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Abstract. In this chapter, we discuss the new research field brain-like
intelligence and introduce and relate the contributions to this volume to
each other.

1 Brain-like Intelligence

This volume brings together contributions from researchers across a broad range
of disciplines who attempt to define promising avenues towards the creation of
brain-like intelligence. What is Brain-like Intelligence? Although it seems nec-
essary to have a good understanding of what one wants to create before one
starts, there is no crisp and clear definition. As is often3 the case, we have to be
content by first identifying a list of ingredients and with drawing up brain-like
intelligence and other types of ”intelligence” that have been put forward in the
past.

Over 50 years ago, the field of artificial intelligence was founded during the
now famous Dartmouth conference [1]. After an enthusiastic start it quickly
became clear that the original goals would be much harder to achieve than
anticipated. Since then artificial intelligence has proceeded in many different
directions with a number of research ”spin-offs” but without realizing the goal
of achieving general-purpose intelligent computing applications. Maybe the most
successful applications of artificial intelligence have been in the areas of search
engines and of logical reasoning systems leading eventually to expert systems.
Expert systems succeed when a problem is sufficiently well structured and its
complexity can be controlled. Some problems have these properties, however,
natural environments do not. This is one of the reasons why classical AI has not
been successful in building systems that can autonomously operate in natural
environments. Shakey was the first mobile robot that appeared to ”reason” about
its actions [2]. While it was a technological masterpiece, it was plagued by slow
response times, resulting in sluggish interactions with its environment. Even if

3 There is no unambiguous definition of ”life”.



we acknowledge the tremendous increase of computational capacity during the
last 50 years (roughly a factor of between 107 and 1011), there are several factors
that still prevent a stricly rule-based approach, for example the richness of the
natural environment, its inherent unpredictability and ambiguity, and the hidden
combinatorial explosion. Nevertheless, as Sloman argues [3], lessons learned from
and within classical artificial intelligence remain relevant to the research program
of creating brain-like intelligence and the reaction against everything related to
classical AI may even have held up progress.

Computational intelligence is a research spin-off of AI that currently serves
as an umbrella for several disciplines with three major directions represented
by neural networks, evolutionary computation and fuzzy systems. While these
directions started off as separate endeavors, they all addressed weaknesses of AI.
AI’s lack of flexibility is addressed by fuzzy systems, while AI’s lack of adaptivity
and learning is addressed by neural networks and evolutionary computation.
These research areas have all been and still are successful in many disciplines,
however, their contribution to a better understanding of the brain and hence
to achieve brain-like intelligence has been limited (although recently Zadeh [4]
has argued that fuzzy systems are a prerequisite to achieve human-level machine
intelligence). Nevertheless, they continue to serve at least as starting points for
our quest for brain-like intelligence. In this volume, we find a range of approaches
based on neural networks and evolutionary computation, see the chapters by
Suzuki et al. [5], by Elfwing et al. [6] and also the one by Sporns [7].

So where does this leave brain-like intelligence? As the name suggests, we
would like to achieve intelligence as demonstrated by brains preferably those
of highly evolved creatures. We could call it pragmatic intelligence or in an
evolutionary sense, selected intelligence. This form of intelligence is required for
the expression of certain behaviours which are in turn required to guarantee
survival and reproduction (constituting the most basic values). This type of
intelligence is not an end in itself; it is a means and it is expensive (in humans
the brain consumes 25% of energy at 2% of body weight and it also requires the
involvement of a very large proportion of genetic information, with about 70% of
all genes expressed in the brain). At the same time, this type of intelligence must
be available under all circumstances, it must be versatile and flexible, and since
the environment constantly changes it must also be evolvable. It must allow the
completely autonomous control of a body. It adapts and learns and if necessary
– higher up on the phylogenetic ladder – it reasons. In a way, this line of thought
also demystifies the brain in a similar way as Charles Jennings [8] wrote in his
review of the book Accidental Mind [9]: ”... the evolutionary history of the brain
is a series of design compromises, culminating in a jerry-built assemblage of
redundant systems that make us who we are today.”.

Brain-like intelligence is a system property, it is the result of a well orches-
trated interaction between control, body and environment; this is demonstrated
by the experiments described by Sporns [7]. All three elements of the system
grow and develop together; even if the environment in itself does not change,
the perception of the environment changes in the course of development. We



emphasize the role of the environment because it is the driving force behind it
all. In an abstract sense, the only source of information during evolution and
development is the environment, a point made also in the comments by Sloman
[3].

In part, this information has been genetically stored, thus influencing de-
velopment and then contributing to learning and adaptation. However, learning
should not only be thought of as confined to task specific machine learning but
also has to be newly interpreted from a systems perspective just as intelligence4.

Brain-like intelligence maintains a representation of the environment includ-
ing the system itself. It has to cope with a continuous influx of an immense
amount of mostly unspecific and for the current system state irrelevant informa-
tion. Therefore, brain-like intelligence has to relate what it perceives to what it
knows. There is abundant evidence that the brain actively creates its own per-
ception, i.e., it predicts and manipulates the sensory input by feedback from its
representation of the world. This seems to be achieved by hierarchically and dy-
namically organizing and controlling the interplay between different processing
streams and areas in a highly organized structure or architecture (e.g. columnar
structure). More detailed hypotheses of these processes have been put forward,
e.g. [12].

Brain-like intelligence cannot be identified with a singular functionality, it is
its versatility, its robustness and its plasticity which makes it the object of our
quest. Superior functionality in a single problem domain can often already be
achieved by specialized technological systems (think about a simple calculator
or a chess programme), however, no technological system can robustly cope with
the plethora of tasks encountered by any animal during its life time.

Brain-like intelligence is not the only extension of artificial and computa-
tional intelligence that has been proposed in recent years: autonomous mental
development [13], cognitive architectures [14] and brain-based devices [15] rate
among them. As these designations already suggest, autonomy based on a de-
velopmental program to acquire knowledge during interaction with humans lies
at the core of Weng et al. [13]. Krichmar and Edelman [15] formulate a list
of six basic principles and properties of an intelligent machine which includes
active and adaptive behavior, developing from a set of basic innate rules (val-
ues). While Krichmar and Edelman place emphasis on the relation to the neural
details, Weng et al. do not make this a prerequisite for their approach. Krich-
mar and Edelman clearly state that the analogy to the natural brain must be
taken seriously. Indeed their last criterion suggests to use experimental data from
neuroscience to measure performance; we will come back to this point again in
Section 7. The review article by Vernon et al. [14] nicely summarizes the trend
that the two traditionally opposing camps of relying on physical symbol systems
and emergent development systems merge into hybrid systems (e.g. shown in

4 This ”systems perspective” [10] is currently advocated ”all over the life-sciences” e.g.
in the emerging area of Systems Biology and in pharmaceutical research, where there
is a growing trend to build data based models of whole organs and even organisms
[11] to predict the effect of newly developed drugs.



Fig. 1 in [16]). Vernon et al. promote the thinking in terms of phylogenetic and
ontogenetic development of environmentally embedded systems as also outlined
in Section 6 of this chapter. They relate autonomous mental development as
has been put forward by Weng et al. to cognitive architectures. At the same
time, development is entangled with the environment, and the right sequence
of tasks [17] is important for an iterative refinement of skills. All of these ap-
proaches are closely related to our understanding of brain-like intelligence, with
most of the differences found in the details of the structural and developmental
constraints of the model and in the ways by which phylogenetic and ontogenetic
development and learning can and must be integrated. By rightly focusing on
the interaction of the systems with their environments (low-level perceptual and
high-level social/cultural), we should not forget that the system is also internally
driven by different layers of microscopic and macroscopic dynamics. It is gen-
erally agreed that brain-like systems will have to continuously consolidate and
re-arrange their internal state. However, on a microscopic level there is a second
continuous internal dynamics including cellular signalling and gene regulatory
processes to guarantee continuous operability at the macroscopic level.

The accumulation of ever more detailed biological, cognitive and psycholog-
ical data cannot substitute for general principles that underlie the emergence
of intelligence. It is our belief that we have to more intensively pursue research
approaches that aim at a holistic and embedded view of intelligence from many
different disciplines and viewpoints. We must augment ”locality” by a global con-
trol architecture and functional isolation by environmentally integrated systems
that are capable of autonomous (phylogenetic and ontogenetic) development and
self-organisation consistent with brain evolution. The goal is to create systems
that are vertically complete spanning all relevant levels and yet horizontally sim-
plified, i.e. ignoring something in everything without ignoring everything about
something. This line of thought is mirrored by the diverse contributions which
we will briefly relate and cluster in the next sections.

2 The Theoretical Brain: Structure, Dynamics and
Information

The aim of theoretical neuroscience is to understand the general principles be-
hind the organization and operation of nervous systems. Therefore, insights from
theoretical neuroscience would be the ideal starting point for creating brain-like
intelligence. However, in many ways the foci are different. Brain-like intelligence
is concerned with nervous systems inside organisms inside environments. This
perspective yields theoretical as well as practical consequences. It is necessary
to study the transition from microscopic to macroscopic levels of structural and
temporal organization and it is necessary to embrace the interaction with the
environment in the formulation of the mathematics of brain-like processing. Not
surprisingly, extensions of information theory remain the best candidate for ap-
proaching the later problem. There have been several early attempts, e.g. [18,



19], and in [7] Sporns describes an intuitive way how the information exchange
between system and environment can be formalized.

Information theory is intrinsically connected to entropy and thermodynam-
ics, which with its statistical formulation has been one of the most successful
approaches towards connecting a microscopic with a macroscopic level of descrip-
tion. In their contribution [20], Deco and Rolls aim at bridging the gap between
cognitive psychology and neuroscience by formulating microscopic models at the
level of populations of neurons to explain macroscopic behavior, i.e. reaching a
decision. Secondly, they argue that statistical fluctuations due to the spiking ac-
tivity of the network of neurons are responsible for information processing with
respect to Weber’s psycho-physical law. Therefore, the probabilistic settling into
one attractor is related to finite size noise effects, which would not be observable
in a mean field or rate simulation model. The operation of networks in the brain
is inherently noisy, which e.g. facilitates symmetry breaking. Thus, stochastic
aspects of neural processing in the brain seem to be important to understand
global brain function and if this is the case, we can expect that it will equally
be important to create brain-like intelligence.

The role of structure and dynamics for brain-like intelligence is also the fo-
cus of the chapter by Jost [21]. This collection of mathematical tools for the
analysis of brain-like systems highlights the different sources for rich dynamics
(network structure, various update functions, e.g. logistic map) as well as the
importance of temporal synchronization of flexible neuron groups in a network.
Many different organizational levels of dynamics make up the overall informa-
tion processing patterns in brains. Neural dynamics is self-contained as well as
stimulus modulated in an active way (the brain moves) while being organized on
an equally dynamical structure that is changing on different time scales during
learning, development and evolution. According to Jost all this must be seen in
the light of information theory, which is also a driving force behind the experi-
ments described in Sporns’ chapter [7] .

Sporns chooses an abstraction level that is closer to the actual biological
system. However, the triad of structure, dynamics and environment is also the
central focus of Sporns’ chapter. The brain is a complex system because it con-
sists of numerous elements that are organized into structural and functional
networks which in turn are embedded in a behaving and adapting organism.
Brain anatomy has long attempted to chart the connection patterns of complex
nervous systems, but only recently, with the arrival of modern network analysis
tools, have we been able to discern principles of organization within structural
brain networks. One of the overarching structural motifs points to the existence
of segregated communities (modules) of brain regions that are functionally sim-
ilar within each module and less similar between modules. These modules are
interconnected by a variety of hub regions that serve to functionally integrate the
overall architecture. This duality of segregation and integration can be assessed
with information theoretic tools and is at the root of brain complexity.



3 The Embodied Brain

Embodied Cognition advocates the view that the mind is shaped (or, to put it
even more strongly, defined) by the body. Although the basic idea of embodiment
has been proposed some time ago (see, for example, the writings of the French
Philosopher Maurice Merleau-Ponty), it was not prominently pursued in classical
artificial intelligence, which instead focused on abstract and deliberately disem-
bodied symbols and rules. Today, Rolf Pfeifer is an ardent advocate of embodied
cognition, a view that is reflected in his contribution in this volume [22]. Pfeifer
and Gómez outline a number of different cases where complex control problems
are fundamentally simplified by appropriate morphology (e.g. sensory morphol-
ogy and material properties). They argue that information from the environment
is structured by the physical characteristics and morphology of both the sensory
and the motor systems (information self-structuring), a point also made in the
chapter by Sporns. At the same time, Pfeifer and Gómez point towards a trade-
off or balance between the maximal exploitation of the dynamics (requiring less
sophisticated neural control) and maximal flexibility during operation. In other
words, morphological computation is efficient and necessary, however, it is also
restrictive with respect to the level of adaptation that can be achieved on a short
time-scale, i.e., the individual life-time. It would be interesting to explore how
this trade-off is realized by different species in biology.

Embodied cognition is strongly related to how our control of the environment
shapes what we experience and how we develop. Possibly the most important
means to both control and experience our environment are our hands. Ritter et
al. argue in their contribution [23] that manual control and grasping are strongly
related to the development of language which is usually seen as an instantiation of
”pure” cognition (i.e. symbolic and independent of sensorimotor processes). The
term manual intelligence is used by Ritter to denote a paradigm shift towards an
understanding of the environment as a source of contact and interaction that is
embraced and not avoided by robots. As a result language has developed as an
extension of the ability to physically manipulate objects to the skill to mentally
re-arrange and assemble ideas and descriptions of objects.

Although we will discuss embodiment in the light of evolution in Section 6,
the embodied evolution framework put forward in the chapter by Elfwing et
al. [6] complements our picture on embodied cognition. The population aspect
inherent in any evolutionary interpretation adds a new perspective to embodied
cognition which is intrinsically linked to the aspect of communication put forward
by Ritter et al. and the notion of social and imitation learning discussed in [24–
26] and summarized in Section 4.

4 The Social Brain

The brain resides in a body which lives in an environment. However, the envi-
ronment is more than just a complex assembly of physical objects to explore and
manipulate. Especially in more highly evolved species, the physical environment



of an individual organism consists of other conspecifics which are often in the
role of social partners. The importance of this type of interaction often termed
social interaction has been studied since a long time in particular in animal be-
haviour [27]. It is known that the development of brain structure is altered by
social deprivation.

In developmental robotics, social interaction has been studied e.g. in the
context of imitation learning, which is the focus of the chapter by Grimes and
Rao [24] and which is also described in the chapter by Vijayakumar et al. [25].
In kinematic imitation learning the observed behaviour of the teacher has to
be mapped into the kinematic space of the observer. Grimes and Rao build a
dynamic Bayesian network model of the imitation learning process including
sensory-motor learning and implement it on the humanoid robot HOAP. The
probabilistic structure of their model allows to deal with uncertainties which
are inherent to imitation learning and to incorporate prior-knowledge in a very
natural way. HOAP learns from two sources of information: demonstrative and
explorative and under two types of probabilistic constraints: matching (observing
the teacher’s state) and egocentric (constraints of the learners state).

Imitation being basically uni-directional from the teacher to the observer
can be seen as a first step towards social interaction. Wrede et al. argue in their
contribution [26] that truly bi-directional interaction and communication is the
basis of successful infant learning. They describe the necessity of joint attention
(a kind of mental focus) for learning of artificial systems in interaction. In this
way, the attention of each interaction partner can be directed to a common
focus. The top-down process of joint attention can be triggered by bottom-up
saliency strategies. The synchrony of information of different modalities supports
to achieve this focus on a subset of the available information. Wrede et al. suggest
that interaction strategies derived from verbal and non-verbal interaction from
which turn-taking and feedback strategies are derived are required in order to
build systems that can engage successfully in social interaction.

5 The World inside the Brain – The Brain inside the
World

Systems displaying brain-like intelligence need an appropriate structure or ar-
chitecture of processing layers. In Section 1, we have mentioned the research
field of cognitive architectures being deeply related to brain-like intelligence.
Such architectures allow the system to operate in the world and to represent
the world. It is the amalgamation of these traditionally separate views that have
been referred to as hybrid systems and which will be a prerequisite to success.
There is a spectrum of approaches ranging from the more operational to the
more representational philosophy.

Vijayakumar et al. suggest in their contribution [25] an adaptive control and
planning system for robot motion within a statistical machine learning frame-
work that can be coupled to a number of different information sources. They
argue that the probabilistic and statistical level of description allows to abstract



from the detailed underlying neural organization while being able to represent,
process and fuse information in a functionally similar way. In particular, such
system architectures can cope well with missing information and are suitable for
statistical learning and inference mechanisms. Vijayakumar et al. compare the
identification and learning of random latent, i.e. not directly observable, vari-
ables to the development of ”internal” representations in cognitive architectures.
They discuss and extend classical robot control schemes and apply the proposed
probabilistic framework to imitation learning in humanoid robotics.

In the chapter by Goerick [28] an architecture called PISA for an autonomously
behaving system that learns and develops in interaction with the environment
is outlined. The acronym PISA stands for Practical Intelligence Systems
Architecture and consists of a large number of different elements that are de-
scribed in the chapter. Goerick puts emphasis on the role of internal needs and
motivations in PISA and on the approach to incrementally realize such a com-
plex system architecture embedded in the environment. He proceeds with the
description of interactive systems that allow motion control, online learning and
interaction in different contexts on the humanoid robot ASIMO and that have
been developed within the proposed framework. Furthermore, he suggests a no-
tation called ”Systematica” that is especially designed to describe incremental
hierarchical control architectures.

Suggesting an architecture in between the cognitivist and the emergent view,
Eggert and Wersing outline an approach toward a cognitive vision system in
their chapter [29]. They focus on the conceptual role of control processes in
the visual system to keep the combinatorial complexity of natural visual scenes
under control. Questions concerning the high-level representational framework,
the low-level sensory processes, the mediating structures of the control and the
optimization criteria under which the control processes operate are discussed in
the chapter. Eggert and Wersing proceed to highlight a few visual processing
”subsystems” that are relevant for the general architecture. Examples are image
segmentation, multicue tracking, and object online learning for classification and
categorization. The self-referential build-up of a visual knowledge representation
is an important element in Eggert and Wersing’s chapter. At the same time,
they emphasize that visual scene representations are sparse and volatile and
therefore only store what is needed and what was accessible under given resource
constraints.

We started out this section with a more ”brain inside the world” focus repre-
sented by the work of Vijayakumar et al. and Goerick, then proceeded discreetly
to a slightly (note that we are being very careful here) more ”world inside the
brain” view in the cognitive vision system discussed by Eggert and Wersing,
arriving now at Sloman’s chapter [3] where he argues that embodiment is not
the solution to the intelligence problem it is merely a facet of it, arguably an
important one.

Sloman moves further along the brain-world axis and puts forward that early
AI has failed to put sufficient emphasis on the embodiment aspect but that does
not mean that all of the earlier work is meaningless in our quest for brain-like



intelligence. In his chapter, Sloman addresses several aspects of cognition includ-
ing the development of children where it is evident that the explanatory power of
primarily sensory driven systems with a relatively straightforward dynamics con-
necting the sensor with the motor side is not sufficient. Instead he makes a case
for a multi-level dynamical system where the majority of processing happens
decoupled from the direct environmental I/O. However, for Sloman that does
not mean more or less but different emphasis on the environment. He suggests
to study the features of the environment relevant for animal and robot compe-
tences and the different ways biological (and we would add artificial) evolution
has (and would) respond to them.

Tsujino et al. [30] outline two models of the basal ganglia for autonomous
behavior learning. The system-level model uses a reinforcement learning frame-
work whereas the neuron-level model employs a spiking neural network. The two
different levels of abstraction allows the authors to address different questions
which are related to the function of the basal ganglia. While the issues of reward
setting and input selection are the central focus for the system-level model, the
spiking neural network is used to investigate e.g. mechanisms of timing.

6 The Evolved Brain

Brain-like intelligence is selected intelligence. Therefore, it is inherently put in
an evolutionary context. But what are the consequences? There is an iterative
development of functionalities that relates to the phylogenetic development of
the architecture that is genetically represented and environmentally adapted. Al-
though Haeckels orginal statement ”ontogeny recapitulates phylogeny” is false
in its literal interpretation, it is true that phylogenetically older structures gen-
erally occur earlier during ontogenetic development. Since in a cascade of hier-
archically organized processes that are executed during development, it is easier
to implement change at a later stage of the process than at an earlier stage, this
is a natural result of an evolving system. However, this puts an immense strain
on the richness of the architectural and organizational (in the dynamical sys-
tem sense) primitives which evolution could manipulate. Evolvability of brains
heavily constraints its processing principles. Robustness is a consequence. Were
the processing principles brittle any evolutionary change would result in system
failure. The genetic representation in itself is a complex information process-
ing structure. Gene regulatory networks build cascading nonlinear dynamical
systems that encode information indirectly. High structural and temporal preci-
sion is expensive (energy) and cannot be achieved globally. The huge complexity
of the brain can – in general – only be represented by the genetic apparatus
in a coarse way, the result is an inherent requirement for flexibility. If there
is no means to specify each neuron location and neural connection precisely, a
system has to evolve that is flexible. In a sense the shortcomings of the evolu-
tionary process is – to a certain degree – responsible for the desirable properties
of brain-like intelligence. Evolution is situated design, i.e. system development
and system operation are not spatially decoupled like in traditional system de-



sign. Therefore, the embodiment discussion is meaningless from an evolutionary
perspective (Sloman [3] calls it a tautology); only both together constitute an
individual which is subject to selection. However, current discussion on devel-
opment generally assumes a developing control system inside a fixed (chosen)
body; from an evolutionary perspective this makes little sense and it remains to
be seen to which degree this separation can be upheld. Note, that this goes be-
yond the co-evolution of body and brain that has been demonstrated by Lipson
and Pollack [31].

Besides the principal relation between brain and evolution, there is also a
more pragmatic one. Evolutionary computation offers a powerful approach to the
optimization of complex structures on non-differentiable, noisy and multi-modal
quality landscapes. In particular in combination with faster more local search
techniques (reinforcement learning, gradient descent, BFGS) evolutionary algo-
rithms have proven to be very successful for the adaptation of systems. The field
of evolutionary robots [32] demonstrates this. In their chapter [6], Elfing et al.
successfully integrate both methods for adaptation in their cyber rodent project.
They present a framework for embodied evolution consisting of both a simula-
tion environment and a few hardware robots using an elaborate mating scheme
without explicit fitness assignment. The genotypes of the cyber rodents contain
information on the neural top-layer controller and on the learning parameters.
Reinforcement learning is used for lifetime adaptation. The two-layered control
architecture selects learning modules dependent on behavior, environment and
internal energy. Suzuki et al. co-evolve active vision and feature selection in a
neural architecture in their chapter [5]. Active vision is the process of selecting
and analyzing parts of a visual scene. Although the degree of freedom of the
neural system is limited (the structure is fixed), the authors nicely demonstrate
the selective advantage of active vision in their evolutionary set-up.

7 The Benchmarked Brain

The objective measurement of sucess and progress is a vital element in brain-like
intelligence as it is in any other fields of science and engineering [33, 34]. Although
varying between science and engineering, the different aspects of system verifi-
cation and validation are well established. However, in brain-like intelligence we
face additional difficulties. Firstly, we are not clear yet, whether we shall position
ourselves more within the scope of science or technology. In the first case, suc-
cess has to be judged by neurophysiological or psychological experimental data
as is the case in computational neuroscience. In the second case, the target is
to provide evidence that the realized system accomplishes its intended require-
ments. Of course, in this case we have the initial burden to clearly define what
the intended requirements are against which we want to judge our progress. The
fact that there is a continuous transition between both extreme stand-points
makes the measurement process even more ambiguous. In [35], Herrmann and
Ohl clearly follow the ”science path” by suggesting ”cognitive adequacy” as a
measure. They argue that if it is possible to observe the same or similar be-



haviour in artificial systems as the real brain demonstrates, then it is likely to
work like the real brain. They proceed to identify a number of anchor-points
suitable for the comparison between system and the real-thing: reaction times:
differences/ratios; error rates: cognitively adequate algorithms should make er-
rors under the same circumstances as humans would; perception measures: show
similar illusory or ambiguous percepts as those in human perception. This view
is similar to the one put forward by Krichmar et al. which we discussed in Section
1.

If we follow the technological stand-point, we have to start by stating our
system requirements or by laying out the rules for competition. There are small-
scale (benchmarks for machine learning or image processing) and large-scale
competitions (RoboCup, Darpa Urban Challenge), however, from the perspec-
tive of ”brain-like intelligence” they always leave a feeling of dissatisfaction be-
hind. The reason is that functionality can be achieved in many different ways
and a functional approach to judging the level of ”brain-like intelligence” inside
a system or machine would end up in the endeavour to define brain-like intel-
ligence. The results are typically lists with various items and this is where our
dissatisfaction comes from, we know that lists are only of temporary validity.
As we argued above, we would like to judge the complete system, but against
what? In a recent BBC interview [36], Dharmendra Modha, manager of Cogni-
tive Computing at IBM, proposed a radical solution to the problem: ”We are
attempting a 180 degree shift in perspective: seeking an algorithm first, prob-
lems second.” Although at first sight an intriguing and perhaps even plausible
statement, it would by definition preclude an objective and unambiguous mea-
surement of progress: this is a dangerous path for technology to choose. At the
same time, the path which is currently pursued is not much preferable, as more
and more publications solve a more or more specific problems that a particular
research group has committed itself to. This often does not allow comparison or
objective measurement of quality. It does not even guarrantee reproducibility,
because the complexity of most systems is too high and the provided detail of
implementation information is too low.

This problem receives less attention in the scientific community than it should
because it lies at the core of an overtly successful approach towards creating
brain-like intelligence. In particular for those who invest in this field of research
(research agencies, industry), a solution to this question is vital. In our opinion,
the truth will be somewhere between the scientific and the technological stand-
point, where function can be combined with experimental observation to lead
the way through the jungle of brain-like system architectures.

8 Summary and Conclusion

We are facing a puzzle where we believe that we have identified a couple of pieces
to be important (those are the focus of our research) but the overall picture
remains fuzzy; we cannot be sure about the importance or centrality of the
pieces and we have not yet figured out which pieces will connect to one another.



If we summarize our situation it is a bit like this: we aim for a fuzzy target using
mostly relatively brittle approaches while having difficulties to measure progress.
So where are the good news? The good news is: We are beginning to move in
the right direction, even beyond the progress that is driven by the increase in
computing power. The systems we build now are more open, more flexible and
more adaptive than those of the past. We have understood that we do not build
systems to operate in the environment but with the environment and because
of the environment. This collection of papers is evidence of this progress.

It is interesting to note that there seems to be a certain reservation to bridge
the gap from neuroscience to advances and new developments in intelligence
research, e.g. brain-like intelligence. Judging by the conceptual proximity the
number of chapters in this volume that relate to neuroscience is relatively small
(mainly the ones by Deco and Rolls, by Sporns and one of the models by Tsujino
et al.). This does not seem to be an observation that is restricted to our effort in
brain-like intelligence. Indeed the recent collection of papers [37] from researchers
in artificial intelligence dedicated to the 50th anniversary of AI has a similarly
limited number of neuroscience related contribution. What could be the reason?
Of course we can only speculate. However, on the one hand neuroscience is
too much (from the view point of brain-like intelligence) focused on the details
of neural processing instead of on the large-scale processing principles. On the
other hand, research in brain-like intelligence must take care to emancipate – to
a certain degree – from the grasp of technology.

There are a number of interesting and important questions that we have not
addressed in this chapter and which are also not addressed by any of the contri-
butions to this book. High on this list of omissions rates the question concern-
ing the computational substrate for systems exhibiting brain-like intelligence. It
seems that over the last five decades, research in intelligent systems has pro-
ceeded by incorporating more and more biological principles into the blueprint
for our approach towards intelligence. In this quest, can we ignore whether we
compute with cells in an organic systems or with gates in a silicon system? In the
brain, we cannot distinguish between hardware and software. The architecture,
structure and algorithms have evolved together and it is impossible to say where
one ends and the other starts. It would be an evolutionary accident if we could
extract some principles out of the context of the remaining ones and still expect
this one to perform well.

The community has learned to scale down expectations over the last 50 years.
So where can we go in the next fifty? We will build machines that support us
robustly and autonomously both in the real and the virtual world. Will they
challenge us cognitively? We do not think so. However, every reader is invited
to speculate about the future after meeting the present on the next 344 pages.
Finally, we cannot phrase it better than Turing [38]: We can only see a short
distance ahead, but we can see plenty there that needs to be done.
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