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Abstract—We introduce our latest autonomous learning and
interaction system instance ALIS 2. It comprises different
sensing modalities for visual (depth blobs, planar surfaces,
motion) and auditory (speech, localization) signals and self-
collision free behavior generation on the robot ASIMO. The sys-
tem design emphasizes the split into a completely autonomous
reactive layer and an expectation generation layer. Different
feature channels can be classified and named with arbitrary
speech labels in on-line learning sessions. The feasibility of the
proposed approach is shown by interaction experiments.

I. INTRODUCTION

In the recent years the research on humanoid robots made

a considerable progress in the hardware, sensor-processing,

and control related domains. The focus of the research now

moves from enhancing isolated abilities of the robots towards

the integration of different abilities into one complex system.

Several questions have to be addressed on the system level,

e.g. which system architecture supports incremental building,

robustness and stability of the overall behavior, coupling of

the processing and the integration of control on different time

scales.

In [1] we presented a first step towards our long-term goal

of incrementally creating an autonomously behaving system

that learns and develops in interaction with a human user

as well as based on internal needs and motivations. Here

we develop this approach further and extend the system

ALIS (”Autonomous Learning and Interaction System”) by

a mechanism of expectation generation, a learning speech

classifier, and an extended processing and representation

of visual sensor data. The expectation generation aims at

an incremental step towards the integration of goal-driven

behavior into a system that uses reactive controllers, while

the learning of the speech classifier significantly increases the

possibilities to interact with the system. The resulting system

comprises audio saliency for gaze selection, a visual proto-

object based fixation and short term memory of the current

field of view, the classification of the proto-object’s features

and executed actions, the online learning of the speech labels,

and an interaction-oriented control of the humanoid body

including the generation of the gestures. The focus of this

paper is not on the single elements but rather on the system

design and the key properties of the architecture. For a

detailed discussion of the the visual and speech processing

of our system please see [2].

In section III we give a short review on the SYSTEMATICA

framework, the design principle we built our systems on.

Based on this framework, we describe the implementation

of our current system ALIS 2 in section IV. Section V

then illustrates and evaluates the system based on some

experimental runs. We conclude by giving an outlook to our

future research in section VI.

II. RELATED WORK

There exist a huge number of applications aiming at learn-

ing speech via robot-human interaction. The main difference

of our work is that we are interested in a system architecture

that allows the learning and the usage of mental concepts in

general, whereas we see the speech learning as a particular

case where an auditory utterance is a part of a mental

concept. We pay special attention to the interplay between

the parts of the system. One aspect of system integration is

the question how the local classifications in different feature

channels can cooperate and be bound into a mental concept.

Another aspect of integration is on the control side: how a

reactive control layer that uses no (or only simple) models

and an anticipative control that uses mental concepts as world

model can run in parallel and profit from each other. We

discuss these two points below.

One major feature of our approach is the cooperation

of different classifiers for different feature channels. These

classifiers can operate asynchronously and have different

output spaces. The system treats all classifiers as equal and

can combine results from multiple classifiers dynamically.

All the control is done via local decisions. We furthermore

embed learning and the capability of detecting and resolving

conflicts of classification results.

Existing work on mixture of experts [3] or ensemble

learning architectures [4] use the cooperation of different

classifiers, however the output spaces of all classifiers are

identical. Classifiers whose input hardly contains enough

information to classify the global outcome are still forced

to do so. Furthermore the global classification always has to

wait for the slowest classifier, even if it would not contribute

at all to the result. Other systems exist that can handle

independent classifiers [5], [6]. Here however exists a large

asymmetry between the classifiers. On the one hand there is

an unreliable and flexible classifier (in both [5] and [6] the

speech/audio signal classifier), all the other classifiers are



treated as reliable. This makes the system less flexible and

expandable.

During the learning phase we use an additional attention

cue that specifies which classifiers can provide teaching

signals to the classifier that learns. Hence we do not force

all classifiers to do the same job. This results in a synergy

of classifiers without enforcement of equal classification

performance.

All the visual information in our system is represented

in form of proto-objects. These are also used for the target

selection and fitness evaluation of some of the behaviors.

Proto-objects are a concept originating from psychophysical

modeling [7], [8], [9]. They can be thought of as coherent

regions or groups of features in the field of view that

are trackable and can be pointed or referred to without

identification. Orabona et al. [10], [11] developed a system

that uses proto-objects — in their case colored blobs — to let

a robot learn the notion of an object consisting of possibly

multiple proto-objects using statistical means. In our point

of view, proto-objects simply describe entities in the outer

world that can be interacted with. They are a representation

of visual information that are sufficient to be used for the

generation of behaviors.

Now we turn to the question of behavior control organi-

zation that integrates both reactive control and expectation-

driven control. Some recent approaches in Reinforcement

Learning use a reactive layer for the description of the

state of the system-environment interaction as well as for

execution of plans, e.g. [12], [13]. These approaches do not

switch between reactive and anticipative modes; they are

forced to always evaluate the future reward and always plan

ahead. In contrast our system behaves in a reactive manner

as long as it has no expectations, switches to expectation

driven behavior if a feature channel generates expectations

of associated features, and switches back to reactive mode

ones the expectations are fulfilled.

The behavior-based approaches, e.g. [14], provide a possi-

bility for the planning layer to manipulate the action selection

in the reactive layer. However, the anticipation does not

influence the perception that is separated into a ‘symbol

converter’. In our system the expectations participate also in

the perception part. The bottom-up classification is processed

in a different way depending on the expectations. Expected

features are considered as reliable and are used as a teaching

signal, whereas the unexpected features trigger the behavior

that resolves the conflict between the expectation and the

reality. This mechanism can later be used for disambiguation

and hypothesis testing.

Common to the approaches discussed above is the fact

that the extension of the reactive behavior aims directly

at planning. However, from the evolutionary perspective,

the anticipation may first be used simply to detect an

inappropriate behavior. The model described in [15] goes in

this direction. The focus is set on expectancy learning and

the interplay between the expectancy system, the perception

system, and the control that does not require extensive

planning (e.g. conditioning, habituation, behavior suspension

in case of the expectation mismatch). The planning is seen as

a next incremental step. Our approach shows some parallels

to this work. One of our original contributions is the active

resolution of mismatch situations in a way that has not been

proposed before.

Our conviction that one of important goals of current

research is understanding the design principles of integration

of subsystems into a large system is shared by [16]. The

authors argue that the system architecture has to support the

parallelism and conversion to shared representations instead

of enforcement of the same data format in subsystems. As

discussed above, our architecture was built according to the

similar principles and fulfills these requirements. The main

difference of our approach is that we deal more explicitly

with the problems of behavior organization. To our knowl-

edge, the implementations based on [16] are restricted to the

parsing of commands to the robot that plans the action and

monitors the goal achievement in a rather restricted scenario.

Although the general CoSy framework, which is the base

for the work in [16], aims at the integration of reactive and

deliberative layers, the implementations give an impression

that the system follows only a functional decomposition and

there is no transitions between the behaviors generated on

different layers. In contrast, our framework SYSTEMATICA

supports both functional and behavioral decomposition that

helps to design the system in the way that the complexity of

representations match the complexity of the desired behavior.

Further, instead of using ‘blackboards’ for information shar-

ing SYSTEMATICA favors structured information communi-

cation. Finally, SYSTEMATICA supports incremental steps

in system building. In our implementation we extend the

reactive layer first by expectation-driven behavior before we

will go further to the integration of planning abilities.

III. SYSTEMATICA

In this section we give a short review of the SYSTEMAT-

ICA framework, see [1] for a more detailed discussion. The

framework describes the control architecture with the help of

processing units. The unit n is characterized by the following

elements:

• internal dynamics Dn;

• the used subspace Sn(X) of the complete input space

X spanned by extero- and proprioception;

• publicly accessible representations Rn the unit can

create;

• issued top-down information Tn,l to other units, n > l;

• accepted top-down information Tm,n, m > n;

• issued motor commands Mn with priority Pn.

The elements described above may be empty. For example

a unit may use no perceptive input Sn = ∅ but only

read the accessible representations of other units, or it can

only create representations but emit no motor commands,

Mn = ∅. The index n represents the index of the creation

in the incremental system building. Therefore, units with a

lower index n cannot observe the representations Rm of

units with a higher index m. The unit can autonomously

emit some externally observable behavior Bn by issuing the
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Fig. 1. ALIS 2 overview using the SYSTEMATICA framework.

motor commands or by providing top-down modulation. The

behavior Bn may have different semantics Zj depending on

the current situation or context Ci, i.e. the behaviors Bn

represent skills or actions from the system’s point of view

rather than observer dependent quantities.

The SYSTEMATICA framework allows to character-

ize the system architecture with respect to the follow-

ing issues: Find a system’s decomposition or a proce-

dure to decompose or construct units n consisting of

Sn(x),Dn, Bn, Rn,Mn, Pn, Tm,n such that

• an incremental and learning system can be built;

• the system is always able to act, even if the level of

performance may vary, i.e. they should treat top-down

information Tm,n only on a voluntary basis;

• lower level units n provide representations and decom-

positions that

– are suited to show a certain behavior at level n,

– are suited to serve as auxiliary decompositions

for higher levels m > n, i.e. make the situation

treatable for others, provide an ‘internal platform’

so that higher levels can learn to treat the situation.

If these requirements are met, the system will have several

benefits. It is robust against failure of units, i.e. if a unit n

fails, the units 1 to n−1 should remain unaffected. Only the

overall performance of the system would be reduced. Due to

the loose coupling between the units, asynchrony or latencies

should not break the overall performance. The hierarchical

design and the sharing of representations allows the units to

be of reduced complexity.

The figure 1 shows the SYSTEMATICA-based formaliza-

tion of the actual instance of our system ALIS 2. The units

one to four are to a large extent reused from the previous

version of ALIS [1]. These units can work independently

from units five to seven that are a result of the latest research.

Hence, our system building is indeed incremental. At the

same time, in difference to the subsumption architecture, the

units are not independent, but build on the representations

of underlying layers. The newly added unit six performs

the multimodal feature classification and thus provides the

representations suited for the expectation generation in unit

seven. Unit seven in turn sends the top-down information to

lower level units in form of learning signals and modulation

of basic behaviors. The individual units are described in

details in the next section.

IV. IMPLEMENTED SYSTEM UNITS

A. Conflict Resolution, Whole Body Motion, Collision Avoid-

ance (Unit 1)

The unit with the dynamics D1 is the whole body motion

control of the robot, including a basic conflict resolution for

different target commands and a self collision avoidance of

the robot’s body. It is identical to the unit D1 in the previous

ALIS instance. See [1] for a more detailed description.

The representation R1 used and provided is a copy of the

overall posture of the robot. The top-down information Tn,1

provided to the unit has the form of targets for the right

and left hand respectively, the head, and the walking. The

implemented conflict resolution takes care that for each of the

four targets individually at most one is selected for execution.

Without top-down information, the robot is standing in a rest

position with a predefined posture at a predefined position.

If the top-down information is switched off, the robot walks

back to this predefined home position.

B. Auditory Saliency and Gaze Selection (Unit 2)

The second unit with dynamics D2 computes an one-

dimensional (azimuth) auditory localization and stores it in



a saliency map R2. See [17] for details. Current research

focuses on extracting the elevation as well [18]. It provides

the gaze target T2,1 based on the peak of a saliency map to

direct the gaze into the direction of the sound origin. This

allows interaction from any position around the robot in order

for instance to guide visual attention to a region outside the

current visual view.

C. Proto-Object Extraction, Selection, and Fixation (Unit 3)

Unit three extracts proto-objects from the current visual

scene and performs a temporal and spatial stabilization of

these using short term memories. The concept of proto-

objects as we employ it for behavior generation is explained

in more detail in [19]. Three different visual cues enter the

system, each with their own short term memory. Depth proto-

objects are based on contiguous regions of depth values in a

restricted range we call the peripersonal space. This overlaps

roughly with the manipulation range of both arms. The sec-

ond kind of proto-objects are based on object proper motion,

i.e. contiguous image regions with similar movement relative

to the robot [20]. These proto-objects allow an interaction

over a larger range. One can attract the robot for instance by

waving. The third kind of proto-objects are based on textured

or non-textured planar surfaces. Although the method can

extract planar surfaces in arbitrary orientations [21], we

restrict ourselves here to roughly horizontal surfaces. These

proto-objects allow the robot to identify behaviorally relevant

support surfaces like chairs, tables, and the floor. The proto-

objects from the three sources are then merged, i.e. those that

probably describe the same entity in the world are merged

into one proto-object. The complete list of proto-objects is

made available inside R3 for all interested units.

A simple proto-object attention mechanism selects one

of the currently available proto-objects. Its unique ID, the

‘selected-ID’ is also made available in R3. The selection

mechanism stays on the same proto-object as long as it

is available or the top down influence T7,3 deselects the

current ID. As long as there are proto-objects that were not

deselected, a next proto-object is then selected based on an

arbitrary metric regarding status and distance to the robot. If

no proto-object is available, the selected-ID is set to the value

‘invalid’. The selection mechanism allows stable interaction

with any single proto-object.

If the selected-ID is valid, a gaze command T3,1 is

generated to direct the gaze towards the proto-object location.

This allows a simple visual tracking of the attended entity.

T3,1 has a higher priority than T2,1.

D. Target Selection, Arbiter, Behaviors (Unit 4)

Unit four with D4 governs the control of the robot’s body

except for the gaze direction. This is achieved by deriving

targets from the proto-object representation R3 and sending

them as top-down information T4,1 for the right and the

left hand as well as for walking to unit one. Details of

the internal dynamics D3 can be found in [22]. Unit four

consists of a group of internal behaviors, each sending a

fitness value to the arbiter that signals if they are able to

be executed successfully. The arbiter resolves conflicts and

sends an activity value to each of the behaviors. The activity

pattern is made available in R4. The top down information

T7,4 acts as a bias on the activities. This allows certain

behaviors to be executed with preference without interfering

too much with the originally active behaviors. The overall

behavior B4 then consists of the complete set of internal

behaviors and their interaction with the arbiter.

Some of the behaviors are used for direct interaction.

Peripersonal and planar surface proto-objects will be pointed

to with the most appropriate hand — depending on which

side the proto-object is while regarding a hysteresis. The

robot will also adapt the distance towards these proto-objects,

i.e. walk towards it if it is too far away and walk backwards

if it is too close.

E. The Units Introduced so far

The combination of the units one to four realizes the

framework for autonomous interaction with the robot in

a reactive way. Interaction can be initiated in different

spatial regions around the robot and trigger different response

behaviors. All interactions have in common, that the gaze

is directed to the currently attended stimulus. Visual proto-

objects will be preferred over auditory stimuli. If neither a

visual nor an auditory stimulus is available, the robot will

go back to or remain at a predefined home position.

F. Speech Recognition with Learning (Unit 5)

Unit five consists of a speech recognition system including

an online learning of arbitrary utterances. Two kinds of ut-

terances are distinguished and treated differently. Predefined

utterances are mapped to predefined labels available in R5.

These are used to trigger the learning according to different

criteria. All other utterances are communicated to the speech

classifier in unit six via R5.

G. Multi-Modal Clusters (Unit 6)

Using the representations R3, R4, and R5, Unit six is able

to classify different features. These features are compared

with predefined or online trained clusters separately for

the different feature channels. The classification results are

then made available as population codes in R6, i.e. for

each cluster, a confidence value based on the similarity

to the current input features is calculated and stored. The

population code is very flexible, since it allows to express a

best candidate, ambiguities, and the fact that nothing could

be classified. The latter is used for instance to encode missing

sensor values such as in the case of the speech recognition

when nothing is spoken.

In our ALIS 2 implementation, five feature channels are

extracted. For the proto-objects, several clusters are prede-

fined that describe relative properties (left and right position),

absolute properties (horizontal planar surfaces of different

height such as a table, chair, or step), or the movement status

(moving or still). The internal state of the behavior generation

activity is classified with respect to the two behaviors of

walking towards a target and returning to the home position.



The choice of these clusters is arbitrary but fixed, the learning

of the clusters is subject to current research. For speech, no

clusters are predefined. These can be trained online during

a learning session by providing a few (three to five are

sufficient) repetitions of the utterance and a feedback for the

desired output activity. Note that one can train synonyms,

i.e. different utterances for the same desired output activity.

At any time, R6 will represent all classified information

for the current scene. All the feature channel classifiers

constantly update their classification results but can do so

at different speeds. There is no need for synchronization.

H. Semantic Association and Expectation (Unit 7)

The unit with the dynamics D7 is able to associate the

results from the classifiers in R6 with each other. An asso-

ciation matrix converts between the results of the different

feature channels. The classification results can then generate

expectations for each of the other channels. Which classifiers

can generate expectations is arbitrary, in our implementation

ALIS 2 we restricted this to only the auditory utterances,

although different other combinations have been successfully

tested. The expectations are locally compared to the current

results of each feature channel. If the local classification

matches the expectation, a certain gesture is requested via

T7,5 — here the nodding of the head.

In case of a mismatch, a process is triggered to try to

resolve it. If then the mismatch is with respect to a proto-

object feature, a communicative gesture — here the shaking

of the head — is requested via T7,5 and the current proto-

object is deselected via T7,3. This is repeated until the expec-

tation is met. A time-out prevents the system to stick with

an expectation that it can not resolve by itself anytime soon.

If the expectation is with respect to the internal behavior

activation state, then this behavior is simply requested via

T7,5. The mismatch case for the internal behavior state can

thus be interpreted as providing a command to the robot. The

behavior that the robot returns to its home position when no

proto-object is available can be associated with an utterance.

Providing this command is the only way for the user to let

the robot disengage interaction by retreating.

For each of the four non-speech feature channels, a

predefined utterance available in R5 can trigger a learning

session. This learning session simply raises the expectation

for any result for the respective channel, i.e. all classification

results are permitted, and a zero expectation for the others.

The matching classification results are then transformed into

the respectively desired utterance classifier output. This is

then communicated via T7,6 in order to provide a learning

signal to the speech cluster learning. A time-out after the last

provided utterance completes the learning session.

The correlation matrix used to convert the classification

results between the different feature channels was chosen to

be fixed. The only information that it contains however is

that there is a correlation between auditory clusters and the

others. This simply encodes the namability of features, i.e.

the fact that the human interactor uses certain utterances for

certain features.

I. Overview over the Complete Dynamics

The different dynamics in the units described above and

their interplay result in an overall system with many features.

A completely reactive layer (units one to four) allows simple

interaction. The upper layer (units five to seven) allow to

combine information extracted from the environment and

from internal states in order to modulate the behaviors.

Should any part of the upper layer fail, the system would

still be usable.

The expectation generation allows the system to correlate

and evaluate properties, to learn new features, to command

the robot to activate certain behaviors, and to extend the

system beyond reactivity. The latter allows the step from

reactive to goal directed behaviors.

V. RESULTS

A typical example of a continuous interaction sequence is

depicted and commented in figure 2.

Figure 3 shows the most important system states during

this sequence. In the sequence labels for all modalities were

trained, while the use of the labels for expectation generation

was deliberately limited to a few trials to keep the graph

readable. For the same reason we also did not include

learning of synonyms in this experiment, although this is

possible at any time.

The basic interaction scenario is easily described:

First, by default the system is ‘reactive’ to direct visual

and auditory stimuli: if an object is presented within a short

range of the robot (about 1m) or a plane within a larger

range (about 2.5 m) ASIMO will directly react by gazing

at, pointing at, and approaching the target. Movement like

a walking person or hand-waving as well as any acoustic

noise will change ASIMO’s gaze but not trigger pointing or

approaching.

Secondly a human can trigger a learning session for any

modality by speaking a specific key phrase such as ‘learn

where this object is’ or ‘learn a name for your action’.

ASIMO will react by showing his attention with a gesture

(slight raising of his arms). The human can now utter the

label that ASIMO shall associate to this state. We get fairly

reliable recognition for three to five repetitions of the label

during a learning session. If the human does not speak for a

few seconds ASIMO will automatically terminate the learning

session.

Third one can utter an already learned label. ASIMO will

then compare his current sensor/action state to the specified

expectation state. If it is a sensor state (vision input), ASIMO

will either nod (match) or shake (mismatch) his head. In case

of a mismatch ASIMO will also try to match alternative visual

input (proto-objects) until either a match is achieved or a few

seconds have expired. In case of an action label ASIMO will

directly execute the specified action (e.g. walk back) while

continuing to react to the environment (e.g. still gaze and

point at objects).

The above elements can be used by the human in any order

and without delays — the whole learning and evaluation

process in online and real time.



Fig. 2. Image series from the experiment on speech learning and evaluation. 1) Fixation and pointing while learning the speech label for left position. 2,3)
Expectation evaluation: nodding as ‘Yes’ gesture to show the expectation match. 4) Interaction with a motion proto-object. Learning of ‘still’ and ‘moving’
labels. 5,6,7) Interaction with planar proto-objects. 5) Learning of the ‘chair’ label. 6) Fixation and adjustment of the interaction distance to the table and
learning of the ‘table’ label. 7) Testing the independency from visual appearance. 8) Approaching the user and learning ‘forward’ label. 9) Evaluation of
learned labels on the unknown object.

Table!

Learn what 

this flat 

thing is

“Table” ={    }

Fig. 4. Example of learning the association of the audio label ‘table’
with the current result for the planar surface classifier. The current situation
(solid lines) is restricted by the learning criterion (dotted lines) to form
the association to be learned (dashed lines). See text for a more detailed
discussion.

The whole sequence consists of first learning ‘left’ and

‘right’, then evaluating them, then learning other modalities

with a quick evaluation of ‘table’ in between and finally a

longer evaluation sequence. This final evaluation sequence

was done with a single previously not shown stool object to

show that the modalities are independent of appearance and

are applicable to any target object.

In the first evaluation at second 72 the user says ‘right’

while showing an object on the left. This creates a mismatch

that triggers head shaking (label ‘N’ in behavior activation

plot) and stops tracking. The request stays active until the

robot finds the object on the right (second 80) and nods (label

‘Y’). After second 277 we evaluate some of the learned labels

while ASIMO is tracking an unknown seen object. This shows

the results are independent of the visual appearance.

Around second 304 the evaluation utterance ‘still’ is at

first mis-recognized as ‘approach’ but this has no adversary

effect and repeating the utterance led to a correct recognition.

Figure 4 illustrates the system behavior during learning.

The table is the currently selected and fixated proto-object

(solid ellipse). The current classification results (in solid

lined cloud) are: the object is not moving, approach behavior

towards the table is active, the object consists of a surface

with a large height, and the object is e.g. on the left side. The

user now tells ASIMO with the utterance ‘learn what this flat

thing is’ that it should associate the following utterances with

the results of the planar surface classifier (dotted lines). Upon

uttering ‘table’ a few times, the system is able to associate

this utterance with the planar surface classification result of

something with a large height (dashed lines).

To show the flexibility and reliability of the system we

depicted another short sequence in figure 5. Here the user

first teaches ‘left’ but actually moves the object around
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Fig. 3. One run of the experiment: speech learning and evaluation — for explanation also see text. Depicted is the system state over time. Above the
graph the utterances for evaluation are shown. In the expectation plot the speech input for learning is shown, however in the experiment each utterance
is repeated three to five times. The upper two plots display information about proto objects. The first plot depicts the source of the current proto object:
‘D’- Depth, ‘M’- Motion, ‘P’- Plane. The second plot displays the object’s position in cylindric coordinates relative to the robot’s torso: the thick line
shows the angle (rad), the dashed line the height, and the thin line the distance. The plot on the very bottom shows the state of the behavior activations:
‘Y’-nod,‘N’-shake’, ‘LL’,‘LR’- learning gestures with left/right hand, ‘PL’,‘PR’-pointing with left/right hand, ‘R’-return, ‘A’-approach. The middle 3 plots
show the state of the upper layer (units five to seven). The expectation plot shows which states are currently expected, the request shows which states have
not been confirmed, and the evaluation plot shows both the expectation match (dark) and mismatch (bright). The first 9 values of expectation-, request-, and
evaluation- vector correspond to the speech channel. The dashed boxes show the expectations in non-speech channels generated by the learning criteria.
The corresponding expectation in the speech channel is used as a teaching signal.

during learning and even holds it to the right of the robot

for some time as can be seen from the proto object position

and also from the bars in the expectation plot. Since the

association is between the ‘label’ class and the highest

accumulated evidence this still gives stable results which

is important for an interactive robot that may move around

freely while interacting. Secondly ‘right’ is trained but this

time by hand waving in some distance to the right of the

robot, thus only generating movement proto objects as can

be verified in the top plot of the graph. Finally both labels

are evaluated and produce the correct response.

The total system was tested extensively during many

interactive test runs and presentations to visitors of our lab

and performs reliably. Please also see the accompanying

video.

VI. DISCUSSION AND OUTLOOK

We showed the implementation of a robustly interacting

and learning system with both reactive and expectation

driven behaviors. Our main focus lies on the design of

the complete system and not on the single building blocks.

The design principle SYSTEMATICA has proven to be an

efficient and flexible way to consider system design and its

implementation. By taking care of the coupling between the

different system units, i.e. which representations to made



D
M
P

−1

3

 P
ro

to
O

b
je

c
ts

 E
x
p
e
c
t.

1

9

18

 R
e
q
u
e
s
t 1

9

18

 E
v
a
lu

a
ti
o
n 1

9

18

 B
e
h
a
v
io

u
r

seconds
32 53 62 75 82 87 91

Y

N

LL

PL

LR

PR

R

A

rightleft

rightleft

Fig. 5. Test of the system’s stability. See text for explanation.

available and which top-down feedback should be used, a

robust system could be built. ALIS 2 successfully shows this

flexible and robust behavior during interaction. At any time,

the system is in a usable state and follows the dynamics of

the interaction.

The standardized data format used for the classification

results, the uniform handling of the classifiers, and the

usage of expectations as an interface for specifying goals,

testing hypotheses, and teaching signals have proven to be an

efficient way of designing the abstraction away from purely

reactive systems. The simplicity of these methods allow a

flexible extention in future systems.

The ALIS 2 system as described in this paper is in

principle just a snapshot of our current research platform.

It is used as a basis for integrating additional functionality

or for replacing existing parts by better ones. The ideas

behind the latter are twofold. One is to make the system more

flexible and extensible, the other is to replace currently taken

shortcuts by proper functionality. The idea behind this is not

to redesign the system from scratch, but to take a working

system and then replace or add parts that keep the system

working but perform better. One example is our current

research on replacing the predefined clusters for the non-

speech cases by a general concept of learning those clusters.

Preliminary results already look promising. Other current

work includes using 2d sound localization, speech production

instead of or additional to gestures, and incorporating tactile

sensors. On the system level, we are starting to investigate

ways of decoupling the functional units even further in order

to enhance robustness even more.
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