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Abstract— Despite great advances in information processing, many individual skills and functionalities, which stresse
computing power and conceptual understanding of biological the system-level or architectural aspects of cognitiom- Pr
information processing, the goal of creating truly “intelli- 4t pical fields that are already being heavily investigate
gent” or “cognitive” technical systems still remains elusive. | robots. h hold robot intelli
It seems that the mere implementation of powerful but isolated ar_e, e.g.,_persona ro OS'_ ousenho i ro 95 or in e_ igen
functionalities does not add up to Cognitive performance on d”Ver assistance SyStemS n road traffIC. It is not the mnten
the system level: we believe that theprinciples that guide of this contribution to review the state of the art in these
the combination of multiple functionalities into systems merit  fields: rather, we will sketch what we perceive as limitasion
attention as well. The focus of the contribution is on a technique of present-day architectures on the way to true cognitive

we term “cross-module learning”: the extensive learning of lti Based that t il
statistical interdependencies between system modules and thejr U&/IlI€S. Based on ihat assessment, we will propose a

exploitation for robustness and system performance (assuming S€t of concrete guiding principles that we believe will be
some degree of modularity in technical systems). We describe beneficial in moving technical systems closer to cognition.

the concept in detail and derive some consequences for the The set is not exhaustive: we focus on a specific cognitive
design of technical cognitive systems. These include a common property here, namely the issue of system-wide cross-nsodul

system-wide data format for information exchange, a dynamical | - dit oth " be iust
system approach to data fusion, and a system-wide learning '€&/NING and Its consequences. €r properues may be jus

algorithm. As a proof-of-concept, we show experimentally that @S important, since cognition does probably not arise from a
the straightforward integration of the principles of cross- single mechanism.

module learning into a large real-world object detection system We will not, at this stage, attempt to formalize the pro-
_(operatlng_ln complex road traffic scenes) leads to significant posed principles beyond a certain point, but rather choose
increases in robustness and system performance. . L . .
to implement them first in the most straightforward fashion
| OVERVIEW using a simplc_a example scg_nario. In thi_s way, we are gble to
establish the implementability and feasibility of our idea
Creating and understanding truly cognitive systems is onginciple, before going on to formalize and elaborate them i
of the great challenges of present-day research in a variefgtail. This prioritization seems important to us in order t
of fields. The difficulty of the issue is best illustrated by th increase the acceptance among researchers oriented soward
ongoing controversy over its definition: what, precisédya building technical systems, who might require experimental
cognitive system? We deliberately want to avoid controyerssupport before considering to rework their existing system
over a universally valid definition which probably cannot ben order to provide that support, we will describe how a
given anyway and which is, to our mind, not required whestraightforward implementation of cross-module learnisg
attempting to construct “cognitive”systems. Instead, aleet employed for improving the performance and robustness
a pragmatic view of the issue and just state that cognition &f a standard object detection system operating in road
a (complex) property which enables humans to achieve theiaffic. The implementation details are given fully, and the
very formidable everyday performance in a variety of taskslependency of the results on parameters is analyzed and
Although we thus sacrifice generality on a philosophicadliscussed.
level, we have a working definition that we consider suf-
ficient to guide research efforts. On the same lines, althoug Il. INTRODUCTION
we avoid a definition of the term “cognitive”, we can make A capability that humans excel in is the detection and
statements of the form “less cognitive” or “more cognitive” exploitation of interdependencies between multiple sgnso
Put in this way, the goal of this contribution is to proposeor internal states. This is reflected in the physiological
principles that can make present-day technical systeme mastructure of the human brain, which exhibits a very high
cognitive than they currently are. degree of interconnectedness between cortical areas. Al-
Our working definition of “cognition” puts emphasis onthough enormously complex, the connection structure is not
real-world performance. Cognitive systems should theeeforandom but follows certain architectural principles whae
be benchmarked by their performance in typical tasks th&mnore or less) universally adhered to. For a review of this
humans solve daily, often without really thinking about itissue, please see [17]. However, the interconnectionsgastw
This requires, by common agreement, the combination abrtical areas are not only very diverse but apparentlyljigh



plastic; thus, new corresponding sensory or internal aver _» @ _»I_CTF—\
are quickly associated with each other and stored. Leraeg‘i’ct
In contrast, state-of-the art technical systems exhibiequ . '
a low degree of interconnectedness and, corresponding—’ ':riﬁj”i'd ,cuse<>+
cross-module learning capacity regardless of the aplicat | learn, /

domain. Only recently, the issue of extensive system-wid predict &>
information integration has been raised by several rekeesc < mmmemmmmmmmmmmmmmeenes '

[12], [3], [19] with sometimes impressive results in real- \
world tasks. However, the interconnections between differ "<& — @ ——|prop,
modules within the proposed systems are not plastic but pre- Overview of d svst i datmdio
. . . . ig. 1. verview of proposed system properties: common
set and therefqre mcapable of _acqu'””g new qurmatlop. (CDF), common learning algorithm, common fusion algorithm. Diadion
Changing this state of affairs in a systematic fashiorshaped boxes represent processing modules (“mod.”), sqo=es bepresent
towards higher and more meaningful interconnectednegitta. Small diamond-shaped boxes represent the implementaftitine
. hat li I lei system properties proposed in the text (“learn,predidtis€”). The contents
requ."’es_t "%t iterally every p?rt or mOdF' emna §ystem hou of the dashed box show how learned dependencies are expldités
be, in principle, able to obtain useful information from anynot required that every processing module produces its otitptthe

other part in an adaptive way. One can extrapolate seveggmmon data format. All that is needed is conversion (“conydr€tween
. - a proprietary (“prop.”) data representation and the CDFe (sever part of
requirements from this. proprietary (‘prop-) P ' (oever p

- ] o _ figure).
First of all, there must exist a data representation in which

all modules exchange their results regardless of theirecint

the common data formaCDF). Using this format, aystem- [g]), but for the purposes of this contribution it is sufficteto
wide learning algorithmcan detect statistical dependenciegequire that a module should be able¢geive dataperform

in the exchanged data. Thexploitation of the learned certain computations on the data, gmdduce outputhat is
dependencies is an important issue and can obviously Rgde available to the system.

done in many ways. From these, we will outline just one in - Fyrthermore, it is assumed that all relevant internal syste
this contribution:dynamic data fusionagain using the CDF states have a representation within the system that is -acces
as a basis. _ sible to the processing modules. This can imply that every

Several consequences of these requirements may be ffiernal system state is itself the output of some procgssin
duced: on the one hand, the way complex data are storgghqule.
in a system is affected. Such data need to be encoded intogjyen these assumptions, the purpose of cross-module
the CDF; however, in order to be understandable throughojdarning is then to achieve a kind of system where
the whole system, a CDF also needs to have a simple
structure. This is why complex data representations need to®
be distributed to many simple ones in order to be convertible
into the CDF. On the other hand, the kind of learning that
is envisioned here takes place, to a significant part, betwee . X

. states (generation of expectations)
system modules, internal system states or sensory data. It . .
) . . L « predictions can be used to influence other system states
is therefore improbable to obtain enough training data for . L . .
) L ] ; « differences between predictions and predicted quantities

supervised training methods; rather, the system-widailegr

. i . (e.g., module outputs) can be used further by the system,
algorithm must be able to operate in an unsupervised manner, . : ; .

- . . i.e., to generate attention or learning signals.

although explicit feedback (human or otherwise) durlngEh ) )
system operation should be taken into account. Furthermor€h€se goals lead us to require several basic system proper-
the data that is analyzed for dependencies is genedatéuy ~ ti€S, which are visualized in Fig. 1.
system operatignstrongly suggesting the use of online
learning algorithms.

In the following sections, we will discuss these issues i
detail and describe an implementation proposal for a ceecre For detecting dependencies between internal system states
technical system. by cross-module learning, the internal system states reed t

be in a format that can be processed by a learning algorithm.
ll. FORMALIZATION OF KEY PROPOSALS For a system-wide cross-module learning algorithm, this

In order to make the ideas proposed in the previous sectitranslates into the requirement of a system-wide common
more precise, we need to state the assumptions about dheta format. However, it is not required that the learning
nature of the technical systems which we are concerned withlgorithm can alsdnterpret the data at its disposal, which

Primarily, we assume a certain partitioning: we assumis only necessary for modules that produce or receive the
systems to be composed of several (possibly interactingpta, using appropriate assumptions. The only assumptions
processing modulesvhich can send and receive data andhe learning algorithm needs to make consist of the nature of
which are in a certain sense independent from each othéne data (distributions over numbers, explained later ig th
The issue of modularity is difficult to formalize (see, e.g.section) and their encoding into the CDF. This is sufficient

dependencies between internal system states (e.g., mod-
ule outputs, sensory representations) can be detected by
a system-wide learning process

« detected dependencies can be used to predict system

A. Neural map coding as a system-wide data exchange
ﬁormat



to detect dependencies, without needing to know what thepding. Introducing some notation, we denote the activity o
actually mean neurons contained in a two-dimensional neural map M by
We present a concrete proposal for a CDF which we (Z,t) or by )] (). A simple instantiation of this type of

term neural map codinglt is derived from the biological coding is given in section IV-C.

concept ofpopulation coding sometimes also referred to as . . . .

space coding5], [22], [4]. A basic principle in neural map B. A simple online learning algorithm

coding is inspired by data storage in mammalian cortical We propose to use an unsupervised online learning al-

maps. Information is represented in two-dimensiamalral  gorithm as the basis for cross-module learning. All that is

maps of topologically organized elements which we termrequired from the algorithm is that it can reliably detect

“neurons” here, although the more appropriate biologic&dimple dependencies between multiple internal systerasstat

analogue are cortical columns. We expect that the benefits of exploiting such dependencies
The question of how information may be encoded anWill by far exceed the performance loss to pay for the

decoded into and from population codes has received copimplicity of the learning algorithm. Indeed, it is the goal

siderable theoretical attention [22], [15]. Following yius ~ Of the experiments described in section IV-C to support this

proposals, we propose to encode probability distribution@aim by evidence from real-world system operation.

over single numerical quantities into the CDF for the ex- Since the proposed learning algorithm it intended to detect

periments presented here. dependencies between system states encoded by neural map
An extension to multiple, ordered distributions over num€0ding, some kind of neural learning rule is required, which

bers (e.g., images, feature computation results) is $iraig IMPlies the existence of model synapses.

forward, please see Fig. 2 for details. Reiterating previou The transmission of information between two neural maps

work, the basic idea behind neural map coding is to assigh @and B, having discrete entries® (7,t),u”(7,t) at time

a Gaussian "tuning curve” to each neuron which goverris Using model synapsesz(t) is governed by the usual

how strongly that particular neuron responds to a stimulu&lationship:

the value to be encoded). We need to define the preferred B~ AB(p\, Af=

gtimulus of the neuron a)md the degree to whichpsimilar u gt = Zwﬁ (Du(@,1) @)

stimuli can still activate the neuron. Mathematically, sthi ‘

amounts to defining the mean and the variance parameters. g : i AUt
of the Gaussian function modeling the tuning curve. online operation, unsupervised learning and simplicitthis
Hebbian rule (see, e.g., [10]). In our notation, it reads

A prerequisite for this kind of encoding is the topographi-
cal organization of neurons. This means that, at least il loc w;i‘f(t +1)= w;i‘f(t) + e (@ OuP (1), e< 1. (2)
neighborhoods, neurons in close proximity should respond
to similar preferred stimuli. This must be ensured by ai" general, depending on the application, eqn. (2) is used in
appropriate encoding method. a slightly modified form in order to satisfy constraints, of

Fig. 2 gives an overview of the concept of neural maryvhich a very typical one is to prevent weights to grow with-
out bounds [16]. Other constraints deal with the orthondrma
ity of weight vectors projecting to different neurons, eerie
maximization [11] and similar issues.

In section IV-C, we will present a simple variant of egn. (2)
which fulfills the requirements for a cross-module learning
algorithm that were outlined above.

4Ya obvious learning rule which satisfies the requirements of

C. A dynamical system model for decision making and data
P(x) J_ fusion
I In order to use the generated predictions for influencing
ee0000 ) ! . ;
funing / 000000 other system states, a flexible fusion method is required. We
j_function 00000 demand from the method that it should support the chosen
' | - eoo0000@ . .
L "i\,jgﬂ\ 000000 CDF in a natural way. As in the case of the CDF, we argue
|~ o ®o0000 that it is not required for the fusion algorithm to interpret
the data to be fused. Any knowledge that may facilitate
A B fusion should be acquired using the cross-module learning

Fig. 2. Information encoding in neural maps. Figukeshows the basic algorithm.

principles involved: starting with a distribution over aatenumber, a ; i :
two-dimensional neural map is constructed using predefingdldgy and These requirements led us to choose two-dimensional

tuning functions. FigureB visualizes how collections of distributions of neural fields evolving according to a variant of Amari
real numbers may be encoded into neural maps. The point heratis thdynamics [5], [21], [1], [18], [14], [9] for data fusion.
although neurons at different locations in the neural mapaate for the : PR
same stimulus probability, a one-to-one relationship betwtke location Neural fields pqssess th? advantage of an explicit time
of activation and stimulus probabilities exists locally dicated by the dependency, which potentially enables them to respond not

rectangular partitioning of the neural map in Figip only to the content but also to the time structure of incoming



data. Furthermore, their qualitative dynamic behavior lsan
substantially influenced by the variation of parameters. |
this way, a switching between different ways of fusing dat
can be achieved, which provides considerable flexibilitye T ¥

differential equation governing the dynamics of the neure: % : L,

field u(:c t) reads Fig. 3. Some performance examples of the FIRST system running on
prototype car. The left two images show operation in the canson site
scenario it was envisioned for, the rightmost image showsatiper in a
N N N inner-cite scenario in Offenbach, Germany. Boxes in the imagpresent
+ B/W(f — 1) flu(@1,1)]dTT + ures,  (3) object detections, where the object identities are shovovelthe boxes.
Possible object classes are "car”, "sigB” (signal board) & (unknown

where a. 3. uw. and = are numerical constantsy(z) =  object). Numbers below boxes show the distance to detectgttohyif
B, Urest 81’)( ) available) as measured by the radar sensor of the prototypdncghe

Gon(f) — Goti(Z) is an _mteractpn keme_l g'Ven_ by the leftmost image, the incorrect detection of a car is highlighte
difference of two Gaussian functions having varianegs

and oo, and f[u] is a nondecreasing nonlinear transfer
function bounded in the intervgD, 1]. In order to solve a finite, previously collected set of examples. When oper-
this equation numerically, it needs to be discretized ircepa ating them in real-world scenarios which are not under the
Since we use the neural field technique to determine the tinexperimenter’s control, it is therefore likely that unkmow
evolution of neural maps, the discretization is chosen so abjects will be encountered. The problem is intensified by
to coincide with the number of neurons in a neural map. the fact that many objects cannot be properly characterized
An additional point in favor of the neural field technique isseparately from the context in which they typically occur.
that, when combined in an appropriate way with the learninhus, a classifier that is trained offline, deciding purely on
algorithm described previously, it is very similar to maglel the basis of a single source of (visual) information, can be
with self-organizing properties [2], [18]. expected to run into difficulties. We believe that this will

always be the case in real-world operation, regardlesseof th
IV. TESTING THE CONCEPTS: EXPERIMENTS IN . e
.g. t
A REAL-WORLD SCENARIO particular classification method (e.g., neural networjpsur

vector machine, decision tree) that is used, even if care is
We conducted our experiments based on a system (termggten to create a very large set of training data. What is

FIRST for “first integrated real scenario test”) for multid®  more, the corresponding effort associated with ever smalle

real-time object detection and scene analysis in roaddraffincreases in performance will grow ever larger.

situations. Significant parts of the system are describgdin  In FIRST, the issue manifested itself mainly in the spuri-

[8]. The system runs on two standard notebook computers dus detection of cars, sometimes causing an emergency brak-

a prototype car and is designed to initiate a braking magoeving if the associated radar measurement was below a certain

whenever an object identified as a car comes too closgreshold. A type of error that occurred less frequently was

Basic implemented functionalities to solve this task idelu the mistaking of cars for other objects, thus preventing a

object detection by saliency maps [13], neural networketlas necessary emergency braking manoevre. The point here is

object classification [20], visual object tracking and madathat these false detection mainly occurred in unlikely gtac

data fusion. Primary sensors are a high-resolution CCDrcol@at least to a human observer), i.e., above the road or in the

camera and a standard radar-based distance/relative spgrg Please see Fig. 3 for a visualization.

sensor. The system was designed to operate in constructionn our opinion, the way to overcome the generic limitations

site scenarios but was also tested in inner-city areas widf single-source classifiers, as well as the problems ercoun

dense traffic, see Fig. 3. Indeed, the experiments describggled in FIRST, is twofold: using online learning on the one

here were inspired by experiences during tests of thatsystehand, and exploiting more than one, possibly many, sources
Although we conducted all experiments based on FIRS®f information on the other hand. Using the concepts from

this was for convenience only: FIRST is treated as a bladkection I, we claim that it is possible to realize both. Hus

box providing data (measurements). Between these dapurpose, the proposals of section Ill need to be concretized

dependencies can be detected and exploited by the methg@sficiently to allow an implementation.

proposed in this contribution. Furthermore, the perforogan )

evaluation of the experiments described in section Iv-G- mplementation

does not depend on FIRST but defines its own performanceWhat additional source of information could be exploited

measures. If FIRST had been used to evaluate performanées, object classification? A variety of possibilities contes

the interpretation of the results would not be possible iith mind: object size, object position, the nature of the sciee,

detailed knowledge of FIRST. traffic situation, known ego-position, relative speed, eyah
o context cues (day/night, rainy/sunny, ..), just to nameva fe
A. Problem description In the experiments described here, we decided to go for

A formidable problem when doing real-world object clasvery simple possibilities: the “retinal” position and size
sification concerns the classifier's ability to cope with unof detected objects. As far as position is concerned, it is
known objects. Classifiers are usually trained offline usingntuitive that certain objects appear more frequently inaie



. | image H;, objclass| 2) Learning: Since we want to keep things simple, we

. %decisioﬂa assume rate-coded neurons and synapses modeled by a single
. e real number termedveight We furthermore assume that
predict, icti . . .
dicton the configuration of the Welghtfyg‘ylB between neurons at

Fig. 4. Implementation of object classification using crossiielearning.  POSItions 7, ¢ in two neural maps A and B is always all-
Diamond-shaped boxes represent processing modules, retarimxes to-all. One of the simplest possible learning rules in this

represent data. All data are encoded in the common data forematext. P ; ; ;
The processing modules termed "learn&predict” and "fuse” impeat the scenario is the Hebbian learning rule. We use a weight decay

generic learning and fusion algorithms proposed in sectiband may be  t€rm in order to prevent the weights from growing to infinity

]ysed iS C;n_any cherhpartls Of_f_the_systen;- IThe data s;%i?g iSk ?mﬂypu (please see [16] for an overview of Hebbian learning rules
orward-driven, i.e., the classification module receive ack from a ; At ; .

comparison of computed and predicted object class. The ouofghe data and Welght normalization teChmqueS)'
fusion process is a distribution over object classes. Basetis distribution, AB AB
the final decision is taken. wzy (t+1) = ewzy () +

+ (1 = eu (@, )P (7,t), e= o1 L€ N,

parts of the camera image than others. For example, due to (5)
the scene geometry encountered in normal driving, cars are
almost never detected in the upper half of the video imag#itially, all weights are set to small nonzero values betwe
and similar constraints hold for the retinal size of detecte-0.01 and 0.01. From the weights that are learned during
objects. This is a fact that can be exploited to eliminatéhe course of system operations, predictions are generated
spurious car detections. If the used classifier is able tomet according to eqn. (1).
a distribution over classes instead of a decision, an iecorr ~ 3) The dynamic data fusion mechanisior adapting to
interpretation of that distribution may still be correctsased the chosen scenario, we modify eqn. (3) slightly, setting
on the prediction computed from the “hit statistics” in thea! (7,t) — ol (Z,t) + vIp(Z,t). The quantitiesly, Ip
position or size representations. represent measurement (classification) and predictioatsnp

Based on the principles outlined in section Ill, we relo the neural field. The relative magnitude @fandv spec-
implemented the classification sub-system of FIRST dfes the ability of the object class prediction to overritie t
shown in Fig. 4. In the following text, it will be described object class computed by the classifier. Exceptferhich is
how each proposal from section Il is realized. systematically varied in the experiments, the parametoiza

1) Encoding into the common data forman order to ©Of the Amari dynamics is fixed as follows:
adhere to the principles outlined in section Ill, it is nesary

to encode all involved quantities in the common data format. a=13=3,7=15 ues(t = 0) = ~0.1

Classifier outputs are converted into the CDF, as sketched u we€0,1]
in Fig. 1, in a straightforward way. The classifier produces flu) =<1 u>1 (6)
a confidencec; € [0,1],7 = {1,2,3} for each object 0 else

class (unknown objects, cars, signal boards). Since this is

a simple learning scenario, we can afford to keep the CD/e added a simple activity control mechanism to the dynam-
representation of the classifier outputs simple according fcs: it concerns the behavior of the parametgg; which we

the philosophy outlined in section Ill-A. The resulting n@u  extend to a time-dependent quantitys(t), which evolves
map should have one localized activity blob for each object
class whose peak value indicates the confidence. Thus we can
specify the necessary tuning functiogs, (see section Ill) A
and the map activity resulting from the classifier results as

u(@,t) = eiGo(f — &)

52
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with ¢ and Z; as given in Fig. 5. The encoding of retinal Fig. 5. Representation of object properties in neural map=sarAs detected

o . - : - video image shown imA) and its properties are encoded into maps
pOSItI(_)n _a”‘?' size '”tF’ the CDF is rather_';rlwal becaus position), C (identity), D (y-component of position) and (size). The
the distributions obtained for these quantities are alwaysixe4 position ma is encoded by Gaussians with= 5. Center positions
strongly unimodal, which is also illustrated in Fig. 5. Fromgorrespon(fI Ejobcegter positions _m?f dete?]ted objects. Thééﬁﬂienhtitydmap

; i ; . is encoded by Gaussians with= 5. The center positions in the identity
retinal position, t.vyo representations are crgated. onedsx map are:7o = (30, 41)7 (clutter/unknown)7; = (45,15)7 (cars) and
the full 2D position, the other one just its y-components, = (15,15)7 (signal boards). It is taken care that the distances between
This was done in order to demonstrate that the choice ofnter positionst; are equal in order to prevent a bias in the competitive

: : - fusion process. The 64x20 y-position m&p encodes the y position of
representation can strongly influence the success of fegrni detected objects, i.e., the distance in pixels from the towege border

In total, we have three representations that are used tacpred;sing Gaussians of = 5. The 20x128 size mag encodes the square root
the classification output. of the area of detected objects using Gaussians ef 2.5.

Gd(f) ~ €Xp —




according to 2) Learning phase:In all experiments, the system is
. allowed to run (and learn) for 1000 image frames before
uresi(t + 1) = urest(t) — 0k (t) = piu), (") conducting performance evaluations.
where p, is the average activity in map(Z,t), p the 3) Evaluation phase:ln the evaluation phase (which is
target value fon, (t) andn a small constant (here we choseconducted for4000 frames after the learning phase), we
n = 0.5 and ¥ = 0.05). This mechanism ensures that thereplace the classification and object position/size redtdm
map activity does not grow without bounds even if strondrIRST (see Fig. 5) by artificially generated detections mea-
input is present. This is done because, in the case of tégrements. Artificial object identity maps express unéerta
much activation, the dynamics can "blow up”, i.e., convergéecisions for “car” objects: the confidences encoded into
to stable but unwanted attractor states with, e.g., glgbalthe CDF according to section IV-B.1 are 1.2 (cars), 0.8
constant activation which is undesirable for our purposes. (Signal boards) and 1.0 (clutter). Artificial object posits
Each time that data fusion is performed, we iterate eqn. (8ye located in a windowl" consisting of the upper 40% of

for 50 cycles. the video image, which is supported by experience and the
] preliminary measurements. Similarly, artificial size meas
C. Experimental procedure ments are chosen from a range of 105-180 pixels. Positions

For performing the experiments, we chose a traffic videand sizes of artificial detections are drawn from a uniform
showing an extended drive through the inner city area qfrobability distribution. One artificial detection per igais
Offenbach am Main, Germany during the morning hoursgenerated. To prevent the learning mechanism to adapt to
The video comprises some 12000 frames, recorded at a réte artificial stimuli, the learning rate is set @0 in the
of 10 Hz in RGB color at a resolution of 800x600 pixels.evaluation phase.

Using this video, we ran the FIRST system several times After the fusion of prediction and artificially generated
with the classification sub-system modified as described imeasurements, the maximum activation in the fused map is
section IV. At each run of the system, a different represenised to determine the resulting object class decision. Due
tation (see Fig. 5) is used for predicting the classificatioto the reasoning given in section IV-C.&ny report of a
output. car detection can now be considered to be incorrect. In

Although we use an online learning algorithm, sufficientlyorder to assess the performance of the system, the quantity
many examples (data extracted from single frames) mugte [0,1] = 1 — #(Cetections g calculated.y encodes the

N
be presented before the performance can be evaluated. ¥spression rate of spurious detections, where a valueDof 1.
therefore distinguish three phases in the experiments: indicates perfect suppression. The main parameter gmgerni

1) Preliminary measurementddow can we benchmark, y is the relative magnitude of prediction and measurement
in a simple and straightforward fashion, the (potential} imin the fusion process. If a good suppression can be achieved
provement in classification performance as a consequenegen for small contributions from prediction (governed by
using cross-module learning? Based on the problem of falsiee parameter, see section IV-B.3), then it is ensured that
detections described in section IV-A, we chose to test fer thonly uncertain decisions are overridden by prediction. If a
rejection of outliers, i.e., false detections that are igistent large value ofv is required even for the uncertain decision
with previous experience. Such detections can be deliélgrat that is artificially created here, then the prediction magpal
created, and furthermore chosen to be consistent with reatorrectly override decisions that are certain and cérrec
ground-truth data. As an example, one could create “cafhis reasoning about the choice:motould best be supported
in the sky”; in this way, the performance of cross-moduléy experiments using ground-truth data for evaluation.
learning can even be roughly assessed by visual inspection.

For this purpose, we run FIRST for 5000 image frames V. RESULTS
recording all measurements concerning object size, positi The results of the experiment described in chapter IV
and identity. For object identities, a decision is computedre shown in Fig. 6. Surprisingly, the representation that
from the obtained distributions by choosing the objectslasencodes the y component of an object’s position allows the
with maximal confidence. This reflects the decision FIRSDest prediction of classification results, which can be seen
would take, based on the “raw” classifier outputs not imfrom the fact that for all values of, the suppression of
proved by predictions. We now identify, by visual inspentio incorrect detections is highest. By the reasoning from the
certain parameter ranges of object position and size; Bwgh previous section, especially small valuesioére important
ranges, we demand that FIRST should (almost) never detéwtthis respect. In contrast, the size representation i$ethst
cars. In the subsequent experiments, we can thereforargequieasible representation for predicting classificationultss
thatany car detection where object position or size fall intowith the 2D position representation lying in-between. How
those ranges has to be rejected as inconsistent. can it be understood that the full two-dimensional represen

The preliminary measurements are performed on videdation of object position has weaker predictive power than
that are disjunct from the videos used for performancthe representation containing just the y component? From
evaluation. In this simple way, we can replace grounddriving experience, we know that it is the height above
truth data necessary for performance evaluation, which wground level, here encoded by the y component of an object’s
currently do not possess. (retinal) position, that is correlated with the presence of



- enough to work within certain conditions, which are met by

08 | g the chosen application scenarios and, in our opinion, intmos
' / other scenarios as well. We will discuss these conditions
é 06 | | in the next section. Furthermore, the use of the fusion
8 dynamics provides advantages (time dependency, flexibilit
g o4l | ] which are not required in the presented experiments. Thus,
=} . 1i . .. . . ..
@ a simple addition of classification and prediction, follalve

02 i Xy by a maximum selection, might have led to the same results.
y Effectively, however, this is what the neural fields used for
L size | fusion do. Summation is implicit in the field dynamics,

0 05 1 1 5 2 25 3 35 4 45 5 and maximum selection is achieved by lateral competition

nu between activity blobs. We feel that the use of the presented

Fig. 6. Suppression of incorrect car detections using tiRSHI system  fusion method is thus well motivated, although it is true

with the classification sub-system extended by a predictiod fusion ; ; ;
mechanism as described in the text. Three different reptatiems are used that the real advantages of this method, as explained in

for predicting classification outputs: 2D object positidabgled “xy”), y-  Section IV-C, will only manifest themselves in further work
component of object position (“y”) and object size (“sizeThe suppression on this subject
rate of incorrect detectiong mainly depends on the influence of the

prediction result on the fusion mechanism, governed by tharpeter VIl. FUTURE WORK
v. Surprisingly, the best predictor for the classificatiortpat is the y- B
component of object position. We have sketched out steps towards a cognitive system

concept; since this is a formidable task, we could obviously
not address all relevant issues. We have, however, a clear id

cars. A representation just containing that relevant dtyant about the issues that need to be tackled in the near future.
should require fewer steps for learning dependencies thanAS mentioned in the previous section, the encoding into
a representation where the relevant quantity is embedddt common data format needs to be specified in more
into irrelevant data (like the representation of the full 2pdetail in order to be generally applicable. This includes th
position). This argument can be generalized further: bguestions of expressing (un)certainty or multiplicitg. j.the
choosing suitably adapted representations, we expect tif#nultaneous presence of several concepts. Especially the
the effort for learning predictions can always be strongljatter issue is challenging, since a single distributiom,ca
reduced. Therefore, it is advisable to choose representati by definition, just make statements about a single quantity.

with care for any given cognitive task. This is why only one car detection per frame was represented
in the experiments of section IV-C; otherwise, the encoding
VI. DISCUSSION would have become more challenging.

How reliable are the presented results and what are theln addition, it needs to be determined how to au-
assumptions under which we expect them to generalize? Weomously choose optimal parameters for the fusion algo-
showed that the prediction of the classification output carthm. The most obvious parameter in this respect is the
be used to modify incorrect classifications in cases wherelative weight of prediction and predicted quantity, In
the classifier results are uncertain (i.e., multimodal)isTh the presented experiments, an optimal value was found by
assumes that the classifier is able to encode the certairttial and error. A more appropriate way would be to scale
of its decisions. Furthermore, the described car classificaach neural network weight according to an intrinsic qualit
tion scenario implicitly assumes that the classifier resultmeasure such as the variance of predictions. In this way,
are more reliable than the prediction results (otherwise thvarying reliabilities within a single cue (e.qg., positiacguld
classifier would be unnecessary). This implies that unirhodae encoded and exploited autonomously.
classifications, whether correct or incorrect, should nbe For the construction of large systems with feedback,
modified. It was shown in this paper that incorrect detestioradditional local mechanisms of keeping all activations and
of cars can be efficiently suppressed even when the predigeight strengths finite need to be investigated.
tion contributes only weakly (smail), which validates our ~ Some extensions offer themselves at a more global level:
assumptions. What remains to be demonstrated is that corrémt instance, the detection of dependencies is restriated t
detections are not corrupted in the process. By the argumegdirs of representations in the present formulation. This ¢
presented above, this should not occur for certain and correnot easily be changed,; it is more feasible to investigate how
decisions in any case; the behavior for correct but ungertaiwo or more representations may bembinedor integrated
decisions will be the subject of further investigation®gsde into a single one. In this way, the learning mechanism could
see section VII. be extended to (effectively) more-than-pairwise dependen

In order to provide an unbiased picture, we will now discies. There are several candidate mechanisms for integrat-
cuss possible criticisms of our work. What may be criticized#g representations, most notably self-organizing models
First of all, the encoding into the common data format lackprincipal component algorithms. Another simple extensibn
generality in the presented form. We argue that, althoughe presented work is to use the error signal resulting from
this is certainly true, the chosen encoding method is génenaredictions. In the case of an object classifier, the diffeee



between the predicted and the actual output distributier (sissue is, for example, the correct way of organizing hier-
section IV-C) can be fed back to the classifier in ordearchical information processing, particularly when sepso
to adapt its internal models appropriately. Thus, the nedadformation is concerned.
for ground-truth data could be strongly reduced. Feedback We believe that the principles proposed in this contributio
may come from any source, not only from prediction errororm a first step towards a cognitive system concept. They
Therefore an element of supervision can still be supplied. should therefore continue to apply when defining aspects of
As a last point, we hypothesize that a classifier, on itsystem architecture, which is, to our mind, the next logical
own, might not need to perform extraordinarily at all. Rathe step to take. Especially when considering architectusalds,
robust performance may come about by the adaptive fusidnseems appropriate to take inspirations from researcihen t
of many sources of information using the ideas described triological principles of human or primate cognition.

this contribution. It will be intriguing to test this hypathis

in FIRST, using very simple classifiers (maybe “rectangle
detectors”) and providing extensive and possibly compleil]
additional information. Additional information may cosesi [2]
of sensor features, but also derived quantities like a scene
classification or lane borders. 3]

VIII. CONCLUSION

In this contribution, we showed that the performance of a4
state-of-the art classifier can be improved strongly evea by [5]
very simple method. The described integration of addiiona
information requires little overhead since the informatie [7
already available to the system, albeit not used. This sigge
to us that there may be many such isolated functionalities
in technical systems (especially when performing reallavor (8]
tasks) that can benefit from additional information. The key
requirement is that the involved processing modules do not
generate decisions but distributions. This contributiap-s [9
ports the exchange of distributions, and thereby the system
wide integration of information, by defining a “standard
format” for distributions: the common data format.

Furthermore, we showed experimentally that not only the
information that is encoded in a representation matters, bi31l
also thewayit is encoded: not all representations are equally
favorable for learning. We expect that truly task-adaptef?2]
representations will strongly support the learning meghod
proposed here.

On a more holistic level, we proposed a number of simplg3]
principles that we believe will lead to increased cognitive
capabilities in technical systems. In our opinion, the paEa
ideas are not the end of the story but rather the beginning4]
They need to be embedded intaagnitive system concept
a comprehensive set of guidelines how to construct technic[allS]
cognitive systems (where the term “cognitive”is used as
defined in the introduction). It is our vision both to formiga [16]
such a concept, on the one hand, and to construct technifﬁl]
systems with cognitive abilities on the other hand. We may
draw inspirations from biological information processiing
this process, and we intend to do so heavily while keepin@8
a balance between biological accuracy and the functional
abstraction that is necessary in any technical realizatiof®]
In the work described here, we focused mainly on locgh,
issues, i.e., properties that may be attributed to a limited
region within a system. However, we propose that a kel#!l
ingredient in a prospective cognitive system concept shoul
address global system properties, i.e., an appropsigteem [22]
architecture A prominent (but not the only) architectural
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