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Abstract— Visual feature-based approaches for detecting the based on a clothoid lane model that is also used for road
drivable area on unmarked streets and roads were intro- construction of motor-ways. In recent years, the field of
duced in recent years. Although the accumulated results are operation for path detection has shifted to unmarked cguntr

promising, the detected street segments often contain hale d di ity streets. To dat h t |
and show a detection performance that strongly varies in tine roads and inner-City streets. 1o date, such systems rely on

depending on environmental conditions. This paper presesta  Statistical evaluation of differentimage features andharily
real-time capable approach for improving the road detectim  use a training region in front of the car to determine the

results for this type of state-of-the-art systems by addinga  current existing street characteristics (see, e.g., [6][&].

generic postprocessing step. Our proposed architecture neoves The street segments that are detected by these approaches
the drawbacks of said systems using a temporal integration

approach based on the bird’s eye view. In order to test often contain false negative pixels (re_gions that_belongmao
the proposed approach, one typical visual feature-based eal ~ Street but are not detected as such, i.e., holes in the ddtect

detection system was implemented. Still, the used road defiton  street segment) and the detection performance often change
system can be exchanged with any other state-of-the-art dgsn.  dynamically in time. The varying detection performance is

Evaluation results computed on inner-city data show that ths /0 5 the changing content of the training region in front
approach is an important enhancement for all visual feature

based road-detection systems. One of the used streams and©f the car. Thereby, the system possibly adapts to locat char
corresponding ground truth data is accessible on the interat ~ acteristics present in the current training region thathmig
for benchmark testing. The proposed approach is a crucial differ from the global road characteristics. Furthermdoeal
step toward robust road detection in complex scenarios that jjjumination changes that depend on the current view angle

allows building high-level applications, as, e.g., activeollision 5,4 jighting conditions influence the detection performeanc
avoidance or trajectory planning, based on vision as the may

cue. See Fig. 1 for a visualization of both effects. Future safety
Keywords: driver assistance, robust path identificatiorf€/evant applications (such as, e.g., autonomous steefing
lane detection a car based on long-term trajectory planning) require both,

a dense and stable detected road segment as input data.
I. INTRODUCTION In this paper, we present a fast and robust method
The importance of driver assistance systems for furthésr improving the quality of existing state-of-the-art tha
decreasing the number of traffic accidents is a widely agtetection systems by including information of the street
knowledged fact. The growing complexity of tasks, handledegments detected in the past - a concept termed temporal
by Advanced Driver Assistance Systems, lead to compléktegration. The proposed approach is an important step
systems that use information fusion from many sensompwards robust driving path detection on unmarked roads in
devices and incorporate processing results of other medulgomplex environments, as for example in inner city.
One important field of interest for said systems are appli-
cations that are based on a robust detection of the drivable Il. RELATED WORK
path, as e.g., the "Honda Intelligent Driver Support System
[1] supporting the driver to stay in the lane and to maintain The concept of temporal integration is used in various
a safe distance from the car in front. Other systems focugpplications in the field of computer vision for driver as-
on collision avoidance based on autonomous steering amistance. For example, [7] uses spatiotemporal integratio
braking (see, e.g., [2]) as well as path planning even ito improve the classifier performance when detecting sig-
unstructured environments (see, e.g., [3]). The moresafetnal boards and cars. Other applications for improving the
relevant applications become, the more the required gqualitlassifier performance rely on (temporal integration based
of the detected drivable path must be improved. voting mechanisms, which are widely used in numerous
Initial approaches for lane detection on marked roads datmains (see [8] for an overview). Also the well-known
back to the 1990s (see [4] for an overview of the earl|Kalman filter approach [9] stabilizes its state estimate by
approaches). These to date commercially available systemesnporal integration (fusion of measured and predicted)dat
are restricted to marked roads with a predictable courde [10] temporal integration is used to determine the camera
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Fig. 2. Frame 105 of inner-city stream: (a) Hand-labeledugdbtruth
street segment, (b) Optical flow (colors code the directibthe motion),
(c) Bird's eye view.

S;J%‘fg%fd \ L\ L\ Ds%tée?:‘%fd (WNRWNWWMY optical flow, the approach proposed here concentrates on the
(in' white) (in white drivable street plane alone, relying on the bird’s eye view
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(see Fig. 2c and Fig. 4a).

) ) ) o 1. SYSTEM DESCRIPTION - TEMPORAL ROAD
Fig. 1. Causes for varying road-detection performance:lli@nination

change with dependance on the view angle, (b) Sample imageirgih SEGMENT INTEGRATION

typical illumination gradient, (c) Schematic example: ifinag region in the In the following a rough overview of our approach of
sun and resulting detected street segment (in white), (d@8atic example: '

Training region in the shade and resulting detected stegghent (in white). bi.rd’s eye view based temporal_ road integration i§ giyee (Se
Fig. 3). Thereatfter, all processing steps and their thealet

background are described in more detalil.

parameters, thereby stabilizing the input image of a marked As input data our system uses 400x300 monocular gray
lane detection system running online in a car. value images and a binary map of the currently detected

Also for clothoid model based lane detection on highwaystreet segment. The images are used for calculating this bird
and country roads (see, e.g., [11] and [12]) temporal imtegreye view, which is a representation of the scene as viewed
tion was found to improve the detection performance. Stilfrom above (see Fig. 4a). In the following step, the bird’s ey
the usage of such model based approaches for road detectgw is used for detecting the motion of the static vehicle
in complex inner-city scenes is heavily restricted, due tenvironment based on Normalized Cross Correlation (NCC).
the unpredictable and abruptly changing course of the ro&hsed on these correlation results the current and past stre
and various occlusions of road parts. Figure 2a shows tsegments are fused by temporal integration on the bird’s eye
complexity of a hand labeled ground truth road segment fasiew. The fused street segments are then mapped back to the
an inner-city frame that can hardly be modeled using, e.gperspective view corresponding to the input image.
a clothoid model. Therefore, also a model based temporal The system takes optional input data that improves the
integration is not possible and will not show the desireduality and makes the temporal integration more robust.
results in such complex scenarios. As such optional input data stereo images as well as the

Newer road-detection approaches that rely on the statiwngitudinal ego velocity and yaw rate of the CAN bus of
tical evaluation of different image features (see, e.g. [Shur prototype vehicle are processed. The depth map that is
and [6]) can handle such scenarios but have the drawbaataculated from stereo images (using the commercial "Small
discussed in the introduction. Nevertheless, also forethe¥ision System” [14]) is the basis for correcting the changes
systems temporal integration can and should be used forthe pitch and roll angle. These changes induce the bird’s
making the road segment detection more robust. To theye view to be unstable in case the car brakes or the street
end, the most direct approach would be to use the opticatofile is not flat. The CAN data is used for predicting the car
flow that reflects the magnitude and direction of the motiomotion based on a single track model. The predicted motion
of image regions, as shown in Fig. 2b. Based on that, the used for determining the anchor for the correlation on the
current position of a street segment detected in the pdsird’'s eye view. The usage of CAN data makes the system
can be determined and used for a fusion with the currefaster. Still, without CAN data the detection quality is not
road-detection results. However, the optical flow has @ertareduced.
drawbacks. Firstly, it's to date high computational costs In the following, the processing steps (as depicted in
make it scarcely applicable in domains with hard real tim&ig. 3) are described in more detail. Firstly, the camera len
constrains, as the car domain. Secondly, the optical flodistortion is corrected. In Eq. (1) and Eq. (2) the undigtdrt
cannot be calculated at the borders of an image and vertical and horizontal pixelss and v are computed on
error prone due to ambiguities resulting from the aperturthe initial (distorted) vertical and horizontal pixelg and
problem, illumination change, and camera noise [13]. budte u4. The undistortion is based on a lens distortion model
of detecting the motion of all image regions based on th@escribed in [15]) that uses radidl (andks) and tangential
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fu and f,. The intrinsic (i.e., internal camera properties,

(dense) like the focal length and the principal point) and extrinsic
(i.e., external camera properties, like camera angles and
perspective offsets) camera parameters were determined using the freel
[meppmd | available calibration toolbox [16] and a calibration scene
past N frames | integrated similar to the one described in [17].
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Fig. 3. System structure: Temporal road segment integrétive dashed r31 = - sin(ﬁy)

module can be exchanged with the road-detection algorithefeed by r = cos(0v)sin(6

the user, optional module is highlighted in red). 32 ( Y) ( X)
33 = cos(0y)cos(0x)

, , . i i As can be seen in Eq. (3) and (4) the 3D world position
distortion coefficients K3 and k4). The undistortion step . jinatesy, v, andZ of all image pixels (u,v) are needed.
is essential in order to allow a correct mapping of theyy \;ing a monocular system, one dimension (the défth
image pixels to the bird’s eye view. It is important to note;g’jnt A solution to this dilemma is the so called flat plane
that_ for _the bird’s eye view as a metric representatlo_n, th&ssumption. Here, for all pixels in the image, the height Y
u_nd!stormoq step makes sure that the proportions in the <.t 10 0. Based on this, only objects in the image with
bird’s eye view match the real world. Y = 0 (especially, the street we are interested in) are mapped
_ 2 4 2 2 correctly to the bird’s eye view, while all the other regions
u=(1+ klf + sz Jua + 2k;’udvd ke (57 +2ug) (L) are stretched to infinity in the bird’s eye view (for example
v=(14+k18° + k28" vag + k3(8° + 2uqvq) + 2kquqvg (2) the car in Fig. 7b).
with 8 = y/u2 + v2 In case this assumption is not fulfilled (i.e., the street
surface is not flat) the bird’'s eye view is inaccurate, which
Then the bird’s eye view is calculated on the undistortetbads to decreasing quality of the temporal integration. To
pixels v and v based on Eq. (3) and Eq. (4) by inverseallow a stable bird’s eye view even in case of non-flat
perspective mapping of the 3D world poinks, Y, and Z  street surfaces and pitching of the vehicle, stereo data fro
(see Fig. 4b for the notation in our coordinate system) to theur stereo camera setup is used. In order to enhance the
2D (u,v) image plane. The equations describe how to maprabustness of the correction, only pixels that belong to
3D position of the world to the 2D image plane (refer to [4])the currently detected street segment are used for surface
More specifically, only the image pixels (u,v) that are needeestimation. More specifically, the differences between the
to get a dense metric bird’s eye view plane are mapped intmientation and position of the coordinate axes and thefstre
the X Z-plane. The usage of inverse perspective mappirgurface in terms of the pitchéx and roll angleAd, as
makes the inversion of Eqg. (3) and (4) for calculating thevell as the height of the camera over the grouht} are
bird’s eye view obsolete. Eqg. (3) and (4) use the 3 camegetected (see Eq. (6), (7), and (8)). This is done based on
anglesdx, 0y, andfz, the 3 translational camera offse¢is the 3D position for all image pixels derived from the stereo
ts, t3 (see Fig. 4b), the horizontal and vertical principal pointisparity (see Fig. 5 for 3D data of a sample image). The flat
¢, ande, as well as the horizontal and vertical focal lengthplane assumptio®™ = 0 is then replaced by = f(X, Z)
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Fig. 4. (a) Visualization of the bird’s eye view, (b) Coordia system

and position of the camera (car is heading in Z-directiog),Single track
vehicle model. Fig. 5. Dense 3D world positions for all image pixels basedstateo.

vehicles’ vision system).
leading to an extended bird’s eye view. In our implementatio :

a first order model for the street surface (linear hyperplane Ag = £(1 — cos(0yT)) + sin(@yT)L 9)
is used as shown in Eq. (5) (see [18] for more details). 9Y,
Results have shown that higher order models lead to inferior As — isin(éyT) ¥ cos(byT)L — L (10)
performance. The reason for this is the restraint number of Oy

3D measurement points at the borders of the image, sincfhe NCC correlation patch on the bird’s eye view is selected
only reliable plxels. belqnglng to the detected street aBglus iy contain enough structure (using the entropy-based measu
for the surface estimation. described in [20]), which improves the accuracy of the NCC.
Furthermore, it is assured that the patch belongs to the
detected street and that it is not too far away from the ego
Y = Yo+aZ +0X (5) vehicle, since the resolution of the bird’s eye view decesas
Ab, atan(b) (6) With groyving distance to the vehicle.
Aby atan(a) ) The bird’s eye view maps of the detected street segments
of the previousN = 40 frames are calculated and stored.
Aty =Y (8)  The stored incremental motion during the past 4 seconds
is integrated and used to shift all stored bird’s eye view
street segments correspondingly. Then the shifted previou
Since the estimated surface is noisy (stereo data is cégcula40 bird’s eye view street segments are weighted (weights
based on error prone correlation between the left and tihé rigand summed up by Eq. (11). Thereafter, in Eq. (12) the sum
image), a linear Kalman filter is used on the paramelgrs of the street segmenfneq(X, Z) is related to the maximum
a, andb that raise the performance considerably. A possiblpossible number of overlaid street segmeftgx(X, Z),
improvement would be to use a model of the vehicle kinetic&hich results in an Integrated Road Probability Map (IRPM).
(containing damper and spring characteristics, distidoudf ~ Please note thalSmax(X, Z) changes depending on the
the vehicle mass) for the Kalman prediction (as proposed position in the bird’s eye view map. The final threshold
[19]) instead of the linear prediction model used here.  operation (Eq. (13)) determines the final temporal intesgtat
mejreet segmentiiny in the bird’s eye view representation.

By NCC based correlation between the current and t

stored previous bird’s eye view the vehicle motioA X, N N

AZ) since the previous time step is detected. A single track Sinteg = Zatst with Zat =N (11)
vehicle model, as depicted in Fig. 4c, predicts the starting t=1 t=1

point z; = z,_; + Az and z, = z,_1 + Az of the NCC IRPM _ Sinteg(X, Z) (12)
correlation patch of time step t-1 in the current bird’s eye Smax( X, Z)

view map. The valued\x and Az are calculated based on

the sample tim€’", the distance of the camera from the rear Stinal { L VIRPM(X, Z) 2 5 (13)
wheel L, as well as the yaw ratéy, and lateral velocity 0 VIRPM(X, 2) <f

Z from the CAN bus (see single track model Equations (9The weighta; in Eq. (11) is set high to ensure that the
and (10)). The derived longitudinal and lateral motions apixels in the current detected street segment are with a high
well as rotational change (i.e., yaw angle) between thprobability also present in the final temporal integratededt
current and the previous bird’s eye view are stored alony witsegment. The other weights, could be set dynamically
the incremental motion between the previduis= 40 frames dependent on a quality measure of the bird’s eye view based
(equivalent to 4 seconds of processing by our prototypdCC or the road-detection system as well as the capturing



Additionally, Fig. 7e shows a kind 0360° representation
of the environment that is derived from the combination
of all stored bird’s eye view maps of the past 4 seconds.
This representation builds up gradually, after the alganit
starts. It could be used for higher-level trajectory plaugni

algorithms.
‘ The white rectangle in Fig. 7b and d-f represents the
(@ (b) position of our prototype vehicle, while the black regions
are outside the field of vision of our vehicle cameras.
Fig. 6. Final morphological fill operation for closing spade the street In order to evaluate our aIgorithm with respect to its

segment that are due to perspective mapping (justified laoepreserved). . .
(a) Raw perspectively mapped street segment, (b) After hwogical Impact on the road-detection performance, we adopt the

closing. Equations (14), (15), and (16). The equations define differe
ground truth based measures, which were taken from [22].

time t. The threshold3 in Eqg. (13) is currently set to 0.7. Completeness = L (14)

This means that a pixel is classified as street if at least 70% TP+ FN

of the overlaid past street segments have voted for street. Correctness — L (15)
Next, the final temporal integrated street segm@nt; is TP+FP

mapped back to the image using Eqg. (3) and (4). For this Quality - I L (16)

operation the resolution of the street segment in the bird’s TP+ FP+FN

eye view representation needs to be high (which is done by

upsampling the size by factor of 4) in order to allow a lossles with N _
perspective mapping of the street segment. The perspective TP ... True positive pixels
mapping step produces equidistant, periodic spaces in the FN ... False negative pixels
street segment directly in front of the car (see Fig. 6a). =) False positive pixels

These spaces are filled using a morphological close oparatio

with a small morphological structuring element to prevent On a descriptive level the Completeness states, based on
adding too many false positive street pixels (see Fig. 6b). Igiven ground truth data, how much of the present street
other words, holes in the bird’s eye street segment (that, e.was actually detected. The Correctness states how much of
correspond to objects on the street) are retained in the finhle detected street is actually street. The Quality consbine
perspectively mapped street segment. both measures. Its computation is appropriate, since a-trad

The following section shows that the steps proposed abowéf between the Completeness and Correctness is possible.
result in an enhanced detected street segmentation. The fiBased on this, the Quality measure should be used for a
detected street segment has fewer holes and is dynamicatlymparison, since it weights the FP and FN pixels equally.
more stable than that of other approaches, which allowSor a more detailed analysis the Completeness and Cor-
complex path-related applications. rectness state what exatly caused a difference in Quality.

The necessary ground truth data was produced by accurate
IV. RESULTS manual annotation of the 440 test images (see Fig. 2a).

In this section, we evaluate the performance of our system The three measures were then calculated on the detected
by applying it to the results of a specific state-of-the-aad- street segments of 440 image frames of two inner-city
detection algorithm. Additionally, the reached computati streams. The gathered results are depicted in Tab. I. There,
time for the proposed temporal integration approach isrgivethe standard street detection algorithm without temporal

The implemented road-detection approach processes dattegration is compared to our approach. Furthermore, our
of a training region in front of the car as well as HSI colorapproach is compared to one that uses the optical flow for
structure, and stereo disparity as input features that@re ¢ temporal integration (based on the state-of-the-art aptic
bined based on iconic processing (with probability valuefow algorithm described in [23]), and finally to our approach
for all pixels) and region growing. The implementation isusing only the mandatory input data (without the usage of
roughly related to the system described in [5]. Howevestereo data). In all 4 cases the same algorithm for detecting
the proposed temporal integration approach can work on tdpe street was used, in order to allow a comparison. As the
of all road-detection algorithms for unmarked roads and isesults in Tab. | show, the highest Quali89(9% enhancing
therefore interchangeable. the 60.5% of the initial street detection algorithm) is reached

Figure 7 shows results of the various system modules @fith temporal integration based on our algorithm. Without
our system. The depicted snapshot is part of a result streatereo data our algorithm still reaches a Quality8of7%.
showing our system running on 160 consecutive frames of @ptical flow based temporal integration reaches a Quality
inner-city course. The input images and stereo data used fofr merely 68.1%, which is due to the well-known apperture
the evaluation as well as the ground truth data and resw@ts goroblem (see, e.g., [23]) and present illumination changes
accessible on the internet [21] for open benchmark testinghe initial road detection approach without temporal inéeg
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Fig. 7. (a) System input image, (b) Input image in bird’s ey@w (c) System input: Detected road segment of road-detechodule, (d) Detected road
segment in bird’s eye view, (e) Temporal integration of Birelye view images of past 4 seconds, (f) Temporal integratibdetected road segments, (g)
System output: Integrated road segment mapped back to tepgutive image.

Road detect. approaches| # test | Correct- | Comple- | Quality Module / submodule Comp. time [in ms]

(BEV: bird's eye view) images ness teness (frame rate [in Hz])

No temp. integration 440 98.1% 61.5% 60.5% Temp. integration, BEV Y. 49.8 & 20)

Temp. integration, BEV 440 95.2% 94.1% 89.9% Bird’'s eye view 6.9

Temp. integration, Correlation submodule 14.7

optical flow 440 92.6% 72.4% 68.1% Temp. integration 20.0

Temp. integration, BEV, Perspective mapping to image plafe8.2

without stereo 440 96.9% 84.0% 81.7% Temp. integration, optical flow ¥ >537.0 & 2)
TABLE | TABLE Il

COMPARISON OF DIFFERENT METHODS FOR TEMPORAL INTEGRATION COMPARISION OF COMPUTATIONAL DEMANDS

tion has the highest Correctness with 1%, but this comes our RTBOS integration middleware [24] on top of Linux.

to the cost of reduced Completeness of mefdly5%. Our  The road detection component together with other driver

approach applying temporal integration decrease thisevaliassistance components (see, e.g., [25]) are implemented in

from 98.1% to 95.2%, but it increases the CompletenessC using an optimized image processing library based on the

disproportionately (fron61.5% to 94.1%). Intel IPP [26]. The road detection component is set to run
For further evaluation Fig. 8 shows typical results ofon a single core.

a standard street detection algorithm compared to resultsTgple II shows the computational demands of different
gathered with the proposed temporal integration approagypmodules of the presented approach and compares these
based on 4 sample images of the inner-city stream. to the qualitatively inferiour approach based on the optica
For the experiments we use a Honda Legend prototygw (as was shown in Tab. I). The reasonable parametrized
car equipped with a mvBlueFox CCD color camera fronstate of the art optical flow implementation (based on [23])
Matrix Vision delivering images of 800x600 pixels at 10Hz,needs 537.0 ms~{ 2 Hz), without taking further system
which is hence the processing rate our road detection moduteodules into account, which are additionally required by
must at least reach. The image data as well as the laser ahi$ approach. The overall computation time of our temporal
vehicle state data from the CAN bus is transmitted via LANntegration system amounts to 49.8 ms 20 Hz), which
to several Toshiba Tecra A7 (2 GHz Core Duo) runningllows real-time processing on our prototype vehicle.
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(Input street segment for us)
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Fig. 8. Example images of the used inner-city stream (lefan&ard
approach (input street segment for our approach), right: @proach (by
temporal integration), the last image is visually enhantedmprove its
legibility when printed

(17]

(18]
V. SUMMARY

This paper describes a generic and fast method for ensg]
hancing the quality of all state-of-the-art visual featbesed
road detection systems. The proposed temporal integrati%]
approach improves the road detection performance, which
allows building safety-relevant algorithms as trajectpign-
ning and active collision avoidance based on vision as the
main cue even in cluttered inner city scenarios. [21]
We currently incorporate the proposed real-time capablgz]
approach to our biologically motivated driver assistanc
system (described in [25]) to get both conjointly running
online and in real-time on our prototype vehicle in innef23]
city.
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