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Abstract. The non-negative matrix factorization (NMF) is capable of
factorizing strictly positive data into strictly positive activations and base
vectors. In its standard form, the input data must be presented as a batch
of data. This means the NMF is only able to represent the input space
contained in this batch of data whereas it is not able to adapt to changes
afterwards. In this paper we propose a method to overcome this limita-
tion and to enable the NMF to incrementally and continously adapt to
new data. The proposed algorithm is able to cover the (possibly grow-
ing) input space without putting further constraints on the algorithm.
We show that using our method the NMF is able to approximate the
dimensionality of a dataset and therefore is capable to determine the
required number of base vectors automatically.

1 Introduction

The NMF has been introduced by Lee and Seung [I|2] as an unsupervised fac-
torization method for decomposing multi-variant data under the constraint of
non-negativity. By only allowing the additive combination of components, the
method generated a parts-based representation. In its standard form, the NMF
works as a batch algorithm, i.e. the whole dataset is presented at once and has
to cover the desired input space entirely. Changes in that space can only be
incorporated by restarting the learning process from scratch, using the new and
the old data samples together to represent the new input space. This requires an
enormous amount of memory and computational effort, because all data samples
seen so far have to be stored, and the base vectors have to be recomputed once
a new sample is presented. An additional drawback of the NMF and batch algo-
rithms in general is that we have to specify the number of base vectors a priori.
This poses a hard problem for many real-world datasets, because the intrinsic
dimensionality of those datasets is not known.

Cao et al. developed an online variant of the NMF [3] trying to overcome the
mentioned limitations. In their approach it is possible to add new data samples
to the representation later, making it possible to adapt to temporally changing
data. Nevertheless, it is necessary to put an orthogonality constraint on the
learning process in order to obtain a proper representation of the input space.
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Furthermore, both the initial number of vectors and the number of additionally
available vectors for new learning cycles still have to be specified beforehand.

We propose a method to learn the available data sequentially and hereby to
incrementally adapt the base vectors to represent the input space. By doing so,
the algorithm is able to autonomously approximate the intrinsic dimensionality
of the input data, rendering it unnecessary to specify the number of base vectors
in advance. By assuming to only see one new data sample at a time we, contrary
to [3], do not need to put further constraints on the learning process.

In Sect. 2] we briefly review the standard NMF algorithm and its update
procedure, before we describe the idea of the incremental NMF (iNMF) in Sect.[3
Then we present our results (Sect. M) using the bar dataset and the Essex face94
dataset [4]. Finally, we discuss the results and give an outlook on future work.

2 Standard NMF Review

The NMF algorithm as described by Lee and Seung [1l2] is based on a distance
measure between the input dataset V and the reconstruction R. We here focus
on the Euclidian distance measure

F(W.H) = |[V-R| , (1)

where the reconstruction is calculated by the linear superposition of the base
vectors W weighted with their corresponding activation H

V~R=WH. (2)

Lee and Seung have shown that one can derive the following multiplicative up-
date rules for W and H to minimize the error function of Eq.

wWTv
H—Ho WTR (3)
VH”

By alternately performing the update steps for H and W, the algorithm is able
to find at least a locally optimal solution for Eq. [l (see [2]). The final update
schema for the NMF reads as follows:

Calculate the reconstruction according to Eq.
Update the activations using Eq. Bl

Calculate the reconstruction according to Eq.
Update the base vectors using Eq. [

Repeat step 1 to 4 until convergence.

AN

! ® and - denote componentwise operations: a® b := A; - B;, Vi.
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Fig. 1. While learning a dataset a), the base vectors are adapted to cover at least the
space spanned by the data samples b)

The matrix V contains a set of data samples v; as column vectors, representing
the input space that should be covered by the base vectors (see Fig. [[b for an
example). The available number of base vectors is mainly responsible for the
learning result and must be defined a priori. If the number of the base vectors
is greater or equal to the intrinsic dimensionality of the data, the NMF learns
base vectors that cover at least the space spanned by the data samples (see
Fig. [@b). If their number is too low, the NMF will not be able to derive sensible
base vectors and will end up with a high reconstruction error for all input data.
Another problem related to the NMF and batch algorithms in general is that it
is impossible to adjust the representation of the input space to subsequent and
new information, after the learning process took place.

3 Incremental NMF Algorithm (iNMF)

To overcome the mentioned limitations, we propose to incrementally extend
the representation of the input space and enable the algorithm to add further
base vectors if necessary. The learning process, as schematically described in
Fig. @ starts with only one base vector. In each learning cycle the incremental
NMF (iNMF) only sees one data sample at a time. For the first data sample we
perform a NMF learning (see section [2)) with the single base vector. The resulting
base vector, as shown in Fig. 2b, represents all points along its extension, lying
on a straight line and hence covering a 1D-space. To start the next learning cycle
using a new data sample d(¢), we have to make sure that the already acquired
information is preserved. Here we exploit the fact that the learned base vector
represents all information about the previously seen data samples (see [5] and
Eq. Bl), which is the basic idea of our method. So all we need to do is to append
the new data sample d(t) to the previously learned base vectors W (¢ — 1) in
order to obtain the new NMF input vector V()

V() ={d(t), W(t - 1)} . (5)

With the new V(t) we now perform a new learning cycle equivalent to the NMF
update schema (see section [2]). For the example shown in Fig. 2k, both the new
sample and the previous base vector are already covered by the set of base vectors
W (t — 1), so there is no need for adaptation.
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Fig. 2. The learning and adding of base vectors in the INMF shown as: a) the available
data samples. b) the learned base vector from the first data sample covering a 1D-space.
c) a new data sample and the learned base vector as a virtual sample (containing the
first sample shown). Both data points are inside the covered 1D-space, allowing for
the reconstruction using a single base vector. d) the third data sample being outside
the covered 1D-space. Even adapting the available base vector leads to a large recon-
struction error. e) by adding and adapting a base vector both the virtual sample and
the new data sample can be reconstructed. As a result a 2D-space is covered. f) by
adapting the two base vectors a larger region of the 2D-space can be covered. Here the
intrinsic number of dimensions (two) is found by the iNMF.

If we provide a data sample beyond the covered space, a reconstruction of
both the new data sample and the previous base vector is not longer possible. In
Fig. B this is due to the fact that the data samples span a 2D-space, but only a
1D-space can be covered with a single vector. Although the NMF tries to adapt
the existing vector to minimize the reconstruction error F(W,H) (see Eq.[), a
high error will remain. We know that the NMF is able to reconstruct all data
samples in an n-dimensional space if the number of base vectors is at least equal
to the dimensionality of that space (see [5] and Fig. 2l for illustration). So a high
reconstruction error indicates that the dimensionality of the space spanned by
the data samples must be higher than the number of currently available base
vectors. Because we provide the iNMF only with one new data sample at a
time, we know that the dimensionality also must have increased by one and
hence requires one additional base vector. By providing this vector it is possible
to span a 2D-space and to reach a good reconstruction quality by repeating
the NMF learning cycle (see Fig. k). The dataset used for our illustration (see
Fig.2h) is 2D, it will be possible to reconstruct all further data samples provided
to the INMF by adapting the two available base vectors as shown in Fig. 2f. By
successively applying our method, the iNMF algorithm is able to approximate
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the dimensionality of the input data by itself. We can formulate the update
schema for the iNMF in the following pseudo code:

1. Randomly initialize a single base vector wo and set W (¢t — 1) = {}.

2. Take the next data sample d(¢) and construct the input vector
V(t) ={d(t), W(t — 1)} as described in Eq. B

3. Set W(t) = W(t — 1) to initialize the base vectors.

. Initialize the activation matrix H randomly.

5. Perform a NMF learning cycle:
(a) Calculate the reconstruction according to Eq. 2
(b) Update the activations using Eq.
(c¢) Calculate the reconstruction according to Eq. 2

(d) Update the base vectors using Eq. @

(e) Repeat step ba to 5d until convergence.

6. If the reconstruction error F(W,H) (Eq. [Il) is low, continue with step 2.
Otherwise provide an additional base vector W (t) = {W(t — 1), W } and
a corresponding activation. Continue with step 4.

S

4 Results

4.1 Bar Dataset

The bar dataset we have used consists of 162 images with a size of 32x32 pixel.
Each of the images is a superposition of up to four horizontal and vertical bars.
A horizontal bar can be applied to four different horizontal positions; the vertical
bar to four different vertical positions. Complete overlapping of two bars is not
allowed. We permute the original dataset (see e.g. FigB]) in order to destroy a
potential order (from single bars to many bars) in the dataset and remove all
images containing only a single bar. This prevents the iINMF from focusing on the

Fig. 3. Here you can see the 153 images of the permuted bar dataset
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Fig. 4. After about 20 images, the iNMF reaches the final number of base vectors,

which are adapted afterwards. Due to visibility reasons, we only show the first 50
images
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Fig. 5. While provided with the first ten images (top), the iNMF algorithm generates
seven base vectors (bottom). The first seven input images are simply stored one-to-one
in the base vectors. After this phase, the base vectors are adapted and become less
complex and sparser.

trivial cases where solely the initial eight vectors are sufficient to learn the input
space. Figure[d] shows the massive necessity to add base vectors within the first 7
images. During this phase the algorithm copies the data samples one-to-one into
base vectors as shown in Fig.[Bl Afterwards, the number of vectors stays constant
for about 10 input images. Here, the reconstruction of the input data is achieved
by adapting the already existing vectors and thus removing redundancy in the
set of base vectors. This can be interpreted as a specialization of the vectors,
resulting in a lower complexity, lower redundancy and higher sparsity.

If we compare the base vectors after presenting 20 images with the final base
vectors (see Fig. [A]), we see that the final shape of the base vectors has already
emerged. Merely the amplitude of some pixels is different. So already at this
early point the input space is covered to a very large degree. We have tested
ten different permutations of the bar dataset and found that the final number
of vectors is reached between the 9th and 76th image. This also implies that
the dimensionality of the input dataset was correctly estimated. In all cases the
iNMF algorithm is able to find the correct base vectors out of the randomly
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Fig.6. A comparison between the vectors after 20 images (top) and the final vectors
after 153 images (bottom) shows that the final shape of the base vectors has already
emerged after 20 images

0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00

1 I I e T e T e T T T
10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
presented image

avg. reconstruction error per pixel

0 2 4 6 8

Fig.7. The error function over the presented images shows characteristic peaks if
the number of base vectors is insufficient. A vector is added if the error exceeds the
threshold = 0.005 (dashed), increasing the reconstruction quality drastically. We only
show the first 50 images here.
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Fig. 8. Mean and standard deviation (scaled by 3 for visualization) in the first and
last 10 steps of the bar dataset reconstruction. The iNMF and the NMF perform
comparably good.

ordered samples that dot not contain the initial vectors. A typical development
of the error function over the presented images is shown in Fig.[d In the diagram
one can see sharp rises of the reconstruction error, which are characteristic for
an insufficient number of base vectors. If such a peak is detected, a new base
vector will be added and we can observe a drastic drop in the reconstruction
error. This results from the fact that the iNMF algorithm is now able to place
the new base vector pointing into the direction of the current sample and thus
leading to a nearly perfect reconstruction. In our case we have chosen a fixed
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threshold to detect the critical reconstruction error. The threshold itself can be
varied in a large range (from 0.0001 to 0.01), assuring an easy handling.

4.2 Comparison to Batch NMF

To compare the iNMF to the NMF we apply both algorithms to the bar dataset
(see Fig. B). Afterwards we use the final base vectors of both algorithms to
reconstruct the dataset to evaluate how much information is stored in the base
vectors. During this phase we do not adapt the base vectors, but keep them
fixed. Each algorithm is started with 10 randomly chosen initial activations.
In Fig. B you can see the resulting mean and standard deviation comparison
of the reconstruction quality between the NMF and the iNMF. As you can
see, the incrementally learned base vectors of the iNMF exhibit a comparable
reconstruction quality on the dataset with respect to the base vectors learned
by the batch NMF algorithm.

4.3 Essex Face94 Dataset

The Essex face dataset [4] contains images of 152 individuals at 20 different
postures with a size of 180 by 200 pixels. For our experiments we have only used
a part of the dataset comprising 780 face images including 19 female and 20 male
individuals at 20 different postures (see Fig.[d]). For the test on the face dataset
the same error threshold was chosen as for the bar data.

The effect of adding a base vector at the 260th image is shown as an example
in Fig. Here you can see a drastic improvement in the reconstruction quality
after adding a new base vector. The older base vectors Wy to Ws are already
very sparse and specialized for certain face regions. The new base vector first
points directly in the direction of the current image. After a few iterations, the
vector also gets less complex and sparser.

Fig.9. The part of the Essex face94 dataset we have used includes the 39 individuals
depicted here. For each individual 20 different postures are available.



968 S. Rebhan, W. Sharif, and J. Eggert

dit)  Rt)  Wolt) oo W.a(t)

before
adding
W,(t)

after
adding
W,(t)

Fig. 10. The reconstruction error before adding a base vector (top) is very high. After
adding the base vector w4 () (bottom), the reconstruction quality increases drastically.
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Fig.11. The error for the insufficient number of base vectors stays high (dashed),
whereas after adding a vector (solid) it drops to nearly zero

In Fig. [dlwe show the error function before and after adding the base vector.
Both curves show a similar development, but only with the additional vector a
sufficiently good reconstruction quality can be reached, whereas before, the error
could not fall below a certain value.

Figure depicts the final six base vectors and six randomly selected data
samples d with their corresponding reconstruction R. It strikes that the vec-

Fig. 12. Here you can see the final base vectors generated by the iNMF (top) and the
reconstruction (middle) of selected faces (bottom)
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tors represent ”parts” of a face. Furthermore, one can see that the information
about the input space is preserved to a large degree in the base vectors, as the
reconstructions show. In this case, the iNMF also finds the number of base vec-
tors by itself, starting with only one vector.

5 Discussion

In this paper we have shown that the incremental NMF is able to handle both
artificial and real-world data in a sequential manner. We exploit the fact that
the base vectors themselves already represent all previously shown data samples.
Starting from only one single base vector the iNMF decides autonomously if and
when an additional base vector is required to reconstruct the input space. The
presented algorithm overcomes the need to choose the number of base vectors a
priori. This eases the use of the iNMF, especially if the intrinsic dimensionality
of the dataset is not known, which is often the case for real-world data. Never-
theless the reconstruction quality of the iNMF is comparable to the NMF (see
Sect. [£.2)). Furthermore it is possible to perform both online computation and
long-term adaptation and at the same time reduce the memory and computa-
tional requirements. These reduced requirements make the processing of huge
real-world datasets possible in the first place. Since the proposed principle is
not tailored to the NMF only, we propose to investigate ways to transfer the
presented incremental schema to other factorization methods.
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