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Abstract— Visual feature-based approaches for detecting the
drivable area on unmarked streets and roads were intro-
duced in recent years. Although the accumulated results are
promising, the detected street segments often contain holes
and show a detection performance that strongly varies in time
depending on environmental conditions. This paper presents a
real-time capable approach for improving the road detection
results for this type of state-of-the-art systems by addinga
generic postprocessing step. Our proposed architecture removes
the drawbacks of said systems using a temporal integration
approach based on the bird’s eye view. In order to test
the proposed approach, one typical visual feature-based road
detection system was implemented. Still, the used road detection
system can be exchanged with any other state-of-the-art system.
Evaluation results computed on inner-city data show that this
approach is an important enhancement for all visual feature-
based road-detection systems. One of the used streams and
corresponding ground truth data is accessible on the internet
for benchmark testing. The proposed approach is a crucial
step toward robust road detection in complex scenarios that
allows building high-level applications, as, e.g., activecollision
avoidance or trajectory planning, based on vision as the major
cue.

Keywords: driver assistance, robust path identification,
lane detection

I. INTRODUCTION

The importance of driver assistance systems for further
decreasing the number of traffic accidents is a widely ac-
knowledged fact. The growing complexity of tasks, handled
by Advanced Driver Assistance Systems, lead to complex
systems that use information fusion from many sensory
devices and incorporate processing results of other modules.
One important field of interest for said systems are appli-
cations that are based on a robust detection of the drivable
path, as e.g., the ”Honda Intelligent Driver Support System”
[1] supporting the driver to stay in the lane and to maintain
a safe distance from the car in front. Other systems focus
on collision avoidance based on autonomous steering and
braking (see, e.g., [2]) as well as path planning even in
unstructured environments (see, e.g., [3]). The more safety-
relevant applications become, the more the required quality
of the detected drivable path must be improved.

Initial approaches for lane detection on marked roads date
back to the 1990s (see [4] for an overview of the early
approaches). These to date commercially available systems
are restricted to marked roads with a predictable course

based on a clothoid lane model that is also used for road
construction of motor-ways. In recent years, the field of
operation for path detection has shifted to unmarked country
roads and inner-city streets. To date, such systems rely on
statistical evaluation of different image features and primarily
use a training region in front of the car to determine the
current existing street characteristics (see, e.g., [5] and [6]).

The street segments that are detected by these approaches
often contain false negative pixels (regions that belong tothe
street but are not detected as such, i.e., holes in the detected
street segment) and the detection performance often changes
dynamically in time. The varying detection performance is
due to the changing content of the training region in front
of the car. Thereby, the system possibly adapts to local char-
acteristics present in the current training region that might
differ from the global road characteristics. Furthermore,local
illumination changes that depend on the current view angle
and lighting conditions influence the detection performance.
See Fig. 1 for a visualization of both effects. Future safety-
relevant applications (such as, e.g., autonomous steeringof
a car based on long-term trajectory planning) require both,
a dense and stable detected road segment as input data.

In this paper, we present a fast and robust method
for improving the quality of existing state-of-the-art road-
detection systems by including information of the street
segments detected in the past - a concept termed temporal
integration. The proposed approach is an important step
towards robust driving path detection on unmarked roads in
complex environments, as for example in inner city.

II. RELATED WORK

The concept of temporal integration is used in various
applications in the field of computer vision for driver as-
sistance. For example, [7] uses spatiotemporal integration
to improve the classifier performance when detecting sig-
nal boards and cars. Other applications for improving the
classifier performance rely on (temporal integration based)
voting mechanisms, which are widely used in numerous
domains (see [8] for an overview). Also the well-known
Kalman filter approach [9] stabilizes its state estimate by
temporal integration (fusion of measured and predicted data).
In [10] temporal integration is used to determine the camera
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Fig. 1. Causes for varying road-detection performance: (a)Illumination
change with dependance on the view angle, (b) Sample image showing
typical illumination gradient, (c) Schematic example: Training region in the
sun and resulting detected street segment (in white), (d) Schematic example:
Training region in the shade and resulting detected street segment (in white).

parameters, thereby stabilizing the input image of a marked
lane detection system running online in a car.

Also for clothoid model based lane detection on highways
and country roads (see, e.g., [11] and [12]) temporal integra-
tion was found to improve the detection performance. Still,
the usage of such model based approaches for road detection
in complex inner-city scenes is heavily restricted, due to
the unpredictable and abruptly changing course of the road
and various occlusions of road parts. Figure 2a shows the
complexity of a hand labeled ground truth road segment for
an inner-city frame that can hardly be modeled using, e.g.,
a clothoid model. Therefore, also a model based temporal
integration is not possible and will not show the desired
results in such complex scenarios.

Newer road-detection approaches that rely on the statis-
tical evaluation of different image features (see, e.g. [5]
and [6]) can handle such scenarios but have the drawbacks
discussed in the introduction. Nevertheless, also for these
systems temporal integration can and should be used for
making the road segment detection more robust. To this
end, the most direct approach would be to use the optical
flow that reflects the magnitude and direction of the motion
of image regions, as shown in Fig. 2b. Based on that, the
current position of a street segment detected in the past
can be determined and used for a fusion with the current
road-detection results. However, the optical flow has certain
drawbacks. Firstly, it’s to date high computational costs
make it scarcely applicable in domains with hard real time
constrains, as the car domain. Secondly, the optical flow
cannot be calculated at the borders of an image and is
error prone due to ambiguities resulting from the aperture
problem, illumination change, and camera noise [13]. Instead
of detecting the motion of all image regions based on the
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Fig. 2. Frame 105 of inner-city stream: (a) Hand-labeled ground truth
street segment, (b) Optical flow (colors code the direction of the motion),
(c) Bird’s eye view.

optical flow, the approach proposed here concentrates on the
drivable street plane alone, relying on the bird’s eye view
(see Fig. 2c and Fig. 4a).

III. SYSTEM DESCRIPTION - TEMPORAL ROAD
SEGMENT INTEGRATION

In the following, a rough overview of our approach of
bird’s eye view based temporal road integration is given (see
Fig. 3). Thereafter, all processing steps and their theoretical
background are described in more detail.

As input data our system uses 400x300 monocular gray
value images and a binary map of the currently detected
street segment. The images are used for calculating the bird’s
eye view, which is a representation of the scene as viewed
from above (see Fig. 4a). In the following step, the bird’s eye
view is used for detecting the motion of the static vehicle
environment based on Normalized Cross Correlation (NCC).
Based on these correlation results the current and past street
segments are fused by temporal integration on the bird’s eye
view. The fused street segments are then mapped back to the
perspective view corresponding to the input image.

The system takes optional input data that improves the
quality and makes the temporal integration more robust.
As such optional input data stereo images as well as the
longitudinal ego velocity and yaw rate of the CAN bus of
our prototype vehicle are processed. The depth map that is
calculated from stereo images (using the commercial ”Small
Vision System” [14]) is the basis for correcting the changes
in the pitch and roll angle. These changes induce the bird’s
eye view to be unstable in case the car brakes or the street
profile is not flat. The CAN data is used for predicting the car
motion based on a single track model. The predicted motion
is used for determining the anchor for the correlation on the
bird’s eye view. The usage of CAN data makes the system
faster. Still, without CAN data the detection quality is not
reduced.

In the following, the processing steps (as depicted in
Fig. 3) are described in more detail. Firstly, the camera lens
distortion is corrected. In Eq. (1) and Eq. (2) the undistorted
vertical and horizontal pixelsv and u are computed on
the initial (distorted) vertical and horizontal pixelsvd and
ud. The undistortion is based on a lens distortion model
(described in [15]) that uses radial (k1 andk2) and tangential
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Fig. 3. System structure: Temporal road segment integration (the dashed
module can be exchanged with the road-detection algorithm preferred by
the user, optional module is highlighted in red).

distortion coefficients (k3 and k4). The undistortion step
is essential in order to allow a correct mapping of the
image pixels to the bird’s eye view. It is important to note,
that for the bird’s eye view as a metric representation, the
undistorition step makes sure that the proportions in the
bird’s eye view match the real world.

u = (1 + k1β
2 + k2β

4)ud + 2k3udvd + k4(β
2 + 2u2

d) (1)

v = (1 + k1β
2 + k2β

4)vd + k3(β
2 + 2udvd) + 2k4udvd (2)

with β =
√

u2

d
+ v2

d

Then the bird’s eye view is calculated on the undistorted
pixels v and u based on Eq. (3) and Eq. (4) by inverse
perspective mapping of the 3D world pointsX , Y , andZ

(see Fig. 4b for the notation in our coordinate system) to the
2D (u,v) image plane. The equations describe how to map a
3D position of the world to the 2D image plane (refer to [4]).
More specifically, only the image pixels (u,v) that are needed
to get a dense metric bird’s eye view plane are mapped into
the XZ-plane. The usage of inverse perspective mapping
makes the inversion of Eq. (3) and (4) for calculating the
bird’s eye view obsolete. Eq. (3) and (4) use the 3 camera
anglesθX , θY , andθZ , the 3 translational camera offsetst1,
t2, t3 (see Fig. 4b), the horizontal and vertical principal point
cu andcv as well as the horizontal and vertical focal lengths

fu and fv. The intrinsic (i.e., internal camera properties,
like the focal length and the principal point) and extrinsic
(i.e., external camera properties, like camera angles and
offsets) camera parameters were determined using the freely
available calibration toolbox [16] and a calibration scene
similar to the one described in [17].

u=−fu

r11(X − t1) + r12(Y − t2) + r13(Z − t3)

r31(X − t1) + r32(Y − t2) + r33(Z − t3)
+ cu (3)

v=−fv

r21(X − t1) + r22(Y − t2) + r23(Z − t3)

r31(X − t1) + r32(Y − t2) + r33(Z − t3)
+ cv (4)

with Y = 0 ,

R = RXRY RZ =





r11 r12 r13

r21 r22 r23

r31 r32 r33



 ,

and

r11 = cos(θZ)cos(θY )

r12 = − sin(θZ)cos(θX) + cos(θZ)sin(θY )sin(θX)

r13 = sin(θZ)sin(θX) + cos(θZ)sin(θY )cos(θX)

r21 = sin(θZ)cos(θY )

r22 = cos(θZ)cos(θX) + sin(θZ)sin(θY )sin(θX)

r23 = − cos(θZ)sin(θX) + sin(θZ)sin(θY )cos(θX)

r31 = − sin(θY )

r32 = cos(θY )sin(θX)

r33 = cos(θY )cos(θX)

As can be seen in Eq. (3) and (4) the 3D world position
coordinatesX , Y , andZ of all image pixels (u,v) are needed.
By using a monocular system, one dimension (the depthZ)
is lost. A solution to this dilemma is the so called flat plane
assumption. Here, for all pixels in the image, the height Y
is set to 0. Based on this, only objects in the image with
Y = 0 (especially, the street we are interested in) are mapped
correctly to the bird’s eye view, while all the other regions
are stretched to infinity in the bird’s eye view (for example
the car in Fig. 7b).

In case this assumption is not fulfilled (i.e., the street
surface is not flat) the bird’s eye view is inaccurate, which
leads to decreasing quality of the temporal integration. To
allow a stable bird’s eye view even in case of non-flat
street surfaces and pitching of the vehicle, stereo data from
our stereo camera setup is used. In order to enhance the
robustness of the correction, only pixels that belong to
the currently detected street segment are used for surface
estimation. More specifically, the differences between the
orientation and position of the coordinate axes and the street
surface in terms of the pitch∆θX and roll angle∆θZ , as
well as the height of the camera over the ground∆t2 are
detected (see Eq. (6), (7), and (8)). This is done based on
the 3D position for all image pixels derived from the stereo
disparity (see Fig. 5 for 3D data of a sample image). The flat
plane assumptionY = 0 is then replaced byY = f(X, Z)
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leading to an extended bird’s eye view. In our implementation
a first order model for the street surface (linear hyperplane)
is used as shown in Eq. (5) (see [18] for more details).
Results have shown that higher order models lead to inferior
performance. The reason for this is the restraint number of
3D measurement points at the borders of the image, since
only reliable pixels belonging to the detected street are used
for the surface estimation.

Y = Y0 + aZ + bX (5)

∆θZ = atan(b) (6)

∆θX = atan(a) (7)

∆t2 = Y0 (8)

Since the estimated surface is noisy (stereo data is calculated
based on error prone correlation between the left and the right
image), a linear Kalman filter is used on the parametersY0,
a, andb that raise the performance considerably. A possible
improvement would be to use a model of the vehicle kinetics
(containing damper and spring characteristics, distribution of
the vehicle mass) for the Kalman prediction (as proposed in
[19]) instead of the linear prediction model used here.

By NCC based correlation between the current and the
stored previous bird’s eye view the vehicle motion (∆X ,
∆Z) since the previous time step is detected. A single track
vehicle model, as depicted in Fig. 4c, predicts the starting
point xt = xt−1 + ∆x and zt = zt−1 + ∆z of the NCC
correlation patch of time step t-1 in the current bird’s eye
view map. The values∆x and ∆z are calculated based on
the sample timeT , the distance of the camera from the rear
wheel L, as well as the yaw ratėθY , and lateral velocity
Ż from the CAN bus (see single track model Equations (9)
and (10)). The derived longitudinal and lateral motions as
well as rotational change (i.e., yaw angle) between the
current and the previous bird’s eye view are stored along with
the incremental motion between the previousN = 40 frames
(equivalent to 4 seconds of processing by our prototype

RGB input image

Z position in m

X position in m

Y position in m

Fig. 5. Dense 3D world positions for all image pixels based onstereo.

vehicles’ vision system).

∆x =
Ż

θ̇Y

(1 − cos(θ̇Y T )) + sin(θ̇Y T )L (9)

∆z =
Ż

θ̇Y

sin(θ̇Y T ) + cos(θ̇Y T )L − L (10)

The NCC correlation patch on the bird’s eye view is selected
to contain enough structure (using the entropy-based measure
described in [20]), which improves the accuracy of the NCC.
Furthermore, it is assured that the patch belongs to the
detected street and that it is not too far away from the ego
vehicle, since the resolution of the bird’s eye view decreases
with growing distance to the vehicle.

The bird’s eye view maps of the detected street segments
of the previousN = 40 frames are calculated and stored.
The stored incremental motion during the past 4 seconds
is integrated and used to shift all stored bird’s eye view
street segments correspondingly. Then the shifted previous
40 bird’s eye view street segments are weighted (weightsαt)
and summed up by Eq. (11). Thereafter, in Eq. (12) the sum
of the street segmentsSinteg(X, Z) is related to the maximum
possible number of overlaid street segmentsSmax(X, Z),
which results in an Integrated Road Probability Map (IRPM).
Please note thatSmax(X, Z) changes depending on the
position in the bird’s eye view map. The final threshold
operation (Eq. (13)) determines the final temporal integrated
street segmentSfinal in the bird’s eye view representation.

Sinteg =

N
∑

t=1

αtSt with
N

∑

t=1

αt = N (11)

IRPM =
Sinteg(X, Z)

Smax(X, Z)
(12)

Sfinal =

{

1 ∀ IRPM(X, Z) ≥ β

0 ∀ IRPM(X, Z) < β
(13)

The weightα1 in Eq. (11) is set high to ensure that the
pixels in the current detected street segment are with a high
probability also present in the final temporal integrated street
segment. The other weightsαt could be set dynamically
dependent on a quality measure of the bird’s eye view based
NCC or the road-detection system as well as the capturing
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Fig. 6. Final morphological fill operation for closing spaces in the street
segment that are due to perspective mapping (justified holesare preserved).
(a) Raw perspectively mapped street segment, (b) After morphological
closing.

time t. The thresholdβ in Eq. (13) is currently set to 0.7.
This means that a pixel is classified as street if at least 70%
of the overlaid past street segments have voted for street.

Next, the final temporal integrated street segmentSfinal is
mapped back to the image using Eq. (3) and (4). For this
operation the resolution of the street segment in the bird’s
eye view representation needs to be high (which is done by
upsampling the size by factor of 4) in order to allow a lossless
perspective mapping of the street segment. The perspective
mapping step produces equidistant, periodic spaces in the
street segment directly in front of the car (see Fig. 6a).
These spaces are filled using a morphological close operation
with a small morphological structuring element to prevent
adding too many false positive street pixels (see Fig. 6b). In
other words, holes in the bird’s eye street segment (that, e.g.,
correspond to objects on the street) are retained in the final
perspectively mapped street segment.

The following section shows that the steps proposed above
result in an enhanced detected street segmentation. The final
detected street segment has fewer holes and is dynamically
more stable than that of other approaches, which allows
complex path-related applications.

IV. RESULTS

In this section, we evaluate the performance of our system
by applying it to the results of a specific state-of-the-art road-
detection algorithm. Additionally, the reached computation
time for the proposed temporal integration approach is given.

The implemented road-detection approach processes data
of a training region in front of the car as well as HSI color,
structure, and stereo disparity as input features that are com-
bined based on iconic processing (with probability values
for all pixels) and region growing. The implementation is
roughly related to the system described in [5]. However,
the proposed temporal integration approach can work on top
of all road-detection algorithms for unmarked roads and is
therefore interchangeable.

Figure 7 shows results of the various system modules of
our system. The depicted snapshot is part of a result stream
showing our system running on 160 consecutive frames of an
inner-city course. The input images and stereo data used for
the evaluation as well as the ground truth data and results are
accessible on the internet [21] for open benchmark testing.

Additionally, Fig. 7e shows a kind of360◦ representation
of the environment that is derived from the combination
of all stored bird’s eye view maps of the past 4 seconds.
This representation builds up gradually, after the algorithm
starts. It could be used for higher-level trajectory planning
algorithms.

The white rectangle in Fig. 7b and d-f represents the
position of our prototype vehicle, while the black regions
are outside the field of vision of our vehicle cameras.

In order to evaluate our algorithm with respect to its
impact on the road-detection performance, we adopt the
Equations (14), (15), and (16). The equations define different
ground truth based measures, which were taken from [22].

Completeness =
TP

TP+ FN
(14)

Correctness =
TP

TP+ FP
(15)

Quality =
TP

TP+ FP+ FN
(16)

with

TP ... True positive pixels

FN ... False negative pixels

FP ... False positive pixels

On a descriptive level the Completeness states, based on
given ground truth data, how much of the present street
was actually detected. The Correctness states how much of
the detected street is actually street. The Quality combines
both measures. Its computation is appropriate, since a trade-
off between the Completeness and Correctness is possible.
Based on this, the Quality measure should be used for a
comparison, since it weights the FP and FN pixels equally.
For a more detailed analysis the Completeness and Cor-
rectness state what exatly caused a difference in Quality.
The necessary ground truth data was produced by accurate
manual annotation of the 440 test images (see Fig. 2a).

The three measures were then calculated on the detected
street segments of 440 image frames of two inner-city
streams. The gathered results are depicted in Tab. I. There,
the standard street detection algorithm without temporal
integration is compared to our approach. Furthermore, our
approach is compared to one that uses the optical flow for
temporal integration (based on the state-of-the-art optical
flow algorithm described in [23]), and finally to our approach
using only the mandatory input data (without the usage of
stereo data). In all 4 cases the same algorithm for detecting
the street was used, in order to allow a comparison. As the
results in Tab. I show, the highest Quality (89.9% enhancing
the60.5% of the initial street detection algorithm) is reached
with temporal integration based on our algorithm. Without
stereo data our algorithm still reaches a Quality of81.7%.
Optical flow based temporal integration reaches a Quality
of merely68.1%, which is due to the well-known apperture
problem (see, e.g., [23]) and present illumination changes.
The initial road detection approach without temporal integra-
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Fig. 7. (a) System input image, (b) Input image in bird’s eye view, (c) System input: Detected road segment of road-detection module, (d) Detected road
segment in bird’s eye view, (e) Temporal integration of bird’s eye view images of past 4 seconds, (f) Temporal integration of detected road segments, (g)
System output: Integrated road segment mapped back to the perspective image.

Road detect. approaches # test Correct- Comple- Quality
(BEV: bird’s eye view) images ness teness
No temp. integration 440 98.1% 61.5% 60.5%
Temp. integration, BEV 440 95.2% 94.1% 89.9%
Temp. integration,
optical flow 440 92.6% 72.4% 68.1%
Temp. integration, BEV,
without stereo 440 96.9% 84.0% 81.7%

TABLE I

COMPARISON OF DIFFERENT METHODS FOR TEMPORAL INTEGRATION.

tion has the highest Correctness with98.1%, but this comes
to the cost of reduced Completeness of merely61.5%. Our
approach applying temporal integration decrease this value
from 98.1% to 95.2%, but it increases the Completeness
disproportionately (from61.5% to 94.1%).

For further evaluation Fig. 8 shows typical results of
a standard street detection algorithm compared to results
gathered with the proposed temporal integration approach
based on 4 sample images of the inner-city stream.

For the experiments we use a Honda Legend prototype
car equipped with a mvBlueFox CCD color camera from
Matrix Vision delivering images of 800x600 pixels at 10Hz,
which is hence the processing rate our road detection module
must at least reach. The image data as well as the laser and
vehicle state data from the CAN bus is transmitted via LAN
to several Toshiba Tecra A7 (2 GHz Core Duo) running

Module / submodule Comp. time [in ms]
(frame rate [in Hz])

Temp. integration, BEV Σ 49.8 (≈ 20)
Bird’s eye view 6.9
Correlation submodule 14.7
Temp. integration 20.0
Perspective mapping to image plane8.2

Temp. integration, optical flow Σ >537.0 (≈ 2)

TABLE II

COMPARISION OF COMPUTATIONAL DEMANDS.

our RTBOS integration middleware [24] on top of Linux.
The road detection component together with other driver
assistance components (see, e.g., [25]) are implemented in
C using an optimized image processing library based on the
Intel IPP [26]. The road detection component is set to run
on a single core.

Table II shows the computational demands of different
submodules of the presented approach and compares these
to the qualitatively inferiour approach based on the optical
flow (as was shown in Tab. I). The reasonable parametrized
state of the art optical flow implementation (based on [23])
needs 537.0 ms (≈ 2 Hz), without taking further system
modules into account, which are additionally required by
this approach. The overall computation time of our temporal
integration system amounts to 49.8 ms (≈ 20 Hz), which
allows real-time processing on our prototype vehicle.
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V. SUMMARY

This paper describes a generic and fast method for en-
hancing the quality of all state-of-the-art visual feature-based
road detection systems. The proposed temporal integration
approach improves the road detection performance, which
allows building safety-relevant algorithms as trajectoryplan-
ning and active collision avoidance based on vision as the
main cue even in cluttered inner city scenarios.

We currently incorporate the proposed real-time capable
approach to our biologically motivated driver assistance
system (described in [25]) to get both conjointly running
online and in real-time on our prototype vehicle in inner
city.
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