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Abstract

The pixel movements in an image sequence grabbed by a cahadrast
mounted on a mobile platform comprise the superpositionegemal mo-
tion components. These motion components are caused bygangotion of
the camera and by the different movements of the objectsisgéme cam-
era. Utilizing sensory information from a calibrated sterig and egomotion
measurements of the mobile platform we develop a probébiframework
that estimates optical flow relative to the visual flow indilibg the egomo-
tion. Despite rapid egomotion changes and a large rangeeffpiovements
the proposed Dynamic Bayesian Network allows to infer thigcapflow in-
duced by moving objects. This is used to segregate movirigithals from
static background while the stereo rig is moving. We presgical flow
and figure-background segmentation results by applyirsggéneral frame-
work to image sequences captured by the humanoid robot ASMAi® he
is walking and observing moving people.

1 Introduction

For humans the visual flow is a very useful source of inforovetd describe the dynamics
of the observed visual scene. It comprises different lemitsotion complexity along the

processing stream starting from low-level attentive maddmas up to detailed motion
analyses, e.g. to classify the movement of specific objexssgssing characteristical
motion patterns.

In this paper, we take advantage of two peculiarities of tisaal flow. On the one
hand, image motion is a dynamic feature of an image sequerttéha longer this spa-
tiotemporal information is observed the more precise ardilee we can estimate and
predict the motion exploiting e.g. spatiotemporal coristsa Therefore, it is natural not
to stick to the visual information within a certain time intel to get an estimation but
applying a proper filtering technique that is able to gergradnfirm and refine motion
hypotheses over time. On the other hand, the visual flow isded by several sources,
like the movement of the observer and the movement of thectshfbat are observed.
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Figure 1: The basic idea of consecutive motion estimatiolewFEomponents that are
induced by the observér and the observed objects are split up to isolate moving
objects.

Normally, this results in a large range of pixel displacetaghat have to be consid-
ered for motion measurement. Together with the inhereniguntl in the measurement
process, e.g. because of the lack of structural informatibject deformations, or illu-

mination changes, the uncertainty of the motion estimaiticneases with the velocity
search range. This is because the generative model assasipti how an image is gen-
erated dependent on temporal preceding images become nreae inadequate with
the increase of pixel displacements between temporal catige frames.

We try to utilize both visual flow aspects 1) tldgnamicsand 2) thesuperposition
of flow components to develop a motion estimation system fooaing platform that is
capable of isolating object induced flow components frometigmotion flow. In case of
rapid ego-movements of a robot while observing moving dbjdike sketched in Fig. 1
a), a separation of the visual flow induced by movements obtjectsl] from the ego-
motion induced flow field, like depicted in Fig. 1 b), has two advantages for desogibin
the dynamics of the scene. First, it decreases the ambiguitye estimation process
because the velocity range that has to be covered to deweighal flow components
is split up into two independent measurements based orreliffesensory information.
Second, we are able to treat temporal integration of thectdbjeduced flow components
independent from the temporal integration of the egomdtaminduced by the observer.

If mobile robots move around in static environment, the projection of the envi-
ronment onto the robot cameras induces a flow field thax@usivelycaused by the
egomotion of the robot and varies with the 3D profile of thensceVisual SLAM [2]
or egomotion computation approaches [8] utilize these dépecies to estimate the pose
of a moving camera and the scene structure usually assuhah@ sparse and temporal
stable set of point-to-point correspondences of statigarfaatures can be extracted. Ad-
ditional sensing of the body movement via proprioceptiombimed with the information
of the visual flow allows for dense depth estimation whichakbex Structure from Motion
[7]. As areverse operation to egomotion-based depth eitimahe expected visual flow
generated by egomotion can be inferred by combining bodyemawt and scene depth
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Figure 2: System overview for sequential refinement of mmogistimation. An egomotion
compensated image sequence is processed by a probabdaticent filter to obtain the
movements of objects.

information using depth cues like e.g. extracted from bitacdisparity [5]. Unfortu-
nately, in most cases the environmenh@t staticbut contains moving objects. These
induce flow field components onto the robots cameras whiclatéefrom the flow field
as it is predicted from egomotion for static scenes. Theegfwe focus on the estimation
of visual flow caused by a combination of egomotion and obfjeat components assum-
ing uncertain probabilistic binocular disparity and optiftow information and confident
deterministic body movement information.

There are already some approaches, e. g. [3, 5, 6], tryingtimate the image flow
of a moving observer including the motion of objects movielgtive to the observer. Ba-
sically, they differ 1) in the accuracy of depth informatighich can be directly measured
or modelled indirectly, e.g. via planar surface assumpgti®dnn whether they apply tem-
poral filtering or not and 3) in whether the estimate is onlpelfor sparse feature points
or all pixels in the image. We are not aware of methods that $@ process into pre-
computing the egomation flow and search for the object floatied to it in combination
with a spatiotemporal filter for dense object flow fields.

To tackle the problem of extracting moving objects and eatintheir optical flow
fields despite egomotion of the observer, we set up a streietsidepicted in Fig. 2, al-
lowing the system to compensate for egomotion effects. Wienate the image flow
induced by egomotion as described in Sec. 2.1 assumingia stanhe by utilizing the
robots kinematics and depth information from binoculapdrity. According to this pre-
dicted flow each image is warped so that we get an egomotiopensated image. The
sequential motion estimation described in Sec. 2.2 thenreaan the basis of compen-
sated images, so that only the relative visual flow is ex#dctVith the continuous image
streams and the compensated images as input data to a recootén estimation system
we are able to extract, integrate and predict the optical ffmuced by moving objects
(separated from the ego-flow) with all the advantages of @distic spatiotemporal fil-
tering. Section 3 provides results of the estimation cdjpiassi of the proposed motion
estimation framework which are shortly discussed in Sec. 4.
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Figure 3: Dynamic Bayesian Network for sequential refinenuémmotion estimation.
The nodes of observed variables are shaded grey, while tibret lzariables are denoted
unshaded. Her¢’, is an abbreviation for+ 1.

2 Dynamic Bayesian Network Model

First of all, the variables and their dependencies giverhbyprobabilistic grapical model
depicted in Fig. 3, which in our case is a Dynamic Bayesianvdet (DBN), are de-
fined. We assume a generative model for the image sequenaesarto rig in canonical
configuration 1Tt andIYTR of T images of the left. and rightR camera both with im-
age range&X at equidistant points in timeas illustrated by the graphical model in Fig. 3
a). The observed variables are the grey value imalgestR € RX at every time slice
t. The hidden variables are 1) the disparity fi@ldwith entriesd! € No, 2) the egomo-
tion flow field E' with entriesé, € R? and 3) the object flowr' with entriesr, € 72,
defined at all pixel locations € N? of the image. All hidden variables refer to the left
camera but for the sake of clarity we neglect the indeXhe egomotion of the left cam-
erais introduced as parameters to the network and givenebgeterministic state vector
s = (T, Ty, T5, Q5. Q), Q)T with the camera translation vecf®t = (T, Ty, ;)T and the
camera rotation angle@' = (Q}, Q! Q)T.

Since the observablét1t is a head-to-headhode with respect to the path froB
to R! it follows from d-separation [1] thaE! andR! are not independent. To reduce
complexity of the model, we approximate the DBN in Fig. 3 aYlg separate networks
shown in Fig. 3 b) and c) that split the computation in one B&ye Network for the
estimation ofE! and one DBN for the estimation & assuming that the maximum apos-
teriori (MAP) estimate of the egomotion flok#} is observable. Further on, we neglect the
temporal transition of the egomotion fl&E'+1|E!) (dashed arrow in Fig. 3 a)) because
the specific egomotion of the humanoid robot ASIMO which we tastest our algorithm
on is rapidly changing while he is walking and therefore afton of the movement is



not straight forward.

2.1 Egomotion Estimation

The network in Fig. 3 b) is precisely defined by the specifigatf 1) the observation
likelihood P(I'R|IVL DY) of a pair of stereo image@'t, 1'R) with their corresponding
disparity fieldD! and 2) the transition probability(E!|D'; ') from the disparity fieldD!
to the egomotion flovE! given the egomotion parametefs We assume the likelihood
P(1%Y) to be a uniform distribution which can be neglected. For kibthobservation
likelihood P(1VR|ItL DY) and the transition probabilitp(E!|D!;s') we assume that they
factorize over the image w.rE! andD! , i.e.,

(ltRlltL Dt I—lf ItRlltL (1)
P(E'|DY; ¢ |‘|P (é]d;s) . 2

This allows us to maintain only factored beliefs o\&r during inference making the
approach computationally practicable. The likelihood suga is defined as

COMRIIEE d) 1= o (IERIMILE  + K, Zp) D 30-G/@AG00) — (3)

For details on the notation and the derivation we refer tortivet subsection 2.2 since
the likelihood measurement in (3) is analogous to the li@d measurement in (12)
with the only difference that it is based on a correspondeneasure between stereo
images(I't, 1'R) instead of a correspondence measure between temporatotiveém-
ageg(It, 1"+14), Using the general mapping from disparity and egomotiomgtmeotion
flow as given in [4] we define the transition probability foetagomotion flow given the
disparity as

P(&|dk:$) = A (&1 (. $), Ze) , 4
Bdx -+ yQ, + xyQx — x2Qy — (P3d! + Q)

t At _ z X Yy~ \Dbf y

ux(dxvst)_< Tzthy XQ, — Xy§2y+yZQx (-It-)Ld +Qy) ) 5)

Here,qdenotes the pixel sizé,the baseline andl the focal length. For the disparity prior
P(dY) := «¢ (d}|0,04) we prefer small disparities to force unreliable measuresieging
far away in depth. Marginalizingd}, we are able to infer the egomotion flow as follows

PENMRIME) O Y (NI, d)P(dy)P(Ed; S) - (6)

dx

Applying the MAP estimate results in the expected egomdtimm
= {&}x = {argmay P(&|I"R,I"H)} . (7)

As long as only the MAP estimaté! and not the whole probabilit(et|ItR,1tL) is
used for further processing the choice Xf does not influence the result and can be
neglected. This saves the marginalization in (6) and regulh direct mapping from the
MAP estimate of the disparit! to E' applying (5).



2.2 Object Motion Filtering

Now we define the network in Fig. 3 ¢) by the specification ohE)¢dbservation likelihood
P(ItFL)It Et,RY) of a pair of consecutive imagél, 1'+1) with their corresponding ego-
motion flowE! and relative object flovR! and 2) the transition probabili§(R!*1|R!) of
the relative object flow. Note, that from now on we neglectitiakexL also for the consec-
utive images. For both the observation likelihaded!+|It, Et,Rt) and theR-transition
probability P(R™*1|R!) we again assume that they factorize over the image but ®RY.t.
andR'™, i.e.,

(|t+1||t Et Rt I—lg |t+1||'[ Et ) (8)
(Rt+l|Rt |—| P t+l|Rt) (9)

The likelihood measure is based on a generative model fdxgtibistic flow field compu-
tation as proposed in [9]. We assume that the likelihoodbfat 1[I, E, r!) of a local
image velocityd, +r! (which is in our case a superposition of egomotion and olfjiee)

should be related to finding a scalk@&nd biasedk image patcﬁxlg(irtx;e& + K centered

aroundx — (r' + &) at timet in the imagd '+ but centered arour] denoted . This
leads to

LGB R = A (GG g g K, 20
~ AT K Z) (10)

x—rk
. 0
Spo=| 1 % |, (11)

A (X' [x,p1)

0

For reasons of computational efficiency, we first warp thegei&' ! backward apply-
ing the estimated egomotion floisf and using bilinear interpolation which results in the
egomotion compensated imafjé!. The functiona’ (X'|x,pr) implements an isotropic
homogeneous Gaussian weighting of the neighborhoagntered around. The pa-
rameterp, defines the spatial range of the image patchescépthe grey value variance
which is assumed to be dependent on positioRollowing the same reasoning as given
in [9], A andk are chosen to always maximize the likelihood with respedhése pa-
rameters. Additionally, the grey value variance for a gralpe at positiorx is chosen to
be a functiono?, 1= a((T™) + A%(I} 1)) +es*(1%) of the variances?(T}!) and
S _y) of the two grey value patchel’,;*1 andl’ _y, that are compared. This leads to
the final likelihood measurement

é(|t+l||t’|§t’r;) [ ef%(lfc}()/(or(lJrC}()Jrs) (12)

)

incorporating the squared weighted empirical correlatiogfficientCl between the ego-
motion compensated grey value paf§;hl andI§Ht (similar to (3)). It ensures minimal
influence on the likelihood accuracy by local chaxnges imilation. Here, the parameter
a defines the noise proportion caused by the projection o@dmera chip ane the
noise proportion that considers the incompleteness of¢hergtive model.



For the definition of the transition probabilig(R"*1|R!) of the relative object flow
we follow the ideas given in [10] by assuming that the relafiow field componenR
transforms according to itself. This means, that a flow werdtd at positionx equals the
previous flow vector;,at positionx’. To obtain this positio’ in the previous image, we
assume that it is inferable from the flow field itself. Bothuasgtions read

N~ (5, 0R) L X~ Al (XX =15, pR) - (13)
Combining the two factors from (13) and integratixigve get

PR O a0 (X x = 1 pR)AC (11, OR) - (14)
XI

We introduced new parametepg and or for the uncertainty in spatial identification
between two images and the transition noise betvRleandR!™2, respectively. The pa-
rameteipg defines the spatial range of a flow-field patch, so we compdoeityevectors
within flow-field patches at different timesandt + 1.

For inference we need to propagate beliefs over the objeetigdd R'. The factored
observation likelihoods and transition probabilitiegaatuced in (8) and (9) ensure that
the forward propagated beliefs

|_:)(R'[|E1.T7 I 1.T+1) _ I_l P(r;lélia | 1I+1) (15)
X

will remain factored. Taking advantage of all the factdima assumptions the belief
propagation assembles to

PISEM LI O A (K x = pr) Y AC(riry t, or)P(ry HEM 1M
X! -1

x/

~ ZN(xﬂx—r;,pR)P(r;?l =riEML ) (16)
X

r

To speed up the computation, we simplified the filtering eiguaapplying the limit
or — 0 and thereby eliminating the sum [ﬁ],“l and the factorm( (r§(|r;71,oR). The fi-
nal inference step is the combination of the propagateétslth the actual observation

using Bayes’ theorem
P EXL IR DTt B )P EM 1) (17)

which can be done in parallel because it is a local operatioevfery locatiorx.

3 Resaults

The experiments are carried out with a Honda ASIMO robot. @bmputation is per-
formed on a Pentium 4 single-core with 3.4 GHz and the image<aptured with a
constant framerate of 12 Hz. The whole scene consists ofrB&fes with an image res-
olution of 150x 200 pixels and was recorded while Asimo was walking forwanchn
S-shaped path, superimposed with a rotation of the bodytadiun the second half.
From the end-point he walked backwards to its starting jmwsiturning his body straight
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Figure 4: Results produced by the proposed motion estimatias shown the sequence
with the area that is processed by the algorithm marked witlnige rectangle (A), the
egomotion flow (B), the object flow (C), the moving objects @)d some corresponding

head movements (E).



forward again. Along the way, two persons crossing sevenad in front of ASIMO and
handle objects in front of him. Once the parameters are choseadaptation to the scene
is needed. The most critical parameters in terms of runtiméree disparity range and
the velocity rang&V which have to cover the minimum depth and the maximum speed of
the objects you want to detect in the scene. The larger tla@gges the higher the compu-
tational costs. We set the parameters as folldws: 50,W = 5 x 21, p; = 3 with a filter
length ofl; =7, py = 5 with afilter length ofy = 11,a = 0.05,¢ = 0.05. Since all filters
are 2D Gaussians they can be separated which results in autatiopal complexity for
the whole algorithm ofO(U 2l X) for the egomotion flow an@®(W2l,X) + O(W2lyX)
for the object flow. In Fig. 4 several snapshots at certaiesitmof the sequence (A), the
egomotion flow (B) and the object flow (C) are presented. Addilly, image segments
(D) are shown that exceed a velocity amplitude of one pixefi@ane in the object flow
field. The egomotion flow results (B) comprise typical motmatterns, e.g. mainly di-
vergent flows { = 35,59) if the robot moves straight ahead or mainly translatiog/l

(t = 280290 484) if the robot swings because of stepping from one foohéodther or
rotates his head. In Fig. 4 (E) some components of the heaémets are shown, like
the velocity in x- and z-directiom, andv, and the angular velocity about the y-axig.
As long as the egomotion measurements are correct and tiiietpre assumptions of the
filter hold the object flow results (C) indicate what kind of vements the objects carry
out in front of the robot. As depicted in (D) object movemetike e.g. walking persons,
or body parts of persons handling objects, like e.g. arms beaextracted. The results
have been computed offline with a framerate of 3 Hz using amiged C implementa-
tion. With a reduced velocity range @f = 25 we achieve realtime performance with a
framerate of 12 Hz (which was the capturing framerate of dgpience).

4 Conclusion

The proposed motion estimation system allows for a separati egomotion flow and
object flow. Beside some minor errors mainly because of widisgarity measurements
in the stereo algorithm we achieve quite smooth object flolddjewvhich is not the case
without spatiotemporal filtering. Nevertheless, problearise if the egomotion flow is
wrong or imprecise. Both, disparity and the optical flow meaments become unreli-
able at object boundaries because the underlying generatidel cannot handle overlap-
ping regions. In order to improve the existing algorithnoaise egomotion flow should
be spatiotemporally filtered. However, if the camera movasiare rapidly changing a
prediction of the movement s difficult to realize.

The presented algorithm can serve as a good starting po&iti@pplications, like 2D
segmentation and/or 3D-motion estimation of moving olsjekt particular, we consider
an active visual scene tracking system by setting up a ddotip that tries to compen-
sate the movement of segregated objects and fulfills smestheonstraints on the robot
movements.
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