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Combination of EDA and DE for Continuous
Biobjective Optimization

Aimin Zhou, Qingfu Zhang, Yaochu Jin and Bernhard Sendhoff

Abstract— The Pareto front (set) of a continuous optimization
problem with m objectives is a(m − 1) dimensional piecewise
continuous manifold under some mild conditions. Based on this
property in the decision space, we have recently developed several
multiobjective estimation of distribution algorithms. However,
the property in the objective space has not yet utilized. In this
paper, a simple EDA is proposed to model the Pareto front
in the objective space for guiding the selection procedure and
model building procedure the in decision space. Since the location
information is ignored in EDAs, a combination of EDA and
DE is suggested for improving the algorithmic performance.
Experimental results has shown that the algorithm with the
proposed strategy is very promising.

I. I NTRODUCTION

We consider the following continuous multiobjective opti-
mization problem (MOP):

minimize F (x) = (f1(x), . . . , fm(x))T (1)

subject to x ∈ X

whereX =
n
∏

i=1

[xi, xi] ⊂ Rn is the decision space andx =

(x1, . . . , xn)T ∈ Rn is the decision variable vector.F : X →
Rm consists ofm real-valued continuous objective functions
fi(x) (i = 1, . . . , m). Rm is the objective space.

Since the objectives of a MOP usually conflict with each
other, no single solution can minimize all the objectives
simultaneously. The Pareto optimal solutions, which charac-
terize the best tradeoffs, need to be found in many real-
world applications. The set of all Pareto optimal solutions
is called the Pareto set (PS) and its image in the objective
space is called Pareto front (PF). Multiobjective evolutionary
algorithms (MOEAs) try to find a good approximation of
PF [2].

Under certain mild conditions, the PF (PS) of (1) is an
(m−1)-dimensional manifold embedded in them-dimensional
objective space (then-dimensional decision space) [4]. How-
ever, this property has been ignored by most researchers in the
community of evolutionary multiobjective optimization [5]. In
recently years, we have systematically studied and applied
the regularity property of PSs in designing of MOEAs. A
conceptual algorithm, called regularity model based multiob-
jective estimation of distribution algorithm (RM-MEDA) has
been reported in [15]. Local principal component analysis [6]
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and generative topographic mapping [1], have been used
for modelling the distribution of promising solutions [16].
By combing with special designed biased initialization and
biased crossover operators, RM-MEDA is enhanced to tackle
problems with many local PFs [17]. This regularity propertyis
also applied in dynamic environments to trace the movement
of PFs [18]. We have also noticed that a Pareto Path Following
(PPF) strategy, proposed by Harada, et al. [3], is also based
on the regularity property of PSs. However, the regularity of
PFs has not yet exploited. One major purpose of this paper is
to study how to make the advantage of the regularity of PFs
in designing multiobjective evolutionary algorithms.

Estimation of distribution algorithms (EDAs) extract statis-
tical information from the population for offspring generation
and the individual location information is ignored [14]. Onthe
other hand, differential evolution (DE) [11] extracts differential
information from the parents for generating trial solutions
and does not consider the global population distribution in-
formation. Sun et al have advocated combination EDA and
DE in [12] and proposed a DE/EDA hybrid algorithm for
scalar objective optimization. The second purpose of this paper
is to study if combination EDA and DE is beneficial for
multiobjective optimization.

Based on the regularity property of PFs in the objective
space, a simple EDA method is proposed to model the PF
in the objective space for guiding the selection procedure
and model building procedure the in decision space. Since
the location information is ignored in EDAs, a combination
of EDA and DE is suggested for improving the algorithmic
performance. We assume in this paper that there are only two
objectives.

The remainder of the paper is organized as follows. Sec-
tion II gives the algorithm framework and presents the details
of model building both in the decision space and the objective
space. Section III presents the experimental results. The paper
is then concluded in Section IV.

II. H YBRID MULTIOBJECTIVE EVOLUTIONARY

ALGORITHM

In this section, the framework of a hybrid multiobjective
evolutionary algorithm with EDA and DE, called EDA+DE,
is firstly presented. The approximation model based selection
procedure, probability model building and offspring generating
are then introduced in detail.

A. Algorithm Framework

Parameters



N : population size.
T : maximum number of generations.
K: number of line segments used to approximate the

centroid of the population.
CR: crossover probability in DE.
F : parameter used by DE.

Notations

t: generation count.
Pt: population at generationt.
Q1,t: offspring created by EDA operator at generationt.
Q2,t: offspring created by DE operator at generationt.

EDA+DE

// Initialization
Step 0 Set t := 0 andP0 := random initialize().
// Stopping condition
Step 1 If stop condition() = true, stop and return the

nondominated solutions inPt.
// Offspring Generation
Step 2 Q1,t := EDA generate(Pt, N/2, K).
Step 3 Q2,t := DE generate(Pt, N/2, CR, F ).
// Selection
Step 4 Pt+1 := AM select(Pt, Q1,t ∪ Q2,t, N).
Step 5 Set t := t + 1 and go toStep 1.
In Step 0, the initial population is uniformly randomly

sampled from the search spaceX ⊂ Rn. In Step 1, the
algorithm will stop when the generation countt exceeds a
predefined maximum valueT .

B. Approximation Model based Selection

In the case of two objectives, The PF of a continuous MOP
should be a piecewise continuous 1-D curve in the objective
space. This property has not been used in current MOEAs. A
possible application of this regularity property in evolutionary
multiobjective optimization is on selection procedure. Suppose
the PF of a MOP is known, the solutions, which approximate
the PF properly, can be selected into the next generation.
Although its PF is unknown in a real-world problem, a model
can be built to approximate the PF based on the regularity
property of MOPs.

Based on the above idea, an approximate model based
selection (AMS) is proposed in this paper for biobjective
problems. AMS works as follows: (a) build a linear model to
approximate the current population, (b) uniformly select some
points in the linear model as target points, and (c) select those
points in current population which are closest to the target
points into the next generation.

The procedure ofPt+1 := AM select(Pt, Q, M) works as
follows in details.

Step 1 Find two extreme points fromPt by

x∗

i = arg min
x∈Pt

{α1f1(x) + (1.0 − α2)f2(x)},

wherei = 1, 2, α1 = 0.95 andα2 = 0.05.
Step 2 Let F ∗

i = F (x∗

i ), i = 1, 2. Find a lineL such that
(a) L is parallel to lineF ∗

1 F ∗

2 , (b)no point inL can

Fig. 1. Illustration of approximation model based selection.

be dominated by any points in the current population
Pt ∪ Q, and (c) the distance betweenL and F ∗

1 F ∗

2

should be as small as possible.
Step 3 Let A1 and A2 be the projections ofF ∗

1 and F ∗

2

on L. Extend the line segmentA1A2 along each
direction by25% and obtain the line segmentLS.
Uniformly sampleM target pointsR1, R2, . . . , RM

in the line segmentLS.
Step 4 For i = 1, . . . , M , select the point closest toRi in

the current populationPt∪Q into the next generation
Pt+1.

It should be pointed that in Step 1,αi are set to be0.95 and
0.05 instead of1.0 and0.0. In Step 3,A1A2 is extended along
the direction. The purpose is to make the approximation model
more stable.

C. EDA based Offspring Generator

We will use a set of linear model to approximate the
centroid of the population in the decision space as in [15].
The population is firstly partitioned into several clusters. Then
in each cluster, the principal component analysis (PCA) is
applied to find the central line and the variance. Finally, new
trial solutions are sampled from the models.

The procedureQ := EDA generate(P, M, K) works as
follows.

Step 1 Partition the populationP into K clusters by

{P 1, · · · , PK} = partition(P, K).

Step 2 For each clusterP k, build a probability modelΦk.
Step 3 SampleM new trial solutions from the models

built in Step 2 and store them inQ.
In the following, we give the details of the above procedure.
1) Population Partitioning:

{P 1, · · · , PK} = partition(P, K)

Let Rk, k = 1, . . . , K beK uniformly distributed reference
points inLS (see Section II-B for details).



For each reference pointRk, select2|P |/K closest points
from P to form the k-th cluster P k, where |P | is the
cardinality ofP .

2) Probability Model Building: The mean of thek-th
clusterP k is

x̄k =
1

|P k|

∑

x∈P k

x.

The covariance matrix ofP k is

Covk =
1

|P k| − 1

∑

y∈P k

(y − x̄k)(y − x̄k)T .

The ith principal componentνk
i is a unity eigenvector associ-

ated with theith largest eigenvalueλk
i of the matrixCovk.

The following linear model with Gaussian noise, denoted
asΦk, is used for modelling the distribution of the points in
P k:

Φk : x = x̄k +

m−1
∑

i=1

siν
k
i + εk

where si is a random variable uniformly distributed in
[sk,min

i , sk,max
i ],

sk,min
i = min

x∈P k

(x − x̄k)T νk
i

and

sk,max
i = max

x∈P k

(x − x̄k)T νk
i .

εk ∼ N(0, δkI), I is the identity matrix and

δk =
1

n − m + 1

n
∑

i=m

λk
i .

3) Probability Model Sampling: A new trial solutionsx is
sampled as follows:

Step 1 A model Φk is uniformly randomly select from
{Φk|k = 1, . . . , K}.

Step 2 Uniformly randomly generatesi ∈ [sk,min
i −

0.25(sk,max
i − sk,min

i ), sk,max
i + 0.25(sk,max

i −
sk,min

i )], i = 1, · · · , m − 1.
Step 3 Generate a noise vectorεk ∼ N(0, δkI).
Step 4 Generate a new trial solutionx

′

= x̄k +
∑m−1

i=1
siν

k
i + εk.

Step 5 a new trial solutionx is generated with boundary
checking,

xi =







0.5(xi + x
′′

i ) if x
′

i < xi

0.5(xi + x
′′

i ) if x
′

i > xi

x
′

i otherwise
,

wherei = 1, . . . , n andx
′′

is randomly selected from
P .

D. DE based Offspring Generator

We use the DE [11] operator

Q := DE generate(P, M, CR, F ),

with parent populationP , parametersCR andF to generate
M new trial solutions in this paper.

A new trial solution is generated as the following DE/rand/1
scheme,

Step 1 Randomly select three different parentsx1, x2, x2

from populationP .
Step 2 Uniformly randomly generate an indexjnd ∈

{1, . . . , n}.
Step 3 Generate a temporal solutionx

′

,

x
′

i =

{

x1
i + F (x2

i − x3
i ) rand() < CR or i = jnd

x1
i otherwise

,

where i = 1, . . . , n and rand() returns a random
number from[0.0, 1.0].

Step 4 A new trial solutionx is generated with boundary
checking,

xi =







0.5(xi + x1
i ) if x

′

i < xi

0.5(xi + x1
i ) if x

′

i > xi

x
′

i otherwise
,

wherei = 1, . . . , n.

III. E XPERIMENTAL RESULTS

To assess the performance of the proposed algo-
rithm EDA+DE, four biobjective problems,S ZDT 1,
S ZDT 2 [13] and their variants,S ZDT 11 and S ZDT 21
are tested. The proposed algorithm is also compared with
GDE3 [8] and the pure EDA version of the algorithm in which
the DE part is removed.

A. Test Instances

The S ZDT test suite [13] is introduced to overcome the
shortcomings ofZDT test suite [2] such as (a) the parameters
have the same value for dimension2 to n, (b) the global
optimum lines on the bounds, and (c) the problems are separa-
ble. However,S ZDT have linear linkages between decision
variables which may favor some offspring generators [15].
A transformation is added to theg(·) to introduce nonlinear
linkages [9] inZDT test suite. The same strategy is used in
this paper by replacing

g(x) = 1 + 9(

D
∑

i=2

z′i)/(D − 1)

with

g(x) = 1 + 9[

D
∑

i=2

(z′i − z′
5

0)
2]/(D − 1).

The modifiedS ZDT 1 andS ZDT 2 are calledS ZDT 11
andS ZDT 21 respectively. The details ofS ZDT test suite
are referred to [13].



B. Performance Metrics

The inverted general distance is used in assessing the
performance of the algorithms.

Let P ∗ be a set of uniformly distributed points in the
objective space along the PF. LetP be an approximation to
the PF, The general distance fromP ∗ to P is defined as:

D(P ∗, P ) =

∑

v∈P∗ d(v, P )

|P ∗|

whered(v, P ) is the minimum Euclidean distance betweenv
and the points inP . If |P ∗| is large enough to represent the
PF very well,D(P ∗, P ) could measure both the diversity and
convergence ofP in a sense. To have a low value ofD(P ∗, P ),
P must be very close to the PF and cannot miss any part of
the whole PF.

In our experiments, we select1000 evenly distributed points
on PF and let these points to beP ∗ for each test instance.

Another indicator called difference of hypervolume (I−H ) [7]
is also tried. Since the results are very consistent with those
of the D-metric, not all results withI−H are reported in this
paper.

C. Algorithm Parameters

Three algorithms, the hybrid one (denoted as EDA+DE), the
pure EDA version of which the offspring is only generated by
EDA operator in Section II, and GDE31.

For all test instances, the variable dimension is30. The
population size is200, and the maximum generation is500.
The test results are based on20 independent runs.

The parameters for EDA+DE are as follows: number of line
segments used to approximate the centroid of the population,
K, is 5 in EDA offspring generator, and in DE offspring
generator,CR = 0.1 andF = 0.5 as suggested in [8].

The parameters for EDA and GDE3 are the same as in
EDA+DE.

D. Results and Analysis

TABLE I

STATISTICAL RESULTS(mean± std.)

EDA+DE EDA GDE3
S ZDT1 D 0.0033±0.0001 0.0261±0.0096 0.0049±0.0001

I
−

H
0.0108±0.0019 0.1420±0.0423 0.0202±0.0017

S ZDT2 D 0.0340±0.1355 0.7125±0.0252 0.0051±0.0002
I
−

H
0.1747±0.7436 4.0050±0.1393 0.0261±0.0026

S ZDT11 D 0.0044±0.0004 0.0043±0.0002 0.0366±0.0051
I
−

H
0.0127±0.0029 0.0119±0.0020 0.4602±0.0208

S ZDT21 D 0.0114±0.0009 0.0128±0.0009 0.0621±0.0063
I
−

H
0.0164±0.0015 0.0194±0.0018 1.3790±0.0773

The statistical values ofD-metric andI−H on the results
obtained in the final runs are shown in Table I. The best run
according toD-metric is shown in Fig. 2 and the final results
of all runs are shown in Fig. 3.

1It is implemented by ourselves in C++.

1) S ZDT 1: S ZDT 1 has a convex PF and its PS is a
line segment. Although EDA+DE has the best performance
both on D-metric andI−H , from Figs. 2-3, we can see that
both EDA and GDE3 can have good approximations after500
generations although GDE3 is slight better than EDA.

2) S ZDT 2: S ZDT 2 has a concave PF and its PS is a
line segment. GDE3 is slight better than EDA+DE. However,
EDA converges to a single point in all runs. The reason might
be that the AMS selection strategy mislead the search process.

3) S ZDT 11: S ZDT 11 is a modified version of
S ZDT 1 of which the PS is a curve. The performances of
EDA+DE and EDA are quite similar although EDA is slightly
better. For GDE3, we can see that no single run can cover the
whole PF.

4) S ZDT 21: S ZDT 21 is a modified version of
S ZDT 2 of which the PS is a curve. The results are quite
similar to those ofS ZDT 11 except that EDA+DE is slightly
better than EDA.

Fig. 4 shows the evolution of the average metric values of
the population with the number of generations in the three
algorithms. ForS ZDT 1, the performance of EDA+DE is
similar to that of GDE3 and forS ZDT 11 and S ZDT 21,
the performances of EDA+DE are similar to those of EDA.

From these test results, we can conclude that by hybridizing
EDA and DE offspring generators, EDA+DE works well for
the four test instances in this paper.

IV. CONCLUSIONS ANDFUTURE WORK

In this paper, we proposed a new algorithm, EDA+DE, for
continuous multiobjective optimization. Based on the regular-
ity property of PFs, an approximation model based selection
(AMS) was designed to (a) select solutions into the next
generation, and (b) guide the model building process in the
offspring generation. To utilize both the population statistical
information and individual location information, an EDA and
DE combination was introduced.

The proposed EDA+DE method was compared with GDE3
and pure EDA method on four test instances with linear or
nonlinear linkages among decision variables. The experimental
results have shown that EDA+DE is more stable than GDE3
and EDA on these test problems.

In this paper, only a line segment is used to approximate
the PF of a biobjective problem. This line segment might not
be a very good choice if the PF of a biobjective problem is
a nonlinear curve. On the other hand, the PFs of problems
with more than two objectives are rather complicated. How
to approximate these complicated PFs to guide the selection
procedure is an interesting topic for future research. The PSs
of the problems used in this paper are rather simple, and the
geometric shapes are lines or curves. It is worth to improve
the proposed method and test it on problems with complicated
PSs [10] in the future.
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