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Abstract—We present a method for learning potential-based
policies from constrained motion data. In contrast to previous
approaches to direct policy learning, our method can combine ob-
servations from a variety of contexts where different constraints
are in force, to learn the underlying unconstrained policy in form
of its potential function. This allows us to generalise and predict
behaviour where novel constraints apply. As a key ingredient, we
first create multiple simple local models of the potential, and align
those using an efficient algorithm. We can then detect and discard
unsuitable subsets of the data and learn a global model from a
cleanly pre-processed training set. We demonstrate our approach
on systems of varying complexity, including kinematic datafrom
the ASIMO humanoid robot with 22 degrees of freedom.

I. I NTRODUCTION

A wide variety of everyday human skills can be framed in
terms of performing some task subject to constraints imposed
by the physical environment. Examples include opening a
door, pulling out a drawer or stirring soup in a saucepan.

In a more generic setting, constraints may take a much
wider variety of forms. For example, in climbing a ladder,
the constraint may be on the centre of mass or the tilt of the
torso of the climber to prevent over-balancing. Alternatively, in
problems that involve control of contacts such as manipulating
objects, the motion of fingers is constrained by the presence
of the object [1]. In systems designed to be highly competent
and adaptive, such as humanoid robots (Fig. 1), behaviour
may be subject to a wide variety of constraints [2], usually
non-linear in actuator space and often discontinuous. Consider
running on uneven terrain: The leg movements of the runner
are constrained by the impact of the feet on the ground in a
dynamic, discontinuous and unpredictable way.

The focus in this paper is on modelling control policies
subject to a certain class of constraints on motion, with the
aim of finding policies that cangeneralise between different
constraints. We take a direct policy learning approach (DPL)
[3] whereby we attempt to learn non-parametric models of the
policy from motion data (e.g. from human demonstrations).
While DPL has been studied for a variety of control problems
in recent years (for a review, see [4] and references therein),
crucially these problems involvedunconstrained policies or
policies subject toidentical constraints in every observation
(in which case the constraints can be absorbed into the
policy itself). The difference here is that we consider obser-
vations from policies subject to a set of dynamic, non-linear
constraints, and that these constraints may change between
observations, or even during the course of an observation.
In general, learning (unconstrained) policies from constrained
motion data is a formidable task. This is due to (i)non-
convexity of observations induced by the constraints, and; (ii)
degeneracy in the set of possible policies that could have

Fig. 1. ASIMO humanoid robot (left) and VRML rendering of a kinemati-
cally and dynamically accurate simulation model (right).

produced the movement under the constraint [5]. However we
will show that despite these theoretical limits it is still possible
to find a good approximation of the underlying policy given
observations under the right conditions. We take advantageof
recent work in local dimensionality reduction [6] to propose a
method that (i) given observations under a sufficiently richset
of constraints reconstructs the fully unconstrained policy; (ii)
given observations under an impoverished set of constraints
learns a policy that generalises well to constraints of a similar
class, and; (iii) given ‘pathological’ constraints will learn a
policy that at worst reproduces behaviour subject to the same
constraints. Our algorithm is fast, robust and scales to complex
high-dimensional movement systems. Furthermore it can deal
with constraints that are bothnon-linear anddiscontinuous in
time and space.

II. PROBLEM FORMULATION

Following [3], we consider the learning of autonomous kine-
matic policies

ẋ(t) = π(x(t)) , π : IRn 7→ IRn, (1)

wherex∈ IRn is some appropriately1 chosen state-space and
ẋ ∈ IRn is the desired change in state. The goal of DPL is
to approximate the policy (1) as closely as possible [3]. It is
usually formulated as a supervised learning problem where it
is assumed that we have observations ofẋ(t), x(t) (often in

1It should be noted that in all DPL approaches the choice of state-space
is problem specific [3] and, when used for imitation learning, depends on
the correspondence between demonstrator and imitator. For example if we
wish to learn the policy a human demonstrator uses to wash a window, and
transfer that behaviour to an imitator robot, an appropriate choice ofx would
be the Cartesian coordinates of the hand, to correspond to the end-effector
coordinates of the robot. Transfer of behaviour across non-isomorphic state
spaces, for example if demonstrator and imitator have different embodiments,
is also possible by defining appropriate state-action metrics [7].
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Fig. 2. Illustration of two apparently different behaviours from the same
policy: (a) unconstrained movement (b) movement constrained such that the
fingertip maintains contact with a surface (black box) (c) the unconstrained
(red) and constrained (black) policy over two joints of the finger.

the form of trajectories), and from these we wish to learn
the mappingπ. In previous work this has been done by
fitting parametrised models in the form of dynamical systems
[8], non-parametric modelling [9], and probabilistic Bayesian
approaches [10].

Consider now learning a simple policy to extend a jointed
finger under variable constraints, such as when different obsta-
cles lie in the path of the finger. In Fig. 2(a) the finger is un-
constrained and the policy simply moves the joints towards the
zero (outstretched) position. On the other hand, in Fig. 2(b),
an obstacle lies in the path of the finger, constraining it so that
it moves along the surface. The vector field representation of
the two behaviours is shown in Fig. 2(c).

Given this learning task, the standard approach to DPL
would be to perform regression on the vector field produced
in the two settings [3], [8]. This would mean that, assuming
the observations were labelled with respect to the constraint
(position and orientation of the obstacle), one could learna
(separate) policy model for each of the settings. Clearly this
is unsatisfactory since each model would only be valid for
the specific setting, and we would need increasing numbers of
models given observations under new constraints (e.g. different
obstacles at different positions and orientations).

However, on closer inspection, we can avoid the need for
multiple policy models, by making two observations. Firstly,
we notice that some features of the policy are consistent
across observed trajectories (here, the goal of the movements
– ‘extend the finger’ – appear similar). Secondly, one can
see that in different trajectories the movement isrestricted
in different ways (here, contact with the obstacle prevents
the finger from moving in certain directions). Based on these
observations then, we might reasonably suppose that the move-
ment stems from somesingle underlying policy and that this
policy has been sampled underdifferent constraints. Viewed
like this, instead of learning separate policies for each specific
constraint, we would rather learn a policy thatgeneralises over
constraints.

A. Constraint Model

In this paper, we explore the problem of DPL when the
policy under observation is subject to hard constraints on
motion. Mathematically, we say given a set ofk-dimensional

constraints (wherek < n)

A(x, t)ẋ = 0 (2)

the policy is projected into the nullspace of those constraints

ẋ(t) = N(x, t)π(x(t)) (3)

whereA(x, t)∈IRk×n is some (rank-k) matrix describing the
constraint,N(x, t)≡(I−A†A) ∈ IRn×n is in general a non-
linear, time-varying projection operator andI ∈ IRn×n is the
identity matrix2. Constraints of the form (2) commonly occur
in interactions with solid objects, e.g. when manipulatingtools
[1], [11] and are also common in the control of redundant
degrees of freedom (DOFs) in high-dimensional manipulators
[12], [13]. As an example: SettingA to the Jacobian that maps
from joint-space to end-effector position allows any motion in
joint-space provided that the end-effector remains stationary.

If the policy is constrained (2)-(3), the best policy represen-
tation of the movements is the unconstrained policyπ, since
this is givesmaximal information about the behaviour. Know-
ing π, or finding a good approximation of it, we can generalise
over constraints (cf. Fig. 2(a)-(b)) simply by applying the
desired constraint. However, learning the unconstrained policy
from observations of constrained movement is a non-trivial
task due to two analytical restrictions on what information
can be recovered from the available data: The problems of
non-convexity anddegeneracy [5].

The non-convexity problem comes from the fact that be-
tween observations, or even during an observation, constraints
may change. For example in Fig. 2(c) any given observationẋ
may come from the set of constrained (black) or unconstrained
(red) vectors. At any given point inx there may be multiple
observationsẋ under the different constraints. This causes
problems for supervised learning algorithms, for example
directly training on these observations may result in model-
averaging.

The degeneracy problem stems from the fact that for any
given constrained observation, there exist multiple policies
that could have produced the movement. This is due to the
projection eliminating components of the unconstrained policy
that are orthogonal to the image ofN(x, t) so that they
are undetermined by the observation. In effect we are not
given sufficient information about the unconstrained policy to
guarantee that it is fully reconstructed.

However, despite these restrictions, we wish to do the best
we can with the data available. In this paper we propose a
method to deal with these problems, for the important special
class ofpotential-based policies.

B. Potential-based Policies

A potential-based policy is defined as the gradient of a scalar
potential functionφ(x)

π(x) = −∇xφ(x). (4)

Such policies can be thought of as greedily optimising the
potential function at every time step [14] and thus encode
attractor landscapes where the minima of the potential cor-
respond to stable attractor points; in the finger example, the

2Throughout the paperI denotes the identity matrix of appropriate dimen-
sion andA† denotes the (unweighted) Moore-Penrose pseudoinverse of the
matrix A.



x = 0 point would correspond to such a minimum. Other ex-
amples include reaching movements which may be represented
by a potential, defined in hand space, with a minimum at the
target. Furthermore decision-based behaviours may be encoded
as potentials with multiple minima. For example the decision
of a which hand to use for reaching may be represented by
a potential with two minima, one corresponding to reaching
with the right hand, the other to reaching with the left. The
hand used would then be determined by relative offset of the
minima (e.g. right-handedness would imply a lower minimum
for that hand). Potential-based policies are also extensively
used for null-space control of redundant manipulators [14].

If the policy under observation is potential-based, an el-
egant solution to solving the non-convexity and degeneracy
problems is to model the policy’spotential function [5] rather
than modelling it directly. The advantage of this is twofold.
Firstly, under the projection operatorN(x, t) the potential-
based policy (4) can be locally estimated using numerical line
integration [5]. Secondly, the potential function is a scalar
function and thus gives a compact representation of the policy.
This means that the non-convexity problem of reconciling
conflicting n-dimensional vector observations is reduced to
finding a functionφ̂(x) where the (1-dimensional) prediction
is consistent at any given pointx.

III. L EARNING NULLSPACE POLICIES THROUGH LOCAL
MODEL ALIGNMENT

A. Estimating the potential along single trajectories

As has been described in [5], it is possible to model the
potential along sampled trajectories using a form of line
integration. We assume that we have recorded trajectories
x(t), ẋ(t) of length T sampled at some sampling rate1/δt
Hz. This results in a tuple of pointsXk = xk,1, . . . ,xk,Tδt

for each trajectory, which, for sufficiently high sampling rate,
are related through the linear approximation

xi+1 ≈ xi + δtNiπi. (5)

Using (5) we can integrate along trajectories using an ap-
propriate numerical integration scheme. An example of such
a scheme is Euler integration, which involves the first order
approximation

φ(xi+1) ≈ φ(xi) +
1

δt
(xi+1 − xi)

TNi∇xφ(xi). (6)

Since the effect of the time constantδt is simply to scale
the discretised policy vectors, we can neglect it by scaling
time units such thatδt = 1. This comes with the proviso
that for implementation on the imitator robot, the learnt
policy may need to be scaled back to ensure the correct time
correspondence is kept. For stepsxi → xi+1 that follow the
projected policy (3) we can rearrange (5) with the scaled time
coordinates, and substitute into (6) to yield

φ(xi+1) ≈ φ(xi) − ‖xi+1 − xi‖
2, (7)

where the negative sign reflects our assumption (as expressed
in (4)) that attractors are minima of the potential. We use
this approximation to generate estimatesφ̂(xi) of the potential
along any given trajectoryx1,x2 . . .xN in the following way:
We setφ̂1 = φ̂(x1) to an arbitrary value and then iteratively
assignφ̂i+1 := φ̂i −‖xi+1 −xi‖

2 for the remaining points in
the trajectory.

Note that an arbitrary constant can be added to the poten-
tial function without changing the policy. Therefore, ‘local’
potentials that we estimate along different trajectories need
to be aligned in a way that their function value matches
in intersecting regions. We turn to this problem in the next
section.

B. Constructing the global potential function

Let us assume we haveK trajectoriesXk=(xk1,xk2 . . .xkNk
)

and corresponding point-wise estimates of the potentialΦ̂k=
(φ̂k1, φ̂k2 . . . φ̂kNk

), as provided from the Euler integration just
described. In a first step, we fit a function modelfk(x) of the
potential to each tuple(Xk, Φ̂k), such thatfk(xi) ≈ φ̂ki.
Here, to keep things simple, we use nearest-neighbour (NN)
regression, i.e.,

fk(x) = Φki∗ , i∗ = argmin
i

‖x− xki‖
2. (8)

Since we wish to combine the models to a global potential
function, we need to define some function for weighting the
outputs of the different models. For the NN algorithm, we
caclulate responsibilitiesqk(x) using Gaussian kernels, i.e.,

qk(x) =
wk(x)

∑K
i=1

wi(x)
, (9)

wk(x) = exp

[

−
1

2σ2
min

i
‖x− xki‖

2

]

. (10)

leading to a (naive) global predictionf(x)=
∑K

k=1
qk(x)fk(x)

of the potential atx. However, as already stated, the potential
is only defined up to an additive constant, and most impor-
tantly this constant can vary from one local model to another.
This means that we first have to shift the models by adding
someoffset to their estimates of the potential, such that all
local models arein good agreement about the global potential
at any number of statesx.

Fortunately, a similar problem has already been tackled
in the literature: In the field of non-linear dimensionality
reduction, Verbeek et al. have shown how to align multiple
local PCA models into a common low-dimensional space [6].
In particular, they endowed each local PCA model with an
additional affine mappinggk(z)=Akz+bk, which transformed
the coordinateszk of a data pointwithin the k-th PCA
model into the desired global coordinate system. The authors
[6] retrieved the parameters of the optimal mappingsgk by
minimising the objective function

E =
1

2

M
∑

m=1

K
∑

k=1

K
∑

j=1

qkmqjm‖gkm − gjm‖2, (11)

where gkm denotes the coordinate of them-th data vector,
as mapped through thek-th PCA model, andqkm is the
corresponding responsibility of that model. The objectivecan
easily be interpreted as the ‘disagreement’ between any two
models, summed up over all data points, and weighted by the
responsibilities of two models each. That is, the disagreement
for any combination ofm, k and j only really counts, if the
responsibility of both thek-th and thej-th model is sufficiently
high for the particular query point.

In analogy to the PCA-alignment method [6], we augment
our local potential modelsfk(·) by a scalar offsetbk and define



the corresponding objective function as

E(b1 . . . bK) =
1

2

M
∑

m=1

K
∑

k=1

K
∑

j=1

qk(xm)qj(xm) ×

((fk(xm) + bk) − (fj(xm) + bj))
2
, (12)

or, in a slightly shorter form,

E(b) =
1

2

∑

m,k,j

qkmqjm (fkm + bk − fjm − bj)
2 . (13)

Here,
∑

m denotes a summation over the complete data set,
that is, over all points from all trajectories (M =

∑K

k=1
Nk).

Using the symmetry inj ↔ k and
∑

k qkn = 1, we split (13)
into terms that are constant, linear, or quadratic inbk, yielding

E(b) = E0 + 2aTb + bTHb. (14)

Here, we introducedE0 as a shortcut for the terms independent
of b, the vectora ∈ IRK with elementsak =

∑

m qkmfkm −
∑

m,j qkmqjmfjm, and the Hessian matrixH ∈ IRK×K with
elementshij = δij

∑

m qjm −
∑

m qimqjm. The objective
function is quadratic inb, so we retrieve the optimal solution
by setting the derivatives to zero, which yields the equation
Hb = −a.

However, note that a common shift of all offsetsbk does
not change the objective (12), which corresponds to the
shift-invariance of the global potential. Therefore, the vector
(1, 1, . . . , 1)T spans the nullspace ofH, and we need to use
the pseudo-inverse ofH to calculate the optimal offset vector

bopt = −H†a. (15)

Compared to aligning PCA models, the case we handle here
is simpler in the sense that we only need to optimise for scalar
offsetsbk instead of affine mappings. On the other hand, our
local potential models are non-linear, have to be estimated
from relatively little data, and therefore do not extrapolate
well, as will be discussed in the following section.

C. Over-smoothing and Outlier Detection

Since we restrict ourselves to using simple NN regression
for the local potential models in this paper, the only open
parameter of our algorithm isσ2, i.e., the kernel parameter
used for calculating the responsibilities (9). Too large a choice
of this parameter will over-smooth the potential, because the
NN regression model basically predicts a locally constant
potential, but at the same time trajectories will have relatively
high responsibilities for even far apart pointsx in state space.

On the other hand, too small a value ofσ2 might lead to
weakly connected trajectories: If a particular trajectory does
not make any close approach to other trajectories in the set,
the quick drop-off of its responsibility implies that it will not
contribute to the alignment error (based on pairs of significant
responsibility), which in turn implies that its own alignment –
the value of its offset – does not matter much.

The same reasoning applies to groups of trajectories that are
close to each other, but have little connection to the rest of
the set. For the remainder of the paper, we will refer to such
trajectories as ‘outliers’, since like in classical statistics we
need to remove these from the training set: If their influence
on the overall alignment is negligible, their own alignmentcan

be poor, and this becomes a problem when using the output of
the optimisation (15) to learn a global model of the potential.
To avoid interference, we only include trajectories if we are
sure that their offset is consistent with the rest of the data.

Fortunately, outliers in this sense can be detected automat-
ically by looking for small eigenvalues ofH: In the same
way as adding the same offset to all trajectories leads to
a zero eigenvalue, further very small eigenvalues and the
corresponding eigenvectors indicate indifference towards a
shift of some subset of trajectories versus the rest of the
set. In practice, we look for eigenvaluesλ < 10−8, and use
a recursive bi-partitioning3 algorithm in a way that is very
similar to spectral clustering. We then discard all trajectories
apart from those in the largest ‘connected’ group.

D. Learning the global model

After calculating optimal offsetsbopt and cleaning the data
set from outliers, we can learn a global modelf(x) of the
potential using any regression algorithm. Here, we choose Lo-
cally Weighted Projection Regression (LWPR) [15] because it
performs well in cases where the data lies on low-dimensional
manifolds in a high-dimensional space, which matches our
problem of learning the potential from a set of trajectories. As
the training data for LWPR, we use all non-outlier trajectories
and their estimated potentials as given by the Euler integration
plus their optimal offset, that is, the input-output tuples

{

(xkn, φ̂kn + bopt
k ) | k ∈ K, n ∈ {1 . . .Nk}

}

, (16)

whereK denotes the set of indices of non-outlier trajectories.
Once we have learnt the modelf(x) of the potential, we
can take derivatives to estimate the unconstrained policy
π̂(x) = −∇xf(x). For convenience, the complete procedure
is summarised in Algorithm 1.

Algorithm 1 PolicyAlign

1: EstimateXk, Φ̂k, {k = 1 . . .K} using Euler integration.
2: Alignment:

• Calculate prediction and responsibility of each local
modelfk on each data pointxm, m = 1 . . .M :

fkm = fk(xm); qkm = wk(xm)/
∑

i wi(xm)
• ConstructH,a with elements

hij = δij

∑

m qjm −
∑

m qimqjm

ak =
∑

m qkmfkm −
∑

m,j qkmqjmfjm

• Find optimal offsetsbopt = −H†a

3: Discard outliers (H eigenvalues,λ < 10−8).
4: Train global model on data tuples(xkn, φ̂kn + bopt

k )

IV. EXPERIMENTS

To explore the performance of our algorithm, we performed
experiments on data from autonomous kinematic control poli-
cies [3] applied4 to different plants, including the whole body
motion controller (WBM) of the humanoid robot ASIMO [2].
In this section, we first discuss results from an artificial toy

3Partitioning the set into separate groups can be stopped as soon as there
is only one zero-eigenvalue left.

4Since the goal of the experiments was to validate the proposed approach,
we used policies known in closed form as a ground truth. In thefollow-up
paper we apply our method to human motion capture data.



problem controlled according to the same generic framework
to illustrate the key concepts. We then discuss an example
scenario in which the algorithm is used to enable ASIMO to
learn a realistic bi-manual grasping task from observations of
a constrained demonstrator. Finally we briefly discuss how our
algorithm scales to policies in very high dimensional systems
such as the 22 DOF of the ASIMO WBM controller [2].

A. Selection of smoothing parameter

For simplicity, in all our experiments we used the same
heuristics for selecting the smoothing parameterσ2 to match
the scale of typical distances in the data sets. In particu-
lar, we first calculated the distances between any two tra-
jectories k, j ∈ {1 . . .K} as the distances between their
closest pointsdkj = min

{

‖xkn−xjm‖2 | n, m∈{1 . . .N}
}

,
and also the distances to the closest trajectorydmin

k =
min {dkj | j 6= k} .We then consider three choices forσ2,
which we refer to as ‘narrow’, ‘wide’ and ‘medium’:

σ2
nar = median

{

dmin
k | k ∈ {1 . . .K}

}

(17)

σ2
wid = median

{

djk | j, k ∈ {1 . . .K}, j 6= k
}

(18)

σ2
med =

√

σ2
narσ

2
wid. (19)

B. Toy Example

The toy example consists of a two-dimensional system with a
policy defined by a quadratic potential, subject to discontinu-
ously switching constraints. Specifically, the potential is

φ(x) = (x − xc)
T W(x − xc) (20)

where W is a square weighting matrix which we set to
0.05I andxc is a vector defining the location of the attractor
point, here chosen to bexc = 0. Data was collected by
recording trajectories generated by the policy from a start
state distributionX0. During the trajectories the policy was
subjected to random constraints

A(x, t) = (α1, α2) ≡ α (21)

where theα1,2 were drawn from a normal distribution,αi =
N(0, 1). The constraints mean that motion is constrained in the
direction orthogonal to the vectorα in state space. To increase
the complexity of the problem, the constraints were randomly
switched during trajectories by re-samplingα twice at regular
intervals during the trajectory. This switches the direction in
which motion is constrained as can be seen by sharp turns in
the trajectories. Figure 3 shows an example of our algorithmat
work for a set ofK =40 trajectories of lengthN =40 for the
toy system. The raw data as a set of trajectories through the
two-dimensional state space is shown in panel (a), whereas
panel (b) additionally depicts the local potential models as
estimated from the Euler integration prior to alignment. Each
local model has an arbitrary offset against the true potential
so there are inconsistencies between the predictions from each
local model. Figure 3(c) shows the trajectories after alignment,
already revealing the structure of the parabola.

At this point, the outlier detection scheme has identified
three trajectories as being weakly connected to the remaining
set. In Fig. 3(a) we can see that the outliers are indeed the only
trajectories that do not have any intersection with neighbouring
trajectories. At the ‘narrow’ length scale determined by the
smoothing parameter (17), they are hard to align properly,
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Fig. 3. Top: (a) Toy data (trajectories (2-D) and contour of true potential.
Estimated potential along the trajectories before (b) and after (c) alignment.
Trajectories detected as difficult to align ‘outliers’ are shown by light crosses.
Bottom: Learnt (d) and true (e) potential function after training on the aligned
trajectories.

and need to be discarded before learning the global model.
Finally, Fig. 3(d) shows the global modelf(x) of the potential
that was trained on the aligned trajectories, which is clearly a
good approximation of the true parabolic potential shown in
Fig. 3(e). For a more thorough evaluation, we repeated this
experiment on 100 data sets and evaluated

• the nMSE of the aligned potential, which measures the
difference between̂φkn + bk and the true potentialφ,

• the nMSE of the learnt potential, measuring the difference
betweenf(·) andφ(·),

• the normalised unconstrained policy error (nUPE), quan-
tifying the difference between̂π=∇f andπ=∇φ,

• the normalised constrained policy error (nCPE), which is
the discrepancy betweenNπ̂ andNπ, and finally

• the percentage of trajectories discarded as outliers
on a subsample of the data held out for testing. We did so
for our three different choices ofσ2 given in (17-19). We also
repeated the experiment using a sinusoidal potential function

φs(x) = 0.1 sin(x1) cos(x2) (22)

with the same amount of data, and then usingK = 100
trajectories of lengthN = 100 for each data set.

Table I summarises the results. Firstly, we can see that the
‘wide’ choice for σ2 leads to large error values which are
due to over-smoothing. Using the narrowσ2, we retrieve very
small errors at the cost of discarding quite a lot of trajectories5,

5Please note that we discard the outliers both for training and evaluating
the error statistics.



Setup σ
2 Alignment nMSE Potential nMSE nUPE nCPE Discarded (%)

Parabola narrow 0.0047 ± 0.0026 0.0052 ± 0.0024 0.0486 ± 0.0211 0.0235 ± 0.0092 17.55 ± 15.96

K = 40 medium 0.0204 ± 0.0211 0.0195 ± 0.0203 0.0859 ± 0.0486 0.0224 ± 0.0074 0.48 ± 1.11

N = 40 wide 0.3542 ± 0.1089 0.3143 ± 0.1045 0.5758 ± 0.2726 0.1135 ± 0.0371 0 ± 0

Sinusoidal narrow 0.0017 ± 0.0022 0.0026 ± 0.0019 0.1275 ± 0.1125 0.0535 ± 0.0353 50.18 ± 14.37

K = 40 medium 0.0534 ± 0.0647 0.0522 ± 0.0645 0.1399 ± 0.0422 0.0376 ± 0.0097 1.03 ± 3.99

N = 40 wide 0.6259 ± 0.1330 0.5670 ± 0.1363 0.8373 ± 0.2188 0.2464 ± 0.0638 0 ± 0

Sinusoidal narrow 0.0005 ± 0.0002 0.0014 ± 0.0004 0.0657 ± 0.0142 0.0308 ± 0.0065 25.46 ± 11.42

K = 100 medium 0.0011 ± 0.0017 0.0019 ± 0.0017 0.0628 ± 0.0089 0.0284 ± 0.0044 1.25 ± 3.33

N = 100 wide 0.2892 ± 0.1198 0.2137 ± 0.1000 0.4262 ± 0.1367 0.1554 ± 0.0483 0 ± 0

TABLE I
ERROR AND OUTLIER STATISTICS(MEAN±STD.DEV. OVER 100DATA SETS) FOR THE EXPERIMENT ON2-D TOY DATA .

and the medium choice seems to strike a reasonable balance
especially with respect to the nUPE and nCPE statistics.

Secondly, when comparing the results for the parabolic and
sinusoidal potentials, we can see that the latter, more complex
potential (with multiple sinks) requires much more data. With
only 40 trajectories and 40 points each, most of the data sets
are too disrupted to learn a reasonable potential model. While
at the narrow length scale (4th row), on average more than half
of the data set is discarded, even the medium length scale (5th
row) over-smooths the subtleties of the underlying potential.

Finally, the nCPE is always lower than the nUPE, which
follows naturally when training on data containing those very
constraints. Still, with a reasonable amount of data, even the
unconstrained policy is modelled with remarkable accuracy.

C. Grasping a Ball

The two goals of our second set of experiments were (i) to
characterise how well the algorithm scaled to more complex,
realistic constraints and policies and (ii) to assess how well
the learnt policies generalised over different constraints. For
this we set up a demo scenario in which a set of trajectories
demonstrating the task of reaching for a ball on a table were
given. Furthermore, it was assumed that trajectories were
recorded in contexts where different constraints applied.The
goal was to uncover a policy that both accurately reproduced
the demonstrated behaviour and generalised to novel contexts
with unseen constraints.

For this, we set up an ‘expert’ demonstrator from which
observations were recorded. For ease of comparison with the
2-D system, the expert’s policy was defined by the same
quadratic potential (20) this time with the target pointxc

corresponding to a grasping position, with the two hands
positioned on either side of the ball. The state-space of the
policy was defined as the Cartesian position of the two hands,
corresponding to 6 DOFs in state and action space (hereafter,
the ‘task space’). The task space policy motion was realised
using the ASIMO WBM controller (see [2] for details).

The policy was constrained by placing barriers on the table
between the robot and the ball, so that the robot had to reach
through a gap in the barriers to get the ball. These acted as
constraints on the hands restricting motion in the direction
normal to the barrier surface if a hand came too close (cf.
[16]). The constraints are nonlinear in the state space and
have discontinuously switching dimensionality when the hands
approach or recede from the barriers. The constraints were
varied by randomly changing the width of the gap for each
trajectory. The gap widths were sampled from a distribution
dgap ∼ N(µgap, σgap) where µgap = 0.25m, σgap = 0.1m
and the diameter of the ball was0.15m. Fig. 4 shows the
experimental set-up.

Fig. 4. Experimental set-up for the ball grasping experiment. Starting with
hands at the sides, the teacher robot reaches between the barriers to grasp the
ball.

Data was collected by recordingK = 100 trajectories of
length N = 100. Start states were sampled from a Gaussian
distribution over joint configurationsq∼N(q0, 0.1I) (where
q0 corresponds to the default standing position) and calcu-
lating the hand positions using forward kinematics. The joint
vectorq was clipped where necessary to avoid joint limits and
self collisions.

We used our algorithm to perform learning on50 such data
sets using the ‘narrow’ choice of smoothing parameterσ2. For
comparison, we also repeated the experiment on the same data,
using a naive approach that learntπ̂ : x→ ẋ∈ IRn 7→ IRn by
training directly on the tuples(xi, ẋi), i = 1, . . .K ×N using
LWPR. This is in contrast to the proposed alignment scheme
where we learn the 1-dimensional potential function and use
the gradient of the learnt function as the policy prediction.

For this task, our algorithm achieved a very low alignment
error of 6.95±0.09×10−4 and an nMSE in the learnt potential
of 7.85±0.56×10−4 with 0.48±0.84% trajectories discarded
(mean±s.d. over 50 data sets). In Table II we give the errors in
predicting the policy subject to (i) the training data constraints,
(ii) no constraints, and (iii) a novel, unseen constraint. For the
latter, a barrier was placed centrally between the robot andthe
ball, so the robot had to reach around the barrier to grasp it.

The remarkably low alignment error can be attributed to the
fact that in most of the observations grasping was achieved
successfully despite the constraints forcing the hands to take
alternative routes to the ball. This meant many of the trajecto-
ries closely approached the minimum of the potential, making
the alignment easier around this point. This is further indicated
by the low percentage of trajectories discarded.

The key result, however, can be seen by examining the
policy errors (ref. Table II). Comparing the two approaches,
both achieve a similar nCPE, with the naive approach in fact
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Fig. 5. Unconstrained reaching movement of the expert policy (black) and
policies learnt with the naive approach (green) alignment algorithm (red).

Constraint Naive PolicyAlign
Training 0.1298 ± 0.0113 0.1691 ± 0.0289

Unseen Barrier 0.5108 ± 0.0327 0.2104 ± 0.0357

Unconstrained 0.8766 ± 0.0589 0.2277 ± 0.0386

TABLE II
CONSTRAINED POLICY NMSE FOR UNSEEN CONSTRAINTS ON THE

BALL -GRASPING TASK. VALUES ARE MEAN±S.D. OVER 50 DATA SETS.

performing slightly better. This indicates that the two methods
both do equally well in modelling the constrained movements
to approximately the same level of accuracy. However, when
comparing the errors for the unconstrained policy, and the
policy subject to the unseen constraint, a different picture
emerges. Using the model learnt by the alignment approach,
the unconstrained policy predictions, and the predictionsunder
the unseen constraint, maintain a similar level of error to that
of the constrained policy. In stark contrast to this, the naive
approach fares very poorly, with a large jump in error when
predicting the policy under the new barrier constraint and
predicting the unconstrained behaviour.

This difference is highlighted if we compare trajectories
generated by the two policies. In Fig. 5 example unconstrained
reaching trajectories produced by the expert (black), and the
policies learnt by (i) the naive approach (green), and (ii)
the alignment approach (red) are shown. In the former the
hands take a curved path to the ball, reproducing the average
behaviour of the demonstrated (constrained) trajectories– the
naive method is unable to extract the underlying task (policy)
from the observed paths around the obstacles. Consequently, it
cannot generalise and find its way around the unseen barrier.In
contrast, the policy learnt with the alignment approach better
predicts the unconstrained policy, enabling it to take a direct
route to the ball that closely matches that of the expert.

D. Learning from high-dimensional ASIMO data

In our final set of experiments we tested the scalability
of our approach for learning in very high dimensions. For
this we again used the quadratic potential (20) where now
the state vectorx corresponded to the 22-dimensional joint
configuration of the upper body of the ASIMO robot. In
this experiment, the policy was constrained such that hands
of the robot were restricted to lie on a plane of random
orientation. Such constraints occur in a variety of surface
contact behaviours, for example when wiping windows [1].

We ran the experiment on 50 data sets ofK = 100
trajectories of lengthN = 100. Using the narrow setting of

the smoothing parameter the algorithm achieved an alignment
error of 1.6 ± 0.3 × 10−3, an nMSE in the learnt potential
of 1.5 ± 0.4 × 10−3, nCPE of0.0654± 0.0140 and nUPE of
0.1568 ± 0.0474, with just 0.02 ± 0.14% of the trajectories
discarded. We consider this to be remarkably good perfor-
mance given the high dimensionality of the input space and
the relatively small size of the data set.

V. CONCLUSION

We have proposed a novel approach to direct learning of
potential-based policies from constrained motion data. Our
method is fast and data-efficient, and it scales to complex
constraints in high-dimensional movement systems. The core
ingredient is an algorithm for aligning local models of the
potential, which leads to a convex optimisation problem.

Under the analytical limitations of what can be learnt in
this setting, our method performs remarkably well. Given an
impoverished set of motion observations from a pathological
set of constraints, one can never hope to recover the fully
unconstrained policy. However, using our method, motion data
under different constraints can be combined to learn a potential
that is consistent with the observations. With a reasonably
rich set of constraints, we can recover the policy with high
accuracy, and we can generalise to predict behaviour under
different constraints.

Work is currently ongoing to transfer our results to the
ASIMO hardware and also to apply our method to learning
from human motion capture data.
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