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Abstract

We present a biologically motivated architecture for object recognition that is based on a hierarchical feature-detection model in combination
with a memory architecture that implements short-term and long-term memory for objects. A particular focus is the functional realization of online
and incremental learning for the task of appearance-based object recognition of many complex-shaped objects. We propose some modifications
of learning vector quantization algorithms that are especially adapted to the task of incremental learning and capable of dealing with the stability-
plasticity dilemma of such learning algorithms. Our technical implementation of the neural architecture is capable of online learning of 50 objects
within less than three hours.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Learning and recognition of visual objects is a task so easy
for humans, that we rarely notice its importance in carrying out
everyday exercises. Especially the robustness and the capacity
for learning countless objects during the entire life makes the
human visual system superior to all currently existing technical
object recognition approaches. Another aspect of human
vision is the capability of quickly analyzing and remembering
completely unknown objects. This online learning ability is also
relevant for many cognitive robotics and computer vision tasks,
e.g. for incrementally increasing the knowledge of an assistive
robot (Steil & Wersing, 2006).

In this paper we propose a biologically motivated
recognition architecture that combines a hierarchical model of
the ventral pathway of the human visual system (Wersing &
Körner, 2003) with a memory model implementing interacting
short-term and long-term memory. The target of the model
is to obtain a flexible object representation that is capable
of high-performance appearance-based object recognition of
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complex objects together with a particularly rapid online
learning scheme.

Several recent studies (Palmeri & Gauthier, 2004; Tarr
& Bülthoff, 1998) presented strong biological evidence in
favor of view dependent and appearance-based representations
in the human brain, as opposed to a strongly structuralist
representation using three-dimensional primitives (Biederman,
1987). One of the main modeling approaches to explain the
robustness and invariance of appearance-based recognition
are hierarchical feature-detection models of the ventral visual
pathway. Fukushima (1980) introduced this type of model with
the Neocognitron, based on sequential stages of local template
matching and spatial pooling. The Neocognitron provided the
starting point for the development of several recent hierarchical
feature-extraction models (Körner, Gewaltig, Körner, Richter,
& Rodemann, 1999; Riesenhuber & Poggio, 1999; Rolls &
Milward, 2000; Wersing & Körner, 2003). Based on earlier
work, we use in this contribution the model of Wersing and
Körner (2003) to obtain a high-dimensional topographical
feature-map representation of the visual input that already
offers some invariance with regard to translation, rotation,
and scaling. On top of this feature representation we develop
a biologically motivated flexible object memory model that
consists of a rapidly learning short-term and a slower long-term
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memory system. The combination of both memory systems is
able to cover the strong appearance variation that is generated
from three-dimensional rotation of objects.

In psychology and neuroscience, the separation of memory
into the two systems of short-term (STM) and long-term
memory (LTM) is an established concept (Izquierdo, Medina,
Vianna, Izquierdo, & Barros, 1999). These two systems, being
optimized for different tasks, can be distinguished with regard
to the level of detail, the number of items that can be stored and
the time span the information can be memorized. The defining
property of STM is the ability to learn fast and immediately
recognize a once presented object stimulus, even if the object
was completely unknown before (O’Reilly & Norman, 2002).
In technical applications this capability is often called “one-
shot learning”. The storage capacity of the STM is limited to
a few objects and the information can be memorized only for
a relatively short period, in comparison to the LTM which can
represent many objects for long periods.

A large body of experimental evidence beginning from
classical work of Scoville and Milner (1957) shows, that the
medial temporal lobe is involved in the transfer of information
from STM to LTM, with first changes due to learning occurring
in the hippocampus (Wirth et al., 2003). However, the role of
the temporal lobe memory system is only temporary. After
successful storing of contents in the neocortex, the LTM
becomes gradually independent of the medial temporal lobe
structures (Squire & Zola-Morgan, 1991). Recently it has been
affirmed that the medial temporal lobe is important for both
spatial and recognition memory (Broadbent, Squire, & Clark,
2004).

The transfer from STM to LTM results in a reduction of
the representational effort and should be able to extract a
more generalized structure of the presented objects (O’Reilly
& Norman, 2002). The LTM is mainly located in the
neocortex (Miyashita & Hayashi, 2000) and has a much larger
storage capacity and storage duration compared to the STM.
This information transfer itself is not well understood until
now, but it is assumed that a consolidation process is used for
this transfer, which also continues during sleep (Maquet, 2001;
Buzsáki, 1996).

Our object memory model is motivated by the functional
differentiation in the two STM and LTM systems of human
brains. Our target is to perform supervised and online learning
of object views using the STM, which has the ability
to incrementally build up an object representation without
destroying already learned knowledge. This STM provides fast
learning, but also has a limited capacity. For the buildup of the
LTM we propose an incremental learning vector quantization
(iLVQ) method that realizes the transfer from the fast learning
STM into the slower learning LTM, which results in a more
integrated and condensed object representation. Furthermore
we define several extensions to learning vector quantization
(LVQ) networks (Kohonen, 1989) used for our LTM model that
are necessary for our target of an incrementally and life-long
learning system. We demonstrate the technical realization of the
proposed approach in an interactively trainable online learning
system that can robustly recognize several objects.
In the following Section 2 we discuss related work, including
several online learning and life-long learning approaches. After
a short introduction to the hierarchical feature processing,
we define our short-term and refined long-term memory
model, based on an incremental learning vector quantization
approach in Section 3. We demonstrate its effectiveness for an
implementation of real-time online object learning of 50 objects
in Section 4, and finish with a discussion in Section 5 and final
conclusions in Section 6.

2. Related work

We first define some common terms for our review of
related work. The term online learning is used in this paper
for the ability of fast learning and immediately recognizing
trained stimuli, which mainly applies to “one-shot learning”
methods like the adaptive resonance theory (ART) (Carpenter,
Grossberg, & Rosen, 1991). A special property of online
learning is the possibility of active learning with an interactive
correction of errors during the training process.

We define incremental learning as the ability of a
network architecture to allocate increasing numbers of neurons,
dependent on the complexity of the current task. Such network
architectures are normally initialized with a minimal number
of neurons and are able to add resources based on some node
insertion criteria using the training error.

An extension to incremental learning architectures are
neuronal networks approaching the life-long learning problem
and the so-called “stability-plasticity dilemma”. Dealing with
plasticity means that a learning method must always be
able to represent newly occurring data, which normally is
solved with some incremental learning architecture. On the
other hand it should prevent the destruction or forgetting of
already acquired knowledge and should maintain the stability
of the representation. The life-long learning problem is often
encountered in the form of a changing and non-stationary
training set, where only a portion of data is visible to the
learning method. In our setting of an object recognition task,
this can mean that only the most recent objects are visible to
the learning method, while the older ones that have disappeared
from the training set should still be conserved.

2.1. Online learning and man–machine interaction

Most research on trainable and model-free object recogni-
tion algorithms has so far focused on learning based on large
data sets of images recorded beforehand and then performing
offline training of the corresponding classifiers. Since in these
approaches learning speed is not a primary optimization goal,
typical offline training times last many hours. This is usually
caused by the natural high dimensionality of visual sensorial in-
put, which poses a challenge to most current learning methods.
Another problem is that most powerful classifier architectures
such as multi-layer perceptrons or support vector machines do
not allow online training with the same performance as for of-
fline batch training.

To reduce the dimensionality of the problem, the complexity
of the sensorial input has been reduced to simple blob-like
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stimuli (Jebara & Pentland, 1999), for which only positions are
tracked. Based on the positions, interactive and online learning
of behavior patterns in response to these blob stimuli can be
performed. A slightly more complex representation was used
by Garcia, Oliveira, Grupen, Wheeler, and Fagg (2000), who
have applied the coupling of an attention system using features
like color, motion, and disparity with a fast learning of visual
structure for simple colored geometrical shapes like balls,
pyramids, and cubes. They represent shape as low-resolution
feature maps computed based on convolutions with Gaussian
partial derivatives. Using shape and color map representations
the system can learn to direct attention to particular objects.

Histogram-based methods are another common approach
to tackle the problem of high dimensionality of visual object
representations. Steels and Kaplan (2001) have studied the
dynamics of learning shared object concepts based on color
histograms in an interaction scenario with a dog robot. The
object representation allows online learning using the limited
computational resources of the pet robot, but lacks a stronger
concept of shape discrimination. Another model of word
acquisition, that is based on multi-dimensional receptive-field
histograms (Schiele & Crowley, 2000) for shape and color
representation was proposed by Roy and Pentland (2002). The
learning proceeds online by using a short-term memory for
identifying the reoccurring pairs of acoustic and visual sensory
data, that are then passed to a long-term representation of
extracted audiovisual objects.

Arsenio (2004) has investigated a developmental learning
approach for humanoid robots based on an interactive object
segmentation model that can use both external movements
of objects by a human and internally generated movements
of objects by a robot manipulator. Using a combination of
tracking and segmentation algorithms the system is capable of
online learning of objects by storing them using a geometric
hashing (Rigoutsos & Wolfson, 1997) representation. Based
on a similarity threshold, objects are separated into different
classes using color and pairwise edge histograms. The
discriminatory power, however, seems to be limited to a small
number of objects and still strongly depends on color. What
is more important is the integration of the online object
learning into a model for tracking objects and learning task
sequences and to recognize objects employed on such tasks
from human–robot interaction.

An interesting approach to supervised online learning for
object recognition was proposed by Bekel, Bax, Heidemann,
and Ritter (2004). Their classification architecture consists of
three major stages. The two feature-extraction stages are based
on vector quantization and a local principal component analysis
(PCA) measurement. The final stage is a supervised classifier
using a local linear map architecture. The image acquisition
of new object views is triggered by pointing gestures on a
table, and is followed by a short training phase, which takes
some minutes. The main drawback is the lack of an incremental
learning mechanism to avoid the complete retraining of the
architecture.

Online learning has also been investigated for robotics
in domains of behavior and movement control. In this field
the dimensionality of the representation space can be still
quite large for robotic systems with many degrees of freedom
although it does not reach the full complexity of visual
input. For a full review, which is beyond the scope of this
manuscript, see (Steil et al., 2006). As an important example
that particularly focuses on incremental online learning we
would like to mention Vijayakumar, D’Souza, and Schaal
(2005), who propose a locally weighted projection regression
(LWPR) algorithm, which is especially used for learning robot
movements. The advantage of this method is the possibility
to train complex robot movements online with only a few
trials. The basic idea of the LWPR algorithm is to reduce the
high number of possible input dimensions (up to 90 joints)
to the essential ones necessary for the particular movement.
The proposed method works well, if such a low-dimensional
distribution in the input space exists.

2.2. Network architectures for incremental and life-long
learning

One established neuronal network architecture that is able
to learn online with the same performance as for offline
training is the adaptive resonance theory (ART) and especially
Fuzzy ARTMAP (Carpenter, Grossberg, Markuzon, Reynolds,
& Rosen, 1992). The relation of this network architecture to
our short-term memory model will be discussed later (see
Section 3.2) in more detail. In recent years the ART network
family was applied to several problems including recognition of
handwritten digits (Carpenter, Grossberg, & Iizuka, 1992) and
a sensorimotor anticipation architecture for robot navigation
(Heinze, Gross, & Surmeli, 2001). An overview of several
other ART-based applications can be found in (Carpenter &
Grossberg, 1998).

Incremental radial basis function (RBF) networks (Fritzke,
1994a) and the growing neuronal gas (GNG) model (Fritzke,
1995) were suggested with a focus on incremental learning.
Although it is possible to train these networks with a
slowly changing training set, these architectures are mainly
designed for offline training. Typically these networks cannot
be trained on a limited training set without significantly losing
generalization performance, because of a permanent increase
in the number of neurons and the drift of nodes to capture the
current training data (Hamker, 2001).

Furao and Hasegawa (2006) propose several improvements
to the unsupervised version of the GNG and especially target
the life-long learning of non-stationary data for problems
like the clustering of faces or topology learning of images.
They use a two-layered network, where the first layer is
used to generate a topology structure of the input data
and the second layer is used to determine the number of
clusters. Furthermore they propose several utility estimation
measurements for evaluating the insertion of nodes or to
decide which nodes can be removed. Additionally they use
an individual learning rate for each node, which improves
the life-long learning capability strongly. A related approach
was proposed by Hamker (2001), who introduced a neuronal
network architecture for supervised learning, called life-long
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Fig. 1. The visual hierarchical network structure with feature processing, STM and LTM. Based on a color image input Ii , shape and color processing is separated
in the feature hierarchy and fused in the view-based object representation. The S1 layer performs a coarse local orientation estimation using Gabor filters, a winner-
take-most mechanism and a final threshold function. The S1 features are pooled down to a quarter in each direction in layer C1. Neurons in the S2 layer are sensitive
to local combinations of the features of the C1 layer. The C2 layer again reduces the resolution by a half in each direction. When the color pathway is used, three
down-sampled maps of the individual RGB channels are added to the C2 feature maps, with the same resolution as one shape feature map. The short-term memory
consists of template vectors rl that are computed as the output xi (Ii ) of the hierarchy and added based on sufficient Euclidean distance in the C2 feature space to
previously stored representatives of the same object. The refined long-term memory representatives wk are learned from the labeled short-term memory nodes rl

using an incremental vector quantization approach.
learning cell structures (LLCS). The LLCS networks are based
on the growing cell structures (Fritzke, 1994b) and provide
several extensions, like the calculation of an individual node
learning rate, the definition of an insertion rule and the use
of several measurements to detect useless nodes. The LLCS
networks are also able to detect regions in low-dimensional
data where points of different classes overlap. This avoids an
unlimited insertion of neurons in those areas.

3. Hierarchical online learning model

Our incremental learning model consists of three major
processing stages: First the input image is processed using a
hierarchical and topographically ordered model of the ventral
visual pathway for spatial feature extraction. The extracted
feature maps of object views are then stored in a template-based
short-term memory that allows online learning and immediate
recognition. Finally the short-term memory representatives are
accumulated into a condensed long-term memory using an
incremental LVQ method. In the following section we describe
these three processing stages in more detail.

3.1. Feed-forward feature-extracting hierarchy

Our hierarchical architecture (see Wersing and Körner
(2003) for details) is based on a feed-forward architecture
with weight-sharing and a succession of feature sensitive and
pooling stages which is related to the Neocognitron proposed
by Fukushima (1980). Fig. 1 shows an overview of this
feature-extracting architecture and the object memory concepts
composed of a STM and LTM model.

Starting point for the feature-extracting process are RGB
color images Ii = (IR

i , IG
i , IB

i ). The shape pathway is based on
a gray-value intensity image I′

i , obtained from the color image
by weighted addition of the RGB channels:

I′

i =
1
3

IR
i +

1
3

IG
i +

1
3

IB
i . (1)

The first feature-matching layer S1 is composed of four
orientation sensitive Gabor filters wl

1(x, y) which perform a
local orientation estimation. To compute the response gl

1(x, y)

of a simple cell of this layer, responsive to feature type l at
position (x, y) first the image vector I′

i is convolved with a
Gabor filter wl

1(x, y):

gl
1(x, y) = |wl

1(x, y) ∗ I′

i |. (2)

Additionally a winners-take-most (WTM) mechanism between
features at the same position is performed:

hl
1(x, y) =


0 if

gl
1(x, y)

M
< γ1 or M = 0,

gl
1(x, y) − Mγ1

1 − γ1
else,

(3)

where M = maxk gk
1(x, y) and hl

1(x, y) is the response after
the WTM mechanism which suppresses submaximal responses.
The parameter 0 < γ1 < 1 controls the strength of the
competition. The activity is then passed through a simple
threshold function with a common threshold θ1 for all cells in
layer S1:

sl
1(x, y) = H

(
hl

1(x, y) − θ1

)
, (4)

where H(x) = 1 if x ≥ 0 and H(x) = 0 else and sl
1(x, y) is

the final activity of the neuron sensitive to feature l at position
(x, y) in the S1 layer.

The C1 layer subsamples the S1 features by pooling down to
a quarter in each direction (e.g. 64 × 64 S1 features are pooled
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down to 16 × 16 C1 features):

cl
1(x, y) = tanh

(
p1(x, y) ∗ sl

1

)
, (5)

where p1(x, y) is a normalized Gaussian pooling kernel with
width σ1, identical for all features l, and tanh is the hyperbolic
tangent function.

The S2 layer is sensitive to local combinations of the
orientation estimation features extracted from layer C1. The
so-called combination features of this S2 layer (for this
experiments 50 different shape features l are used) are trained
with sparse coding (see Wersing and Körner (2003) for details).
The response gl

2(x, y) of one S2 cell is calculated in the
following way:

gl
2(x, y) =

∑
k

wlk
2 (x, y) ∗ ck

1, (6)

where wlk
2 (x, y) is the receptive-field vector of the S2 cell of

feature l at position (x, y), describing connections to the plane
k of the previous C1 cells. Similar to the S1 layer a WTM
mechanism (see Eq. (3)) and a final threshold function (see Eq.
(4)) are performed in this S2 layer.

The following C2 layer again performs a spatial integration
and reduces the resolution by half in each direction (i.e. 16×16
S2 features are down-sampled to 8×8 C2 features). The pooling
is done with the same mechanism as in layer C1 (see Eq. (5)).
When the color pathway is used, three additional down-sampled
RGB maps are added to the shape feature channels. The 8 × 8
pixel resolution of each color channel is identical to one of
the 50 shape features. Although an antagonistic (red–green,
blue–yellow) color space is more biologically plausible, we
assume that the performance difference to the RGB color space
is only minor. This is due to the fact that color is only coarsely
represented in our model and that the transformation between
both color spaces is only linear, which should have only little
influence on the Euclidean distance calculation which provides
the basis for our STM and LTM model. Finally we denote the
C2 output of the hierarchy for a given input image Ii as xi (Ii ).

The output of the feature representation of the complex
feature layer (C2) can be used for robust object recognition
that is competitive with other state-of-the-art models (Wersing
& Körner, 2003). The main property of C2 activations is their
very high dimensionality combined with sparsity. Normally
only about one-third of all C2 features are active for a given
input stimulus, but this sparsity allows an efficient handling
of the high-dimensional vectors (the actual dimensionality is
8 × 8 × (50 + 3) = 3392). Another property of the data
used in our scenario is related to the rotation of objects around
three axes freely by hand. This free rotation of objects causes
strong appearance variation of a single object class and also
causes strong fluctuations in the extracted C2 feature vectors.
In contrast to these strong intra-class variations of objects,
feature vectors of different objects can be located relatively
close together in this high-dimensional space, because similar
object poses of related objects (e.g. different cups) can result in
distinguishable but quite similar feature vectors.
In the following C2 activation maps are used to build up
a template-based short-term memory which selects relevant
representatives rl and therefore reduces the training time of the
long-term memory which is afterwards trained on the selected
representatives.

3.2. Online vector quantization as short-term memory

The online vector quantization model provides fast
appearance-based learning of three-dimensional objects, which
can immediately be recognized. The proposed model stores
template-based representatives rl in a so-called short-term
memory. The number of representatives rl for a specific object
is related to the complexity of the object and not specified
beforehand. The learning process is based on the similarity to
already stored representatives rl of the same object. Therefore
this online vector quantization model reduces the number of
representatives rl in contrast to a naive approach where every
view xi (Ii ) is stored in memory. Especially already seen views
or very similar views are not collected into the short-term
memory.

The labeled object views are stored in a set of M
representatives rl , l = 1, . . . , M , that are incrementally
collected, and labeled with class Ql . We define Rq as
the set of representatives rl that belong to object q. The
acquisition of templates is based on a similarity threshold ST .
New views of an object are only collected into the short-
term memory (STM) representation if their similarity to the
previously stored views is less than ST . The parameter ST is
critical, characterizing the compromise between representation
resolution and computation time needed for one training or
validation step. We denote the similarity of view xi and
representative rl by Ail and compute it based on the previous
calculated C2 feature map in the following way:

Ail = exp
(

−
‖xi

− rl
‖

2

σ

)
. (7)

Here, σ is chosen for convenience such that the average
similarity in a generic recognition setup is approximately equal
to 0.5. We use the exponential function just to obtain an intuitive
notion of similarity, any other monotonous transformation of
the Euclidean distance would also be possible.

For one learning step the similarity Ail between the current
training vector xi , labeled as object q and all representatives
rl

∈ Rq of the same object q is calculated and the maximum
value is computed as:

Amax
i = max

l∈Rq
Ail . (8)

The training vector xi with its class label is added to the
object representation, if Amax

i < ST . If M representatives were
presented before, then choose rM+1

= xi and QM+1
= q.

Otherwise we assume that the vector xi is already sufficiently
well represented by one rl , and do not add it to the
representation. We call this basic template-based representation
online vector quantization (oVQ). Due to the non-destructive
incremental learning process, online learning and recognition
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can be done at the same time, without a separation into training
and testing phases. To model a limited STM capacity, in the
simulations an upper limit can be set on the number of objects
that can be represented. This means that, when too many objects
are presented, representatives belonging to the oldest learned
object are removed from the STM.

For the online recognition of a new and unclassified test
view I j we first process the object view through the feature-
extracting hierarchy. The C2 output of this hierarchy x j (I j )

is then used for a nearest neighbor search to the set of all
representatives stored in the short-term memory. The nearest
neighbor search selects the best matching node rlmax , where lmax
satisfies:

lmax = arg max
l

(A jl). (9)

The class label Qlmax of the winning representative rlmax is then
assigned to the current unclassified test view x j .

The oVQ algorithm can handle the used high-dimensional
C2 data (see Section 3.1 for details) in an efficient way. It is
especially suited for the sparse C2 feature vectors, which allows
us to store ten thousands of representatives, while keeping
the ability to train and validate new occurring feature vectors
online. The similarity threshold ST , the only critical parameter
in our STM model, controls the tradeoff between a more
detailed and exhaustive object view sampling and the amount
of representatives in the STM.

Based on the description of our oVQ algorithm the relation
to Fuzzy ARTMAP (Carpenter et al., 1992) and Fuzzy
ART (Carpenter et al., 1991) will be discussed in the following.
Both architectures have the common feature that they can
immediately recognize a specific object view after a single
occurrence (“one-shot learning”), which makes them suitable
for online learning. It is also possible to incrementally add new
objects without destroying already learned capabilities and the
learning process in both algorithms is based on a similarity
condition called vigilance ρ for ART networks.

Due to the special properties of the C2 feature vectors in
our object recognition scenario the more complex Fuzzy ART
network family is not suitable for storing a large amount of
freely rotated objects. One major drawback of Fuzzy ART
is related to the sparsity of feature vectors, which essentially
requires complement coding to avoid that too many adaptive
weights become zero. A large amount of zero weights is an
unattractive condition for Fuzzy ART networks that should be
prevented (Carpenter et al., 1992), because in such a case the
“choice function” used for calculating the winner node always
results in nearly perfect matches, which results in choosing
a winner node independent of the input. Additionally the
already very high-dimensional feature vectors are doubled in
size by this coding schema. Based on the complement coding
and the vigilance parameter ρ, input vectors are assigned to
hypercubes around the representative vectors with the size
inversely proportional to ρ. This vigilance parameter ρ is,
similar to the ST in our model, a critical parameter and ρ

should also be chosen as small as possible, to avoid the
allocation of an enormous amount of resources. On the contrary,
small vigilance parameters (ρ < 0.9) cause other problems,
because it allows the creation of large hypercubes during the
learning process. This leads to the undesired convergence of
many adaptive weights to zero as the consequence of strong
intra-class variations of the sparse feature vectors described in
Section 3.1. These strong intra-class variations together with
relatively closely located vectors of related objects in similar
poses will most probably result in many partially overlapping
hypercubes. If such hypercubes are belonging to different
classes and validation vectors are located in these areas, then the
generalization ability of the network will be reduced, because
the “choice function” results in the same optimal value for
all nodes involved in this overlapping and the selection of the
winner is dependent on the search order.

3.3. Incremental LVQ as long-term memory

Our STM model provides fast learning and achieves good
recognition performance, as we will demonstrate in the results
section. Nevertheless the large amount of memory for storing
the high-dimensional C2 feature vectors of all objects is
the main disadvantage and is also biologically not plausible.
Therefore we propose a transfer from the STM into the
LTM, inspired by the transfer from medial temporal lobe into
the neocortex in biological vision. To build up such a LTM
model we use an incremental LVQ algorithm (iLVQ). This
network architecture described in the following section should
strongly reduce the representational effort of objects without
reducing the generalization performance of the recognition
system. Additionally the LTM model is approaching the life-
long learning problem, which allows learning of objects during
the complete history of the iLVQ network.

The labeled STM representatives rl in the C2 feature
space provide the input ensemble for our proposed long-term
memory (LTM) representation, which is optimized and built
up incrementally. The main reason for training the long-term
memory based on the collected STM representatives rl is
that the STM already rejects very similar object views and
reduces the number of training views for the long-term memory.
This reduction causes an advanced training time in contrast
to the case where every input view is used. Additionally we
assume a limited STM capacity with only the most recently
shown objects being represented. Therefore an algorithm is
needed that is able to incrementally add new objects or even
refine object representations without destroying already learned
object representations, thereby taking into account the stability-
plasticity dilemma.

The learning vector quantization (LVQ) networks proposed
by Kohonen (1989) are a well-known neuronal network
architecture for supervised learning. The single-layered LVQ
networks are typically trained with a fixed number of nodes;
therefore the number of nodes for each class must be selected
before the training phase starts. It is quite difficult to accurately
determine the necessary number of nodes for a particular class.
If the number of nodes is too large convergence is slow,
whereas a too low number only provides a poor generalization
performance of the network. Additionally the number of
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necessary nodes is also related to the complexity of a particular
class itself. To take care of this fact a lot of a priori knowledge
must be available to select an appropriate number of LVQ
nodes. To avoid this problem we use an incremental approach
for the LTM model, which is able to automatically determine
the necessary number of nodes, based on the complexity of the
object and the difficulty of the learning task. We also extend
the basic LVQ networks with respect to the stability-plasticity
dilemma of life-long learning. All extensions of the basic LVQ
network architecture will be described in the following.

For the training of our incremental LVQ (iLVQ) network, a
stream of randomly selected input STM training vectors rl is
presented and classified using the labeled iLVQ representatives
in a Euclidean metric. The training classification errors
are collected, and each time a given sufficient number of
classification errors has occurred, a set of new iLVQ nodes
will be inserted. The addition rule is designed to promote
insertion of nodes at the class boundaries. During training,
iLVQ nodes are adapted with standard LVQ weight learning
that move nodes into the direction of the correct class and
away from wrong classes. An important change to the standard
LVQ method is an adaptive modification of the individual node
learning rates to deal with the stability-plasticity dilemma of
incremental learning. The learning rate of winning nodes is
more and more reduced to avoid too strong interference of
newly learned representatives rl with older parts of the object
long-term memory.

We denote the set of iLVQ representative vectors at time step
t by wk(t), k = 1, . . . , K , where K is the current number of
nodes. Ck denotes the corresponding class label of the iLVQ
center wk . The training of the iLVQ nodes is based on the
current set of STM nodes rl with class Ql that serve as input
vectors for the LTM. Each iLVQ node wk obtains an individual
learning rate:

Θk(t) = Θ(0) exp
(

−
ak(t)

d

)
(10)

at step t , where Θ(0) is an initial value, d is a fixed scaling
factor, and ak(t) is an iteration-dependent age factor. The age
factor ak is incremented every time when the corresponding wk

becomes the winning node.
New iLVQ nodes are inserted, if a given number Gmax of

training vectors are misclassified during iterative presentation
of the rl . We choose a value of Gmax = 30, since a high
Gmax value guarantees an optimal representation of objects
with a minimal number of LVQ nodes, but also slows down the
convergence speed of this learning algorithm. Within this error
history, misclassifications are memorized with input rl and the
corresponding winning iLVQ node wkmax(rl). We denote Sp as
the set of previously misclassified rl within this error history
that were of original class p = Ql . For each non-empty Sp a
new node wm is added to the representation, independent of
the number of entries in Sp. This insertion technique limits
the insertion of nodes, if many views of a particular class are
wrongly classified. The iLVQ insertion rule is illustrated in
Fig. 2. New neurons are initialized to the element of rl

∈ Sp
that has the minimal distance to its corresponding but wrong
Fig. 2. Illustration of iLVQ node insertion rule. Wrongly classified training
views rl of class p are collected into Sp , which contains all wrongly classified
views of the given class p. These views rl

∈ Sp are shown with small circles,
whereas the iLVQ nodes are shown as large filled circles. Additionally the
distance of the rl to their corresponding but wrong winning iLVQ node is
shown (dashed lines). The insertion rule determines the wrongly classified rl

with minimal distance to the iLVQ node wkmax (rl ). This training view (the
small filled circle) is then used for initializing a new iLVQ node with class
label Cm

= p = Ql of the training view.

winning iLVQ node wkmax(rl) and the class of the iLVQ node
is given as Cm

= Ql . This rule adds new nodes primarily
near to class borders, where typically the most classification
errors occur. This node insertion rule can be related to boundary
classifiers like support vector machines (see Burges (1998)
for an introduction to SVM), where so-called support vectors
at the classification border are selected to form the decision
boundary. In contrast to this the iLVQ algorithm forms Voronoi
clusters, where the cluster centers can be quite far apart from
the classification border.

A test view x j (I j ) is classified by determining the winning
iLVQ node wkmax with smallest distance to the current C2
feature vector x j and assigning the corresponding label Ckmax

as the output class.
The formal definition of the iLVQ learning algorithm will be

described in the following:

(1) Choose randomly a representative rl from the set of current
STM nodes. Calculate the Euclidean distance between the
rl and all iLVQ nodes wk and select the winning node with
minimal distance to the rl :

kmax = arg max
k

(−‖rl
− wk

‖). (11)

After this selection process the winning node wkmax is
adapted using the common LVQ learning rule:

wkmax(t + 1) = wkmax(t) + κΘkmax(t)(r
l
− wkmax(t)), (12)

where κ = 1 if the class label Ql of the representative
rl and the class label Ckmax of the winning node wkmax

are identical, otherwise κ = −1 and the winning node
will be shifted into the opposite direction as the input
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representative rl . The learning rate for the winning node
wkmax at time step t is calculated according to Eq. (10).

(2) After the adaptation of the winning node wkmax the age
factor akmax of this node will be incremented:

akmax(t + 1) = akmax(t) + 1. (13)

This increment of akmax results in a slightly smaller learning
rate if the wkmax iLVQ node becomes in a further training
step again the winning node.

(3) If the current representative rl was misclassified (Ckmax 6=

Ql ), then G will be increased (G(t + 1) = G(t)+ 1) and rl

will be added to the current set of misclassified views SQl

of object Ql .
(4) Every training step it will be checked if G = Gmax, if

so we insert for each Sp 6= ∅ a new iLVQ node. If more
than one representative rl of class p = Ql was wrongly
classified, it must be decided which rl is used to initialize
the new iLVQ node. For the initialization of the new iLVQ
node of class Cm

= p we determine the index of the iLVQ
representative lmin with minimal distance to the wrongly
classified elements in Sp according to:

lmin = arg min
l|rl∈Sp

‖rl
− wkmax(rl)‖, (14)

where wkmax(rl) is the winning iLVQ node for view rl .
Insert a new iLVQ node with wK+1

= rlmin . Reset G = 0
and Sp = ∅ for all p.

(5) Start a new training step (goto step 1) until sufficient
convergence is reached.

Our proposed LTM model defines several extensions to the
LVQ network architecture, which are necessary to fulfill the
given incremental and life-long learning object recognition
task. Especially the definition of an individual node learning
rate or the definition of a node insertion rule are methods
also used by Hamker (2001) and Furao and Hasegawa (2006).
They propose node insertion based on accumulated errors of
each individual node, whereas we only observe the wrong
classification itself. If some classification errors occur, nodes
are inserted for every wrongly classified object class. Also
the initialization of the new nodes differs, we add nodes near
class borders but based on a wrongly classified training vector,
whereas Hamker and Furao & Hasegawa insert a new node
in the neighborhood of an already existing node, for which
activation does not occur necessarily. On the contrary, this
slows down the learning algorithm, because such a node may
not contribute to the representation. Based on the proposed
node deletion criteria of both authors the detection of such
useless nodes requires several training steps.

4. Experimental results

In the following we describe experiments on using the
coupled STM and LTM architecture in a recognition scenario
for freely rotated objects. We describe the resulting image
ensemble which is shown in Fig. 4 and specify how we do the
preprocessing for segmenting the objects.
Fig. 3. Experimental setup. Objects are rotated freely by hand in front of a
camera. Additionally we use a black glove and show the objects in front of a
black table to simplify the foreground–background separation, which is not the
focus of this contribution. Using our short-term memory model the recognition
system can be trained online to recognize 50 different objects.

4.1. Experimental setup

For our experiments we use a setup, where we show
objects, held in hand and freely rotate them around three
axes (see Fig. 3). To ease figure-ground segmentation we
use a black glove and rotate the objects in front of a black
background. The color images are taken with a camera and are
segmented with a simple local entropy-thresholding (Kalinke
& von Seelen, 1996) method. Recently, a larger integrated
system was developed that could relax the strong constraints
on the background using more advanced segmentation methods
(Wersing et al., 2006).

After the segmentation of the object view we normalize
it in size (64 × 64 pixels). For collecting the database we
rotated every object freely by hand for some minutes, such
that 750 input images Ii for each object are collected. Another
independently taken set of 750 images for each of the objects is
recorded as validation database. Fig. 4(a) shows all 50 different
objects of our HRI50 database. The difficulty of this database
results from the high-appearance variation of objects during
rotation around three axes. The database also contains a lot of
objects which are similar in shape or color, e.g. the different
cups, boxes or cans. Some rotation examples for different
objects are shown in Fig. 4(b). Additionally some segmentation
errors and minor occlusion effects are shown in Fig. 4(c) and
Fig. 4(d).

4.2. Online vector quantization as short-term memory

In the first experiment we investigate the time necessary
for training the template-based oVQ short-term memory with
up to 50 objects, and evaluate the recognition performance.
The training speed is limited by the frame rate of the used
camera (12.5 Hz) and the computation time needed for the
entropy segmentation, the extraction of the corresponding
sparse C2 feature vector xi with 3200 shape dimensions and
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Fig. 4. Example object images of the HRI50 database. (a) 50 freely rotated objects, taken in front of a dark background and using a black glove for holding. (b)
Some rotation examples. (c) A few examples for incomplete segmentation. (d) Examples for minor occlusion effects. The main difficulties of this training ensemble
are the high-appearance variation of objects during rotation around three axes, and shape similarity among cans, cups and boxes, combined with segmentation errors
(c), and slight occlusions (d).
Fig. 5. Classification rate of two selected objects dependent on the training time
for learning the 10th and 50th object, and same learning curves averaged over
20 object selections. While training proceeds, at each point the classification
rate is measured on all 750 available test views of the current object. Good
recognition performance can be achieved within two minutes, also for the 50th
object.

192 color dimensions, and the calculation of similarities Ail

(see Section 3). The similarity threshold was set to ST =

0.85 for this experiment, and there was no limit imposed on
the number of STM representatives. Altogether we achieve an
average frame rate of 7 Hz on a 3 GHz Xeon processor. Fig. 5
shows how long it takes until a newly added object can be
robustly separated from all other objects. For the shown curves
of a cup and a can from our database we trained 9 or 49 objects
and incrementally added the cup or can as an additional object.
At the given points the correct classification rate of the current
object is computed using the 750 views from the disjoint test
ensemble. Additionally we show the learning curves, averaged
over 20 randomly chosen object selections. On an average,
training of one object can be done in less than 2 min, with rapid
convergence.

To evaluate the quality of the feature representation
obtained from the visual hierarchy, we performed a systematic
comparison of the use of three different types of feature vectors.
The first kind of feature vectors contains only shape information
of the objects and has 8×8×50 dimensions (8×8 activations for
each of the 50 extracted shape feature maps). The second type
of vectors with a dimension of 8 × 8 × (50 + 3) C2 features
contains shape and additional coarse color information. Finally
we used plain 64×64×3 pixel RGB images as input vectors xi
for the oVQ model. Due to the high dimensionality and lack of
sparsity we can only represent up to 17.000 representatives in
this case. This plain image setting also captures the baseline
similarity of this ensemble, and can serve as a reference
point, since there are currently no other established standard
methods for online learning available. Additionally we varied
the similarity threshold ST to investigate the tradeoff between
representation accuracy and classification errors. The results are
shown in Fig. 6. Each symbol of the STM graphs in Fig. 6
corresponds to a particular threshold ST . For a given ST we let
our short-term memory model decide, which training vectors
are necessary and calculate the classification rate based on the
selected representatives. For a fair comparison, error rates for
roughly equal numbers of chosen representatives should be
compared. Using the hierarchical shape features reduces the
error rates considerably, compared to the plain color images,
especially for small number of representatives. The addition of
the three coarse RGB feature maps additionally reduces error
rates by about one-third. For a complete training of all 50
objects with a real camera, accomplished within about three
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Table 1
Comparison of results achieved with the iLVQ, SLP, and SNOW approach using the COIL-100 database

Shape Shape and coarse color
All STM lim. STM All STM lim. STM

iLVQ 98.6% 97.9% 96.0% 99.5% 99.3% 98.4%
SLP 99.9% 99.5% 28.0% 99.9% 99.8% 27.6%
SNOW 96.5% 94.2% 59.2% 97.6% 96.7% 50.0%

Classification rates of all three approaches are shown based on C2 shape features and the combination of shape and coarse color features. Additionally we compare
the results using all available training data, the use of the proposed with STM ST = 0.9 and a limited STM.
Fig. 6. Comparison of classification rates of the STM and LTM model for
the HRI50 database. Classification rates of the STM model are calculated
for different similarity thresholds ST and different types of C2 feature maps,
whereas the LTM model was trained with limited or unlimited STM using
shape and coarse color information. It can be seen that the use of the visual
hierarchy shape features reduces the error rate, compared to the plain color
images. The additional use of coarse color features again reduces the error rates
of the STM model considerably. For the LTM model tests a similarity threshold
of ST = 0.85 was used for training the STM model, where its representatives
rl serve as input for the LTM. It can be seen that the LTM model reduces
the required resources from about 27 000 STM representatives to less than
3800, with a slightly reduced classification performance. Further it should be
mentioned that the iLVQ reaches nearly the same classification performance for
the limited STM compared to the unlimited case.

hours, the remaining classification error is about 6% using color
and shape features and 8% using only shape information.

4.3. Incremental LVQ as long-term memory

The performance of the proposed iLVQ long-term memory
model is shown in Fig. 6 in relation to the results obtained
from the STM model. We compare the effect of using only
a limited STM memory history for the transfer into the LTM
representation, compared to the usage of unlimited STM. For
the experiments with the iLVQ networks we used a similarity
threshold ST = 0.85 for the STM model and applied this
threshold to the STM training with shape features and also
combined shape and coarse color features. This threshold was
chosen as a compromise between the resulting generalization
performance for both feature representations and the number of
selected STM representatives.
With our LTM model we are able to strongly reduce the
necessary number of representatives from about 27 000 STM
representatives to less than 3800 LTM iLVQ nodes using shape
and color features. However this is achieved at the price of a
slightly reduced performance of 91.1% correct classification,
compared to the performances of the STM representatives
which reaches a classification performance of 94.2% at the
given value of ST . If we compare the STM setting, where
the classification rate matches approximately 91%, which
corresponds to a lower similarity threshold of ST = 0.7, the
number of representatives is still three times larger than for the
LTM, as can be seen from Fig. 6.

For a better comparison of our LTM model to other state-
of-the-art approaches, experiments with the well-known COIL-
100 database (Nayar, Nene, & Murase, 1996) are performed.
This database consists of 100 different objects rotated around
one axis, where the 72 different views for each object are taken
at pose intervals of 5◦. For our experiments we resized the
original images to 64 × 64 pixels to allow a better comparison
to our own HRI50 database. For all experiments with the COIL-
100 database, 36 object views (10◦ apart) are used for training
and the remaining views for testing.

Additionally we compared our architecture to a one-layered
sigmoidal network and the SNOW (Roth, Yang, & Ahuja,
2002) approach. The sigmoidal network consists of an input
and output layer, without hidden layers. For every object
we used one output node, whereas each node has a linear
scalar product activation and a sigmoidal transfer function.
The SNOW approach is especially designed for a sparse
feature representation as used in our experiments. It is also
better suited for incremental and life-long learning due to its
conservative learning schema. The SNOW model is based on a
multiplicative Winnow update rule (Littlestone, 1988), which is
applied to wrongly classified training vectors only. Furthermore
exclusively the weights of currently activated input dimensions
are modified at a training step which theoretically provides
more life-long learning stability than sigmoidal networks where
typically all weights are updated at each learning step. For
SNOW we used the same network size as for the sigmoidal
networks, i.e. one output node for each object.

For the comparison of the iLVQ, SLP and SNOW approach
we performed a systematic analysis using all available training
data of the used image ensemble, compared to the use of the
proposed STM model and a limited STM, where only the recent
10 objects are available for training. Furthermore we compare
the results achieved with two different feature ensembles based
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Table 2
Comparison of results achieved with the iLVQ, SLP, and SNOW approach using the HRI50 database

Shape Shape and coarse color
All STM lim. STM All STM lim. STM

iLVQ 88.5% 86.9% 85.8% 91.6% 91.1% 90.2%
SLP 84.1% 80.7% 21.9% 91.2% 91.1% 21.7%
SNOW 52.8% 51.9% 20.3% 55.6% 54.2% 20.7%

Classification rates of all three approaches are shown based on C2 shape features and the combination of shape and coarse color features. Additionally we compare
the results using all available training data, the use of the proposed STM with ST = 0.85 and a limited STM.
on the C2 shape features and the use of additional coarse color
features. The results of this comparison are shown in Table 1 for
the COIL-100 database and Table 2 for the HRI50 database.

For the COIL-100 database (see Table 1) it can be seen
that the single layer perceptron achieves better classification
results as our proposed iLVQ method for the cases where no
limit on the training data was imposed. The SNOW network is
slightly worse than iLVQ and SLP, but the classification rate
is still comparable to other state-of-the-art approaches applied
to this database. It should be noted that the performance we
achieved with our C2 shape features representation is superior
to the results published by Roth et al. (2002) (one-against-all:
90.52%), which highlights the quality of the hierarchical feature
representation. For all three models, the introduction of the
STM model with approximately 30% reduction of training data
causes only minor increase in errors. For the experiments using
only a limited STM of 10 objects, it can be seen that only the
iLVQ method can handle this with almost no performance loss.
Although the performance decrease of the SNOW approach
is distinctly less than for SLP, both methods quickly fail
to distinguish objects from earlier training phases, resulting
in low-recognition rates. This is the well-known catastrophic
forgetting effect (Hamker, 2001).

The results obtained with the HRI50 database are shown
in Table 2. In comparison to the COIL-100 results the iLVQ
method achieves better results on this more difficult database
than the SLP approach, which is most distinct for the use of
shape features only. This better performance is mainly caused
by the incremental learning of the iLVQ approach allowing
an adaptation to the difficulty of the classification task, while
the SLP approach does not allow incremental learning. It
can also be seen that the SNOW approach cannot capture
the higher-appearance variation of the HRI50 database, which
results in poor classification performance. For the training
with the limited STM the iLVQ also achieves good results
on the HRI50 database. In contrast to the COIL-100 database
the SNOW approach is also worse than SLP for the limited
STM experiments, which is mainly due to the overall poor
performance of SNOW on the HRI50 database.

5. Discussion

We have proposed a biologically motivated approach for
the learning of visual object representations. It is based on a
hierarchical feature-extraction model serving as the input for
a coupled short-term and long-term memory. Our main focus
was to demonstrate the capability of online learning of many
complex-shaped objects in combination with a model for a
consolidation of fast but limited short-term memory into a
condensed long-term memory representation. In the following
we discuss the components of our model with reference to
related work.

Our feature-detection approach is different from most of
the related work on online learning for object recognition
(Garcia et al., 2000; Steels & Kaplan, 2001; Roy & Pentland,
2002; Arsenio, 2004; Bekel et al., 2004), because the
representation is not based on a dimension reduction of the
high-dimensional visual input. Due to the receptive-field-based
topographical representation, we obtain multiple shape feature-
map representations with a resulting dimensionality that is of
the same order as the visual input. Within the maps, however,
only sparse activation is present, which is caused by the coding
strategy in the hierarchical network.

The short-term memory model is defined as a template-
based representation that adds new object representatives using
a Euclidean metrics within the high-dimensional space of shape
and color feature-map responses. Due to the purely incremental
nature of this learning method we can perform online learning
of objects by capturing sufficient appearance variation of the
object under investigation. Adaptive resonance (ART) networks
are another common approach to perform one-shot and online
learning. Many applications of ART and its relative Fuzzy
ARTMAP have so far concentrated on representation spaces
with much lower dimensionality (Carpenter et al., 1992). The
necessity of complement coding (see discussion in Section 3.2),
doubling the input space dimensionality, and problems with
sparse vectors make ART networks not very suitable for
representing the feature activations of the visual hierarchy we
use here.

For the application to online learning, using only the STM
model achieved good generalization in combination with a
large storage capacity of 50 objects, compared to other work
on online learning of objects which usually did not consider
more than 10–12 objects (Bekel et al., 2004; Arsenio, 2004).
This capacity is a direct consequence of the high-dimensional
representation space, and is also achieved if only shape
representations are used. The STM model enables learning
in direct interaction with a human teacher, whereas the long
training time of most current recognition architectures does not
allow this user interaction. However, the representational effort
of storing a large number of high-dimensional feature maps can
be large. To overcome this limitation we introduced a long-term
memory model.
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Our long-term memory model has to satisfy the two main
requirements: It has to incrementally add and consolidate
representational resources dependent on the complexity of
the objects to be learned and care for the stability-plasticity
dilemma caused by using only a limited STM memory of the
previous object presentations. Due to the problems of standard
architectures like MLPs, which suffer from catastrophic
forgetting in such a scenario, most previous work on online
object learning does not consider incremental learning, but
rather collects the training data and then performs a standard
batch learning procedure (Bekel et al., 2004).

As a demonstration of the catastrophic forgetting effect we
performed experiments with the SLP and SNOW approach and
could show a strong degradation of classification performance
for our desired interactive and life-long learning task.
Additionally we performed experiments with the COIL-100
database for a better evaluation of our HRI50 image ensemble.
We could show that the LTM model can reach state-of-the-art
recognition performance for the COIL-100 database. In direct
comparison the HRI50 image ensemble is more challenging
due to distinctly less classification rates. The difficulty of
HRI50 database is caused by object rotation around three
axes, whereas the COIL-100 objects are only rotated around
one axis. This results in much higher-appearance variations
which pose problems for the SNOW approach, while the
iLVQ approach automatically scales to the difficulty of the
recognition tasks resulting in good recognition rates for more
challenging databases.

We have based our LTM architecture on a learning vector
quantization (LVQ) model, which we have extended by
methods of incremental node insertion, and flexible adaptation
of the local node learning rates. Our approach can be
compared to recent work on life-long learning for incremental
neural architectures (Hamker, 2001; Furao & Hasegawa,
2006), targeting learning for non-stationary distributions
without destruction of previously learned representations (see
Section 3.3). Our iLVQ algorithm differs from the work
of Hamker and Furao & Hasegawa mainly in the used
node insertion rule. We insert neurons only if classification
errors during the training phase occur and do not utilize the
accumulated error of the nodes themselves. We assume that
this leads to a smaller number of allocated resources compared
to the distance-based insertion mechanism, especially in high-
dimensional spaces. Hamker has demonstrated the efficiency
of his proposed LLCS networks based on several low-
dimensional non-stationary benchmark datasets. How this
network architecture performs on more realistic problems with
high-dimensional input spaces can, however, only be speculated
until now. Furao and Hasegawa (2006) applied the proposed
method to a setting of face clustering, but it seems to be
that the unsupervised learning method is not efficient in high-
dimensional input spaces with strong variation, which may
be the reason for the use of smoothed input images in their
experiments.

Hamker and Furao & Hasegawa propose utility measure-
ments to detect rarely activated nodes or to decide if the in-
sertion of a node was ineffective and does not cause a decreas-
ing error rate. The drawback of the proposed methods is that
they tend to delete nodes representing rarely occurring data
with only very few feature vectors, which are typically quite
important in our scenario where the objects are rotated freely
by hand. Especially the LLCS (Hamker, 2001) utility measure-
ments delete nodes which are not supported by other nodes in
their direct neighborhood. The deletion of such nodes slows
down the learning process and can also destroy parts of the rep-
resentation which infrequently occur again. Although we did
not care for an explicit node deletion procedure in our iLVQ
model, we think that similar mechanisms of utility measure-
ments could be advantageous for reducing the representational
effort in the LTM model.

6. Conclusion

By using principles of hierarchical visual processing in the
ventral visual pathway and a functional separation of short-term
and long-term memory we have developed a model for visual
online learning of several complex-shaped objects. To the best
of our knowledge this neural model is the first approach capable
of real incremental online learning and recognition of large
numbers of complex-shaped objects, carried out in real-time
with human interaction. Such a capability is highly relevant
in the contexts of man–machine interaction and humanoid
robotics, introducing many new possibilities for interaction
and learning scenarios for incrementally increasing the visual
knowledge of an assistive robot.
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