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Prediction of Convergence Dynamics of Design Performance using
Differential Recurrent Neural Networks

Yi Cao, Member, IEEE, Yaochu Jin, Senior Member, IEEE, Michal Kowalczykiewicz and Bernhard Sendhoff

Abstract— Computational Fluid Dynamics (CFD) simulations
have been extensively used in many aerodynamic design opti-
mization problems, such as wing and turbine blade shape design
optimization. However, it normally takes very long time to solve
such optimization problems due to the heavy computation load
involved in CFD simulations, where a number of differential
equations are to be solved. Some efforts have been seen using
feedforward neural networks to approximate CFD models.
However, feedforward neural network models cannot capture
well the dynamics of the differential equations. Thus, training
data from a large number of different designs are needed to
train feedforward neural network models to achieve reliable
generalization. In this work, a technique using differential
recurrent neural networks has been proposed to predict the
performance of candidate designs before the CFD simulation
is fully converged. Compared to existing methods based on
feedforward neural networks, this approach does not need a
large number of previous designs. Case studies show that the
proposed method is very promising.

I. INTRODUCTION

In recent years, Computational Fluid Dynamics (CFD)
techniques have been extensively used in many aerodynamic
design optimization problems, such as wing and turbine blade
shape design [1]. A computation flow chart to implement
such techniques is shown in Figure 1.

In this approach, optimization is conducted in an outer
loop by sending different design parameters to the CFD
model and then evaluating the design performance according
to the specified design criteria to decide either to alter the
design parameters for further evaluation or to consider the
optimization as converged hence to stop the computation. The
design performance is evaluated through the inner loop of the
CFD model. Upon receiving a set of new design parameters, a
number of partial differential equations of fluid dynamics will
be solved based on a grid scheme for the specified geometry.
Note that the mesh grid must also be generated for a given
shape before CFD simulations can be performed. Once the
solution process is converged, the design performance can
then be evaluated against given criteria. In such design
loops, the convergence process of the CFD simulation is
the most time consuming part of the whole computational
overhead. For example, a three-dimensional CFD simulation
using Navier-Stokes equations could take several hours to
converge [2]. Since a sophisticated optimization algorithm
requires hundreds or even thousands of criterion evaluations,
the whole design process will need several days or weeks to
achieve an acceptable design solution.
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Fig. 1. Flow chart of CFD based design optimization

Some efforts have been reported in the literature to re-
duce the computation time of the above procedure. One
approach is to replace the CFD simulation with a compu-
tationally efficient surrogate, such as a trained feedforward
neural network model to significantly reduce the computation
time for criteria evaluations [3]. However, empirical studies
showed that the generalization performance of such neural
network models becomes poor as the dimension of the
design space increases [4], [5]. Other related work includes
the use of feedforward neural networks to solve ordinary
and partial differential equations [6], [7], and discrete-time
neural networks [8], or continuous-time (differential) neural
network [9] to model dynamic systems. The continuous-time
neural networks bring further advantages and computational
efficiency over the discrete formulation even if at the end
both are represented on the computer using only discrete
values [10].

Instead of approximating the stationary mapping from the
design space (geometry) to the design criteria, an autonomous
differential recurrent neural network (DRNN) model is sug-



gested in this work to approximate the convergence process
of CFD simulations, i.e., to learn the dynamics described
by the differential equations. Once the DRNN model is
appropriately trained, it can predict the convergence only
using a few CFD runs such that the optimizer can alter design
parameters much earlier than using the CFD simulation alone
and thus the overall computation time can be significantly
reduced.

The remainder of the paper is organized as follows. In
Section II, the structure of the DRNN model is presented,
followed by a description of an efficient DRNN training
algorithm based on automatic differentiation (AD) techniques
and the Levenberg-Marquardt algorithm. In Section III, we
explain briefly how the DRNN can be applied to CFD
convergence prediction. The performance of the DRNN for
convergence prediction on a few cases of blade design is
empirically studied in Section IV. Section V concludes the
paper.

II. AN AUTONOMOUS DRNN MODEL

The autonomous DRNN model used in this work is based
on the multi-layer perceptron (MLP) structure with recur-
rency, as shown in Figure 2.
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Fig. 2. Autonomous differential recurrent neural network structure.

The MLP based autonomous DRNN model in Figure 2
can be described as follows.

ẋ = W2σ(W1x+ b1) + b2, (1)
y = Cx,

where, x ∈ Rnx are the internal states, y ∈ Rny the output to
predict the output of a dynamic system, σ ∈ Rnh the tanh-
sigmoid function, whilst W1 ∈ Rnh×nx , W2 ∈ Rnx×nh ,
b1 ∈ Rnh and b2 ∈ Rnx are weight matrices and bias
vectors, respectively. For simplicity, the output is directly
connected to the first ny internal states. Therefore, C =[
Iny 0ny×(nx−ny)

]
is a constant matrix determined by ny

and nx. Training of DRNNs involves the determination of the
initial internal states and parameters in equation (1), which
is done through parameter optimization based on a set of
training data. To make the training algorithm efficient, the
sensitivity of the model is analyzed through the recursive
Taylor expansion approach. The number of internal states

and the number of hidden nodes need to be predefined by
the user.

A. Sensitivity analysis

Given a sequence of training data consisting of N samples
{ỹ(ti), i = 1, 2, · · · , N}, where ỹ(ti) = ỹ(ih) = ỹi with
h the virtual time unit to convert the discrete point to
continuous time. It is required for the autonomous DRNN
model to produce output y(ti) at the same set of time
instances so that the model error e(ti) = y(ti) − ỹ(ti) can
be evaluated at these time instances.

Let xi = x(ti) represent the initial state of the autonomous
DRNN model at t = ti = ih. For 0 ≤ τ ≤ 1, the state of
the model, x(t) at t = (τ + i)h can be represented using the
Taylor series as follows:

x(t) = x
[0]
i + x

[1]
i τ + x

[2]
i τ

2 + · · ·+ x
[d]
i τ

d, (2)

where the superscripts with square brackets represent the or-
der of the Taylor coefficients, whilst the subscripts represent
the reference time point where the Taylor coefficients are
calculated. Let z(t) be the right-hand-side of (1), i.e.

z(t) = W2σ(W1x(t) + b1) + b2 = f(x, θ), (3)

where θ ∈ Rnθ is the parameter vector defined as follows:

θ =
[
WT

1 bT1 WT
2 bT2

]T ∈ Rnθ . (4)

Clearly, nθ = 2nx × nh + nx + nh. Using the automatic
differentiation techniques [11], [12], the coefficients of the
Taylor series z(t) =

∑d
k=0 z

[k]
i (t − t0)k can be derived as

follows:

z
[k]
i = f

[k]
i (x[0]

i , x
[1]
i , . . . , x

[k]
i , θ). (5)

On the other hand, since ẋ(t) = z(t), the following recursive
equations can be derived:

x
[k+1]
i =

h

k + 1
z
[k]
i =

h

k + 1
f

[k]
i (x[0]

i , x
[1]
i , . . . , x

[k]
i , θ) (6)

Using equation (6), all Taylor coefficients, x[k]
i , k =

1, . . . , d can be iteratively obtained from x
[0]
i = xi. There-

fore, x(ti+1) can be derived as follows:

x(ti+1) =
d∑
k=0

x
[k]
i . (7)

This process is repeatedly conducted for i = 0, . . . , N − 1
until states at all required time instances are evaluated. Then,
the output can be simply calculated as y(ti) = Cx(ti), i =
0, . . . , N .

Based on the above expressions, the sensitivity of y(ti)
against θ and x0 can be derived as follows. From equation
(5), it can be derived that the sensitivities of z[k]

i against x[j]
i

for j = 0 . . . , k satisfy the following relations [13]:

A
[k−j]
ix :=

∂z
[k]
i

∂x
[j]
i

=
∂z

[k−j]
i

∂x
[0]
i

, (8)

A
[k]
iθ :=

∂z
[k]
i

∂θ
. (9)



The sensitivity matrices, A[k]
ix and A

[k]
iθ , k = 0, . . . , d are

readily to be obtained using some automatic differentiation
software tools such as ADOL-C [14]. Using equations (8)
and (9), the total derivative of x[k+1]

i against x[0]
i and θ can

be derived from equation (6).

B
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dx
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i

dθ
=
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=
h

k + 1

k∑
j=0

A
[k−j]
ix B

[j]
ix , k = 0, . . . , d− 1, (11)

B
[0]
ix = I,

B
[0]
iθ = 0.

Therefore, according to equation (7),

Di+1,x :=
∂x(ti+1)
∂x(ti)

=
∂x(ti+1)

∂x
[0]
i

=
d∑
k=0

B
[k]
ix , (12)

Di+1,θ :=
∂x(ti+1)
∂θ

=
d∑
k=0

B
[k]
iθ . (13)

(14)

Furthermore,

Fi+1,x :=
dx(ti+1)
dx0

=
∂x(ti+1)
∂x(ti)

dx(ti)
dx0

,

= Di+1,xFi,x (15)

Fi+1,θ :=
dx(ti+1)
dx0

=
∂x(ti+1)
∂θ

+
∂x(ti+1)
∂x(ti)

dx(ti)
dθ

= Di+1,θ +Di+1,xFi,θ. (16)

Hence, the output sensitivity can be derived as follows:

dy(ti+1)
dx0

= CFi+1,x, (17)

dy(ti+1)
dθ

= CFi+1,θ. (18)

B. Training algorithm

The optimization problem for the DRNN training is to
minimize the total prediction error by adjusting θ and x0:

min
θ,x0

ϕ = min
θ,x0

1
2

N∑
k=1

eTk ek = min
θ,x0

1
2
ETE, (19)

where ek := y(kh) − ỹ(k) with ỹ being the actual CFD
convergence sequence data, and E := [eT1 · · · eTN ]T . This
is a nonlinear least square problem, which can be efficiently
solved. Based on the Levenberg-Marquardt algorithm [15],

the parameters and initial states can be iteratively updated as
follows: [

xk+1
0

θk+1

]
=
[
xk0
θk

]
− (JTJ + λI)−1JTE, (20)

where λ is determined by the algorithm to make sure the
prediction error is reduced at each iterative step, whilst J is
the Jacobian matrix defined as follows:

J :=
[
Jx Jθ

]
,

Jx :=
∂E

∂x0
=

J1,x

...
JN,x

 ,
Jθ :=

∂E

∂θ
=

J1,θ

...
JN,θ

 ,
Jk,x :=

∂ek
∂x0

=
∂y(tk)
∂x0

= CFk,x,

Jk,θ :=
∂ek
∂θ

=
∂y(tk)
∂θ

= CFk,θ.

III. DRNN FOR PREDICTION OF CFD CONVERGENCE

Computational fluid dynamics (CFD) simulations use nu-
merical methods to solve and analyze problems that involve
gas or fluid flows, in which the flow interacts with a solid
surface such as a stator or rotor blade of turbine engines.
One popular approach to simulate such interactions is to
discretize the continuous fluid into small two or three di-
mensional grids, and then apply a suitable algorithm to solve
the equations of motion described by Euler equations for
inviscid, and Navier-Stokes equations for viscous flow [16].
CFD simulations are highly time consuming even on super-
computers.

The convergence dynamics of CFD simulations is gov-
erned by a set of nonlinear autonomous ordinary differential
equations. Therefore, an autonomous differential recurrent
neural network (DRNN) is capable of approximating the
dynamic system, thus predicting the convergence process.
The aim of the DRNN model is to predict the final converged
performance value as early as possible by feeding with the
current and past convergence data. To enable the DRNN
model to predict future convergence trend, a virtual time can
be introduced to represent the convergence iteration, i.e. each
iteration is converted to one unit of time.

The autonomous DRNN does not have any input, whilst
the output represent the CFD convergence sequence. The
model will evolve itself continuously to produce the output
signal based on current (initial) states. Therefore, to make
the output of the model match the actual CFD convergence
sequence, the model parameters and initial states have to be
appropriately trained. These parameters and initial states will
be different from design to design and for different grid sizes.
The autonomous DRNN is trained using the fluid dynamics
performance data from a number of first simulation iterations
of a candidate design. Then, the DRNN is used to predict the
remaining iterations of the CFD performance for the same
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Fig. 3. Flow chart of CFD based design optimization with a convergence
predictor using DRNN

design, refer to Figure 3 to see how the DRNN can be used
in an optimization loop. In this way, the number of iterations
needed for a CFD simulation can be reduced and thus the
simulation time.

IV. SIMULATION RESULTS

Case studies are conducted to investigate the feasibility of
DRNN based performance prediction for turbine blade de-
sign. In the design, the geometry of the blades are represented
by a B-spline, consisting of a number of control points. The
target of the design optimization is to minimize the pressure
loss and the deviation of the outflow angle from a pre-
defined value. For two-dimensional (2D) CFD simulations,
each control point has two design parameters, i.e., its x and
y coordinates. Refer to [1], [4] for more details on B-spline
based blade design.

To verify the prediction performance of DRNN, 2D CFD
simulations are performed on 100 candidate designs created
by making random modifications to an initial design. Four
sets of CFD convergence data are collected for the candidate
designs with four different grid sizes. In the CFD simulation,
a maximum of 8000 iterations is set for data sets I, II and
III, and 16000 iterations for data set IV to ensure that the
simulations are converged. In data set I, where the grid size
is 71 × 35, one of the 100 designs does not satisfy the

mechanical constraint and therefore is removed. Refer to
Table I for an overview of the specifications of the data sets,
Table II for the statistics of the data sets, including mean and
standard deviation of the different designs within the same
data set, and Table III for the structural parameters of the
DRNN model.

TABLE I
CFD CONVERGENCE DATA SETS

data set grid size # of designs # of iterations
I 71× 35 99 8,000
II 191× 55 100 8,000
III 299× 91 100 8,000
IV 299× 91 100 16,000

TABLE II
MEAN AND STANDARD DEVIATION OF THE DATA SETS.

data set variable mean variance
I pressure loss 0.12623 2.93×10−4

I outflow angle 60.011 0.018723
II pressure loss 0.11599 0.008079
II outflow angle 60.025 0.12887
III pressure loss 0.11183 0.004250
III outflow angle 60.116 0.10493
IV pressure loss 0.11179 0.004217
IV outflow angle 60.117 0.10502

The convergence data from the first certain number of CFD
iterations, termed training length, are used for training. The
trained model is then employed to predict the remaining
part of convergence data. The training length used and
total prediction error achieved are summarized in Table IV,
where the prediction error is defined at the final point of
convergence as e = |y − ỹ|/|ỹ|, whilst µ(e) =

∑
(e)/N the

mean error and σ(e) = (
∑

(e − µ(e))2/N)1/2 the standard
deviation with N the number of designs in each data set.
Details of all convergence sequences and prediction errors
are presented in Figures 4–11.

TABLE III
DRNN MODEL PARAMETERS

data set variable nx nh d
I pressure loss 3 3 3
I outflow angle 3 3 4
II pressure loss 3 3 3
II outflow angle 3 4 4
III pressure loss 3 3 3
III outflow angle 3 4 4
IV pressure loss 3 3 3
IV outflow angle 3 4 4

Figures 4– 11 show that all convergence sequences are able
to be correctly predicted with a reasonable accuracy. Table IV
shows that all relative prediction errors at the convergence
point are less than 5%. The training lengths required are less
than 50% of total number of iterations. This means that at
least 50% of computation time can be saved using the DRNN
convergence prediction approach. However, if we take a look
at the statistics of the training data shown in Table II, we see
that the prediction on the outflow angle is more reliable.



TABLE IV
DRNN MODEL TRAINING LENGTH AND PREDICTION ERROR

data set variable training length µ(e) σ(e)
I pressure loss 2000 0.004 0.0035
I outflow angle 2000 5.21×10−5 1.12×10−4

II pressure loss 4000 0.0284 0.0193
II outflow angle 2000 0.0014 9.41× 10−4

III pressure loss 4000 0.0340 0.0132
III outflow angle 2000 0.0015 0.0019
IV pressure loss 2000 0.0281 0.0131
IV outflow angle 4000 9.44×10−4 0.0011
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Fig. 4. Pressure loss convergence sequence (a) and prediction error (b) of
all designs in data set I.
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Fig. 5. Outflow angle convergence sequence (a) and prediction error (b)
of all designs in data set I.
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Fig. 6. Pressure loss convergence sequence (a) and prediction error (b) of
all designs in data set II.
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Fig. 7. Outflow angle convergence sequence (a) and prediction error (b)
of all designs in data set II.
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Fig. 8. Pressure loss convergence sequence (a) and prediction error (b) of
all designs in data set III.
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Fig. 9. Outflow angle convergence sequence (a) and prediction error (b)
of all designs in data set III.
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Fig. 10. Pressure loss convergence sequence (a) and prediction error (b)
of all designs in data set IV.
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Fig. 11. Outflow angle convergence sequence (a) and prediction error (b)
of all designs in data set IV.

V. CONCLUSIONS

CFD simulations have extensively been used in aerody-
namic design optimization problems. However, the computa-
tional burden associated with the CFD convergence process
is so large that it hinders these techniques to be adopted
in wider engineering areas. In this work, a concept us-
ing a recurrent neural network model to approximate the
convergence sequence of the CFD simulations is proposed.
The model structure and training algorithm are developed
and demonstrated with examples from turbine blade design
optimization. The case study shows that the proposed model
is able to predict the convergence sequence using less than
half of the required number of iterations with a satisfying
prediction accuracy. The next step of the work will integrate
this prediction model into the design loop to reduce the
computation time required by the optimization procedure.
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