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Abstract— The Pareto front (set) of a continuous optimization and generative topographic mapping [1], have been used
problem with m objectives is a(m — 1) dimensional piecewise for modelling the distribution of promising solutions [16]
continuous manifold under some mild conditions. Based on tk By combing with special designed biased initialization and

property in the decision space, we have recently developed\eral h .
multiobjective estimation of distribution algorithms. However, biased crossover operators, RM-MEDA is enhanced to tackle

the property in the objective space has not yet utilized. In his ~Problems with many local PFs [17]. This regularity propesty

paper, a simple EDA is proposed to model the Pareto front also applied in dynamic environments to trace the movement
in the objective space for guiding the selection procedureral  of PFs [18]. We have also noticed that a Pareto Path Following
model building procedure the in decision space. Since thedation (PPF) strategy, proposed by Harada, et al. [3], is also based

information is ignored in EDAs, a combination of EDA and th larit tv of PSs. H th larft
DE is suggested for improving the algorithmic performance. 9N N€ reguiarnty property ol Fos. However, the regularity o

Experimental results has shown that the algorithm with the PFs has not yet exploited. One major purpose of this paper is
proposed strategy is very promising. to study how to make the advantage of the regularity of PFs

in designing multiobjective evolutionary algorithms.
Estimation of distribution algorithms (EDAS) extract &at
We consider the following continuous multiobjective optitical information from the population for offspring gentom
mization problem (MOP): and the individual location information is ignored [14]. @re
other hand, differential evolution (DE) [11] extracts diféntial
()T 1) information from the parents for generating trial soluson
T and does not consider the global population distribution in
formation. Sun et al have advocated combination EDA and
DE in [12] and proposed a DE/EDA hybrid algorithm for
scalar objective optimization. The second purpose of thpep

|. INTRODUCTION

minimize F(z) = (fi(z),...
subject to zeX

where X = [][z;,Z;] C R™ is the decision space and =

=1
(z1,...,7,)T € R" is the decision variable vectoF. : X — is to study if combination EDA and DE is beneficial for
R™ consists ofm real-valued continuous objective functiongnultiobjective optimization.
filz) (i=1,...,m). R™ is the objective space. Based on the regularity property of PFs in the objective

Since the objectives of a MOP usually conflict with eachpace, a simple EDA method is proposed to model the PF
other, no single solution can minimize all the objective® the objective space for guiding the selection procedure
simultaneously. The Pareto optimal solutions, which otvaraand model building procedure the in decision space. Since
terize the best tradeoffs, need to be found in many redlhe location information is ignored in EDAs, a combination
world applications. The set of all Pareto optimal solutiongf EDA and DE is suggested for improving the algorithmic
is called the Pareto set (PS) and its image in the objectiperformance. We assume in this paper that there are only two
space is called Pareto front (PF). Multiobjective evolntioy objectives.
algorithms (MOEAs) try to find a good approximation of The remainder of the paper is organized as follows. Sec-
PF [2]. tion Il gives the algorithm framework and presents the detai

Under certain mild conditions, the PF (PS) of (1) is aaf model building both in the decision space and the objectiv
(m—1)-dimensional manifold embedded in thedimensional space. Section Il presents the experimental results. apermp
objective space (the-dimensional decision space) [4]. How-is then concluded in Section 1V,
ever, this property has been ignored by most researcheng in t
community of evolutionary multiobjective optimization][3n
recently years, we have systematically studied and applied
the regularity property of PSs in designing of MOEAs. A In this section, the framework of a hybrid multiobjective
conceptual algorithm, called regularity model based robiti evolutionary algorithm with EDA and DE, called EDA+DE,
jective estimation of distribution algorithm (RM-MEDA) ka is firstly presented. The approximation model based selecti
been reported in [15]. Local principal component analy8js [ procedure, probability model building and offspring geatig

are then introduced in detail.

II. HYBRID MULTIOBJECTIVE EVOLUTIONARY
ALGORITHM
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population size.

maximum number of generations.

number of line segments used to approximate the
centroid of the population.

x> T

CR: crossover probability in DE.

F: parameter used by DE.
Notations

t: generation count.

P,:  population at generatioh
Q1. offspring created by EDA operator at generation
Q2. offspring created by DE operator at generation

EDA+DE

I/ Initialization 1,
Step 0 Sett¢ := 0 and Py := random_initialize().
/I Sopping condition Fig. 1. lllustration of approximation model based selettio
Step 1 If stop-condition() = true, stop and return the
nondominated solutions i#;.
/I Offspring Generation
Step 2 Q1 := EDA_generate(P;, N/2, K).
Step 3 Q2 := DE_generate(P,, N/2,CR, F).
/I Selection
Step 4 P= AJV[_select(Pt, Ql,t U Qg,t, N)
Step 5 Sett:=t+1 and go toStep 1
In Step 0, the initial population is uniformly randomly
sampled from the search spacé C R". In Step 1, the  gtep 4 Fori=1,..., M, select the point closest ; in

algorithm will stop when the generation countexceeds a the current populatiof®, UQ into the next generation
predefined maximum valug. Pri1.

be dominated by any points in the current population
P, U@, and (c) the distance betwednand Fy F
should be as small as possible.

Step 3 Let A; and A2 be the projections of}" and F
on L. Extend the line segmenti; A, along each
direction by25% and obtain the line segmeritS.
Uniformly sampleM target pointsRy, R, ..., Ry
in the line segmenLS.

B. Approximation Model based Selection It should be pointed that in Step &, are set to b&.95 and

In the case of two objectives, The PF of a continuous MOP05 instead ofl.0 and0.0. In Step 3,4, 4, is extended along
should be a piecewise continuous 1-D curve in the objectif&e direction. The purpose is to make the approximation node
space. This property has not been used in current MOEAs.Qre stable.
possible application of this regularity property in ev@dary ¢ EDA based Offspring Generator
multiobjective optimization is on selection procedurepfaose

the PF of a MOP is known, the solutions, which approximate we .W'” use a set (.)f Imear mod.ell o approxmgte the
. -centroid of the population in the decision space as in [15].
the PF properly, can be selected into the next generati

Although its PF is unknown in a real-world problem, a mode hie population is firstly _pa_rtmoned into several clu_sté'rlsen _
in each cluster, the principal component analysis (PCA) is

C?Q gﬁ bg;l;ﬂtgpaspproxmate the PF based on the regulargt-'%p”ed to find the central line and the variance. Finallyy ne
property : trigl solutions are sampled from the models.

Based on the above idea, an approximate model base o
selection (AMS) is proposed in this paper for biobjectiv?onor\]l\?sprocedur&2 = EDA_gencrate(P, M, K) works as

problems. AMS works as follows: (a) build a linear model to » ) )
approximate the current population, (b) uniformly selenne ~ SteP 1 Partition the populatio into K clusters by
points in the linear model as target points, and (c) selaxteth

points in current population which are closest to the target {P',-+, P} = partition(P, K).
points into the next generation. Step 2 For each clusteP*, build a probability modefp;.
The procedure of’;1, := AM _select(P;, Q, M) works as  Step 3 Sample M new trial solutions from the models
follows in details. built in Step 2 and store them iQ.
Step 1 Find two extreme points fron#; by In the following, we give the details of the above procedure.
- arggéi]%{alfl(x) 1 (1.0 — a2) fo(2)}, 1) Population Partitioning:

1 K\ _ L.
wherei = 1,2, a; = 0.95 andas = 0.05. (P, PT} = partition(P, K)

Step 2 Let F} = F(z}),i =1,2. Find a lineL such that  Let R;,k =1,..., K be K uniformly distributed reference
(a) L is parallel to lineF; F5, (b)no point inL can points in LS (see Section II-B for details).



For each reference poit;, select2| P|/K closest points D. DE based Offspring Generator
from P to form the k-th cluster P*, where [P| is the  \\a use the DE [11] operator
cardinality of P.

2) Probability Model Building: The mean of thek-th Q := DE_generate(P,M,CR, F),
P
cluster P* is 1 with parent population?, parameter€’' R and F' to generate
ik = W Z x. M new trial solutions in this paper.
zEPk A new trial solution is generated as the following DE/rand/1
scheme,

: NP
The covariance matrix oP™ is Step 1 Randomly select three different parents 22, 22

1 _ _ from populationP.
ko _ =k\(,, _ =k\T
Cov™ = |Pk| —1 Zk(y )y =) Step 2 Uniformly randomly generate an indejnd €
ver {1,...,n}.
Theith principal component? is a unity eigenvector associ- S€P 3 Generate a temporal solutian,
ated with theith largest eigenvalug? of the matrixCov*. . @'+ Fa?—2%) rand() < CRori=jnd
The following linear model with Gaussian noise, denoted A otherwise )

as &y, is used for modelling the distribution of the points in

pk- wherei = 1,...,n and rand() returns a random

number from[0.0, 1.0].
Step 4 A new trial solutionz is generated with boundary

m—1
Op i x =2 + Z sivl 4 ¥ checking,
=t 0.5(x; + ) if z; <z
where s; is a random variable uniformly distributed in zi =4 0.5(z; +x}) if :c; >T;
[shomin  ghmai) x; otherwise
S;c,min — min (I _ jk)TVZ[c wherei = 1,...,n.
zEPk
I1l. EXPERIMENTAL RESULTS
and
ke Tk To assess the performance of the proposed algo-
Ch Zfelfgg(f—x ) v rithm EDA+DE, four biobjective problems,S_ZDTT1,
S_ZDT?2 [13] and their variantsS_ZDT'11 and S_ZDT21
ek ~ N(0,8*I), I is the identity matrix and are tested. The proposed algorithm is also compared with

GDE3 [8] and the pure EDA version of the algorithm in which
the DE part is removed.

1 n
= —— N\
n—m+1 Z ¢
i=m A. Test Instances

3) Probability Model Sampling: A new trial solutionsz is The S_ZDT test suite [13] is introduced to overcome the
sampled as follows: shortcomings o DT test suite [2] such as (a) the parameters
have the same value for dimensi@nto n, (b) the global
(@ulk=1,.... K}, optimum lines on the bound§, and .(c) the problems are separa-
Step 2 Uniform]y r:':mdomly generates; € [s" — ble. However,S_ZDT have linear linkages between decision

025(51-“’7"‘” _ s’.“’mi“) ghmaz 025(51-3’7"‘” _ variables Whl(_:h may favor some offsprlng generatqrs [15].
; ¢ ’ ¢ A transformation is added to thg(-) to introduce nonlinear

Step 1 A model ®, is uniformly randomly select from

[ ’ 9%

sE™M i =1, ,m— 1. . ; . : .
Step 3 Generate a noise vectet ~ N (0, *1). Itlt?kages [Qa)anDIT .test suite. The same strategy is used in
Step 4 Generate a new trial solution’ = z* + 'S paper by replacing
St sk ek D
Step 5 a new trial solutionz is generated with boundary g(x) =149 _24)/(D-1)
checking, =2
. , with
0.5(z; + ;) ifz, <z D 5
xi =14 05T +x,) ife,>% , g(x) =149 (2" = '0)*]/(D - 1).
x otherwise =2
The modifiedS_ZDT'1 andS_ZDT?2 are calledS_ZDT'11
wherei = 1,...,nandz” is randomly selected from and S_ZDT21 respectively. The details §_ZDT test suite

P. are referred to [13].



B. Performance Metrics
The inverted general distance is used in assessing th€ segment. Although EDA+DE has the best performance

performance of the algorithms.

1) S.ZDT1: S_ZDT1 has a convex PF and its PS is a

both on D-metric andI;, from Figs. 2-3, we can see that

Let P* be a set of uniformly distributed points in theboth EDA and GDE3 can have good approximations aftier

objective space along the PF. LBtbe an approximation to 9enerations although GDES3 is slight better than EDA.
the PF, The general distance fraft to P is defined as:

whered(v, P) is the minimum Euclidean distance between

D(P*,P) =

S ep (v, P)

[P

2) S_ZDT2:. S_ZDT?2 has a concave PF and its PS is a
line segment. GDE3 is slight better than EDA+DE. However,
EDA converges to a single point in all runs. The reason might
be that the AMS selection strategy mislead the search psoces

3) S.ZDT11: S_ZDT11 is a modified version of

and the points inP. If |P*| is large enough to represent theS>-ZDT'1 of which the PS is a curve. The performances of
PF very well, D(P*, P) could measure both the diversity andEDA+DE and EDA are quite similar although EDA is slightly
convergence oP in a sense. To have a low value B{ P*, P),
P must be very close to the PF and cannot miss any part‘%'ﬂde PF.
the whole PF.
In our experiments, we selett00 evenly distributed points S-ZDT2 of which the PS is a curve. The results are quite
on PF and let these points to & for each test instance.
Another indicator called difference of hypervolunig,{ [7] _ ) )
is also tried. Since the results are very consistent witisgho Fig. 4 shows the evolution of the average metric values of
of the D-metric, not all results with/;; are reported in this the population with the number of generations in the three

paper.

C. Algorithm Parameters

Three algorithms, the hybrid one (denoted as EDA+DE), the From these test results, we can conclude that by hybridizing
pure EDA version of which the offspring is only generated bizDA and DE offspring generators, EDA+DE works well for
EDA operator in Section Il, and GDES

For all test instances, the variable dimension3@s The
population size i200, and the maximum generation 0.
The test results are based 20 independent runs. _ WE Pro - a nev

The parameters for EDA+DE are as follows: number of lingontinuous multiobjective optimization. Based on the fagu
segments used to approximate the centroid of the populatiéi Property of PFs, an approximation model based selection
K, is 5 in EDA offspring generator, and in DE Oﬁspring(AMS) was designed to (a) select solutions into the next
generatorCR = 0.1 and F' = 0.5 as suggested in [8].

The parameters for EDA and GDE3 are the same as Gffspring generation. To utilize both the population sttial

EDA+DE.

D. Results and Analysis

TABLE |
STATISTICAL RESULTS(mean + std.)

EDA+DE EDA GDE3
S_ZDT1 D 0.0033t0.0001  0.026%0.0096  0.004%0.0001
I | 0.0108:0.0019  0.1420:0.0423  0.0202:0.0017
S_ZDT?2 D 0.0340£0.1355 0.7125%0.0252 0.00510.0002
I, | 0.17470.7436  4.005@-:0.1393 0.026H-0.0026
S.ZDT11 | D 0.0044£0.0004 0.0043t0.0002  0.0364:0.0051
I | 0.0127-0.0029 0.0119:0.0020 0.4602:0.0208
S_.ZDT21 | D 0.0114£0.0009 0.01280.0009 0.062%0.0063
I | 0.0164:0.0015 0.0194:0.0018 1.379@0.0773

The statistical values oD-metric and;; on the results
obtained in the final runs are shown in Table I. The best run
according toD-metric is shown in Fig. 2 and the final results
of all runs are shown in Fig. 3.

1t is implemented by ourselves in C++.

better. For GDE3, we can see that no single run can cover the

4) S ZDT21: S_ZDT21 is a modified version of
similar to those ofS_ZDT'11 except that EDA+DE is slightly

better than EDA.

algorithms. ForS_ZDT'1, the performance of EDA+DE is
similar to that of GDE3 and folS_ZDT11 and S_ZDT21,
the performances of EDA+DE are similar to those of EDA.

the four test instances in this paper.

IV. CONCLUSIONS ANDFUTURE WORK
In this paper, we proposed a new algorithm, EDA+DE, for

generation, and (b) guide the model building process in the

information and individual location information, an EDAdn
DE combination was introduced.

The proposed EDA+DE method was compared with GDE3
and pure EDA method on four test instances with linear or
nonlinear linkages among decision variables. The expertahe
results have shown that EDA+DE is more stable than GDE3
and EDA on these test problems.

In this paper, only a line segment is used to approximate
the PF of a biobjective problem. This line segment might not
be a very good choice if the PF of a biobjective problem is
a nonlinear curve. On the other hand, the PFs of problems
with more than two objectives are rather complicated. How
to approximate these complicated PFs to guide the selection
procedure is an interesting topic for future research. The P
of the problems used in this paper are rather simple, and the
geometric shapes are lines or curves. It is worth to improve
the proposed method and test it on problems with complicated
PSs [10] in the future.
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