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Carl-Legien-Str.30, D-63073 Offenbach/Main, Germany

1 Introduction and definitions

This paper contributes to the current debate about symbols and embodiment
by pointing out the perspective of a neural modeler. I illustrate the default def-
initions of ’symbol’, ’embodiment’, ’meaning’, and ’grounding’ in the context of
detailed neural network models, i.e., on a level more detailed than common con-
nectionist approaches. My arguments are based on Hebbian cell assemblies and
detailed models of the cortical microcircuitry. These models have been employed
to implement a large-scale cortical architecture to enable a robot to perform sim-
ple tasks such as understanding and reacting to simple spoken commands. More
generally, I finally discuss the relations between embodiment, grounding, anchor-
ing, binding, and the invariant recognition in distributed hierarchical systems.

1.1 Symbols

For a neural network modeler, one simple possible way to discern symbols from
non-symbols is to look at the inner structure of the representational units. Sub-
symbols have an inner structure which can be used to define a similarity metric
relevant for the represented entity. In contrast, symbols have no relevant inner
structure (i.e., symbols are abstract and arbitrary). For example, in simple ob-
ject recognition systems, a non-symbol or sub-symbol may be a vector of sensory
features, while a symbol may correspond to a single node representing an object
category. These definitions are sufficient for a low-level (e.g., neural) description
of a cognitive subsystem (e.g., for object recognition), but may not be adequate
for the current debate which is about language and the representation of mean-
ing. Here the discussion includes higher-level symbols employed by a cognitive
system that is able to think, to reason, and to manipulate these symbols in a
flexible way.

According to the workshop’s default definition such a symbol is a “theoretical
element that is arbitrary, abstract, and amodal” (Glenberg et al., 2007). Before
we proceed by discussing and adapting that definition, it may be useful to be
aware of the different contexts in which we will use the word “symbol”. The
situation is illustrated in Fig. 1. We live in a physical world W where systems
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or subjects S are part of that world and interact with the world. Some of
the systems (namely we, the subjects) somehow are able to generate a usually
unique psychological or phenomenological space P, which we can employ, for
example, to generate ideas or theories T about all kinds of issues on all levels
W,S,P,T. In particular, we can make theories about S (predominantly done
by biology, neuroscience, and AI), P (psychology), or T (metamathematics or
logics). Ideas or theories T consist essentially of a set of symbols (as defined
above) and additional rules determining how the symbols can be “manipulated”.

T
P

S
W

Fig. 1: Different modeling levels: We live in a physical world W. Systems (or
subjects) S are part of that world and interact with the world. The subjects
somehow are able to generate a (usually unique) psychological or phenomeno-
logical space P, which we can use, for example, to generate theories T about all
kind of issues on all levels W,S,P,T.

Since symbols are part of theories or ideas this implies two aspects of a
symbol, on the one hand in T, on the other hand the implementation of the
symbol in S. As a neural modeler one is predominantly interested in the S-level
implementation of P in W, i.e., in reducing the observable psychological and
behavioral phenomena as good as possible to detailed neural and synaptic pro-
cesses and finally to the physical laws. (The underlying preliminary naturalistic
working hypothesis assumes that this goal is actually possible.) Since models
about S are finally also T theories, the neural modeler (and any other kind of
S-modeler such as many AI researcher) has obviously to discern between the two
kind of symbols within his theory: Symbols to model the T-symbols of S, and
symbols to model the implementation of the T-symbols of S. Thus, we will refer
to these two kind of symbols as T-symbols and S-symbols, respectively. For ex-
ample, for a cognitive system S capable of understanding language, a T-symbol
is the representation of a word, while S-symbols are finer-grained entities used
for implementing the word representation. For example, an S-symbol could be
a node in a connectionist network (or alternatively, a state or band variable in a
Turing machine) while a T-symbol could be implemented by a set of distributed
S-symbols (and possibly further dynamic processes).

The current debate is about the question whether cognitive systems (such
as we) are or have to be either symbolic or “embodied”. Of course, any kind
of cognitive system must be symbolic in the trivial sense that we have symbolic
language and theories T. Thus, any cognitive system must be T-symbolic. Corre-
spondingly, the critical question is not about the reality of T-symbols, but about



the way T-symbols are implemented in S-symbols. Note that, depending on how
we define “symbol” and “embodiment”, it might be thinkable that T-symbols
could be implemented by non-symbolic processes on the S level (although this
seems counterintuitive since we actually aim at developing a symbolic theory T
about S).

1.2 Embodiment

Also embodiment comes in several different flavors (cf. Wilson, 2002). The
strongest claim would be that embodiment could extend the qualitative or at
least quantitative computational capabilities of a system S by exploiting the
properties of W, e.g., described by the physical laws. If true, this would es-
sentially negate the Church-Turing thesis that symbolic Turing machines can
compute any “naturally” (or physically) computable function. For example,
“embodied” analog computers might be better in simulating physical systems,
or in computing real numbers with infinite precision (see also Brooks, 1990).
Nevertheless, symbolic Turing computers can approximately simulate any phys-
ical system by numerically solving the differential equations of physics, although
this may take much time and, for chaotic systems, infinite computing preci-
sion. Another example are computers exploiting the quantum properties of the
physical world. It has been shown that such quantum computers, if physically
possible, could compute certain functions much faster than conventional com-
puters or Turing machines (DiVincenzo, 1995).

A less strong idea of embodiment is the dichotomy of embodied versus sym-
bolic cognitive systems addressed by the current debate which attempts to clas-
sify cognitive systems according to the interface between the system S itself and
the external world W. Obviously, any cognitive system S that deserves that name
will have to interact with its environment (percept and act) and is therefore em-
bodied in a trivial sense. Similarly, any cognitive system S must be symbolic in
a trivial sense since it must explain our capabilities to use language and think
in symbols (e.g., to develop theories T within our psychological space P). Thus,
in this trivial sense any model of a cognitive system will be both embodied and
symbolic.

Obviously, any cognitive system can be divided into sensors, actors, and inter-
nal machinery, such that the interaction with the environment is accomplished
only via the sensors and actors. Strictly speaking such an interactive system
cannot be adequately modeled by a Turing machine. The original “autistic”
Turing machine has been suggested as a model for computation only. That sce-
nario assumes separate phases for (1) providing the input from the environment
to the Turing machine’s band, (2) doing the computation independently of the
environment possibly for a very long time, and (3) returning the output of the
computation from the band to the environment. In contrast, we rather have to
think of an “interactive” Turing machine that depends on the environment and
can influence the environment at any time. Thus, it would be possible to define
embodiment by the degree of interaction with the environment.

Our default definition of an “embodied” system goes in a similar direction



by demanding that the meaning of a symbol must depend on activity in systems
also used for perception, action, and that emotion and reasoning must require
the use of those systems (see Glenberg et al., 2007). This form of weak embodi-
ment is stronger than the trivial version of embodiment, but obviously addresses
merely the high-level structure of the internal machinery (e.g., in Marr’s terms,
the algorithmic or computational levels, but not the implementation level). As
a consequence, any such “embodied” system can be translated into a purely (S-)
“symbolic” system (e.g., a computer program or Turing machine) with the same
sensor/actor interface and vice versa. This is true according to the Church-
Turing thesis, at least as long as our “embodied” system does not exploit the
physical world in a super-Turing manner as described before. We can also con-
clude that this form of embodiment will probably be neutral to such questions
as whether “ideas are the sole province of biological systems” (as discussed in
Glenberg et al., 2007). And, of course, the property of embodiment will be a
gradual property. Nevertheless, the idea of embodiment might still prove use-
ful, e.g., in building more efficient artificial cognitive systems, or in guiding the
analysis of the brain.

1.3 Meaning

Our last definition of embodiment refers to the term “meaning” which may
require an explicit definition. A simple definition states that meaning is the
“content” of a sign or symbol. Here “content” refers to all the parts of an
information processing systems’s theories T that have a relation to the symbol.
For example, the meaning of the word symbol “car” may include prototypical
“icons” of cars, knowledge about the corresponding “consists-of” and “is-a”
ontologies, knowledge about actions that can be done with, to, or by a car, and
episodic knowledge about particular experiences with cars. This very general
meaning of a symbol must usually be strongly constrained by context.

An alternative more behavioristic definition is the following: The meaning
of a symbol or sign to a cognitive system is the sum of the potential or actual
behavioral changes after receiving the sign. For example, the meaning of the
traffic sign “stop” to a car driver is a propensity to apply the brakes to stop the
car. Or the meaning of signs indicating bad politics to a voter is a propensity
to no longer giving a vote to the responsible politician in future elections.

The second definition has several advantages: First, it does not refer to
the internals of the system which may be difficult to observe and interpret,
e.g., in animal experiments. Instead, it solely refers to the system’s or agent’s
observable behavior or actions. Further, this direct reference to actions and
agents is more relevant for our current debate about meaning and embodiment.
Defining meaning in this way by particular actions then obviously implies (by
definition) that establishing meaning is closely related to or even “depends on
activity in action systems” which is essentially our definition of embodiment (see
Glenberg et al., 2007).

Indeed, neurobiological experimenters investigating the brains of animals by
correlating behavior and neural activity actually have to define categories (which



can then be symbolized) by actions. For example, experimenters can find out
which one of two possible interpretations of an ambiguous figure a monkey is
perceiving by training the monkey to move the right hand for interpretation 1
and the left hand for interpretation 2 (which already defines the meaning of the
figures for the monkey). Similarly, it has been proposed that we humans as well
as other animals can learn to discriminate two classes or categories only if the
discrimination is behaviorally relevant. This is most obvious for lower animals
which have only a very limited behavioral repertoire (and therefore only a limited
way of developing abstract classes such as prey, predator, or mate corresponding
to actions like feeding, flighting, or mating).

In summary, we may already conclude here that understanding the meaning
of signs indeed requires embodiment defined as regular activation of action and
perception related subsystems. However, this conclusion is not sufficient for
understanding how the brain works, or to understand how to create intelligent
artificial systems. This requires a detailed theory on how perception, action, and
learning of abstract categories is accomplished by the brain. In the following we
will deliver building blocks for this by having a closer look on neural models of
symbols and meaning.

1.4 The easy and the hard problems

With this essay I do not intend to tackle what has been called the “hard prob-
lems” in the psychology of consciousness, for example, explaining how physical
processes in the brain give rise to subjective experience (Chalmers, 1996; Jack-
endoff, 1987). Although I believe that, from a third-person perspective, sym-
bols, embodiment, and meaning as defined above are easy problems (i.e., nothing
“mystic”), and that we will probably soon be able to realize artificial systems
that can be said to be embodied and represent meaning in a similar way to
humans, I admit that assuming full identity between the first person subjective
processes of humans (including feelings) and those of digital computers (Dennett,
1996; Metzinger, 2004) may have problematic consequences.

For example, if we would ascribe subjective feelings to a robot then we would
also have to ascribe feelings to the robot rid of its sensory/motor interface (sim-
ilarly as we ascribe feelings to quadriplegia and locked-in syndrome patients).
Then we finally would have to ascribe feelings to a digital computer, i.e., finite-
state-machine (FSM). More exactly, we would ascribe feelings to particular states
of the FSM. Adapting Searle’s Chinese room argument (Searle, 1980) to feelings
(instead of meaning), this seems strange because the FSM’s states are arbitrary,
i.e., it is unclear why one particular physical state should be associated with
pain (and not with joy or something else).

One could answer that meaning and feelings are not associated with a single
state but with particular but still recurring state sequences (for example, real-
izing a kind of monitoring structure). However, this will probably not help us
since we can always construct an “equivalent” FSM where such a sequence corre-
sponds to a single state again (although this will require a large FSM with many
states). We may accept this for the case of meaning defined in terms of “poten-



tial behavior” (see above) because the question “Is that machine understanding
this?” can be resolved, in principle, by looking at the FSM’s past or future
states. However, we are usually more reluctant in the case of feelings because
the question “Is that machine feeling pain?” must be answered in the present
(and proposing that past or future states would make a difference contradicts
the state concept of classical physics).

2 A neural modeler’s perspective

When words referring to actions or visual scenes are presented to humans, dis-
tributed neural networks including areas of the motor and visual systems of the
cortex become active (e.g., Pulvermüller, 1999, 2003). The brain correlates of
words and their referent actions and objects appear to be strongly coupled neu-
ron ensembles in defined cortical areas. The theory of cell assemblies (Hebb,
1949; Braitenberg, 1978; Palm, 1982, 1990) provides one of the most promising
frameworks for modeling and understanding the brain in terms of distributed
neuronal activity. It is suggested that entities of the outside world (and also
internal states) are coded in groups of neurons rather than in single (”grand-
mother”) cells, and that a neuronal cell assembly is generated by Hebbian coin-
cidence or correlation learning where the synaptic connections are strengthened
between co-activated neurons. Models of neural (auto-) associative memory have
been developed as abstract models for cell assemblies.

2.1 Local cell assemblies, associative memory, and neural S-symbols

The notion of cell assemblies as strongly coupled neurons leads to the concept of
neural (auto-) associative memory (Willshaw et al., 1969; Palm, 1980; Hopfield,
1982). A particular simple model of neural associative memory has been pro-
posed by Steinbuch and Willshaw (see Willshaw et al., 1969; Steinbuch, 1961;
Palm, 1980; Knoblauch, 2005) consisting of McCulloch-Pitts type threshold units
and recurrent binary synapses (Fig. 2). Here the activity pattern of the cell
population can be described by a binary vector, and we identify stored activity
patterns with the cell assemblies. After learning a number of cell assemblies the
network can be described by a connection matrix A corresponding to a graph,
where the nodes correspond to the neurons, and cell assemblies correspond to
k-cliques of neurons (a k-clique is a subset of size k consisting of completely
connected neurons). Hetero-association works similar to auto-association except
that the “memory matrix” describes the synaptic connections between two dif-
ferent neuron populations. Hetero-associative connections can map assemblies
of the first population (or sets or parts of them) to cell assemblies of the second
population (or sets or parts of them).

The virtue of the binary model is that it is easy to understand, analyze,
and implement, but the main results apply also to more realistic gradual and
spiking models (Hopfield, 1984; Knoblauch and Palm, 2001). Neural associative
memories have a couple of nice features. They achieve pattern completion, i.e.,
a cell assembly can be activated not only by the very same inputs that have been
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Fig. 2: Left: Neural (auto-)associative memory where two cell assemblies of size
k = 4 have been stored (corresponding to the activation patterns u1 and u2) in
the “memory matrix” of synaptic connections. Filled units indicate the active
neurons of pattern u2. Right : A more realistic implementation of an associa-
tive memory modeling a small patch (about 1mm3) of cortical tissue (Knoblauch
and Palm, 2001). The model comprises several populations of excitatory and
inhibitory spiking neurons of the integrate-and-fire type. Here C is the main
excitatory population of pyramidal cells receiving input from another cortical
patch R. CS and CT are inhibitory interneuron populations controling local
excitation. Each neuron is modeled as a leaky integrator with excitatory and in-
hibitory conductances, where a spike is emitted as soon as the dendritic potential
exceeds a threshold. The “memory matrices” are employed in several afferent
and recurrent synaptic connections (cH,cA) from and to populations R,C,CS .
The remaining inhibitory feedback connections are unspecific (i.e., independent
of the learned activity patterns).

used for learning, but also by modified patterns that are “sufficiently” similar
to the original address pattern. For example, assembly u2 in Fig. 2 will already
be activated by addressing an arbitrary subset of size ≥ 3. It can be shown that
the number of storable patterns scales almost with the number of synapses if the
patterns are sparse and have random character (i.e., a population of n neurons
can store almost n2 sparse cell assemblies with k ≪ n). Access time is essentially
independent of the number of stored patterns. The overlaps of different cell
assemblies can be used to express the similarities of the represented entities.
Cell assemblies thereby provide a very natural associative way of grounding
new representations in the sensory inputs by means of bidirectional associative
connections (cf. Barsalou, 2003).

Associative memories have been used to model small volumes of cortical tis-
sue (e.g., 1mm3) corresponding to a macrocolumn or the range where dense local
recurrent connections between any cell pairs are possible (Braitenberg and Schüz,



1991). A step towards biological realism is to replace the single McCulloch-Pitts
population by more realistic spiking neuron models and to incorporate known
properties of cortical circuits (Fig. 2). These models can extend the computa-
tional abilities of the standard model, for example by making use of spike timings
according to a latency code in that early spikes (relative to an external event or
an underlying oscillation) are much more relevant than late spikes for activating
an assembly (Knoblauch and Palm, 2001; Knoblauch, 2005).

Local cell assemblies can be seen as elementary neural (S-) symbols which
can be “allocated” or learned to represent the inputs for further processing
in down-stream target populations. The symbolic character is most apparent
if the assembly is k = 1 corresponding to a localist code, or if the neurons
that constitute a cell assembly are chosen at random, e.g., by noise. In the
latter case the correlations (or overlaps) between two cells are minimal which is
required to store a maximal number of different activity patterns. Due to their
singular or random character the cell assemblies could be said to be abstract
and arbitrary, whereas the property of amodality depends on the location of the
neuron population, e.g., a local population receiving visual inputs will develop
visual perceptual symbols (cf. Barsalou, 1999).

2.2 Global cell assemblies, language, and T-symbols

We have designed a large-scale brain model consisting of many interconnected
cortical areas employing spiking associative memories. The model was imple-
mented and tested on a robotic platform enabling the robot to understand and
react to simple commands such as “Bot show plum!” (Knoblauch et al., 2004).
The language part of the model is illustrated by Fig. 3, the action part by Fig. 4.

Each box in the figures corresponds to a spiking neural associative memory
storing local cell assemblies as described above. For illustration purposes, each
area has been labeled according to the current activity pattern. (In general a
superposition of several stored local assemblies can be activated, e.g. to represent
uncertainty or to represent new entities to be learned; here the labels correspond
to the cell assembly most similar to the current activation pattern). The resulting
global assembly, for example representing the T-symbol “plum”, stretches over
many cortical areas (involving visual, auditory, action, and goal-related areas)
and changes dynamically during the process of “understanding” and reacting
to the command. Thus, the global cell assembly as a whole works as a sign in
Peirce’s sense, i.e., as a mediator between the idea of a “plum” and the real plum
in the external world. The global assembly consists of parts some of which can be
attributed as “abstract” and “amodal”, e.g., the lexical representation of “plum”
in A3. But these symbolic parts are naturally grounded in the synaptically
connected perceptual and action-related parts of the global assembly.

2.3 Cortical macrocolumns, prediction, and embodiment

Cognitive processes must be able to distinguish between different representa-
tional modi. For example, representational states may refer to present, future
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Fig. 3: The language part of an associative cortex model (see Knoblauch et al.,
2004) at the end of processing the sentence “Bot put plum to green apple”.
Each box corresponds to a cortical (or subcortical) area modeled as a neural
associative memory. The meaning of the sentence is represented by distributed
cell assemblies comprising “slot areas” for different grammatical roles to im-
plement elementary productivity and systematicity. Auditory input enters via
areas A1 and A3 the central areas and is distributed across the grammatical
slots according to a logic controlled by a grammatical sequence memory (A4)
(where basic sentence types are stored) and subcortical “activation fields” (small
boxes). Arrows indicate recently activated synaptic connections.

(or prediction), reality, wish, signal (detailed and concrete), or symbol (abstract,
amodal), perception or action. Many cognitive architecture take a modular ap-
proach where these different representational modi are segregated into different
cognitive subsystems or modules. (In general, an architecture can be said to
be modular if it can be divided into subsystems such that there is much more
communication between processes inside a subsystem than between processes of
different subsystems.) For example, we could segregate a cognitive system into
different modules for perceptions, actions, goals, memory, rule-based prediction
systems, etc.

In the last section we have indeed argued how global cell assemblies can
implement and ground T-symbols (e.g., words of a language) by distributed
activation stretching over many sensory, motoric, and associative cortical areas
(Pulvermüller, 1999). Thus, although the brain appears to have a modular char-
acter in that sense, hints to possible complementary strategies of grounding may
be found when looking at the microstructure of a single cortical macrocolumn
(Douglas and Martin, 2004).

Although, it is well known for a long time that neocortical anatomy exhibits
a 6-layered structure, modelers have often neglected this fact when modeling a
cortical patch by a single “monolithical” neuron population (e.g., Palm, 1982;
Ritz et al., 1994; Knoblauch and Palm, 2001). This may be attributable to the
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Fig. 4: Action part of an associative cortex model (see Knoblauch et al., 2004)
during performing the command “Bot put plum to green apple!”. The goal areas
(G1-G4) received their inputs from the grammatical role areas (A5-S, A5-O1,
etc. as illustrated in Fig. 3) and divide the goals into a sequence of subgoals
(i.e., seek plum, pick plum, move to the apple, drop plum). (High-level) motor
areas receive inputs from the goal areas in order to perform the current subgoal.
The completion of subgoals and switching to the next subgoal is controlled by
“evaluation fields” checking, for example, the consistency of visual perceptual
activity patterns (e.g., in V4) with goal representations (e.g., in G3). At the
shown system state the robot is about to finish the subgoal of seeking the plum.

wish to focus on a single layer or the lack of adequate computational resources
to simulate more detailed models, but also to doubting or underestimating the
functional significance of discrete within- or between-layer synaptic connections
which appear to have a rather “fuzzy” character (Abeles, 1991; Braitenberg and
Schüz, 1991).

In accordance with ideas developed earlier by Körner et al. (1999) (see also
Hawkins, 2004; Rao and Ballard, 1999; Guillery, 2003), we assume as a working
hypothesis that the basic function of a cortical column is to represent and actively
predict its sensory inputs. To achieve this in a self-organizing, autonomous way,
it is necessary to have access to (at least some of) the different representational
modi described above. We propose that different representational modi of the
same entity are located in different layers within the same macrocolumn rather
than monolithically in different columns or areas.

Fig. 5 illustrates this functional model and our current implementation em-
ploying spiking associative networks similar as discussed in section 2.1. At each
time the model must represent a state v = (w, a) and use sensory input s to up-
date the state v according to a function f . We found it meaningful to divide the



state variable v into two rather independent entities, one variable w describing
“external” entities from the outside world, and another variable a describing a
local “internal actor”. In addition to updating a state, the system should also be
able to predict a future state w′ without accessing sensory input. Note that the
proposed circuitry provides the basic ingredients for simulating (or predicting
over) larger time intervals.
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Fig. 5: Left: Basic functional circuit of a cortical column. Sensory input s is used
to update the current world state w. This is used to choose an appropriate action
a. World state and action can be used to predict the next world state w′ and
next sensory input s′. Right: Implementation of a cortical column by spiking
associative memories (see Knoblauch et al., 2007, 2005; Körner et al., 1999).
Sensory input activates signal-like representations (based on basis vectors) in
the middle cortical layers (A1,A2), a symbol-like prototypical cell assembly in
the upper layers (B), and finally action and prediction related representations
in the lower layers (C1,C2).

By comparison with known anatomical facts we can match our functional
model (Fig. 5) with the layered organization of neocortex (Körner et al., 1999;
Guillery, 2003; Douglas and Martin, 2004; Braitenberg and Schüz, 1991; Felle-
man and Van Essen, 1991). For example, it is well established that feed-forward
inputs to a cortical column target mainly layer IV neurons and that the feed-
forward output to the next cortical stage leaves a cortical column via layer II/III
neurons. In contrast to the feed-forward stream, feed-back inputs avoid layer IV
and target mainly the upper layers (but also the lower layers). Another remark-
able feature of the cortical microcircuitry is that layer V pyramidal neurons,
at any cortical site, project to subcortical regions closely related to action and
behavior (Guillery, 2003).

Based on these facts we believe that the forward recognition function f is
located in the middle and upper layers, while the remaining functionality, related



to behavior and predictions, is located in the lower layers V/VI. Furthermore,
we believe that the recognition system of the middle and upper layers is split
up into two subsystems, one for fast bottom-up recognition (A system, layer
IV and upper III) and another for refined recognition employing feedback (B
system, layers II/III).

As an example we have implemented a model of several cortical and subcor-
tical areas for learning saccadic object representations (including several visual
cortical areas and the superior colliculus; see Knoblauch et al., 2007, 2005). In
that particular case the representational world states are object views (e.g., the
retinal image when fixating on a particular key feature of a visual object) and
the actions correspond to saccades.

What does this has to do with embodiment and grounding? Our model sug-
gests that actions are grounded in perceptions already at the level of a single
cortical macrocolumn (cf. Hawkins, 2004; Körner et al., 1999; Guillery, 2003;
Young, 1993). Thus, recognition of incoming signals will automatically induce
an action related process in the same macrocolumn and related subcortical struc-
tures. In our model, the perceptual representation w is on the one side really
symbolic in cortical layers II/III, it is grounded in sensory input and a signal-
like (basis vector based) representation in layer IV, and it is also the result of a
prediction (wt−1, a) → w (layer VI) such that it is also grounded in action (layer
V). Vice versa, for the same reason the produced action will be grounded in per-
ception. Furthermore, the proposed circuitry provides the basic ingredients for
simulating (or predicting) the represented state (w) over larger time intervals
(at a microlevel), which has been suggested to be required for understanding
meaning on the (P,T-) macro-levels (cf. Barsalou, 1999).

2.4 Hierarchies, invariances, binding, and grounding

The areas of the brain and particularly the cerebral cortex are organized in a
distributed and hierarchically ordered manner. For example, the visual system
of primates consists of about 50 areas at about 15 processing stages, where each
area is dedicated to a specific task (Felleman and Van Essen, 1991). On the top
of the hierarchy there are neurons in certain areas representing quite abstract
entities coming close to (T-)symbols. For example, in the medio-temporal lobe
cells have been found that respond in a specific and invariant way to a particular
person, regardless of the stimulus being the person’s face, a cartoon, or the
written name (Quiroga et al., 2005).

There are many neural models (and AI systems) claiming to do object recog-
nition in a similar way (e.g., Riesenhuber and Poggio, 1999; Wersing and Körner,
2003), although performance can not yet be compared to that of the real brain.
The basic principle of a hierarchical object recognition system is illustrated in
Fig. 6, left panel. Processing along the hierarchy usually changes gradually in
two ways: On the one hand, the represented feature quality becomes more and
more specific with increasing hierarchical level (e.g., from basic features to par-
ticular objects). On the other hand, the representations become more and more
invariant against transformations in the sensory space (e.g., translation, scale,



rotation, color, lighting conditions). The first aspect is essentially an AND op-
eration (e.g., an corner consists of a vertical edge AND a horizontal edge), the
second aspect an OR operation (e.g., a feature configuration may occur at one
OR another location as indicated by the pooling in Fig. 6, left panel).
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Fig. 6: Illustration of sign grounding, anchoring or binding. Left : The de-
velopment of invariant abstract (e.g., symbolic) representations implies a non-
invertible mapping between a lower processing stage L and higher stage H (e.g.,
mapping feature configurations at different spatial locations to the same object
label). This complicates adequate grounding, in particular if several objects
are processed at the same time. Middle : To become invertible one needs
further (possibly independent) mappings, e.g., an explicit representation of the
object location. Right : In the presence of several objects, correct bindings
between the higher-level symbols (e.g., object label and location) and grounding
to the lower level features may require additional mechanisms (e.g., temporary
associations).

Thus, such an object recognition system must somehow map or bind, on each
level of the hierarchy, a more abstract representation to particular configurations
of lower level features which may vary significantly. Realizing this in a bottom-
up fashion is straight-forward, for example by means of a multi-layer perceptron
(MLP). However, because of the invariance property (by the OR operation),
this mapping between the two levels is necessarily non-invertible which compli-
cates binding between the two processing levels, in particular for more realistic
scenarios requiring feed-back processing (e.g., dynamical ambiguous scenes with
multiple objects, occlusions, clutter, etc., as well as particular queries referring
to low level sub-symbolic properties of the objects).

The mapping can be made again (almost) invertible by further independent
processing paths explicitely representing the varying factors (e.g., object type
and object location in Fig. 6, middle panel). However, this may lead to a further
binding problem if several objects are processed at the same time: For example
in Fig. 6 (right panel) it is problematic to ground the two objects i and j of
layer H1 in the feature layer L because it may be unclear which object occurs at
which of the two locations k and l represented in layer H2. Implicit binding over
the lower layer L is possible but non-trivial (note that the segregated nodes of
layer L may correspond in fact to distributed overlapping feature configurations).



Neural experimenters and theoreticians have spent a lot of work to investigate
this form of the binding problem, and several explicit solutions have been sug-
gested, for example by spike synchronization and oscillations, rapid reversible
synaptic plasticity, dynamic routing, attention, coarse conjunctive coding (e.g.,
see von der Malsburg, 1999; Shastri and Ajjanagadde, 1993; Treisman, 1998; Mel
and Fiser, 2000; Knoblauch and Palm, 2002).

In summary, it appears that embodiment is very closely linked (if not iden-
tical) to the problems of symbol grounding (Harnad, 1990), symbol anchoring
(Coradeschi and Saffioti, 2003), binding, and invariant recognition in distributed
hierarchical systems. The underlying problem is always the coordination be-
tween the bottom-up and top-down streams of information in a hierarchical
system, which still lacks a satisfactory solution in current artifical systems and
theoretical models.

3 Conclusions

In general I am inclined to accept the major claims of the embodiment propo-
nents, for example that understanding the meaning of a sentence may require
the ability to simulate or predict the situation described by the sentence, or
that meaning is closely related to action and perception (which may cause in-
terference effects as observed in experiments, see Glenberg and Kaschak, 2002;
Rizzolatti et al., 2001; Guillery, 2003). But in contrast to Searle’s Chinese room
argument I see no good reason why implementations on symbolic systems such
as Turing machines or currently available digital computers should not do that
job. Nevertheless, special hardware such as massively parallel neural networks,
although in terms of price, speed, and flexibility still inferior to general purpose
processors, could be of great advantage to this end (e.g., Hammerstrom et al.,
2006).

Also I believe that many so-called symbolists would finally also agree with
these positions, and that probably much of the remaining disagreement results
rather from imprecise definitions about what exactly is a symbol and what is
embodiment. As discussed in section 1.1, it is important here to distinguish
between what I have called T-symbols and S-symbols. The T-symbols are used
by the cognitive system for thinking and communicating, while the S-symbols
may be used to implement the cognitive system (including the T-symbols) on a
symbolic substrate such as a digital computer, Turing machine, or in a neural
network architecture (see sections 2.1 and 2.2). For example, a T-symbol could
be a word for an object, while an S-symbol could be a state of a Turing machine.
Note that this distinction leads to the apparent contradiction that a system can
be both (T-)embodied and (S-)symbolic. This is simply because embodiment in
the sense of “employing systems used both for action and perception” is actually
a high-level property and therefore independent of the implementation substrate.
Thus, any implementation of an embodied system on a digital computing device
must be called (S-) symbolic.

We have also seen that the dichotomy between symbolic and embodied sys-



tems can be problematic. As argued in section 1.2, any cognitive system must
be necessarily both symbolic and embodied. Moreover, defining embodiment by
activity in systems for action and perception implies that being T-embodied is
a rather gradual property: A high-level T-symbol may be embodied more or
less deeply in a hierarchy of perception and action-related subsystems. At least
in the brain there certainly exists such a hierarchy consisting of many different
cortical areas (Felleman and Van Essen, 1991). Understanding a particular sen-
tence of T-symbols will require some but probably not all of these areas. Thus,
one could define the degree of embodiment by the number and hierarchical levels
of such areas necessary for understanding.

For example, for understanding “the grass is yellow” a shallow embodiment
is likely to be sufficient. Here T-symbolic processing may be enough for un-
derstanding which is merely the association of two well-known T-symbols. Of
course, cell assembly theory would anyway predict that in the brain the T-
symbol “yellow” is so familiar that there will be strong synaptic links from
the (T-)symbolic “yellow” subassembly to low sensory neurons representing the
color yellow. Thus, hearing the word “yellow” would inevitably activate those
low level neurons to a certain degree. But I think that here this priming activity
would be rather a side effect of cell assemblies and actually not necessary for
understanding. In a potential experiment one could temporarily deactivate or
disturb a number of low-level visual cortices (e.g., by TMS) while hearing “the
grass is yellow” and one would predict that understanding is still possible.

In contrast, understanding or verifying the sentence “the second house on
the right has seven floors” requires relating several T-symbols to a currently
perceived visual scene which may be represented in a (T-)subsymbolic format
in early visual areas. This process includes identifying the “second house on
the right” among many other buildings and relating the number “seven” to the
floors of the house. Here one would predict that understanding is much more
vulnerable to the deactivation of low-level cortices.

Finally, on-the-fly understanding of sentences such as “the woman crutched
the goalie the ball” containing innovative denominal verbs will probably require
even deeper embodiment including mental simulation of the described situation
at many processing levels (see Glenberg and Kaschak, 2002).

If we accept that embodiment is a gradual property within a processing hi-
erarchy this idea becomes very closely related (if not identical) to long-discussed
concepts and problems such as symbol grounding, symbol anchoring, and fea-
ture binding (see section 2.4). We could give the following (maybe too) simple
definition: A sign or symbol of a higher processing stage H is embodied in (or,
synonymously, grounded in, anchored in, or bound with) the signs or symbols
of a lower processing stage L iff it is possible to establish a one-to-one mapping
between the H signs and L signs.

This definition of embodiment would have several advantages: First, it is a
unified definition for seemingly different but closely related concepts. The defi-
nition remains independent of particular modalities (such as particular percep-
tions, actions, or emotions). Instead it is sufficient to distinguish between higher



and lower processing stages. But we can still say that a symbol X is grounded
in particular action representations Y. And also we can still distinguish shallow
embodied systems from deeply embodied systems where the one-to-one mapping
is established across several processing stages.

However, the term “mapping” may still be underspecified. Unfortunately, I
cannot give a more specific answer, because in my opinion this is one of the un-
solved core problems of current brain models and artificial cognitive systems as
discussed in section 2.4: I.e., the problem of adequately integrating bottom-up
information with top-down expectations is by no means satisfactorily understood
in complex systems consisting of distributed processing hierarchies and capable
of developing increasingly abstract invariant (and finally symbolic) representa-
tions. I believe that the circuitry of the cerebral cortex (see section 2.3) can
tell us a lot of how this integration happens in the brain, and how learning of
abstract categories is linked to action and behavior.
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