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Abstract. In this paper we review our research aiming at creating a
cognitive humanoid. We describe our understanding of the core elements
of a processing architecture for such kind of an artifact. After these
conceptual considerations we present our research results on the form
of the series of elements and systems that have been researched and
created.

1 Introduction

Research about intelligent systems interacting in the real world is gaining mo-
mentum due to the recent advances in computing technology and the availability
of research platforms like humanoid robots. Some of the most important research
issues are architectural concepts for the overall behavior organization of the ar-
tifacts. The spectrum spans from mechanisms for action selection in a direct
fashion [1] towards research with the target of creating cognitive architectures
[2]. One long-term goal of the research presented in this paper is aiming at in-
crementally creating an autonomously behaving system that learns and develops
in interaction with a human user as well as based on internal needs and moti-
vations. The other long-term goal is to understand how the human brain works,
the only truly intelligent system as of today. Both goals are coupled in an way
that is called analysis by synthesis. We would like to create brain-like intelligent
systems, hence we have to understand how the brain works. The artifacts we
are creating should show what we have understood from the brain so far, and
should help formulating the next questions aiming at further understanding the
brain.

The vehicle for the research considered here are humanoid robots. Their
anatomy and embodiment is considered a necessary condition in order to create
intelligence in an anthropocentric environment. In this paper we report on our
current research efforts towards cognitive robotics: the researched elements and
the endeavors aiming at a brain-like control architecture for humanoid robots.

2 Towards an Architecture

As stated above, the long term goal of our research is establishing a cognitive
architecture for controlling humanoid robots. We are convinced that cognitive
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or intelligent performances of artifacts can only be achieved within an archi-
tecture orchestrating the individual elements in a phenomenologically coherent
way. What those elements exactly are and how they are to be arranged is sub-
ject to current research. Nevertheless, it is understood that there is a minimal
subset of those elements that have to be addressed. The analysis of biological
systems teaches us about those principled elements and their possible role within
animals’ brains [3]. We consider the following elements to belong to this subset:

– Sensory perception: Comprising extero- (vision, audition, tactile) and pro-
prioception (measured internal states like posture).

– Presence or working memory: A short term representation of behaviorally
meaningful percepts or internally generated entities as the basis for external
and internal actions. The content of this presence is modulated by top down
attention processes.

– Plastic (i.e. learnable) long term memory for the storage and retrieval of con-
solidated persistent entities like object, words, scenes and mental concepts.

– Elements for predictions and internal simulation for creating expectations
about the world for selecting the relevant information from the sensory
streams and choosing internally the most effective action from a set of pos-
sible alternatives without testing all alternatives externally.

– Basic motor control and coordination means for efficiently controlling sys-
tems with a large number of degrees of freedom.

– A basic behavior repertoire building on the motor control level for a more
abstract and robust representation of actions.

– A more abstract behavior organization comprising the traditionally sepa-
rated issues of communication and action, leading to behaviorally routed
definitions of the semantics of language.

– A representation of goals and processes working on those representations for
organizing a meaningful system behavior on mesoscopic time scales above
purely reactive sensory actions and below strategically driven decision pro-
cesses. Those elements will also influence the perception in a top down fash-
ion for focusing on goal relevant entities in the external world.

– A set of internal drives and motivations for establishing internal forces to-
wards a continuous self-development of the system and controlling the bal-
ance between explorative and exploitative actions.

– A value system (“emotions”) providing basic guidelines for the limits of
autonomous behavior by unconditioned preferences concerning elements and
states of the environment.

This subset is far from being complete, but we consider those elements as the
most pressing research issues that will provide major progress in the field of
cognitive robotics.

Figure 1 shows a sketch relating the above mentioned functional entities to
each other. Those functional elements can be again related to the correspond-
ing areas of the brain. The depicted resulting architecture is called Pisa, the
Practical Intelligence Systems Architecture. It represents our current best un-
derstanding of an abstract long term research goal. It is to be understood more
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Fig. 1. Pisa: The Practical Intelligence Systems Architecture, showing the major
functional elements and relating them to each other. It represents joint work with
Frank Joublin and Herbert Janßen dating back to 2004. Please refer to the text for a
more detailed description.
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in the fashion of a strategic means rather than a concrete goal that is to be real-
ized according to the master plan derived from the drawing. It is very valuable
for the strategic organization of research and incremental systems architectures,
because all research activities can easily be put into relation and the crucial
communication between researchers evolves naturally.

A major issue for most of the elements stated above is learning and adapta-
tion, always in interaction with the real world. We consider this as an important
issue, because otherwise we may not ask the research questions stated above in
the right way. Nevertheless, we take the freedom to ignore technological issues
like on-board computing resources for now, as long as we consider the property
of scaling of the researched methods from the beginning.

In the following we will focus on selected issues and created systems.

3 Task and Body Oriented Motion Control

The first focus is on the movement generation. In Pisa it is located in the
bottom-most section called “movements”. Before we can consider researching
how to learn movements, actions and behaviors, we have to understand how to
do the basic control of the body similar to the spinal cord and the brain stem
in biology. Technically, controlling the physical motions of a biped humanoid
robot is not a trivial task. The number of degrees of freedom that have to be
coordinated is high, the balance of the system has to be maintained under all
circumstances and it is currently possible for such kind of robots to mechani-
cally destroy themselves by commanding position of the limbs that lead to self
collisions. On the other hand, humans and animals effortlessly control their end-
effectors for solving tasks without continously reflecting on the level of joints
about their current motions. Additionally, they have some kind of body image
representing the anatomy and boundaries of the own body that helps acting in
complex tasks without continously having contacts with the own body or exter-
nal objects. From the constructive point of view, it seems desirable in a cognitive
architecture to be able to cognitively control only the task relevant parameters
and leave the “tedious” details to underlying levels of control. This should in-
clude the avoidance of self collisions, which is in technical systems much more
disastrous than in natural ones.

As a results of current research we have established a stable layer for the
motion control with a so called motion interface that fulfills the requirements
stated above and allows cognitive control processes to perform complex control
tasks with the humanoid Asimo with a minimum effort [4]. In contrast to clas-
sical joint level control, the robot is controlled by a task level description. The
tasks can e.g. be defined by four separate targets for the two hands, the head
gaze direction and a position of the centre of mass projected on the ground, re-
spectively. The corresponding coordinate systems are depicted in Figure 2. The
coupling between the tasks and the mapping to the actually controlled joints
is performed by a whole body motion controller. This controller implements a
redundant control scheme considering all degrees of freedom of the robot simul-
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Fig. 2. Kinematics model of Asimo used for the whole body motion control.

taneously. The commanded tasks usually do not determine all degrees of freedom
uniquely. For the remaining degrees of freedom it is possible to state potential
functions that model the task unspecific preferences of those. This could be close-
ness to rest positions and the avoidance of extreme joint positions close to the
physical limits.

What do we gain by pursuing such kind of task description and whole body
control in a cognitive architecture? First of all we have a description of tasks in
a more natural way than in the joint space. For example, the right hand is com-
manded to a position in 3D space with a certain attitude. The necessary joint
trajectories are computed automatically online on-board the robot. Therefore,
higher level processes don’t have to care about the details of the robot motion.
Additionally, since the whole body including walking is employed for reaching the
commanded target, the motion range is extended incrementally. Imagine a 3D
position for the right hand is commanded that is not reachable by arm motions
alone. The whole body motion controller first induces a leaning motion of the
upper body in order to reach the target, and if this does not suffice Asimo starts
walking for finally reaching the commanded target. Again, higher level cognitive
tasks still command only the 3D target position of the right hand. During those
movements the appearance of the robot motion is naturally relaxed, because the
redundant degrees of freedom are “softly” adapted to the requirements given
by the hard task constraints. This fact can be envisioned by assuming springs
between the segments of the robot, the task command would correspond to a
force pulling the respective hand and the rest of the robot’s body adapting to
the influence of this force. The walking is conceptually more advanced but can
also be treated within the same framework. Such kind of natural appearance
can help solving acceptance problems with robots. Summarizing, the task space
description and the whole body control approach gives more freedom to the mo-
tion control level and disburdens the higher levels of control. Further extensions
in the same spirit are commanding task intervals instead of crisp tasks positions
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and including self collision avoidance on the level of motion control [5]. Cur-
rent research is concerned with strategy selection based on internal simulation,
allowing Asimo to autonomously choose the hand to grasp the commanded tar-
get with. The proposed approach performs interactively with visually specified
targets [6], which is in contrast to state of the art as described in [7, 8]

4 Visually and Behaviorally Oriented Learning

Fig. 3. Interaction with the stereo camera head. Waving attracts attention, showing
objects within the peripersonal space fixes attention to the presented object. The fix-
ated object can be learned interactively and recognized immediately.

In the introduction we have stated that the long term goal of this work is
the creation of a humanoid robot that is equipped with mechanisms for learning
and development.

We move the focus away from the movement generation towards vision and
the generation and exploration of visually oriented behaviors, including mecha-
nisms for learning and development.

The concrete goal here is to present an interactively behaving vision system
for the humanoid that comprises already both kinds of mechanisms: autonomous
developmental mechanisms governing the behavior generation and selection, and
interactive learning mechanisms allowing for teaching the system new objects to
be recognized online. Regarded separately, both mechanisms already represent a
valuable step towards autonomous adaptive systems. But the emphasis is more
on the principled combination of both. In contrast to statistical learning we are
here less concerned about the representation of the variability of the input space
but rather in learning behaviorally relevant external and internal entities.

For studying those issues we have created a biologically motivated interactive
vision system with adaptive basic behaviors being able to learn and recognize
freely presented objects in interaction. The learning is governed by mechanisms
building on an internal needs dynamics based on unspecific and specific rewards
governing and exploring the parameterization of the basic behaviors [9].
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Fig. 4. Schematics of the active vision system. See text for detailed description.

On a schematic level, the system can be described as follows. Please refer to
Figure 4 for a graphical representation. Based on the images from a stereo camera
pair a set of features is computed. Those features comprise the general visual “in-
terestingness” (saliency) Sv of image locations, the most prominent region in the
image based on visual motion Sm, and the most prominent region in the image
based on closeness Sd to the system. The information is represented as activa-
tion maps over the image location, with high values of the maps corresponding
to interesting locations. Those maps are weighted with weights wv, wm, and wd

respectively, and added. Based on this combined saliency S and some memory
about previous gaze directions the new gaze direction is determined by means of
an integrative peak selection with hysteresis. This simple system exhibits some
interesting behaviors. It is a homogeneous control loop that is constantly exe-
cuted without any structural changes. The behavioral spectrum of the system is
spanned by the weighting parameters wv, wm, and wd of the maps. What kind
of behaviors can such kind of a system show? Priming the saliency computation
for a certain color like red and having a weight wv greater than zero will yield a
system that gazes at locations in its environment with red color. If there is no
red color in the current view it will randomly look around and shifts its field of
view until it finds a spot with red color. For an external observer it looks like the
system is “searching for red color”, even though the system was never directly
programmed to show a search behavior. Next, imagine having an interacting
human in the scene approaching the system and trying to raise the attention of
the system (see Figure 3). Assigning a value to wm greater than wv will cause
the system to look at a spot were the waving is located in the image, i.e. with
such kind of parameter setting the system will look at regions containing visual
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motion rather than general visual saliency. Nevertheless, since the two channels
are superimposed, they support each other for stabilizing the gaze selection. If
the user continues to approach the system, the distance based map Sd will have
an activation corresponding to the closest part of the user’s body to the system.
If this contribution receives the highest weight wd, the system will continously
focus on, e.g. , the hand of the user. This behavior corresponds to the biological
concept of a peripersonal space around the robot. The psychological concept of
the peripersonal space is defined as the space wherein individuals manipulate
objects, whereas extrapersonal space, which extends beyond the peripersonal
space, is defined as the portion of space relevant for locomotion and orienting
[10]. Here, the peripersonal space establishes a very important concept for any
further meaningful interaction: Sharing the “attention” between the system and
the user. An interacting user can show something to the system and the sys-
tem will focus on the shown entity. Based on this capability we have addressed
several new scientific concepts. The first one is the online learning of complex
objects freely presented to the system. The object within the peripersonal space
is segmented from the image and processed by a biologically motivated visual
object recognition and learning system [11]. Two different memory stages and
speech interaction serve to continously learn and label objects in real-time, allow-
ing for online correction of errors during learning. Secondly, we have introduced
an internal homeostatic control system representing internal drives allowing for
learning the weights of the different maps. This corresponds to learning the vi-
sual interaction behaviors instead of working with hard coded weights. The third
one is the combination of the previous ones. The system learns to interact with
the human user in such a way that its internal needs are in the temporal average
equally satisfied including the curiosity for learning new objects. This represents
a new quality in interactively learning systems.

The implementation is currently limited to controlling the gaze direction of a
head, but the concepts are sufficiently general in order to allow for interactively
learning behaviors including manipulators. This is currently being investigated.
Research aiming in a similar direction can be found in e.g. [12].

We would like to point out that the system described above is internally not
organized in terms and structures of externally visible behaviors. There is no
“tracking” or “interaction” module within the system, even if those terms can be
attributed to externally observable behaviors. In our opinion it is crucial to make
this distinction, because a system organized in terms of externally observable
entities will by definition be confined to the predefined set of behaviors put into
the system, and no self-driven cognitive self-development will be possible. Or
phrased differently, the mechanisms generating certain functions should clearly
be distinguished from the semantics that can be associated with them. In the
next section this point will be further elaborated.

The research elements presented here are in Pisa located in the areas for
visual perception, behavior generation and needs.
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5 Alis: Autonomous Learning and Interacting System

The concrete system considered in this section is called Alis, an acronym for
“Autonomous Learning and Interacting System”. It is our current design of an in-
cremental hierarchical control system for the humanoid robot Asimo comprising
several sensing and control elements. Those elements are visual saliency compu-
tation and gaze selection, auditory source localization for providing information
on the most prominent auditory signals, a visual proto-object based fixation and
short term memory of the current visual field of view, the online learning of vi-
sual appearances of such proto-objects and an interaction-oriented control of the
humanoid body. The whole system interacts in real-time with users. It builds on
and extends incrementally the research presented in the previous two sections,
i.e. the motion generation and control as well as the visual behaviors. The cor-
responding original publication can be found in [13]. The focus is not on single
functional elements of the system but rather on its overall organization and key
properties of the architecture. We will describe the architecture by means of a
conceptual framework that we developed. The clear focus of this framework is to
have a general but not arbitrary means for describing incremental architectures,
focusing on the hierarchical organization and on the relations and communica-
tion between hierarchically arranged units when they are being created layer
by layer. We are convinced that researching more complex intelligent systems
without such a kind of framework is infeasible.

To our knowledge, Alis represents the first system integrated with a full size
biped humanoid robot that interacts freely with a human user including walk-
ing and non-preprogrammed whole body motions, in addition to learning and
recognizing visually defined object appearances and generating corresponding
behaviors.

Our architectural concepts point in a similar direction as presented in [14],
where a subpart of a mammalian brain has exemplarily been modeled as a hier-
archical architecture. We share the view that such kinds of hierarchical organiza-
tions are promising for modeling biological brains. We go beyond the arguments
presented there by considering explicitly the internal representation and the de-
pendencies in the sensory and behavioral spaces. This is the main difference to
classical subsumption-like architectures as summarized in [15]. The approach we
pursue is incremental w.r.t. the overall architecture, which goes beyond an in-
cremental local addition of new capabilities within already existing layers. This
is the main difference to the state of art in comprehensive humanoid control
architectures including learning as presented in [16], [17, 18] and [19]. A similar
reasoning applies to the comparison to classical three-layer architectures [20].
The hierarchies we are considering are not fixed to the common categories of
deliberation, sequencing and control.

In the next subsection (5.1), we will formulate the framework and discuss the
biological motivation. Subsequently, we will present the realized system in more
detail. In subsection 5.4 we will report on experiments performed in interaction
with the system.
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5.1 Systematica

Fig. 5. Schematics of Systematica.

We call the framework “Systematica”. It was devised for describing incre-
mental hierarchical control architectures in a homogeneous and abstract way.
Here, we will introduce the notation that is necessary for making the points of
the concrete system instance presented in this contribution. One future target
of our research are comparative studies of different kinds of hierarchical control
architectures by means of the presented framework.

Each identifiable processing unit or loop n is described by the following fea-
tures (see Figure 5 for reference):

– it may process independently from all the other units;
– it has an internal process or dynamics Dn;
– its full input space X is spanned by exteroception and proprioception;
– it can create some system-wide publicly accessible representations Rn used

by itself and other units within the system. The indices may be extended
in order to denote the units that are reading from the representation, e.g.
Rn;m,o,... means that representation Rn is read by units m and o;

– it may use a subspace Sn(X) of the complete input space X as well as the
representations R1, . . . , Rn−1;
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– it can be modulated by top-down information Tm,n for m > n;
– it can send top-down information / modulation Tn,l for n > l;
– it may emit autonomously some behaviors on the behavior space Bn by

issuing motor commands Mn with weight / priority Pn and / or by providing
top-down modulation Tn,l;

– the value of the priority Pn is not necessarily coupled to level n, see for
example underlying stabilizing processes like balance control etc.;

– a unit n can choose to work solely based on the input space X without other
representations Rm6=n;

– the coupling between the units is such that the behavioral space covered
by the system is

⊕
n Bn, denoting the vector product or direct sum of the

individual behavior spaces;
– the behaviors Bn may have different semantics Zj depending on the current

situation or context Ci, i.e. the behaviors Bn represent skills or actions from
the system’s point of view rather than observer dependent quantities;

– the motor commands of different units may be compatible or incompatible.
In the case of concurrently commanded incompatible motor commands a
conflict resolution decides based on the priorities;

– all entities describing a unit may be time dependent.

The index n represents the index of creation in an incremental system. There-
fore, units with a lower index n cannot observe the representations Rm of units
with a higher index m. The combination and conflict resolution is not to be
understood as the primary instance for such cases but rather as the last resort.
Conflicts and combinations must be treated as major issues between and inside
of the units of the architecture, e.g. according to the biological principles of in-
hibition and disinhibition. The sensory space Sn(X) can be split into several
aspects for clearer reference. The aspects that are concerned with the location
of the corresponding entity in the world are termed SL

n (X), and the features
are termed SF

n (X). Correspondingly, the behavior space Bn can be split into
parts concerned with the potential location of the actions (termed BL

n ), and the
qualitative skills or motions (termed BS

n ).
We use the term behavior in the meaning of an externally observable state

change of the system. This comprises actions and motion as well as speech and
communication. The behavior space BS

n is spanned by the effective degrees of
freedom or order parameters of the dynamical system Dn of the unit. In a wider
sense, it is spanned by the parameters that are governing changes in the stereo-
typical actions controlled by the respective unit.

The presented framework allows to characterize the architecture of such sys-
tems with respect to the following issues: Find a system’s decomposition or a
procedure to decompose or construct units n consisting of Sn(x), Dn, Bn, Rn,
Mn, Pn, Tm,n such that

– an incremental and learning system can be built;
– the system is always able to act, even if the level of performance may vary;
– lower level units n provide representations and decompositions that

• are suited to show a certain behavior at level n,



12

• are suited to serve as auxiliary decompositions for higher levels m > n,
i.e. make the situation treatable for others, provide an ”internal plat-
form” so that higher levels can learn to treat the situation.

In our understanding, a necessary condition for achieving the abovementioned
system properties is a hierarchical arrangement of sensory and behavioral sub-
spaces, the representations and top-down information. Another crucial aspect
is the separation of behaviors from the semantics of the behaviors in a certain
context. We will discuss this aspect in more detail in subsection 5.3.

Due to space limitations we forbear from a further in-depth mathematical
definition and treatment of the presented terms. The concrete system presented
in subsection 5.3 should elucidate the underlying concepts in a graspable fashion.

5.2 Biological Embedding of Systematica

If the goal is to research brain-like intelligent systems, the creation of a fixed hi-
erarchy with units stacked on top of each other is not sufficient: the interplay of
the units is the crucial issue. In the classical subsumption paradigm the interplay
within a hierarchy is modeled as inhibition of sensory signals and motor com-
mands. We argue that a deeper communication between the units is biologically
more plausible and beneficial, because it is more efficient in terms of (re-)using
already established representations and processes. The biological motivation of
a sensory space X that is in principle accessible for all levels of the hierarchy has
already been discussed in [14]. The individual subspaces Sn(X) may of course
differ. The same applies to the direct access from higher levels of the hierarchy
to the motors and actuators, with additional evidence given in [21]. This may
not correspond to the predominant signal flows, but is in some cases necessary
for the acquisition of completely new motions. The difference between lower and
higher levels is mainly that lower levels act on a coarser level of the sensory
signals and do not allow for a fine control of actuators. A very fine analysis of
sensory signals and a corresponding fine control of e.g. finger motions is subject
to cortical and not sub-cortical regions of the brain [22]. What is mainly not
addressed in the technical literature is the synergistic interplay of the different
levels of the hierarchy. The main issues are the following:
a) underlying control processes in the brain perform a basic stabilization and
allow higher areas to modulate those stabilizations according to some goals. This
is e.g. the case for the balance and the upright standing of the human body that
is maintained by the brain stem (mid brain, hind brain and medulla oblongata)
[23]. The higher areas in the brain rely on those functional loops.
b) Specific structures in the brain maintain representations Rn for their own
purposes, but those representations are also observed and used by areas created
later in evolution. This is e.g. the case for the superior colliculus. The target
for the next gaze direction is observed by the cortex [24]. A similar reasoning
applies to the area AIP, where the coarse information about graspable objects is
maintained, which is observed by the Premotor Cortex and used for configuring
and target setting of the motor cortex [25].
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c) Lower level structures can autonomously perform certain actions but can be
modulated from higher level structures by top-down information (Tn,m). An ex-
ample is here again the superior colliculus. In reptiles it directly controls sensory
based behaviors as the highest level of control. In humans, it can control the
gaze direction based on visual and auditory signals if “permitted” by the cortex.
If the cortex is damaged, the superior colliculus can take over control again.

The presented Systematica serves to organize such a kind of incremen-
tal design in a way that the resulting complexity and cross dependencies are
still treatable. Compared to so-called cognitively oriented architectures, the ap-
proach presented here is de-central with respect to processes and representations
involved. The incremental direction is here to be understood in a developmental
sense with a number of levels, less as incrementally adding more functionality at
already existing levels in the system.

5.3 ALIS: Architecture and Elements

Fig. 6. Schematics of ALIS formulated in the framework Systematica. For explana-
tion please refer to subsection 5.3.

Based on Systematica we will now describe the architecture and elements
of Alis. Alis represents an incrementally integrated system including visual and
auditory saliency, proto-object based vision and interactive learning, object de-
pendent autonomous behavior generation, whole body motion and self collision
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avoidance on the humanoid robot Asimo. The elements of the overall archi-
tecture are arranged in hierarchical units that produce the overall observable
behavior, see Figure 6. The corresponding areas from Pisa are auditory and
visual perception, presence, movements and behaviors.

The first unit with dynamics D1 is the whole body motion control of the
robot, including a basic conflict resolution for different target commands and
a self collision avoidance of the robot’s body as described in section 3. It re-
ceives the current robot posture as sensory data. The top-down information Tn,1

providable to the unit is in the form of targets for the right and left hand respec-
tively, the head and the walking. Any other unit can provide such kind of targets.
Without top-down information, the robot is standing in a rest position with a
predefined posture at a predefined position. The posture and the position are
controlled, i.e. if the top-down information is switched off, the robot walks back
to the predefined home position while compensating for external disturbances.
The behavior subspace B1 comprises target reaching motions including the whole
body while avoiding self collisions. The subspace BS

1 is spanned by variables con-
trolling the choice of the respective actuator group: mainly the gaze, the hands
and the body’s position and orientation in 3D. The subspace BL

1 comprises the
area that is covered by walking and that can be reached by both hands. Many
different kinds of semantics Zj can be attributed to those motions like “point-
ing”, “pushing”, “poking” and “approaching” etc. The representation R1 used
and provided is a copy of the overall posture of the robot. Unit 1 provides mo-
tor commands M1 to the different joints of the robot and establishes the body
control level many other units can incrementally build upon. It unloads much of
the tedious control from higher level units.

The second unit with D2 comprises a visual saliency computation based on
contrast measures for different cues and gaze selection as partially described in
section 4. Based on the incoming image, visually salient locations in the current
field of view are computed and fixated by providing gaze target positions as top-
down information T2,1 to unit 1. The spatial component SL

2 (X) of the sensory
space comprises the field of view covered by the cameras.

The representation R2 comprises the saliency maps, their modulations and
the corresponding weights. As top-down information Tn,2, the modulations and
the corresponding weights can be set. Depending on this information, different
kinds of semantics Zj like “visual search”, “visual explore” and “fixate” can be
attributed to the behavior space B2 emitted by this unit. The subspace BS

2 is
spanned by the weights of the different cues, the time constant of the fixation and
the time constant for inhibition of return as described in [26]. The unit performs
an autonomous gaze control that can be modulated by top-down information. It
builds on unit 1 in order to employ the whole body for achieving the commanded
gaze direction.

The unit with D3 computes an auditory localization or saliency map R3. It
is provided as top-down information T3,2 for unit 2, where the auditory com-
ponent is higher weighted than the visual. The behavior space B3 comprises
the fixation of prominent auditory stimuli, which could semantically be inter-
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preted as “fixating a person that is calling the robot”. The space is spanned by
the weight balancing the auditory versus the visual saliency maps. The sensory
space SF

3 (X) is spanned by binaural time series, the spatial component SL
3 (X)

is the area all around the robot. The corresponding auditory processing is de-
scribed in [27]. Unit 3 builds on and employs the gaze selection mechanism of
unit 2. The combination of both units 2 and 3 corresponds to an autonomous
gaze selection based on visually and auditory salient stimuli.

Unit 4 extracts proto-objects from the current visual scene and performs a
temporal stabilization of those in a short term memory (PO-STM). The com-
putation of the proto-objects is purely based on depth and peripersonal space
(see below), i.e. SL

4 (X) is a range limited subpart of SL
2 (X). The PO-STM and

the information which proto-object is currently selected and fixated form the
representation R4. The top-down information T4,1 provided to unit 1 are gaze
targets with a higher priority than the visual gaze selection, yielding as behaviors
B4 the fixation of proto-objects in the current view. The unit accepts top-down
information Tn,4 for deselecting the currently fixated proto-object or for directly
selecting a specific proto-object. The concept of the proto-object as we employ
it for behavior generation is explained in more detail in [6]. The main difference
between the approach described there and this one is the extraction of the proto-
objects from the scene. Here we are extracting three dimensional descriptions of
approximately convex three dimensional blobs within a certain distance range
from the robot. As introduced in section 4, we call this range the peripersonal
space.

The combination of the units 1-4 autonomously realizes the framework for the
interaction with the robot. Seen from the robots point of view, the “far-field”
interaction is governed by the visual and auditory saliency computation and
gaze selection computations. The close-to-the-body or peripersonal interaction
is governed by the proto-object fixation. Those processes run continously without
an explicit task and take over control depending on the location of the interaction
w.r.t. the robot’s body.

Unit 5 is based on the incrementally established interaction framework. It
performs a visual recognition or interactive learning of the currently fixated
proto-object without own control of the robot. The sensory input space SL

5 (X) is
the same as SL

4 (X), the feature space SF
5 (X) is the full color image and the corre-

sponding depth map. The unit relies on the representation R4 for extracting the
corresponding sub-part of the information from S5(X). The three-dimensional
information of the currently fixated proto-object is used to extract the corre-
sponding segment from the high resolution color image space. The segments are
being classified w.r.t. the object identity O-ID. For newly learned objects, the
target identity has to be provided as top-down information Tn,5. The represen-
tation R5 is the object identity O-ID of the currently fixated proto-object. The
motor commands M5 emitted by the unit are speech labels corresponding to
the object identity. The unit described here corresponds mainly to our work de-
scribed in [9, 28] and section 4. The object identity O-ID is the first instance of
fixed semantics, since we use user-specified labels like “blue cup” or “toy car”.
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From the incremental architecture point of view, we now have a system that
additionally classifies or learns the objects it is currently fixating.

Fig. 7. Measurements from the interactive experiment. In the time range from sec. 0
until sec. 32, Alis is mainly driven by saliency based interaction with the world. From
sec. 32 until sec. 47 the human is presenting a known object, from sec. 54 until sec. 81
the system is learning an unknown object. From sec. 86 until sec. 118 two objects are
presented by the human, sequentially attended and recognized. From sec. 135 on two
objects are being presented by the human and continously pointed at by the robot.
Please refer to subsection 5.4 for further explanations.

Unit 6 performs an association of the representations R4 and R5, i.e. it main-
tains an association R6 between the PO-STM and the O-IDs based on the iden-
tifier of the currently selected PO. This representation can provide the identity
of all classified proto-objects in the current view. Except for the representations
it has no other inputs or outputs. From the incremental point of view we have
now an additional memory of all classified proto-objects in the current view.

Unit 7 with D7 builds on the sensory processing and control capabilities
of many of the underlying units. It governs the control of the robot’s body
except for the gaze direction. This is achieved by deriving targets from the
proto-object representation R4 and sending them as top-down information T7,1

for the right and the left hand as well as for walking to unit 1. Additional
top-down information T7,4 can be sent to the proto-object fixating unit 4 for
requesting the selection of another proto-object. Details of the internal dynamics
D7 can be found in [29]. Here, it is based on the evaluation of the current scene
as represented by R4 (proto-object short term memory) and R6 (association
object identifier and proto-object identifier) and the top-down information Tn,7

concerning the current assignment. An assignment is an identifier for a global
mode of the internal dynamics of unit 7. The first realized assignment (A1) is
pointing once with the most appropriate hand or both hands to the fixated and
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Fig. 8. Image series from the interactive experiment. From top left row-wise to bottom
right. Rest position (sec. 6), saliency based interaction (sec. 21), proto-object fixation
(sec. 32), fixation and both handed pointing after recognition (sec. 39), learning of a
new object (sec. 76), fixation and pointing to first object of two (sec. 93), fixation and
pointing to second object of two (sec. 100), return to rest position (sec. 121), pointing
to two proto-objects (sec. 143). For further explanation see subsection 5.4.
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classified proto-object. The second assignment (A2) differs from the first one in
the respect that pointing is continuous and immediate to the fixated and not
yet classified proto-object. Whether the pointing is done using a single hand or
both arms depends on the currently arbitrarily defined category of the classified
object: both-handed pointing for toys, single handed pointing for non-toys. The
definition is currently associated with the labels of the objects. During both
assignments, the distance to the currently fixed proto-object can autonomously
be adjusted by walking. Additionally, the autonomous selection of a new proto-
object is requested (T7,4) from the proto-fixation if the currently fixated one
has been classified successfully two times. This allows for a first autonomous
scene exploration. The third assignment (A3) is pointing with each hand at a
proto-object irrespective of the classification result and without walking. The
behavioral space spanned by this unit is a subspace or a sub-manifold of B1.
The semantics of the behaviors are currently fixed by design, like “both handed
pointing to toys” etc. From the incremental design point of view unit 7 is a
thin layer controlling different kinds of interaction semantics for the body based
on the sensory processing and control capabilities provided by the underlying
system.

The last unit 8 works on another audio stream S8(X) and processes speech
input. The results are currently provided as object labels for the recognizer (T8,5)
and as assignments for unit 7 (T8,7). It serves for establishing verbal interaction
with the user in the current setting.

In summary, the presented system consists of several independently defined
units that build on each other in an incremental way for yielding the combined
performance. Due to the incremental nature of the architecture, the units can be
implemented, tested and integrated one after the other, which is an important
means for dealing with the increasing complexity of the targeted system.

The described system, except some parts of unit 1, is implemented in our
framework for distributed real-time applications [30] and runs with 10Hz for the
command generation in interaction. The implementation consists of 288 pro-
cessing components. The workload is distributed across 10 standard CPUs in 6
computers without any further optimization.

5.4 Experiments

Users can freely interact with the running Alis. The behavior of the system
is governed mainly by the interaction. Figure 7 shows the measurements of a
recorded experiment. The bottom most graph shows the measured minimal dis-
tance between the arms, because the self collision of the arms constitutes in this
experiment the highest risk. The next higher graph depicts which of the possible
top-down feedback T4,1 (proto-fixation), T3,2 (auditory saliency) or T2,1 (visual
saliency) is controlling the gaze direction. The graph with the label “activity
T7,4” shows the occurrence of the request for fixating a new proto-object by the
proto-fixation unit 4. The graphs with the labels “L hand activity (T7,1)”, “R
hand activity (T7,1)” and “leg activity (T7,1)” depict the active control of the
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respective effector group by unit 7. The topmost graph with the label T8,7 shows
the currently valid assignment, namely A1, A2 and A3 in a sequence.

The following time course is shown in Figure 7. From the beginning until
second 32, Asimo is mainly interacting with its environment by gazing at far
distance visual and auditory stimuli. Beginning with second 32, the user presents
an object in the peripersonal space, which is immediately fixated by means of
the control of unit 4. At second 37, the object is successfully recognized as a
“toy-tiger” and pointed at once with both hands since it belongs to the category
“toys”. After pointing, the object is still fixated and the distance is adjusted by
walking until second 47. After termination of the close interaction by the human,
Asimo returns autonomously to the rest position. At second 52 the assignment
is switched to A2, and starting with second 54 Asimo fixates and continuously
points to the presented proto-object. It is unknown and learned in interaction as
“cell phone” until second 81 when Asimo returns back to the home position. At
second 86 the previously trained “cell phone” is presented together with the “toy-
tiger”. The cell phone is fixated and pointed at, and successfully recognized at
second 91. At second 98 it is successfully recognized for the second time and the
fixation of a new proto-object is requested from unit 7 to unit 4 by the activity of
T7,4. At second 105 the toy-tiger is first misclassified, but subsequently recognized
at second 111 and second 117. At second 127 the assignment is changed to A3,
and at second 135 Asimo starts pointing at two objects with both hands. The
user tries to force a self collision crossing the arms with the fixated proto-objects
until the arms touch each other. This is depicted in the arm distance plot, which
comes close to the limit of a self-collision but never reaches it. The self collision is
prevented by the continously running self collision avoidance of unit 1. After the
termination of the close interaction, Asimo returns to the rest posture. Figure
8 shows some snapshots from the running experiment.

The sequence of the interaction is just an example, the resulting behavior
as well as all motions of the robot are computed online and depend on the
interaction of the user with the robot.

5.5 Discussion

After the presentation of the conceptual framework (Systematica), the in-
stance (Alis) and the experiments we would like to point out some of the key
features.

– Units run autonomously and without explicit synchronization mechanisms
in parallel. The undirected publication of the representations Rn and the
directed top-down information Tn,m establish a data driven way of synchro-
nization depending on activity.

– The top-down information flow is not restricted to the communication be-
tween two adjacent layers but can project from any higher to any lower
level.

– Unit 1 provides the basis for higher level units to control the robot’s hands,
head and steps positions including the avoidance of self collisions. It “un-
loads” a lot of detailed knowledge about the robots kinematics of the higher
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level units. This kind of unloading allows for an easier incremental design or
development of the system.

– The space SL
3 (X) covered by the audio saliency is the largest one: it includes

the space SL
2 (X) covered by the visual saliency, which again includes the sen-

sory space SL
4 (X) of the current implementation of the peripersonal space.

The arrangements of these spaces and the corresponding behavior space serve
as the basis for getting and staying in interaction with the system.

– The lower level units are to a large extent free of specific semantics. Higher-
level units like 5 and 7 temporarily define the semantics for the lower units.

– The same physical entity can be represented / perceived by different sen-
sory spaces. The proto-object extraction of unit 4 is based on grey value
stereo image pairs on a low resolution for extracting the three-dimensional
information. The visual recognition of unit 5 is based on a high resolution
color image segment. The segment is extracted from this color image based
on the information from the currently fixated proto-object. The segment is
extracted at the time of the classification, not at the time of the extraction
of the proto-object. Based on this arrangement, the classifier can easily be
combined with the proto-object fixation loop. The feature part of the sen-
sory space of unit 4 is more coarsely resolved than the feature space of unit
5.

– The location part of the behavior space of one unit may dynamically extend
the location part of the sensory space of another unit. This is, for example,
the case for the peripersonal space SL

4 (X) that is dynamically extended by
adjusting the distance by unit 7.

The presented system has already a certain complexity and shows some im-
portant features, but the question of scalability has to be addressed. Alis is
already working in the real world in real-time interaction, which covers the as-
pect of scaling / bringing a concept to the real world. Asking about the scal-
ability to more complex and prospective behaviors is a crucial point. We are
confident to be on the right track because of the following reasons: Each of the
hierarchical layers individually already performs some meaningful behavior, and
some of them additionally serve as building blocks for more complex systems.
This is facilitated via the coupling of the units by the publicly observable rep-
resentations and directed top-down information, for us a key issue in successful
scaling. A more loose argument for now but subject to current research is the
following: Biology seems to have taken a similar route in evolving the brains of
animals towards the brains of humans by phylogenetically adding structures on
top of existing structures, and maybe mildly changing the existing structures.
The communication between the “older” and the “newer” structures can be seen
as providing existing representations and sending top-down information from the
“newer” structures to the “older” ones. Does the presented approach scale in the
direction of learning and development? We consider the visual object learning
as a successful start in this direction. Nevertheless, the step towards learning is
currently done only on the perceptive side. The learning on the behavior genera-
tion side is not explicitly addressed here, but in section 4 and [31] we showed our
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approach towards using general developmental principles for the adaptation of
reactive behaviors. Transferring this work into the presented architecture would
formally require the addition of another unit and some changes in existing ones.
This argument is of course made irrespective of the many open scientific ques-
tions involved in actually doing this step because the system considered in [31]
is considerably simpler than the one discussed here. Nonetheless, it makes us
confident about the scalability of the proposed architecture.

Summarizing this section, we have presented the conceptual framework Sys-
tematica for describing and designing incremental hierarchical behavior gen-
eration systems. A framework like this is crucial for researching more complex
intelligent systems. On the one hand, it provides the concepts handling the
growing complexity, on the other hand it establishes a necessary common lan-
guage for the collaboration of several researchers. Within this framework we
have created the system Alis, integrated with Asimo. Alis allows for the first
time the free interaction of a human with a full size biped humanoid including
non-preprogrammed whole body motions, interactive behavior generation, visual
recognition and learning.

6 Summary

In this paper we have presented research concerned with elements and systems
aiming at embodied brain-like intelligence and cognitive robotics. We started
with presenting our guiding model Pisa, followed by sections about movement
generation and control as well as visually oriented behavior generation and learn-
ing. The last section contains a view an Systematica and Alis, showing our
research in the area of large scale intelligent systems. The work presented here
should show that we are researching and creating in an incremental and holis-
tic fashion, leading to a better understanding of natural and artificial brain-like
systems.

7 Acknowledgments

The authors would like to thank Michael Gienger, Herbert Janßen, Hisashi
Sugiura, Inna Mikhailova, Bram Bolder, Mark Dunn, Heiko Wersing, Stephan
Kirstein, Julian Eggert, Antonello Ceravola, Frank Joublin and Edgar Körner
for their contributions, support and advice.

References

1. Pirjanian, P.: Behavior coordination mechanisms – state-of-the-art. TR IRIS-99-
375. Technical report, Institute of Robotics and Intelligent Systems, School of
Engineering, University of Southern California (1999)

2. Vernon, D., Metta, G., Sandini, G.: A survey of artificial cognitive systems: Impli-
cations for the autonomous development of mental capabilities in computational
agents. IEEE Transactions on Evolutionary Computation 11(2) (2007) 151–180



22

3. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, Fourth
Edition. McGraw-Hill (2000)

4. Gienger, M., Janßen, H., Goerick, C.: Task-oriented whole body motion for hu-
manoid robots. In: IEEE/RSJ Int. Conf. on Humanoid Robots. (2005)

5. Sugiura, H., Gienger, M., Janßen, H., Goerick, C.: Real-time self collision avoidance
for humanoids by means of nullspace criteria and task intervals. In: IEEE-RAS
Int. Conf. on Humanoid Robots, IEEE Press (2006)

6. Bolder, B., Dunn, M., Gienger, M., Janßen, H., Sugiura, H., Goerick, C.: Visually
guided whole body interaction. In: IEEE Int. Conf. on Robotics and Automation.
(2007)

7. Nishiwaki, K., Kuga, M., Kagami, S., Inaba, N., Inoue, H.: Whole-body cooperative
balanced motion generation for reaching. In: IEEE/RSJ Int. Conf. on Humanoid
Robots. (2004)

8. Sian, N., Yokoi, K., Kajita, S., Tanie, K.: A framework for remote execution of
whole body motions for humanoid robots. In: IEEE/RSJ Int. Conf. on Humanoid
Robots. (2004)

9. Goerick, C., Mikhailova, I., Wersing, H., Kirstein, S.: Biologically motivated visual
behaviors for humanoids: Learning to interact and learning in interaction. In:
IEEE/RSJ Int. Conf. on Humanoid Robots. (2006)

10. Couyoumdjian, A., Nocera, F.D., Ferlazzo, F.: Functional representation of 3d
space in endogenous attention shifts. The quaterly Journal of Experimental Psy-
chology 56a(1) (2003) 155–183

11. Wersing, H., Kirstein, S., Götting, M., Brandl, H., Dunn, M., Mikhailova, I., Go-
erick, C., Steil, J., Ritter, H., Körner, E.: A biologically motivated system for
unconstrained online learning of visual objects. In: Proc. Int. Conf. Art. Neur.
Netw. ICANN. (2006)

12. Ude, A., Cheng, G.: Object recognition on humanoids with foveated vision. In:
IEEE/RSJ Int. Conf. on Humanoid Robots. (2004)

13. Goerick, C., Bolder, B., Janßen, H., Gienger, M., Sugiura, H., Dunn, M.,
Mikhailova, I., Rodemann, T., Wersing, H., Kirstein, S.: Towards incremental hier-
archical behavior generation for humanoids. In: Proceedings of the IEEE/RSJ In-
ternational Conference on Humanoid Robots (Humanoids 2007), Pittsburgh, USA.
(2007)

14. Prescott, T.J., Redgrave, P., Gurney, K.: Layered control architectures in robots
and vertebrates. Adaptive Behavior 7 (1999) 99–127

15. Pfeiffer, R., Scheier, C.: Understanding Intelligence. MIT Press, Cambridge, Mas-
sachusetts, USA (1999)

16. Brock, O., Fagg, A., Grupen, R., Platt, R., Rosenstein, M., Sweeney, J.: A frame-
work for learning and control in intelligent humanoid robots. International Journal
of Humanoid Robotics 2(3) (2005)

17. Arkin, R.C., Fujita, M., Takagi, T., Hasegawa, R.: An ethological and emotional
basis for human-robot interaction. Robotics and Autonomous Systems (3-4) (2003)
191–201

18. Chernova, S., Arkin, R.C.: From deliberative to routine behaviors: A cognitively
inspired action-selection mechanism for routine behavior capture. Adaptive Be-
havior 15(2) (2007) 199–216

19. Asfour, T., Regenstein, K., Azad, P., Schröder, J., Bierbaum, A., Vahrenkamp, N.,
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