolutionary computation. In Y. Jin, editor, Knowledge Incorporation in Evo-
lutionary Computation, pages 147–176. Springer, 2005.

Modeling Regularity to Improve Scalability 25

6. P.A.N. Bosman and D. Thierens. Numerical optimization with real-valued esti-
mation of distribution algorithms. In M. Pelikan, K. Sastry, and E. Cantu-Paz,
editors, Scalable Optimization via Probabilistic Modeling. Springer, 2006.

7. D.-Y. Cho and B.-T. Zhang. Continuous estimation of distrubution algorithms
with probabilistic component analysis. In Congress on Evolutionary Computa-
tion, pages 521–526. IEEE, 2001.

8. K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John
Wiley & Sons, LTD, Chichester, 2001.

9. K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist mul-
tiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary
Computation, 6(2):182–197, 2002.

10. G.R. Harik and D.G. Goldberg. Learning linkage. In Foundations of Genetic
Algorithms, pages 247–262, 1996.

11. S. Huband, L. Barone, L. While, and P. Hingston. A scalable multi-objective
test problem toolkit. In Evolutionary Multi-Criterion Optimization, LNCS 3410,
pages 280–295. Springer, 2005.

12. A.K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: A review. ACM
Computing Surveys, 31(3):264–323, 1999.

13. Y. Jin, editor. Knowledge Incorporation in Evolutionary Computation. Springer,
Berlin, 2005.

14. Y. Jin and B. Sendhoff. Connectedness, regularity and the success of local search
in evolutionary multi-objective optimization. In Proceedings of the Congress on
Evolutionary Computation (CEC 2003), pages 1910–1917, Canberra, Australia,
2003. IEEE.

15. N. Kambhatla and T. K. Leen. Dimension reduction by local principal compo-
nent analysis. Neural Computation, 9(7):1493–1516, 1997.

16. J.D. Knowles, L. Thiele, and E. Zitzler. A tutorial on the performance assess-
ment of stochastic multiobjective optimizers. Technical Report 214, Computer
Engineering and Networks Laboratory, ETH Zurich, Zurich, Switzerland, 2006.

17. S. Kukkonen and J. Lampinen. GDE3: The third evolution step of generalized
differential evolution. In Proceedings of the Congress on Evolutionary Compu-
tation (CEC 2005), pages 443–450, Edinburgh, September 2005. IEEE.

18. P. Larrañaga and J. A. Lozano, editors. Estimation of Distribution Algorithms
: A New Tool for Evolutionary Computation. Kluwer Academic Publishers,
Norwell, MA, 2001.

19. P. Larranaga, R. Etxeberria, J.A. Lozano, and J.M. Pena. Optimization in con-
tinuous domains by learning and simulation of Gaussian networks. In Genetic
and Evolutionary Computation Workshop on Optimization by Building and Us-
ing Probabilistic Models, pages 201–204, 2000.

20. D. Lim, Y.-S. Ong, Y. Jin, B. Sendhoff, and B.-S. Lee. Efficient hierarchical
parallel genetic algorithms using grid computing. Future Generation Computer
Systems - The International Journal of Grid Computing: Theory, Methods, and
Applications, 2007. Accepted.

21. K. Miettinen. Nonlinear Multiobjective Optimization, volume 12 of Kluwer’s
International Series in Operations Research & Management Science. Kluwer
Academic Publishers, 1999.

22. H. Mühlenbein and G. Paass. From recombination of genes to the estimation
of distribution I. Binary parameters. In Parallel Problem Solving from Nature,
LNCS 1141, pages 178–187, 1996.

26 Jin, Zhou, Zhang, Sendhoff, and Tsang

23. T. Okabe, Y. Jin, M. Olhofer, and B. Sendhoff. On test functions for evolu-
tionary multi-objective optimization. In Parallel Problem Solving from Nature,
LNCS 3242, pages 792–802. Springer, 2004.

24. T. Okabe, Y. Jin, B. Sendhoff, and M. Olhofer. Voronoi-based estimation of
distribution algorithm for multi-objective optimization. In Congress on Evolu-
tionary Computation, pages 1594–1601, Portland, Oregon, 2004. IEEE.

25. M. Reyes Sierra and C. A. Coello Coello. A study of fitness inheritance and
approximation techniques for multi-objective particle swarm optimization. In
Congress on Evolutionary Computation, pages 65–72, Edinburgh, 2005. IEEE.

26. O. Schütze, S. Mostaghim, M. Dellnitz, and J. Teich. Covering Pareto sets by
multilevel evolutionary subdivision techniques. In Second International Con-
ference on Evolutionary Multi-Criterion Optimization (EMO 2003), pages 118–
132, Faro, Portugal, 2003. Springer, LNCS 2632.

27. S.-Y. Shin, D.-Y. Cho, and B.-T. Zhang. Function optimization with latent
variable models. In The Third International Symposium on Adaptive Systems,
pages 145–152, 2001.

28. E.J. Solteiro Pires, P.B. de Moura Oliveira, and J.A. Tenreiro Machado. Multi-
objective maxMin sorting scheme. In The Third International Conference on
Multi-Criterion Optimization, LNCS 3410, pages 165–175. Springer, 2005.

29. D.A. van Veldhuizen and G. B. Lamont. Evolutionary computation and con-
vergence to a Pareto front. In Late Breaking Papers at the Genetic Program-
ming Conference, pages 221–228, Madison, Wisconsin, 1998. Stanford University
Bookstore.

30. Q. Zhang. On stability of fixed points of limit models of univariate marginal
distribution algorithm and factorized distribution algorithm. IEEE Transactions
on Evolutionary Computation, 8(1):80–93, 2004.

31. Q. Zhang, A. Zhou, and Y. Jin. Modelling the regularity in estimation of distri-
bution algorithm for continuous multi-objective evolutionary optimization with
variable linkages. IEEE Transactions on Evolutionary Computation, 2007. Ac-
cepted.

32. A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, and E. Tsang. Combining model-
based and genetics-based offspring generation for multi-objective optimization
using a convergence criterion. In Congress on Evolutionary Computation, pages
3234–3241, Vancouver, BC, July 2006. IEEE.

33. A. Zhou, Q. Zhang, Y. Jin, B. Sendhoff, and E. Tsang. Modelling the population
distribution in multi-objective optimization by generative topographic mapping.
In Parallel Problem Solving From Nature - PPSN IX, pages 443–452. Spinger,
2006.

34. A. Zhou, Q. Zhang, Y. Jin, E. Tsang, and T. Okabe. A model-based evolu-
tionary algorithm for bi-objective optimization. In Congress on Evolutionary
Computation, pages 2568–2575, Edinburgh, September 2005. IEEE.

35. E. Zitzler, K. Deb, and L. Thiele. Comparison of multiobjective evolution algo-
rithms: empirical results. Evolutionary Computation, 8(2):173–195, 2000.

