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Abstract. This paper presents a model for the development of primi-
tive nervous systems in a hydra-like animat controlled by a gene regula-
tory network. The gene regulatory network consists of structural genes
that simulate the main cellular events during neural development at an
abstract level, namely, cell division, cell migration, and axon growth,
and regulatory genes that control the expression of the structural genes.
The developmental model is evolved with an evolutionary algorithm to
achieve the correct developmental order. After the genetically controlled
neural development is completed, the connectivity and weights of the
neural networks are further adapted to perform simple behaviors such
as food catching of a hydra. Our preliminary results suggest that the
proposed developmental model is promising for computational simula-
tion of the evolution of neural development for understanding neural
organization in biological organisms.

1 Introduction

Understanding the evolution of biological neural organization using computa-
tional models has attracted increasing attention. Two issues are considered es-
sential for this body of research to be biologically plausible. First, the evolution
of neural organization should be coupled with that of the body plan [1,4,7]. Sec-
ond, the influence of neural development on the evolution of the nervous system
should also be taken into account [9].

A few computational models for neural development have been reported.
Cangelosi et al. [2] suggested a developmental model for cell division and migra-
tion that uses a rule-rewriting grammar. A model for neurogenesis that includes
metabolic reactions and diffusion was proposed by Kitano [8], though no func-
tionality of the developed neural network has been considered in the paper. A
recurrent artificial neural network was used for modeling the development of a
spiking neural network for the control of a Khepera robot [5].

This work suggests a computational model for neural development based on
a gene regulatory network (GRN) for morphological development [13]. The gene
regulatory network is composed of a number of structural genes whose expres-
sion is controlled by regulatory genes. The gene regulatory model is evolved to
achieve the correct developmental order, i.e., first cell division, then cell migra-
tion, and finally axon growth [10]. The neurons are distributed over the surface
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Fig. 1. The hydra-like animat. (a) The body plan with four tentacles, and (b) the
nervous system shown on the 2-D area representing the unfolded body surface.

of a cylinder that simulates the body of hydra, which are phylogenetically the
first to have a nervous system. Neurons are then connected according to a proba-
bility inversely proportional to the distance between them. In order to perform a
food-catching behavior, the connectivity and weights of developed neural system
are further adapted. Part of this work has been reported in [11].

Section 2 describes the body plan of the hydra-like animat, the gene regu-
latory model for neural development, as well as the neural network dynamics
based on the integrate and fire spiking neural model. The experimental setup
and simulation results for evolving the developmental order are presented in Sec-
tion 3. The developed neural system is further adapted to catch as many pieces
of food as possible while minimizing energy consumption, which is presented in
Section 4. The paper concludes with discussions in Section 5.

2 The Model

2.1 A Hydra-like Animat

The physical body of the hydra-like animat simulates very loosely that of a
hydra, which consists of a cylinder with four tentacles equally distributed on
its top. Each tentacle is driven by a muscle cell controlled by a neural network
composed of motor neurons, interneurons and sensory neurons, all of which are
modeled with integrate and fire (IAF) neurons, refer to Fig. 1. To simplify the
experimental setup, four sensory neurons and four motor neurons are put on
the top of the body, while the number and position of the interneurons are
determined by the developmental process. During the behavior adaptation, four
pieces of food drop sequentially around the body and the closest sensory neuron
will generate a number of spikes as the input to the neural network.

2.2 Genome for Neural Development

The genome in our model consists of structural units (SUs) representing genes
that can result in certain cellular behaviors, such as cell division, cell migration,
axon growth, and cell death, or can produce transcription factors (TFs) for intra-



Fig. 2. The example of the genome for neural development.

and inter-cellular interactions. The SUs are preceded by a number of regulatory
units (RUs), refer to Fig. 2. Note that multiple RUs may regulate the expression
of a single or multiple SUs and that RUs can be activating (RU+) or repressive
(RU−). Three different cell types are simulated in the model: stem cells, inter-
stitial cells (after division) and neurons (after axon growth), depending on the
activation status of the structural units of the cell.

Each RU and TF has a certain affinity value that determines whether a TF
can regulate a RU. If the difference between the affinity values of a TF and a
RU is smaller than a predefined threshold ǫ (in this work ǫ is set to 0.2), the TF
can be bound to the RU to regulate. The affinity overlap (γi,j) between the i-th
TF and j-th RU is defined by:

γi,j = max (ǫ −
∣

∣

∣
affTF

i − affRU
j

∣

∣

∣
, 0). (1)

If γi,j is greater than zero, then the concentration ci of the i-th TF is checked
to see if it is above a threshold ϑj defined in the j-th RU:

bi,j =

{

max (ci − ϑj , 0) if γi,j > 0
0 else

(2)

Thus, the activation level contributed by the j-th RU (denoted by aj , j =
1, ..., N) can be calculated as follows:

aj =
M
∑

i=1

bi,j , (3)

where M is the number of TFs that regulate the j-th RU. Assume the k-th
structural gene is regulated by N RUs, the expression level of the gene can be
defined by

αk = 100

N
∑

j=1

hjaj(2sj − 1), (4)

where sj ∈ (0, 1) denotes the strength and sign (positive for activating and
negative for repressive) of the j-th RU, which is subject to evolution, and hj

is an additional parameter representing the regulatory strength of j-th TF. If
αk > 0, then the k-th gene is activated and its corresponding behaviors are
performed.



A SU that produces a TF encodes all parameters related to the TF, such as
the affinity value, the decay rate, the diffusion rate, as well as the amount of TF
to be produced:

A = β
2

1 + e−20·f ·α
− 1, (5)

where f is a parameter also encoded in the SU, and β is a parameter for expres-
sion rate of the SU.

A TF produced by a SU can be internal (for inter-cellular interactions) and
external (intra-cellular interactions). Internal TFs stay inside a cell and do not
diffuse. External TFs can diffuse into the whole simulation area, a process that
depends on the diffusion parameter of the TF. To determine how much of a
produced TF is external, a percentage (pex ∈ (0, 1)) is also encoded in the
corresponding gene. Thus, pex ·A is the amount of external TF and (1− pex) ·A
is that of the internal TF.

External TFs are put on four grid points around the center of the cell, which
undergoes first a diffusion and then decay process:

Diffusion: ui(t) = ui(t − 1) + 0.1 · D
f
i · (G · ui(t − 1)), (6)

Decay: ui(t) = min ((1 − 0.1 · Dc
i )ui(t), 1), (7)

where ui is a vector of the concentrations of the i-th TF at all grid points, matrix
G defines which grid points are adjoining, D

f
i is the diffusion parameter, and

Dc
i is the decay rate.

There are also a few parameters defined by the SUs that generate cellular be-
haviors. The SU for cell division specifies the angle of division, indicating whether
the daughter cell is placed above or below the mother cell. For cell migration,
two parameters are encoded, one for direction (moving up or down) and the
other for moving velocity. The SU for axon growth encodes the expected lifetime
(tttd) of a neuron and three parameters (c1, c2, c3) determining the probability
threshold for axon growth. The limited lifetime of the neuron, tlife, is defined by
the following Gaussian distribution:

tlife ∼ N (20tttd, 4). (8)

The threshold for whether the i-th neuron is to be connected to the j-th neuron
is calculated as follows:

ϕij =
c1

1 + ec2·(dij−10c3)
, (9)

where dij is the distance between the i-th and j-th neurons. The distance is
computed in the 2D region (refer to Fig. 1(b)), which is the distance between the
two neurons along the surface of the cylindrical body. Then, a random number p

(p ∼ N (0, 1)) is generated, and if p < ϕij , a connection between the two neurons
will be generated. The connectivity between the interneurons and the sensory
neurons, as well as between the interneurons and motor neurons is determined
in the same way. Note, however, that there is no direct sensory-sensory, motor-
motor, and sensory-motor connection.



2.3 Neural Network Dynamics

The dynamics of the neural network is modeled by IAF spiking neurons [3]:

τm

dV (t)

dt
= −(V (t) − Vresting) + RmI(t), (10)

where τm is the membrane time constant, Rm is the membrane resistance, I(t)
is the external current, V (t) is the membrane potential, Vresting is the resting
potential. When the membrane potential V (t) is larger than a given threshold
Vth, a spike is generated. The spiking event is characterized by its firing time tf .
After spiking, the membrane potential is reset to Vreset for a refractory period
τref. In an IAF neural network, the membrane potential of a neuron (Vk) can be
calculated by:

Vk(t) =

H
∑

i=1

wikyi(t), (11)

where wik is the weight between neurons k and i, N is the total number of
its presynaptic neurons, and yi(t) is the unweighted contribution of the i-th
presynaptic neuron:

yi(t) = ε(t − t
f
i − dik), (12)

where ε is a spike response function modeling the post-synaptic potential, t
f
i is

the firing time of neuron i, and dik is the synaptic delay.
The spiking neural network in this work is simulated using the NEural Sim-

ulation Technology (NEST) [6].

3 Evolving the Developmental Order

An evolutionary algorithm is applied to evolve the genome to achieve the correct
developmental order, i.e., the genes for cell division, cell migration and axon
growth should be activated sequentially during the development. In addition, the
gene for division should be deactivated before the gene for migration is activated,
as the gene for migration should be deactivated before the gene for axon growth
is activated. Gene transposition, gene duplication, and mutations are employed
as the genetic variations. If gene transposition is performed, two randomly chosen
units (both SUs and RUs are possible) are marked, and all units between these
two marked units are cut out and pasted at another randomly chosen position.
A gene duplication differs with gene transposition in that all units between the
markers are copied and pasted at another randomly chosen position. All real-
valued parameters (scaled between [0,1]) in the genome are adapted using an
evolution strategy (ES) [12]. A repairing operator is introduced so that a single
gene contains only one type of SU related to cellular behaviors.

The following fitness function is used to penalize wrong developmental orders:

– If two cellular behaviors are active simultaneously, a penalty of 2 is applied.
– If three cellular behaviors are active simultaneously, a penalty of 5 is applied.
– If axon growth is followed by cell division, 2 is added.



– If axon growth is followed by cell movement, 1 is added.
– If cell migration is followed by cell division, 1 is added.

The target of the evolution is to minimize the fitness function. In the sim-
ulations, the parent and offspring population sizes are set to 1000 and 3000,
respectively. The probability for gene transposition and duplication is set to
0.05, and the mutation step-size is initialized to 1e−4, with its lower bound be-
ing set to 1e−6 during evolution. The development begins with a single stem cell
put in the center of the simulation area.

The fitness profile is shown in Fig. 3(a). We can see that the correct devel-
opmental order is achieved after over 300 generations. The activation levels of
the gene for cellular behaviors (refer to Eq. 4) are shown in Fig. 3(b). A value
above zero indicates that corresponding gene is activated and repressed if it
drops below or equal to zero.
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Fig. 3. (a) Fitness profile. (b) Activation levels of the genes.

4 Evolution of the Neural Network for Food-Catching

Twelve stem cells with the genome that performs the cellular behaviors in the
correct order are distributed on the simulation area so that a neural network
is developed. For the neural network to perform the food-catching behavior, we
employ an ES to adapt its connectivity and weights. In this work, we assume
that only one tentacle is needed to catch a piece of food. Thus, the target of
the behavior adaptation is that the motor neuron closest to the dropping food
should fire as strong as possible to maximize the possibility to catch the food,
while the activity of other motor neurons should be minimal to reduce energy
consumption.

To achieve the above-mentioned target, the following fitness function is de-
fined for the i-th motor neuron (output neuron):

Fi = −fi +
∑

j!=i

nsj , for i, j = 1, ..., 4, (13)

where nsj is the number of spikes generated by other motor neurons in the simu-
lated time period, penalizing unnecessary energy loss, fi reflects the performance
of the i-th neuron measured by the time (tci ) for the corresponding tentacle to



stand vertically, i.e., when the angle λ = 90, refer to Fig. 1, or by the maximum
λ during in the simulation period, if λ never reaches 90 degree during that time.
The angle of the i-th tentacle is calculated as follows:

λi(t) = λi(t − 0.1) − g ∗ 0.1 + si(t), λi ∈ [0, 90]. (14)

The second term on the right side of Eq. 14 simulates the passive dropping-down
of tentacle due to gravity (g), t ∈ [0, 30] is the simulation time in millisecond in
behavior adaptation, si(t) equals 0 or 1 depending on whether there is a spike at
time t. The final fitness is summed over four runs with different food dropping
conditions. We use a (30, 200)-ES and the initial mutation step-sizes are set to
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Fig. 4. (a) Fitness profile, and (b) fitness after zoomed in.

0.1 with a lower bound of 1e−6. The maximal weight is set to 3000, which can be
excitatory or inhibitory, and the synaptic delays are fixed to 1. All parameters
are scaled between zero and one. The fitness curve for behavior optimization is
shown in Fig. 4. The spikes of the input and output neurons of the best adapted
individual is shown in Fig. 5. From the figure, we can see that in three of the four
cases, the neural network performs optimally. In one case (last panel in Fig. 5),
outputs 2 (o2) and 4 (o4) also fire, though only output 3 (o3) is assumed to
spike. Nevertheless, o3 does fire the strongest.

5 Discussions and Conclusions

This paper suggests a neural developmental model based on a gene regulatory
network. The GRN has evolved successfully to achieve the correct developmental
order, i.e., cell division, cell migration and axon growth in sequence in a simulated
evolution that undergoes gene transposition, duplication and mutation. After the
gene regulated neural development is complete, the connectivity and weights of
the neural network are further adapted using an ES for performing a food-
catching behavior in a hydra-like animat with success.

The current developmental model can be improved in various respects. Since
no gene deletion is implemented in the model, the complexity of the genome
tends to become more complex due to gene duplications. The cell migration
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Fig. 5. Spikes at the input and output neurons for four different inputs.

behavior resulted from the current model is quite deterministic, as there is little
local interactions between the cells. In the long run, a gene regulatory model for
both neural and morphological development will also be investigated.
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