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Abstract—We present a method for learning potential-based
policies from constrained motion data. In contrast to prevous
approaches to direct policy learning, our method can combie ob-
servations from a variety of contexts where different constints
are in force, to learn the underlying unconstrained policy h form
of its potential function. This allows us to generalise and pedict
behaviour where novel constraints apply. As a key ingredien we
first create multiple simple local models of the potential, ad align
those using an efficient algorithm. We can then detect and disird
unsuitable subsets of the data and learn a global model from a
cleanly pre-processed training set. We demonstrate our appach
on systems of varying complexity, including kinematic datafrom
the ASIMO humanoid robot with 22 degrees of freedom.

I. INTRODUCTION
- - . -Fig. 1. ASIMO humanoid robot (left) and VRML rendering of ankimati-
A wide variety of everyday human skills can be framed i ally and dynamically accurate simulation model (right).

terms of performing some task subject to constraints imgose )
by the physical environment. Examples include opening Rioduced the movement under the constraint [5]. However we
door, pulling out a drawer or stirring soup in a saucepan. Will show that despite these theoretical limits it is stidgsible

In a more generic setting, constraints may take a mué find a good approximation of the underlying policy given
wider variety of forms. For example, in climbing a ladderobservations under the right conditions. We take advant@ge
the constraint may be on the centre of mass or the tilt of tfi@cent work in local dimensionality reduction [6] to propos
torso of the climber to prevent over-balancing. Alternalyyin  Method that (i) given observations under a sufficiently seh
problems that involve control of contacts such as manipgat ©f constraints reconstructs the fully unconstrained oli@)
objects, the motion of fingers is constrained by the preser@¥en observations under an impoverished set of constraint
of the object [1]. In systems designed to be highly competel§@ns a policy that generalises well to constraints of dlam
and adaptive, such as humanoid robots (Fig. 1), behavidl@ss. and; (i) given ‘pathological’ constraints willdm a
may be subject to a wide variety of constraints [2], usualljolicy that at worst reproduces behaviour subject to theesam
non-linear in actuator space and often discontinuous. idens ¢onstraints. Our algorithm is fast, robust and scales toptexn
running on uneven terrain: The leg movements of the runn@igh-dimensional movement systems. Furthermore it cah dea
are constrained by the impact of the feet on the ground invdth constraints that are botton-linear and discontinuous in

dynamic, discontinuous and unpredictable way. time and space.
The focus in this paper is on modelling control policies 0
subject to a certain class of constraints on motion, with the ) i i )
aim of finding policies that camgeneralise between different Follc_)wmg_ [_3], we consider the learning of autonomous kine-
constraints. We take a direct policy learning approach (DPLinatic policies
[3] yvhereby we attempt to learn non-parametric models .of the x(t) = w(x(t)) x:R" — R", 1)
policy from motion data (e.g. from human demonstrations).
While DPL has been studied for a variety of control problemgherex € IR" is some appropriatelychosen state-space and
in recent years (for a review, see [4] and references thgreit ¢ IR™ is the desired change in state. The goal of DPL is
crucially these problems involvednconstrained policies or to approximate the policy (1) as closely as possible [3]slt i
policies subject tddentical constraints in every observation usually formulated as a supervised learning problem whtere i
(in which case the constraints can be absorbed into tleassumed that we have observationsc@f), x(¢) (often in
policy itself). The difference here is that we consider abse
vations from policies subject to a set of dynamic, non-linea it should be noted that in all DPL approaches the choice désipace
constraints, and that these consiraints may change betwedlier, speei 5 o, hen tsed or ialon eanercs o
observations, Or_ even du”ng Fhe cour_se of an obs_ervatl ish toeli%c;n the policy a human demonstrator uses tb wasmdomfl? and
In general, learning (unconstrained) policies from caaigted transfer that behaviour to an imitator robot, an approprizioice ofx would
motion data is @ formidable task. This is due to @n- b fhe canesan coorinates of 1 e, 1o conesponceuert efectr
convexity of _Obsewat'ons mducgd by th_e_ constraints, and; ('ggaces, for example if demonstrator and imitator have réiffeemb%diments,
degeneracy in the set of possible policies that could haves also possible by defining appropriate state-action wefi].

. PROBLEM FORMULATION



Fig. 2. lllustration of two apparently different behavisufrom the same
policy: (a) unconstrained movement (b) movement constdhisuch that the
fingertip maintains contact with a surface (black box) (@ tinconstrained
(red) and constrained (black) policy over two joints of thegér.

the form of trajectories), and from these we wish to lea
the mappings. In previous work this has been done b
fitting parametrised models in the form of dynamical syste
[8], non-parametric modelling [9], and probabilistic Bajan
approaches [10].

Consider now learning a simple policy to extend a jointe,

finger under variable constraints, such as when differestasb
cles lie in the path of the finger. In Fig. 2(a) the finger is u

constraints (wheré < n)

Ax, )% =0 @)

the policy is projected into the nullspace of those constsai
X(t) = N(x, t)w(x(t)) @)

whereA (x,t) e IRF*™ is some (rankk) matrix describing the
constraintN(x,¢)=(I—- ATA) € R™*" is in general a non-
linear, time-varying projection operator adds IR"*" is the
identity matri¥. Constraints of the form (2) commonly occur
in interactions with solid objects, e.g. when manipulatiogls
[1], [11] and are also common in the control of redundant
degrees of freedom (DOFs) in high-dimensional manipusator
[12], [13]. As an example: Settind to the Jacobian that maps
from joint-space to end-effector position allows any motin
joint-space provided that the end-effector remains statip

If the policy is constrained (2)-(3), the best policy refnes
tation of the movements is the unconstrained poftcysince
this is givesmaximal information about the behaviour. Know-

fthg =, or finding a good approximation of it, we can generalise
Yover constraints (cf. Fig. 2(a)-(b)) simply by applying the
Mfesired constraint. However, learning the unconstrairwity

from observations of constrained movement is a non-trivial
task due to two analytical restrictions on what information

n be recovered from the available data: The problems of
non-convexity and degeneracy [5].

N~ The non-convexity problem comes from the fact that be-

constrained and the policy simply moves the joints towan@s ty,can observations, or even during an observation, cantgra

zero (outstretched) position. On the other hand, in Fig),2(
an obstacle lies in the path of the finger, constraining ithsd t

k?nay change. For example in Fig. 2(c) any given observation

may come from the set of constrained (black) or unconstcaine

it moves along the surface. The vector field representatfon (ed) vectors. At any given point ix there may be multiple

the two behaviours is shown in Fig. 2(c).

observationsx under the different constraints. This causes

Given this learning task, the standard approach to DR},ohlems for supervised leaming algorithms, for example

would be to perform regression on the vector field produc

gfrrectly training on these observations may result in model

in the two settings [3], [8]. This would mean that, assumingveragmg_
the observations were labelled with respect to the comdtral 1o degeneracy problem stems from the fact that for any

(position and orientation of the obstacle), one could learn

given constrained observation, there exist multiple pedic

(separate) policy model for each of the settings. Clearly thyai could have produced the movement. This is due to the
is unsatisfactory since each model would only be valid f‘Hr jection eliminating components of the unconstraineitpo

the specific setting, and we would need increasing numbersQi: 4re orthogonal to the image &%

models given observations under new constraints (e.gereifit
obstacles at different positions and orientations).

However, on closer inspection, we can avoid the need f

multiple policy models, by making two observations. Firstl

(x,t) so that they
are undetermined by the observation. In effect we are not
iven sufficient information about the unconstrained potiz
gﬁarantee that it is fully reconstructed.
However, despite these restrictions, we wish to do the best

we notice that some features of the policy are consisteft can with the data available. In this paper we propose a

across observed trajectories (here, the goal of the movemehethod to deal with these problems, for the important specia
— ‘extend the finger — appear similar). Secondly, one cglj;qq ofpotential-based policies.

see that in different trajectories the movementrastricted

in different ways (here, contact with the obstacle prevenBs Potential-based Policies
the finger from moving in certain directions). Based on thesg potential-based policy is defined as the gradient of a scala

observations then, we might reasonably suppose that the-m
ment stems from somsingle underlying policy and that this
policy has been sampled unddifferent constraints. Viewed
like this, instead of learning separate policies for eactje
constraint, we would rather learn a policy thygheralises over
constraints.

A. Constraint Model

Hotential functionp(x)

m(x) = —Vx¢(x). (4)

Such policies can be thought of as greedily optimising the
potential function at every time step [14] and thus encode
attractor landscapes where the minima of the potential cor-
respond to stable attractor points; in the finger example, th

In I_thIS p:aper, t\)Ne explore_ the bproblem hOf dDPL When the 2Throughout the papek denotes the identity matrix of appropriate dimen-
policy under observation Is subject to hard constraintS Q@y, andAt denotes the (unweighted) Moore-Penrose pseudoinverseeof t

motion. Mathematically, we say given a set/eflimensional

matrix A.



x = 0 point would correspond to such a minimum. Other ex- Note that an arbitrary constant can be added to the poten-
amples include reaching movements which may be representiadl function without changing the policy. Therefore, ‘bt

by a potential, defined in hand space, with a minimum at tip@tentials that we estimate along different trajectoriegch
target. Furthermore decision-based behaviours may bededcoto be aligned in a way that their function value matches
as potentials with multiple minima. For example the decisidn intersecting regions. We turn to this problem in the next
of a which hand to use for reaching may be represented bgction.

a potential with two minima, one corresponding to reaching

with the right hand, the other to reaching with the left. Th8. Constructing the global potential function

hand used would then be determined by relative offset of th@t us assume we have trajectoriesX ,=(xy1, Xz2 - . - Xt )

minima (e.g. right-handedness would imply a lower minimumy, ¢ responding point-wise estimates of the potentiak
for that hand). Potential-based policies are also eXteI}GIV(QBkl,QBkQ...qgka), as provided from the Euler integration just

uslefd gor nuII_I-spacS congol of redundant mqnilpglato(gs.[l4] described. In a first step, we fit a function mogg(x) of the
the policy under observation is potential-based, an b oo™t oo ch tupldX,. &), such thatf(x) ~ du

egant solution to solving the non-convexity and degener e, to keep things simple, we use nearest-neighbour (NN)
problems is to model the policyjgotential function [5] rather regre’ssion ig 9 Pi€, 9

than modelling it directly. The advantage of this is twofold
Firstly, under the projection operatd¥(x,t) the potential-
based policy (4) can be locally estimated using numerical li i _ .
integration [5]. Secondly, the potential function is a acal Since we wish to combine the models to a global potential
function and thus gives a compact representation of theyolifunction, we need to define some function for weighting the
This means that the non-convexity problem of reconcilingutputs of the different models. For the NN algorithm, we
conflicting n-dimensional vector observations is reduced teaclulate responsibilitieg; (x) using Gaussian kernels, i.e.,
finding a functiong(x) where the {-dimensional) prediction wy (x)

is consistent at any given poist ar(x) = =% : 9)

> i wi(x)
I1l. L EARNING NULLSPACE POLICIES THROUGH LOCAL ]
MODEL ALIGNMENT wi(X) = exp f_Qmin||X7in||2 ) (10)
A. Estimating the potential along single trajectories 20%

As has been described in [5], it is possible to model theading to a (naive) global prediCtiqf(X)ZZleQk(X)fk(X)

potential along sampled trajectories using a form of lingf the potential at. However, as already stated, the potential
integration. We assume that we have recorded trajectorigsonly defined up to an additive constant, and most impor-
x(t),%x(t) of lengthT" sampled at some sampling ral¢dt tantly this constant can vary from one local model to another

Je(x) = P, i" = argm}nHX — xpi||%. (8)

Hz. This results in a tuple of poinX; = xj1,...,Xk, st  This means that we first have to shift the models by adding
for each trajectory, which, for sufficiently high samplingte, someoffset to their estimates of the potential, such that all
are related through the linear approximation local models arén good agreement about the global potential

(5) at any number of states.
Fortunately, a similar problem has already been tackled
Using (5) we can integrate along trajectories using an apr the literature: In the field of non-linear dimensionality
propriate numerical integration scheme. An example of sugduction, Verbeek et al. have shown how to align multiple
a scheme is Euler integration, which involves the first ordéscal PCA models into a common low-dimensional space [6].
approximation In particular, they endowed each local PCA model with an
1 additional affine mappingy (z)=Az+b, which transformed
d(xiv1) = d(xi) + E(Xi-&-l —x;)"N;Vx¢(x;). (6) the coordinatesz, of a data pointwithin the k-th PCA
model into the desired global coordinate system. The aathor

Since_ the _effect of_ the time constadt is simply_ to scale_ 6] retrieved the parameters of the optimal mappirgsby
the discretised policy vectors, we can neglect it by scali inimising the objective function

time units such thavt = 1. This comes with the proviso

Xi+1 R X; + ot N5,

that for implementation on the imitator robot, the learnt 1L EE 9
policy may need to be scaled back to ensure the correct time B = D) Z Z Z TrmTjm ||8rm — jml|”, (11)
correspondence is kept. For steps— x;,1 that follow the m=1k=1j=1

projected policy (3) we can rearrange (5) with the scale®timynere o, denotes the coordinate of the-th data vector,
coordinates, and substitute into (6) to yield as mapped through thé-th PCA model, andge.. is the

D(xit1) ~ d(x) — || xip1 — xi]|%, (7) corresponding responsibility of that model. The objectia

i i ] easily be interpreted as the ‘disagreement’ between any two

where the negative sign reflects our assumption (as exptesgfydels, summed up over all data points, and weighted by the
in (4)) that attractors are minima of the potential. We usgsponsibilities of two models each. That is, the disagesem
this approximation to generate estimatés;) of the potential for any combination ofn, k& and j only really counts, if the
along any given trajectory;, x2 ... x in the following way: responsibility of both thé-th and thej-th model is sufficiently
We setg; = ¢(x1) to an arbitrary value and then iterativelyhigh for the particular query point.
assigng;+1 := ¢; — ||xi+1 — x;||? for the remaining points in  In analogy to the PCA-alignment method [6], we augment
the trajectory. our local potential modelgy () by a scalar offseli;, and define



the corresponding objective function as be poor, and this becomes a problem when using the output of
the optimisation (15) to learn a global model of the potédntia

M K K
1 To avoid interference, we only include trajectories if we ar
By ...bx) =5 > qu (m)q; (%m) x sure that their offset is consistent with the rest of the data
m=1k=1j=1 Fortunately, outliers in this sense can be detected automat

((fe(xm) +br) — (fj(xm) +bj))2, (12) ically by looking for small eigenvalues dfi: In the same

. . way as adding the same offset to all trajectories leads to

or, in a slightly shorter form, a zero eigenvalue, further very small eigenvalues and the
1 9 corresponding eigenvectors indicate indifference towaad

E(b) =5 > @km@m (fom + bk = fim — ;)" (13) ghift of some subset of trajectories versus the rest of the
mk,j set. In practice, we look for eigenvaluas< 10~%, and use

Here,S"  denotes a summation over the complete data sé¢/écursive bi-partitioningalgorithm in a way that is very
that is, over all points from all trajectories — Zde No). similar to spectral clustering. We then discard all trageiets

Using the symmetry ifj < k and>", qun — 1, we Spht (13) apart from those in the largest ‘connected’ group.
into terms that are constant, linear, or quadratié;nyielding D. Learning the global model

E(b) = Ey + 2a”b + b Hb. (14) After calculating optimal offsetd,,; and cleaning the data
set from outliers, we can learn a global modélk) of the
Here, we introduced, as a shortcut for the terms independergotential using any regression algorithm. Here, we choase L
of b, the vectora € R with elementsy;, = > m @m Jrm —  cally Weighted Projection Regression (LWPR) [15] becatise i
> . @m@jm fim, @nd the Hessian matrid € R**¥ with  performs well in cases where the data lies on low-dimensiona
elementshy; = 6,53, Gim — ., Gim@im- The objective manifolds in a high-dimensional space, which matches our
function is quadratic irb, so we retrieve the optimal solutionproblem of learning the potential from a set of trajectariés
by setting the derivatives to zero, which yields the equatidhe training data for LWPR, we use all non-outlier trajeier
Hb = —a. and their estimated potentials as given by the Euler integra
However, note that a common shift of all offséts does plus their optimal offset, that is, the input-output tuples

not change the objective (12), which corresponds to the A opt
shift-invariance of the global potential. Therefore, thector {(anv¢kn +07) [ keknedl.. ~Nk}} ; (16)
(1,1,...,1)T spans the nullspace &, and we need to use

the pseudo-inverse @ to calculate the optimal offset vectorWhereXC denotes the set of indices of non-outlier trajectories.

Once we have learnt the mod¢l(x) of the potential, we
bopt = _Hta. (15) can take derivatives to estimate the unconstrained policy

o 7(x) = —Vxf(x). For convenience, the complete procedure
Compared to aligning PCA models, the case we handle hgge&summarised in Algorithm 1.

is simpler in the sense that we only need to optimise for scala

offsetsb;, instead of affine mappings. On the other hand, oug orithm 1 PolicyAlign

local potential models are non-linear, have to be estimated’ =

from relatively little data, and therefore do not extrapela 1: EstimateXy, ®,,{k = 1... K} using Euler integration.

well, as will be discussed in the following section. 2: Alignment:
. . . « Calculate prediction and responsibility of each local
C. Over-smoothing and Outlier Detection model f, on each data point,,, m = 1...M:
Since we restrict ourselves to using simple NN regression Jrem = [k(Xm)s @em = Wk (Xm)/ D, wi(xm)
for the local potential models in this paper, the only open « ConstructH, a with elements
parameter of our algorithm ig2, i.e., the kernel parameter hij = 055 > Qim — Do QimQim
used for calculating the responsibilities (9). Too largéhaice ag =Y 0 Gem fem — Do ; QkmQjm fim
of this parameter will over-smooth the potential, becaume t « Find optimal offsetsh,,; = —H'a

NN regression model basically predicts a locally constan
potential, but at the same time trajectories will have reddy
high responsibilities for even far apart pointsn state space.
On the other hand, too small a value ®f might lead to
weakly connected trajectories: If a particular trajectory does
not make any close approach to other trajectories in the set, IV. EXPERIMENTS
the quick drop-off of its responsibility implies that it wWihot To explore the performance of our algorithm, we performed
contribute to the alignment error (based on pairs of sigatfic experiments on data from autonomous kinematic contro} poli
responsibility), which in turn implies that its own alignmte- cies [3] applied to different plants, including the whole body
the value of its offset — does not matter much. motion controller (WBM) of the humanoid robot ASIMO [2].
The same reasoning applies to groups of trajectories teat &m this section, we first discuss results from an artificigl to
close to each other, but have little connection to the rest of
the set. For the remainder of the paper, we will refer to such®Partitioning the set into separate groups can be stoppedasas there
trajectories as ‘outliers’, since like in classical stitis we 'S fg.'y O”tehzem"f'gfe{‘r:’a'“e left. . o validate th o
need to remove these from the training st If their influencg, Scs b 2,01 SSTments wes lovaldate the prebepprasch
on the overall alignment is negligible, their own alignmeah paper we apply our method to human motion capture data.

L. Discard outliers H eigenvalues) < 10‘?).
4: Train global model on data tuple$xy,, ¢, + bzpt)




problem controlled according to the same generic framework
to illustrate the key concepts. We then discuss an examplt,
scenario in which the algorithm is used to enable ASIMO ¢,
learn a realistic bi-manual grasping task from observatioh
a constrained demonstrator. Finally we briefly discuss how o 1|
algorithm scales to policies in very high dimensional syste |
such as the 22 DOF of the ASIMO WBM controller [2]. '

A. Selection of smoothing parameter

For simplicity, in all our experiments we used the samé’
heuristics for selecting the smoothing parametérto match .|
the scale of typical distances in the data sets. In particu;
lar, we first calculated the distances between any two tray
jectories k,j € {1...K} as the distances between their_ [
closest pointsdy; = min{||xp, —Xjm||? | n,me{l...N}},
and also the distances to the closest trajectdfy” = (&)
min {dy; | j # k}.We then consider three choices for,
which we refer to as ‘narrow’, ‘wide’ and ‘medium’:

i
2 _ — GO, 00
JZW med?an {dy, | ke{l...K}} ‘ (17) \\“‘Mmﬂ p W “‘“‘8‘\‘:::::::0:0::::‘?,,’, p
o..qs = median {djk | j,kef{l...K},j# k} (18) . \ \\‘\“\““‘““’g‘q“ofég[l;%/ \\w&\“\,‘”ww%%
A 7 \ Yl
Ufned =V U'r%ar Uz;id' (19) \ N ;5';‘5% 7 ‘Q‘W“"n 4
\"\;"Hz',z':fs N m /
B. Toy Example { B 20 ‘ ‘ N
The toy example consists of a two-dimensional system with a \\ == //
policy defined by a quadratic potential, subject to discanti @ ? \//

ously switching constraints. Specifically, the potentl i
Fig. 3. Top: (a) Toy data (trajectories (2-D) and contour roetpotential.

=(x —x.)TW(x — 20
¢(X) (X XC) (X XC) (20) Estimated potential along the trajectories before (b) &itet €c) alignment.
i ivhti ; i Trajectories detected as difficult to align ‘outliers’ ateos/n by light crosses.
where W is . a square we!ghtlng matnx_ which we set t ottom: Learnt (d) and true (e) potential function afteiirtiag on the aligned
0.05I andx, is a vector defining the location of the attractofrajectories.

point, here chosen to bg. = 0. Data was collected by

; : : ; d need to be discarded before learning the global model.
recording trajectories generated by the policy from a st ; .
state distributionX,. During the trajectories the policy wasa%?na”y' Fig. 3(d) shows the global modg(x) of the potential

subjected to random constraints that was trair]ed on the aligned trajector!es, which is tyear _
good approximation of the true parabolic potential shown in
A(x,t) = (a1,02) =« (21) Fig. 3(e). For a more thorough evaluation, we repeated this
experiment on 100 data sets and evaluated
« the nMSE of the aligned potential, which measures the
difference betweewy,, + by and the true potentiab,

where thea; » were drawn from a normal distributiony; =
N(0,1). The constraints mean that motion is constrained in the

direction orthogonal to the vecter in state space. To increase
the complexity of the problem, the constraints were rangoml
switched during trajectories by re-samplingtwice at regular
intervals during the trajectory. This switches the direatin
which motion is constrained as can be seen by sharp turns in
the trajectories. Figure 3 shows an example of our algorihm
work for a set of K =40 trajectories of lengthV =40 for the

toy system. The raw data as a set of trajectories through the

« the nMSE of the learnt potential, measuring the difference

betweenf(-) and¢(-),

« the normalised unconstrained policy error (hUPE), quan-

tifying the difference betweetr=V f andw=V¢,

« the normalised constrained policy error (nCPE), which is

the discrepancy betwedN#« and N, and finally

» the percentage of trajectories discarded as outliers

a subsample of the data held out for testing. We did so

two-dimensional state space is shown in panel (a), wher
panel (b) additionally depicts the local potential modeds
estimated from the Euler integration prior to alignmentcla
local model has an arbitrary offset against the true paaénti
so there are inconsistencies between the predictions feai e
local model. Figure 3(c) shows the trajectories after atfignt, X .
already revealing the structure of the parabola. tra_JI_ecbtlonles of lengthv " 100 folr eaI(::_h dlata set. hat th
At this point, the outlier detection scheme has identified 'da’ eh ;um:cnar|séels t de reSL; ts. Firstly, wel can S?}?;} at the
three trajectories as being weakly connected to the remgini V'd€ choice for o~ leads to large eg‘%r values which are
set. In Fig. 3(a) we can see that the outliers are indeed tiye oflU€ [0 Over-smoothing. Using the narrow, we retnev_e_‘;/gy
trajectories that do not have any intersection with neigiipg small errors at the cost of discarding quite a lot of trajeess,
traJeCto_”eS- At the ‘narrow’ length scale determ_med by th 5Please note that we discard the outliers both for training ewaluating
smoothing parameter (17), they are hard to align properlyie error statistics.

or our three different choices af? given in (17-19). We also
repeated the experiment using a sinusoidal potential immct

¢s(x) = 0.1sin(z1) cos(z2) (22)
with the same amount of data, and then usilig= 100



Setup o? Alignment nMSE | Potential NMSE nUPE nCPE Discarded (%)
Parabola | narrow | 0.0047 £0.0026 | 0.0052 +0.0024 | 0.0486 £+ 0.0211 | 0.0235 £ 0.0092 | 17.55 £+ 15.96
K =40 medium | 0.0204 +0.0211 | 0.0195 £ 0.0203 | 0.0859 + 0.0486 | 0.0224 £ 0.0074 0.48 £1.11
N =40 wide 0.3542 +0.1089 | 0.3143 £0.1045 | 0.5758 +0.2726 | 0.1135 £ 0.0371 0+0

Sinusoidal | narrow | 0.0017 & 0.0022 | 0.0026 £ 0.0019 | 0.1275 4+ 0.1125 | 0.0535 £ 0.0353 | 50.18 & 14.37
K =40 medium | 0.0534 +0.0647 | 0.0522 £ 0.0645 | 0.1399 £ 0.0422 | 0.0376 £ 0.0097 1.03 +£3.99
N =40 wide 0.6259 +0.1330 | 0.5670 £0.1363 | 0.8373 +0.2188 | 0.2464 £ 0.0638 0+0

Sinusoidal | narrow | 0.0005 £ 0.0002 | 0.0014 £ 0.0004 | 0.0657 & 0.0142 | 0.0308 £ 0.0065 | 25.46 + 11.42
K =100 | medium | 0.0011 4+ 0.0017 | 0.0019 4 0.0017 | 0.0628 £ 0.0089 | 0.0284 + 0.0044 1.25+3.33
N =100 wide 0.2892 £ 0.1198 | 0.2137 £0.1000 | 0.4262 £ 0.1367 | 0.1554 £ 0.0483 0+0

TABLE |
ERROR AND OUTLIER STATISTICYMEAN=+STD.DEV. OVER 100DATA SETS) FOR THE EXPERIMENT ON2-D TOY DATA.

and the medium choice seems to strike a reasonable balance
especially with respect to the nUPE and nCPE statistics.

Secondly, when comparing the results for the parabolic and
sinusoidal potentials, we can see that the latter, more mp
potential (with multiple sinks) requires much more datatiwi
only 40 trajectories and 40 points each, most of the data sets
are too disrupted to learn a reasonable potential modelléNhi
at the narrow length scale (4th row), on average more th&n hal
of the data set is discarded, even the medium length scdle (5t
row) over-smooths the subtleties of the underlying poténti

Finally, the nCPE is always lower than the nUPE, which
follows naturally when training on data containing thoseyve
constraints. Still, with a reasonable amount of data, eten t
unconstrained policy is modelled with remarkable accuracyrig, 4. Experimental set-up for the ball grasping experim&tarting with

hands at the sides, the teacher robot reaches between tledhtr grasp the
C. Grasping a Ball ball.
The two goals of our second set of experiments were (i) to
characterise how well the algorithm scaled to more compl
realistic constraints and policies and (ii) to assess how wi
the learnt policies generalised over different constrifor ) b
this we set up a demo scenario in which a set of trajectoriﬁé. corresponds to the default standing position) and calcu-
demonstrating the task of reaching for a ball on a table wef@nd the hand positions using forward kinematics. Thefgoi
given. Furthermore, it was assumed that trajectories wefgctorq was clipped where necessary to avoid joint limits and
recorded in contexts where different constraints appiigse ¢t collisions. _ _
goal was to uncover a policy that both accurately reproducedVe used our algorithm to perform learning 66 such data
the demonstrated behaviour and generalised to novel dsntéS€ts using the ‘narrow’ choice of smoothing parameterFor
with unseen constraints. comparison, we also repeated the experiment on the same data

For this, we set up an ‘expert’ demonstrator from whichSing @ naive approach that leart: x —x € R" — IR™ by
observations were recorded. For ease of comparison with ff@aining directly on the tuplegx;, X;),i = 1,... K x N using
2-D system, the expert's policy was defined by the sa PR. This is in contrast to the proposed alignment scheme
quadratic potential (20) this time with the target poiat where we learn the 1-dimensional potential function and use
corresponding to a grasping position, with the two handge grad_lent of the Iearnt_functlon_as the policy predl.c,t|on
positioned on either side of the ball. The state-space of theFor this task, our algorithm achieved a very low alignment
policy was defined as the Cartesian position of the two han@§for of 6.95+0.09x10~* and an nMSE in the learnt potential
corresponding to 6 DOFs in state and action space (hereafﬁ:_fr?.85:|:0.56 x 10~* with 0.48 £0.84% trajectories d|scarded_
the ‘task space’). The task space policy motion was realisé@eants.d. over 50 data sets). In Table Il we give the errors in
using the ASIMO WBM controller (see [2] for details). predicting the policy subject to (i) the training data coastts,

The policy was constrained by placing barriers on the tabf#) no constraints, and (iii) a novel, unseen constraiwt: fie
between the robot and the ball, so that the robot had to red@Her. a barrier was placed centrally between the robotthed
through a gap in the barriers to get the ball. These acted Ral, so the robot had to reach around the barrier to grasp it.
constraints on the hands restricting motion in the directio The remarkably low alignment error can be attributed to the
normal to the barrier surface if a hand came too close (dfct that in most of the observations grasping was achieved
[16]). The constraints are nonlinear in the state space asiccessfully despite the constraints forcing the handske t
have discontinuously switching dimensionality when thedsa alternative routes to the ball. This meant many of the ttajec
approach or recede from the barriers. The constraints weies closely approached the minimum of the potential, mgkin
varied by randomly changing the width of the gap for eacthe alignment easier around this point. This is furthercatiéd
trajectory. The gap widths were sampled from a distributiopy the low percentage of trajectories discarded.
dgap ~ N(fgaps Ogap) Where pige, = 0.25m, og4qp = 0.1m The key result, however, can be seen by examining the
and the diameter of the ball was15m. Fig. 4 shows the policy errors (ref. Table II). Comparing the two approaches
experimental set-up. both achieve a similar nCPE, with the naive approach in fact

Data was collected by recording = 100 trajectories of
hgth NV = 100. Start states were sampled from a Gaussian
distribution over joint configurationg ~ N (qo, 0.1I) (where



the smoothing parameter the algorithm achieved an alighmen
error of 1.6 £ 0.3 x 1073, an nMSE in the learnt potential
of 1.5+ 0.4 x 1073, nCPE 0f0.0654 & 0.0140 and nUPE of
0.1568 + 0.0474, with just 0.02 + 0.14% of the trajectories
discarded. We consider this to be remarkably good perfor-
mance given the high dimensionality of the input space and
the relatively small size of the data set.

V. CONCLUSION

We have proposed a novel approach to direct learning of
potential-based policies from constrained motion datar Ou
method is fast and data-efficient, and it scales to complex
constraints in high-dimensional movement systems. The cor
ingredient is an algorithm for aligning local models of the
potential, which leads to a convex optimisation problem.
Under the analytical limitations of what can be learnt in
this setting, our method performs remarkably well. Given an

Naive
m— Align.
= = = Expert

1

Fig. 5. Unconstrained reaching movement of the expert pdlidack) and
policies learnt with the naive approach (green) alignmégorghm (red).

Constraint Naive PolicyAlign h . . . .

Training 0.1298 £ 0.0113 | 0.1691 £ 0.0289 impoverished set of motion observations from a patholdgica
Unseen Barrier| 0.5108 +0.0327 | 0.2104 +0.0357 set of constraints, one can never hope to recover the fully
Unconstrained | 0.8766 £ 0.0589 | 0.2277 &+ 0.0386

unconstrained policy. However, using our method, moticiada
under different constraints can be combined to learn a piaten
that is consistent with the observations. With a reasonably
rich set of constraints, we can recover the policy with high

. . . accuracy, and we can generalise to predict behaviour under
performing slightly better. This indicates that the two huats differentyconstraints. 9 P

both do equally well in modelling the constrained movements ok is currently ongoing to transfer our results to the

to approximately the same level of accuracy. However, Whe\s|nmo hardware and also to apply our method to learning
comparing the errors for the unconstrained policy, and thgy 1, human motion capture data.

policy subject to the unseen constraint, a different pe&tur
emerges. Using the model learnt by the alignment approach,
the unconstrained policy predictions, and the predictiomder
the unseen constraint, maintain a similar level of erroriat t
of the constrained policy. In stark contrast to this, theveai [2]
approach fares very poorly, with a large jump in error when
predicting the policy under the new barrier constraint angs)
predicting the unconstrained behaviour.

This difference is highlighted if we compare trajectories[4]
generated by the two policies. In Fig. 5 example unconsthin
reaching trajectories produced by the expert (black), dved t [5] , _ r, "R II-spap
policies learnt by (i) the naive approach (green), and (ii) ;‘éﬁﬁféstgn‘éy&ﬁgng?éc%gf'”ts In redundant manipegtin W.S
the alignment approach (red) are shown. In the former thg] J. Verbeek, S. Roweis, and N. Vlassis, “Non-linear CCAd aPCA
hands take a curved path to the ball, reproducing the average by alignment of local models,” idv. Neural Information Processing
behaviour of the demonstrated (constrained) trajectoeridse 7] ?f“ﬂfgf&?ﬁlhsl C. Nehaniv, and K. Dautenhahn, “Cependence
naive method is unable to extract the underlying task (gplic mapping induced state and action metrics for robotic iriaitgt |EEE
from the observed paths around the obstacles. Consequ'(antly8 ;raps- ?/Sen 'Bfla’r\llaif;?] ig}]'ibe;gzticss gglha3a7| ‘pféafhiﬁp;ﬂ%%—é%gggOgé
cannot generalls_e and find It_S way aro_und the unseen bamer'[ ] for JIeglrnin’g motor primifives," inAdv. Netral Inforrrglation Procn%
contrast, the policy learnt with the alignment approacheret Systems, 2003.
predicts the unconstrained policy, enabling it to take @datir [9] j Egég{ls csg(;;r gfh\?;lyz“liearniq% 7t020102ntr§(|)(i)% opernaticpace,nt.
route to the ball that closely matches that of the expert. [10] D. Grimes, D. Rashid, and I’?.plglao, “Learn'ing nohparaitnmodels for

probabilistic imitation,” inAdv. Neural Information Processing Systems,
2007.

TABLE I
CONSTRAINED POLICY NMVSE FOR UNSEEN CONSTRAINTS ON THE
BALL -GRASPING TASK VALUES ARE MEAN=£S.D. OVER 50 DATA SETS.
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