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Abstract. The role of efficient information processing in organizing ner-
vous systems is investigated. For this purpose, we have developed a
computational model termed the Hydramat Simulation Environment, so
named since it simulates certain structural aspects of fresh water hydra.
We compare the evolution of neural organization in architectures that
remain static throughout their lifetimes and neural architectures that
are perturbed by small random amounts. We find that (a) efficient in-
formation processing directly contributes to the structural organization
of a model nervous system and (b) lifetime architectural perturbations
can facilitate novel architectural features.

1 Introduction

In this paper we explore the influence that energy conservation has on neural
organization and the additional effect that noise has on this process. In order to
do this, we have modeled a radially symmetric organism which loosely resembles
the freshwater Hydra, which we term ‘hydramat’. We focus on how the nervous
system should configure itself around a fixed radially-symmetric body-plan.

Our hypothesis is threefold: the neural architecture of a radially symmetric
agent will arrange itself such that (i) the agent is afforded maximal functional
benefit and (ii) the agent is afforded the ability to conserve energy and (iii)
structural innovations are benefited from lifetime architectural perturbations.

The simulated agent proposed in this work is based on observations of the
nervous system of the genus Hydra, since crucially, they are phylogenetically the
first to have a nervous system that resembles major principles of nervous systems
in later organisms [8, 10]. In doing so we make a very high-level abstraction yet we
point out the differences as we describe them. Our actual simulation environment
to be outlined in Section 2, is heavily inspired by Albert, who devised a simple
model for the hydra and its nervous system [1]. From a systems biology approach,
we have been further inspired by the work of Niv et al, who looked at the foraging
behavior of honey-bees [9] and Florian, who employed biologically inspired neural
networks for agent control [4]. We provide the simulation results in Section 3 and
conclude the paper in Section 4.

2 The Hydramat Simulation Environment

The hydramat is modeled on a tube, and has a nervous system consisting of the
following types of cells (also see Fig. 1).



Fig. 1. Left: A visualization of the hydramat showing a neural cell distribution; right:

Two snapshots of the simulation environment. The sphere represents a food particle.

Sensory neurons These are computational neuron units that remain fixed at
the top of the hydramat tube. They detect falling food particles. When a piece
of food is dropped, the sensory cell that the piece of food is closest to is the
one that ‘spikes’, providing input to the rest of the spiking neural network. The
other sensory cells remain dormant.

Effector neurons Each effector neuron, of which there are always 8, is used
to ‘wobble’ the animat in one of eight directions, so that a food particle can be
‘caught’, see Fig. 2. Note that a food particle is deemed caught when it comes
to within a small distance threshold of the top of the hydramat. The effector
cell that ends up firing the most, is the one that brings about movement whilst
the others remain dormant. A firing rate is therefore observed within a short
time-frame (10 updates to the simulation environment) to decide the behavior.

General interneurons Additional neuron units residing within the ‘skin’ of
the hydramat. The Euclidean locations of both the interneurons and the effector
neurons are evolved throughout a process of simulated evolution and this is the
crucial way in which we evolve the architecture of the nervous system. These
localities are constrained to reside within the skin of the hydramat, since this is
the case in Hydra.

2.1 Movement Dynamics

The hydramat ‘wobbles’ to catch a piece of food by moving its third layer, see
Figs. 1 and 2 . The other layers passively align themselves to this moving layer.



d

∆x = sin(α · m)
∆z = cos(α · m)

x(t) = x(t − 1) + ∆x

z(t) = z(t − 1) + ∆z

Fig. 2. The movement mechanism of a hydramat layer. A chosen direction of movement
has been highlighted. The value m is a predefined constant and defines movement
magnitude. The value α represents the angle of the directional movement.

The amount by which a contracting layer moves due to a spiking effector neuron
is predefined by a movement magnitude (m), which we always set to 0.8 (see
equations in Fig. 2). The other layers iteratively align themselves in proportion to
the amount by which layer 3 changed position during such a movement update,
(Eqs. 1, 2 and 3). In this respect the passively updating layers observe very
simple spring-like dynamics:

fa = d ca, (1)

fb = −d cb, (2)

F = fa + fb. (3)

Note that we employ, fb, as a kind of relaxation ‘force’, causing the tube to
resume to a resting upright state. The parameters, ca and cb are predefined
constants set to 0.2 and 0.01 respectively.

2.2 Hydramat Nervous System

An integrate and fire spiking neural network We use the Neuro Simulation
Toolkit NEST [5] to build a simple integrate and fire (iaf) model for the hydramat
nervous system. A change in membrane potential of a neuron is given by the
following differential equation,

τi

dui

dt
= −ui + RIi(t). (4)

where Ii is input current and R is resistance. The multiplicative effect is typically
equivalent to the accumulated strength of all incoming presynaptic activity i.e. an
accumulation of weight values representing the connection strengths multiplied
by functions of when presynaptic neurons fired prior to the current ‘time step’
(
∑N

j wjik(t−Fj)). The value τi, is the membrane time constant of the neuron.



Neuron positioning and synaptic efficacy In our model, the distance be-
tween a pair of neurons (i and j) determines the connection strength of the
connection between them, if such a connection exists. The formula wji = ξ

dji
is

used to derive this value, where dji is the Euclidean distance between neurons
i and j and the value ξ = 16 has been set empirically to ensure that wji has
the potential to be significantly large. The maximum value of dji is given by the
bounds of the hydramat’s geometrical properties. In our experiments, the length
of the cylindrical hydramat and its diameter were always set to 6.0 and ∼ 1.6
respectively. Therefore the theoretical ranges of dji and wji were [0,∼ 6.23] and
[∼ 0.64, > ξ] respectively; the smaller the distance between a pair of neurons,
the larger the weight value between them, if a connection exists between them.

Neuron positioning and connectivity A second aspect of our nervous sys-
tem model, is that the connectivity between any pair of neurons is determined
using a Cauchy probability distribution of the form

Pji =
1

π · λi ·
[

(

dji

λi

)2

+ 1

] . (5)

The value of λi governs the width and height of the distribution. If the value is
small, the shape will be tall and narrow. If it is large, the shape will be short and
wide. Each particular neuron-type pair has its own value. Since in the model,
there are three neuron types (sensory (S), effector (E) and interneuron (I)),
we have six types of connectivity. Given this, the connectivity relation between
two neurons is not symmetric. A connection from S to E does not equate to
a connection from E to S, i.e., SE 6= ES. We actually employ 6+1 λ scalars:
one for each of the different connectivities, and a further one since we allow
interneurons to connect to other interneurons. Except for the interneurons, a
particular type of neuron is never connected to a neuron of the same type.

Finally note that we include an artificial constraint that prevents connections
bisecting the hydramat cylinder. This is to ensure that connections remain within
the ‘skin’ of the hydramat like it is in real hydra. If a pair of neurons are angled
more than 20◦ away from each other, the connection probability is set to zero.

Lifetime architectural perturbations In order to assess whether there is
an advantage in perturbing the neuronal architecture throughout the lifetime of
the hydramat, the neurons are made to move stochastically by small random
amounts. We are motivated to do so because in Hydra, the neural cells undergo
constant movements (e.g. [3]). At each update of the simulation, a neuron’s
position changes with a probability of 0.05, by an amount drawn from a normal
distribution having an expectation of zero. For the neuron’s y coordinate gene,
the variance of this distribution is set to 0.1 and for the neuron’s angle, 10.0. If
during such a movement, the neuron moves outside of the hydramat’s bounds,
it is replaced with a neuron occupying the position of the original neuron before
any lifetime movements were undertaken.



2.3 Measuring Efficiency

In the hydramat neural model, we consider a single spike as a single unit of
information transmission, which is associated with an energy cost, ej , of the
spiking neuron,

ej =
C

∑

i=1

dij

dmax

Sloss, (6)

where dij is the distance between two neurons and Sloss is the maximum possible
energy that will be lost (0.1) when the connection length is dmax. Energy is also
accumulated whenever the hydramat catches a food particle. In our simulations,
this value was set to Fgain = 40.0.

2.4 Evolutionary Process

We employ a simple evolutionary algorithm to evolve the neuron positions and
connectivity parameters. Typically we have 8 sensory neurons, 8 effector neurons
and 84 interneurons. So we have 92 neuron positions to evolve (since the sen-
sory neurons are fixed) and the 7 lambda connectivity parameters. We employ
binary tournament selection, single point discrete recombination and a Gaus-
sian mutation with an adaptive standard deviation (σ). The adaptation pro-
cess relies on the setting of two strategy parameters, τ0 = 1.0/

√
2.0 ∗D and

τ1 = 1.0/
√

2.0 ∗
√

D where D represents the dimensionality of the vector be-
ing evolved. These values have been shown to be optimal in a process of self-
adaptation [2]. The σ values are adapted as follows,

σi ← σi ∗ exp (N(0, τ0) + Ni(0, τ1)) . (7)

Both genes representing the spatial positioning vectors and those representing
the connectivity parameters are evolved by applying the corresponding σ value.

2.5 Experiment Overview

We have devised a very simple ‘food catching’ task to explore our hypothesis.
In Fig. 3, a birds-eye perspective of the environment is depicted. At the center
of the environment resides the hydramat, whose task is to catch each of the
eight pieces of food depicted as filled circles (one at a time). The performance
(fitness) measure is the amount of energy that can be retained. Each hydramat
population member starts with 200 units of energy and units are gained whenever
a piece of food is caught and lost whenever a neuron spikes, if energy efficiency
is considered . In order to ensure that the spiking neural network truly evolves
to react to the food stimuli, the order in which the food pieces are dropped is
randomly shuffled at the turn of each population member.

3 Summary of Results

Four sets of experiments have been performed to investigate the influence of en-
ergy efficiency and lifetime architectural perturbations on neural organization.
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Fig. 3. The 8-food-task environment from a birds-eye perspective.
Each of the 8 pieces of food, represented as an outer filled circle, is
equidistant from the center of the hydramat, located at the center
of the diagram.

Fig. 4 shows the energy conserved in the four experimental setups. We can see
that evolution progresses steadily in all experiments and when energy consump-
tion due to spikes is not taken into account, energy conserved from food caught
increases more rapidly. Fig. 5 presents the relationship between energy conserved
and connectivity density. From the figure, we can conclude that minimizing en-
ergy loss due to spikes effectively reduces the density of neural connectivity,
which, however, becomes harder when lifetime architectural perturbations exist.
The optimized neural architectures in the four experiments are illustrated in
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Fig. 4. Energy conserved as evolution proceeds (a) without energy efficiency, and (b)
with energy efficiency taken into account.

Fig. 6. From these results, we can make the observation that effector neurons
(enlarged filled circles) tend to aggregate around the sensory neurons (small filled
circles). This suggests that functionally significant neurons have a tendency to
become proximal to each other, which might be a functionally useful feature.
Moreover, significance tests based on 30 runs when energy efficiency is consid-
ered indicate that lifetime perturbations increased the likelihood that effector
neurons would move towards the top of the hydramat, to a significance of 0.005.

Two main findings seem to have emerged from our simulation results. First,
energy has a direct impact on neural organization. Second, lifetime neural per-
turbations can facilitate the emergence of biologically plausible structures.

4 Conclusions

The contributions of this work are as follows. First, we suggest a novel frame-
work that incorporates energy efficiency in organizing nervous systems. This
framework allows us to take the first steps in understanding evolutionary tran-
sitions of primitive nervous systems, which provides interesting future research
direction. Second, our computational results demonstrate how efficiency of in-
formation processing and minimization of energy consumption has emerged in
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Fig. 5. Energy conserved versus the number of outgoing connections (averaged over
the whole population) when energy loss due to spikes is (a) not considered and (b)
considered.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 6. Initial ((a)-(d)) and optimized ((e)-(h)) neural architectures of the four exper-
iments indicate that effector neurons (enlarged filled circles) tend to move toward to
the sensory neurons (small filled circles). (e) energy efficiency not considered, no archi-
tectural perturbations; (f) energy efficiency not considered, with architectural pertur-
bations; (g) energy efficiency not considered, no architectural perturbations; and (h)
energy efficiency not considered, with architectural perturbations.



evolution through the interactions with the environment. Finally, our results
show how random perturbations can facilitate the emergence of novel nervous
architectures.

It seems sensible to expect that the same holds for the biological radially sym-
metric organisms of the genus hydra, i.e., that the formation of ring structures
around the hypostomal region, [7], is a result of selection pressure towards min-
imalistic structures which coupled with their body morphology leads to similar
structures. A further view is that the noisy effect of lifetime neural perturbations
might increase robustness of the information processing system.

There are two other major extensions of the model presented here. Firstly,
we can incorporate simulations of gene regulatory networks and let the neural
architectures grow instead of directly encoding spatial information. Secondly, we
can allow morphological changes of the hydramat and see how nervous systems
depend on and change with body shape; we have begun to approach this in [6].
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