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Abstract. Biologically motivated attention systems prefilter the visual
environment for scene elements that pop out most or match the cur-
rent system task best. However, the robustness of biological attention
systems is difficult to achieve, given e.g., the high variability of scene
content, changes in illumination, and scene dynamics. Most computa-
tional attention models do not show real time capability or are tested
in a controlled indoor environment only. No approach is so far used in
the highly dynamic real world scenario car domain. Dealing with such
scenarios requires a strong system adaptation capability with respect to
changes in the environment. Here, we focus on five conceptual issues cru-
cial for closing the gap between artificial and natural attention systems
operating in the real world. We show the feasibility of our approach on
vision data from the car domain. The described attention system is part
of a biologically motivated advanced driver assistance system running in
real time.

Keywords: driver assistance, top-down / bottom-up saliency, cognitive systems,
real world robustness

1 INTRODUCTION

The most important sensory modality of humans with the highest information
density is vision. The human vision system filters this high abundance of infor-
mation by attending to scene elements that either pop out most in the scene
(i.e., objects that are visually conspicuous) or match the current task best (i.e.,
objects that are compliant to the current mental status or need/task of the
subject), while suppressing the rest. For both attention guiding principles psy-
chophysical and neurological evidence exist (see [1, 2]). Following this principle,
technical vision systems have been developed that prefilter a scene by decompos-
ing it into basic features (see [3]) and recombining these to a saliency map that
contains high activation at regions that differ strongly from the surroundings



(i.e., bottom-up (BU) attention, see [4]). More recent system implementations
additionally include the modulatory influence of task relevance into the saliency
(i.e., top-down (TD) attention, see [5] as one of the first and [6, 7] as the most
recent and probably most influential approaches).

In these systems, instead of scanning the whole scene in search for certain
objects in a brute force way, the use of TD attention allows a full scene decompo-
sition despite restraints in computational resources. In principle the vision input
data is serialized with respect to the importance for the current task. Based
on this, computationally demanding processing stages higher in the architecture
work on prefiltered data of higher relevance, which saves computation time and
allows complex real-time vision applications.

In the following, we present a TD tunable attention system we developed that
is the front end of the vision system of an advanced driver assistance system
(ADAS) described in [8], whose architecture is inspired by the human brain.
The design goals of our TD attention subsystem comprised the development
of an object and task-specific tunable saliency suitable for the real world car
domain. In this contribution we present new robustness enhancements in order
to cope with the challenges our system is faced with when using saliency on real
outdoor scenes. Important aspects discriminating real world scenes from artificial
scenes are the dynamics in the environment (e.g., changing lighting and weather
conditions, highly dynamic scene content) as well as the high scene complexity
(e.g., cluttered scenes).

In Section 2 we will describe specific challenges that the mentioned aspects
provoke on an attention system under real world conditions. Section 3 will de-
scribe our attention subsystem in detail pointing out the solutions to the denoted
challenges and relates its structure to other attention approaches. Section 4 un-
derlines the potential of the described solutions based on results calculated on
different real world scenes after which the paper is summarized.

2 Real world challenges for TD attention systems

In the following paragraph we describe challenges a TD attention system is faced
with when used on real world images.
1© High feature selectivity: In order to yield high hit rates in TD search an
attention system needs high feature selectivity to have as much supporting and
inhibiting feature maps as possible. For this the used features must be selected
and parameterized appropriately. Even more important for high selectivity is
the use of modulatory TD weights on all subfeature maps and scales. Many TD
attention approaches allow TD weighting only on a high integration level (e.g.,
no weighting on scale level [9]) or without using the full potential of features
(e.g., no on-off/off-on feature separation [6]) which leads to a potential perfor-
mance loss. Our system fulfills both aspects. Based on the extended selectivity
of our attention subsystem, we can handle specific challenges of the car domain,
as dealing with the horizon edge present in most images.
2© Comparable TD and BU saliency maps: Typically the TD and BU
attention maps are combined to an overall saliency, on which the Focus of At-
tention (FoA) is calculated. The combination requires comparable TD and BU



saliency maps, making a normalization necessary. Humans undergo the same
challenge when elements popping out compete with task-relevant scene elements
for attention. A prominent procedure in literature normalizes each feature map
to its current maximum (see [6] that is based on [10]), which has some draw-
backs our approach avoids.
3© Comparability of modalities: Similarly, the combination of different a
priori incomparable modalities (e.g., decide on the relative importance of edges
versus color) must be achieved. We realize this by the biological principle of
homeostasis that we define as the reversible adaptation of essential processes of
a (biological) system to the environment (see e.g., [11]).
4© Support of conjunctions of weak object features in the TD path: An-
other important robustness aspect is the support of conjunction of weak object
features in the TD path of the attention subsystem. That is, an object having a
number of mediocre feature activations but no feature map popping out should
still yield a clear maximum when combined on the overall saliency.
5© Changing lighting conditions: In a real world scene changing lighting
conditions influence the features the saliency is composed of and hence the at-
tention system performance heavily. As the calculated TD weights are based on
the features of the training images, the TD weights are illumination dependent
as well. Put differently, the TD weights are optimal for the specific illumina-
tion and thereby contrast that is present in the training images. Using the TD
weights on test images with a differing illumination will then lead to an inferior
TD search performance. Therefore, a local exposure control is needed to adjust
the contrast of the training images as well as the test images before applying
TD weight calculation and TD search.

3 Modeling attention: From a robustness point of view

Section 3.1 focuses on the processing steps of our attention system that are
crucial for solving the challenges described in Chapter 2. In Section 3.2 our
system is compared to other state-of-the-art attention systems.

3.1 Description of the ADAS attention subsystem

The organization of Section 3.1 is led by the consecutive processing steps of the
current ADAS attention subsystem as depicted in Fig. 1. After a short descrip-
tion of the general purpose of the BU and TD pathways, their combination to
the overall saliency is described. Following this overview, the used modalities
(feature types) are specified followed by the entropy measure that is used for the
camera exposure control. Next, the different steps of the feature postprocessing
are described. The TD feature weighting, the homeostasis process to get the con-
spicuity maps comparable, as well as the final BU/TD saliency normalization
are the final processing steps in our attention architecture.

The attention system consists of a BU and a TD pathway. The TD pathway
(on top) allows an object- and task-dependent filtering of the input data. All
image regions containing features that match the current system task well are
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Fig. 1. Visual attention sub-system (dashed lines correspond to TD links).

supported (excitation), while the others are suppressed (inhibition) resulting in
a sparse task-dependent scene representation. Opposed to that, the BU pathway
(on bottom) supports an object- and task-unspecific filtering of input data sup-
porting scene elements that differ from their surroundings. The BU pathway is
important for a task-unspecific analysis of the scene supporting task-unrelated
but salient scene elements.

The BU and TD saliency maps are linearly combined to an overall saliency
on which FoAs are generated that determine the scene elements higher system
layers will work on. The combination is realized using parameter λ (on the right
hand side in Fig. 1) that is set dependent on the system state emphasizing the
BU and/or TD influence. Due to this combination the system also detects scene
elements that do not match the current TD system task and are hence suppressed
in the TD pathway (to prevent inattentional blindness, i.e. complete perceptual
suppression of scene elements as described in [12]).

Turning to the processing details, the following modalities are calculated
on the captured color images: RGBY color (inspired from [7]), intensity by a
Difference of Gaussian (DoG) kernel, oriented lines and edges by a Gabor kernel,
motion by differential images and entropy using structure tensor.

In the following, these modalities are described in more detail, after which
the entropy feature is specified that is used to set the camera exposure. The
features motion and color are used differently for the BU and TD path. The
BU path uses double color opponency from RGBY colors by applying a DoG
on 5 scales on the RG and BY color opponent maps. The filter results are



separated into their positive and negative parts (on-off/off-on separation, whose
importance is emphasized in [7]) leading to 4 pyramids of double color opponent
RG,GR,BY and YB-channels. The TD path uses the same color feature but
additionally 4 pyramids of the absolute RGBY maps. Absolute RGBY colors do
not support the BU popout character and are hence not used in the BU path.
A DoG filter bank is applied on 5 scales separating on-off and off-on effects.
Furthermore a Gabor filter bank on 4 orientations (0, π/4, π/2, 3/4π) and 5
scales is calculated separately for lines and edges (even and odd Gabor). The
realized Gabor filter bank ensures disjoint decomposition of the input image. The
detailed mathematical formulation of the used Gabor filter bank can be found in
[13]. Motivated from DoG the concept of on-off/off-on separation is transferred
to Gabor allowing e.g., the crisp separation of the sky edge or of street markings
from shadows on the street. Motion from differential images on 5 scales is used
in the BU path alone. Since this simple motion concept cannot separate static
objects from self-moving objects, it is not helpful in TD search. The entropy
T is based on the absolute gradient strength of the structure tensor A on the
image Igray (see Equation (1)). The matrix A is calculated using derivatives of
Gaussian filters Gx and Gy and a rectangular filter of size W . We use the entropy
as a means to adapt the camera exposure and not as a feature yet.

Gx(x, y) = −
x

2πσ4
exp(−

x2 + y2

2σ2
), Gy(x, y) = −

y

2πσ4
exp(−

x2 + y2

2σ2
)

A=

[

ΣW (Gx ∗ Igray)
2 ΣW (Gx ∗ Igray)(Gy ∗ Igray)

ΣW (Gy ∗ Igray)(Gx ∗ Igray) ΣW (Gy ∗ Igray)
2

]

, T=
det(A)

trace(A)
(1)

The local exposure control works on the accumulated activation Tsum = ΣRoIT
on an image region of interest (RoI) (e.g., coming from the appearance based ob-
ject tracker that is part of our ADAS, for details see [8]). Here we get inspiration
from the human local contrast normalization. The exposure time is recursively
modified in search of a maximum on Tsum, which maximizes the contrast on
the defined image regions. In sum, the system disposes of 130 independently
weightable subfeature maps.

Following the calculation of the modalities a postprocessing step on all sub-
feature maps is performed (see Fig. 2). The feature postprocessing consists of 5
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Fig. 2. Postprocessing of feature maps in BU and TD path.

steps. First all subfeatures are normalized to the maximal value that can be ex-
pected for the specific subfeature map (not the current maximum on the map).
For example, for DoG and Gabor this is done by determining the filter response



for the ideal input pattern, maximizing the filter response. The ideal input pat-
tern is generated by setting all pixels to 1 whose matching pixel positions in the
filter kernel are bigger than 0. Figure 3 shows the resulting ideal DoG and 0◦

even Gabor input patterns that are derived from the known filter kernels. This
procedure ensures comparability between subfeatures of one modality. Next, the

a) b)

Fig. 3. Input patterns that maximize the filter response. The maximum of this filter
response is used for subfeature normalization: a) Ideal DoG input pattern, b) Ideal 0◦

even Gabor input pattern.

signal power is calculated by squaring and a dynamic neuronal suppression using
a sigmoid function is applied for noise suppression. A parameter Ksupp shifts the
sigmoid function horizontally, which influences the degree of noise suppression
respectively the sparseness of the resulting subfeature maps. After a bilinear re-
size to the resolution 256x256 for later feature combination, for the BU feature
postprocessing a sparseness weight wsparse

i is multiplied that ensures popout by
boosting subfeature maps with sparse activation (see Equation (2)).

wsparse
i =

√

√

√

√

2s

∑

∀x,y with Fi,k(x,y)>ξ

Fi,k(x, y)
for s = [0, 4] and ξ = 0.9 · Max(Fi,k)

(2)
The sparseness operator is not used in the TD path (see TD branch in Fig. 2)
in order to prevent the suppression of weak object features.

Later in the TD path a weighting realizing inhibition and excitation on all
130 subfeature maps takes place. The TD weights wTD

i are calculated in an
offline step using Equation (3) (inspired by Frintrop [9]). The average activation
in the object region is related to the average activation in the surround on each
feature map F TD

i taken only the Ni pixels above the threshold KconjMax(F TD
i )

with Kconj = (0, 1] into account:

wTD
i =

{

SNRi ∀ SNRi ≥ 1
− 1

SNRi
∀ SNRi < 1

with SNRi =

P

(FTD

i,obj>KconjMax(FTD

i ))

Ni,obj
P

(FTD

i,surr
>KconjMax(FTD

i
))

Ni,surr

(3)

In the BU path only excitation (wBU
i >= 0) takes place, since without object or

task knowledge in BU nothing can be inhibited. For a more detailed discussion
of feature map weighting see [7, 8].

The subfeature normalization procedure ensures intra-feature comparability,
but for the overall combination, comparability between modalities is required
as well. We solve this by dynamically adapting the conspicuity weights wCj

for weighting the BU and TD conspicuity maps CBU
j and CTD

j . This concept
mimics the homeostasis process in biological systems (see e.g., [11]), which we



understand as the property of a biological system to regulate its internal pro-
cesses in order to broaden the range of environmental conditions in which the
system is able to survive. More specifically, the w̃Cj

(t) are set to equalize the
activation on all j = 1..M BU conspicuity maps (see Equation (4)), taking only
the Nj pixel over the threshold ξ = 0.9 · Max(CBU

j ) into account. Exponential
smoothing (see Equation (5)) is used to fuse old conspicuity weights wCj

(t − 1)
with the new optimized ones w̃Cj

(t). The parameter α sets the velocity of the
adaptation and could be adapted online dependent on the gist (i.e. basic envi-
ronmental situation) via a TD link. In case of fast changes in the environment
α could be set high for a brief interval e.g., while passing a tunnel or low in case
the car stops. Additionally we use thresholds for all M conspicuity maps based
on a sigma interval of recorded scene statistics to avoid complete adaptation to
extreme environmental situations.

w̃Cj
(t) =

1
1

Nj

∑

∀x,y with CBU

j
(x,y)>ξ

CBU
j (x, y)

and ξ = 0.9 · Max(CBU
j ) (4)

wCj
(t) = αw̃Cj

(t) + (1 − α)wCj
(t − 1) for j = 1..M (5)

Before combining the BU and TD saliency using the parameter λ a final
normalization step takes place. Like the subfeature maps, the saliency maps are
normalized to the maximal expected value. For this we have to step back through
the attention subsystem taking into account all weights (wsparse

i , wBU
i , wTD

i , wCj
)

and the internal disjointness/conjointness of the features to determine the high-
est value a single pixel can achieve in each conspicuity map. We define a feature
as internally disjoint (conjoint), when the input image is decomposed without
(with) redundancy in the subfeature space. In other words the recombination
of disjoint (conjoint) subfeature maps of adjacent scales or orientations is equal
to (bigger than) the decomposed input image. Since DoG and Gabor are de-
signed to be disjoint between scales and orientations the maximum pixel value
on a conspicuity map j is equal to the maximum of the product of all subfeature
and/or sparseness weights of the subfeatures it is composed of (wsparse

i and wBU
i

for BU as well as wTD
i for TD). Motion is conjoint between scales, therefore we

sum up the product of all subfeature motion weights wBU
i and their correspond-

ing wsparse
i to get the maximally expected value on the motion conspicuity map.

The contribution of the color feature to the saliency normalization weight is
similar but more complex. Since there is disjointness between conspicuity maps
the maximum possible pixel values for all BU and TD conspicuity maps, calcu-
lated as described above, are multiplied with the corresponding wCj

and added
to achieve the normalization weights wTD

norm and wBU
norm. Using this approach

wTD
norm will adapt when the TD weight set changes.

3.2 Comparison to other TD attention models

Taken the abundance of computational attention models (see [14] for a review)
we selected the two related approaches of Navalpakam [6] and Frintrop [7] for a



detailed structural comparison, since these impacted our work most. Then, we
summarize what makes our approach particularly appropriate for the real world
car domain.

The system of Navalpakam [6] is based on the BU attention model Neu-
romorphic Vision Toolkit (NVT) [10] but adds TD to the system. Each feature
map is normalized to its current maximum, resulting in a loss of information
about the absolute level of activity and a boosting of noise in case the activation
is low. Taken such a normalization procedure and the object dependence of the
TD weights, the BU and TD saliency maps are not comparable, since the relative
influence of the TD map varies when the TD weight set is changed. Addition-
ally, the BU and TD saliency maps are not weighted separately for combination.
As features a speed-optimized RGBY (leading to an inferior separability perfor-
mance), a DoG intensity feature and Gabor filter on 4 orientations (both without
on-off/off-on or line/edge separation) are used on 6 scales starting at a resolution
of 640x480. The system uses TD weights on all subfeature maps resulting in 42
weights that allow reasonable selectivity. A DoG-based normalization operator
(see [10]) is applied for popout support and to diminish the noise resulting from
the used feature normalization. However the absolute map activation is lost.

The system of Frintrop [7] integrates BU and TD attention and is real-time
capable (see [15]). It was evaluated mainly on indoor scenes. The system nor-
malizes the features to their current maximum, resulting in the same problems
as described above. The BU and TD saliency maps are weighted separately for
combination. Following the argumentation above the used normalization makes
these combination weights dependent on the used TD weight set and thereby
object-dependent. As features the system uses double color opponency based on
an efficient RGBY color space implementation, a DoG intensity feature (with on-
off/off-on separation), and a Gabor with 4 orientations starting from 300x300
resolution. A total of 13 TD-weights are used on feature (integrated over all
scales) and conspicuity maps. For popout support a uniqueness operator is used.
Most important differences comparing the systems: We obtain high selec-
tivity by decomposing the DoG (on-off/off-on separation) and Gabor (on-off/off-
on separation, lines and edges) features without increasing the calculation time.
Furthermore, the usage of TD weights on all subfeature maps and scales increases
the selectivity. The resulting scale variance of the TD weights is not a crucial
issue in the car domain. The RGBY is used as color and double color opponency.
In contrast to [6, 7], we use motion to support scene dynamics. All subfeature
maps and the BU respectively TD saliency maps are normalized without loos-
ing information or boosting noise and by that preventing false-positive FoAs.
Comparability of modalities is assured via homeostasis. The attention subsys-
tem works on 5 scales starting at a resolution of 256x256. In the car domain
bigger image sizes do not improve the attention system performance.

Our system supports conjunction of weak features since the sparseness op-
erator is not used in the TD path. Illumination invariance is reached by image
region specific exposure control that is coupled tightly to the system.



4 Results

In the following, we evaluate the system properties related to the challenges of
Section 2. All results are calculated on five real world data sets (cars, reflexion
poles, construction site, inner city stream, toys in an indoor scene) accessible in
the internet (see [16]).
1© High feature selectivity: In the car domain the search performance is
strongly influenced by the horizon edge present in most images of highways and
country roads. This serves as example problem for showing the importance of
high feature selectivity. Typically, the horizon edge is removed by mapping out
the sky in the input image, which might not be biological plausible. Based on
the high selectivity of the attention features, we instead suppress the horizon
edge directly in the saliency by weighting the subfeature maps. The gain of this
approach is depicted in Fig. 4 that shows the diminished influence of the horizon
edge on the (TD modified) BU saliency of the real world example in Fig. 5b).
Table 1 shows the significant performance gain of attentional sky suppression
versus no horizon edge handling on the average FoA hit number (Hit) and
detection rate (DRate) (see [7] for definition of these measures) based on our
real world benchmark data.

50 100 150 200 250 300

50

100

150

200

50 100 150 200 250 300

50

100

150

200

50 100 150 200 250 300

50

100

150

200

135° on−off0°off−on 45° off−on

a) b) c)

Fig. 4. Evaluation of selectivity (based on the input image depicted in Fig. 5b):
a)Original BU saliency, b)modified BU saliency with attentional sky suppression (TD
influence), using suppressive odd Gabor filter kernels in low scales, c)BU saliency,
masked sky.

Search target # test a) original BU b) attentional sky supp. c) sky masked

images Hit (DRate) Hit (DRate) Hit (DRate)

Cars 54 3.06 (56.3%) 2.19 (71.4%) 2.47 (71.4%)
Table 1. Benefit of attentional sky suppression on real world data.

2© Comparable TD and BU saliency maps: The used feature normalization
prevents noise on the saliency map and ensures the preservation of the absolute
level of feature activation. Using a TD weight set that supports certain object-
specific features our normalization hence ensures that the TD map will show high
activation if and only if the searched object is really present. Figure 5f) shows
that the maximal attention value on the TD saliency map for cars rises when
the car comes into view (see [16] for downloadable result stream). The influence
combining the now comparable TD and BU saliency maps is depicted in Tab. 2,
showing that TD improves the search performance considerably. However, the
influence of task-unspecific saliency (i.e., λ < 1) has to be preserved to avoid
inattentional blindness.
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(homeostasis) for the M=7
modalities.

# Test # Trai- Aver. FoA hit number (and detection rate [%])
Target im (obj) ning im λ = 0 (BU) λ = 0.5 (BU & TD) λ = 1 (TD)

Cars 54 (58) 54 (selftest) 3.06 (56.9%) 1.56 (93.1%) 1.53 (100%)
3 3.06 (56.9%) 1.87 (89.7%) 1.82 (96.6%)

Reflection 56 (113) 56 (self test) 2.97 (33.6%) 1.78 (59.8%) 1.85 (66.3%)
poles 3 2.97 (33.6%) 2.10 (51.3%) 2.25 (52.2%)

Table 2. Linear combination of BU and TD saliency, influence on search performance
(λ = 0 equals pure BU and λ = 1 pure TD search)

3© Comparability of modalities: The used dynamic adaptation of wCj
(home-

ostasis, see Equation (5)) causes a twofold performance gain. First, the a priori
incomparable modalities can be combined yielding a well balanced BU and TD
saliency map. Secondly, the system adapts to the dynamics of the environment
preventing varying modalities from influencing the system performance (e.g.,
in the red evening sun the R color channel will not be overrepresented in the
saliency). Figure 5g) depicts the dynamically adapted wCj

. Table 3 shows a no-
ticeable SNR gain on the overall saliency for 26 traffic relevant objects (e.g.,
traffic light, road signs, cars), comparing the dynamically adapted wCj

vector
with a locally optimized static wCj

vector.

Traffic-relevant #images SNRobj using SNRobj using
objects (obj) static wCj

dynamic wCj

Inner city stream 20 (26) 2.56 2.86 (+11.7%)
Table 3. Comparability of modalities via homeostasis.

4© Support of conjunctions of weak object features in the TD path is
assured since wsparse

i is used in BU only. Evaluation on 54 images with cars as
TD search object shows that the average object signal to noise ratio (SNRobj)
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on the TD saliency map (defined as the mean activation in the object versus
its surround) decreases by 9% when wsparse

i is also used in the TD path. For
evaluation we define weak object feature maps as having the current maximum
outside the object region but still having object values of at least 60% of the
maximum within the object. For the used 54 traffic scene images 11% of all
feature maps are weak. In case weak feature maps are used to optimally support
the TD saliency in an excitatory way SNRobj on the TD saliency map increases
by 25%. The results are aggregated in Tab. 4. Figure 6a) shows that the number
of excitatory TD weights wTD

i decreases the bigger Kconj is. An object-dependent
trade-off exists since the TD saliency map gets sparser the bigger Kconj is.

TD search # test SNRobj SNRobj SNRobj with optimal
target image with w

sparse
i without w

sparse
i weak feat. excitation

Cars 54 6.72 7.32 (+9%) 8.41 (+25%)
Table 4. Improvement due to support of weak feature conjunctions.

5© Changing lighting conditions: The feature activation of an image re-
gion depends on the illumination. Hence the TD weight set is only optimal for
the lighting conditions of the training images and the TD search performance
decreases when illumination changes without an adaptation of the camera expo-
sure. It is important to note that in a real world scene the optimal exposure in
varying illumination is different for all objects (see Fig. 6b and c), making the
exposure control dependent on the current task of the system. Evaluation based
on a complex indoor test setting where we were able to control the illumination
shows that the realized exposure control leads to illumination invariance of the
TD weight sets (see Tab. 5).

Target # Test Average hit number (and detection rate [%]), TD search λ = 1
Toys in a im (obj) Traning illu- without expos. control with expos. control

complex in- mination 75 lx 150 lx 15 lx 150 lx 15 lx
door setup 20 (20) 1.95 (100%) 2.74 (95%) 2.83 (30%) 1.80 (100%) 2.0 (100%)

Table 5. Illumination invariance of TD weight sets using dedicated exposure control.

5 Summary

This paper describes a flexible biologically motivated attention subsystem that is
used as the front end of an ADAS. The real world requirements of the car domain



have resulted in an improved system performance by incorporating modulating
TD links.

The key enhancements of our attention subsystem are: high feature selectiv-
ity, a normalization leading to comparable BU and TD saliency maps enabling
their combination with a linear combination weight λ that is independent of the
used TD weight set, the comparability of the used modalities, the conjunction
support of weak object features in the TD path and an exposure control that
depends on the object in focus or a task relevant image region. These principles
lead to a robust system suitable for the dynamic real world environment.

Using a purely vision based situation analysis that worked on TD prefiltered
vision data provided by an earlier version of the attention subsystem described
here, we showed the real time capability of our system in a real world test setup,
where our prototype car was reliably able to brake autonomously (see [8]).

References

1. Corbetta, M., Shulman, G.: Control of goal-directed and stimulus-driven attention
in the brain. Nature Reviews Neuroscience 3 (2002) 201–215

2. Egeth, H.E., Yantis, S.: Visual attention: control, representation, and time course.
Annual Review of Psychology 48 (1997) 269–297

3. Wolfe, J.M., Horowitz, T.S.: What attributes guide the deployment of visual atten-
tion and how do they do it? Nat. Reviews Neuroscience 5(6) (June 2004) 495–501

4. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying
neural circuitry. Human Neurobiology 4(4) (1985) 219–227

5. Tsotsos, J.K., Culhane, S.M., Wai, W.Y.K., Lai, Y., Davis, N., Nuflo, F.: Modeling
visual attention via selective tuning. Artificial Intelligence 78(1-2) (1995) 507–545

6. Navalpakkam, V., Itti, L.: Modeling the influence of task on attention. Vision
Research 45(2) (2005) 205–231

7. Frintrop, S.: VOCUS: A Visual Attention System for Object Detection and Goal-
Directed Search. PhD thesis, University of Bonn Germany (2006)

8. Michalke, T., Gepperth, A., Schneider, M., Fritsch, J., Goerick, C.: Towards a
human-like vision system for resource-constrained intelligent cars. In: Int. Conf.
on Computer Vision Systems, Bielefeld (2007)

9. Frintrop, S., Backer, G., Rome, E.: Goal-directed search with a top-down modu-
lated computational attention system. In: DAGM-Symposium. (2005) 117–124

10. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid
scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11) (1998) 1254–1259

11. Hardy, R.N.: Homeostasis. Arnold (1983)
12. Simons, D., Chabris, C.: Gorillas in our midst: Sustained inattentional blindness for

dynamic events. British Journal of Developmental Psychology 13 (1995) 113–142
13. Trapp, R.: Stereoskopische Korrespondenzbestimmung mit impliziter Detektion

von Okklusionen. PhD thesis, University of Paderborn Germany (1998)
14. Heinke, D., Humphreys, G.: Computational models of visual selective attention:

a review. In Houghton, G., ed.: Connectionist Models in Psychology, Psychology
Press (2005) 273–312

15. Frintrop, S., Klodt, M., Rome, E.: A real-time visual attention system using inte-
gral images. In: Int. Conf. on Computer Vision Systems, Bielefeld (2007)

16. BenchmarkData: (2007) http://www.rtr.tu-darmstadt.de/~tmichalk/

ICVS2008_BenchmarkData/.


