
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Researching and developing a real-time
infrastructure for intelligent systems – Evolution
of an integrated approach

Antonello Ceravola, Christian Goerick

2008

Preprint:

This is an accepted article published in Robotics and Autonomous Systems.
The final authenticated version is available online at: https://doi.org/[DOI not
available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org


This article was published in an Elsevier journal. The attached copy
is furnished to the author for non-commercial research and

education use, including for instruction at the author’s institution,
sharing with colleagues and providing to institution administration.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Robotics and Autonomous Systems 56 (2008) 14–28
www.elsevier.com/locate/robot

Researching and developing a real-time infrastructure for intelligent systems
— Evolution of an integrated approach

Antonello Ceravola∗, Marcus Stein, Christian Goerick

Honda Research Institute Europe GmbH, Carl-Legien-Strasse 30, 63073 Offenbach/Main, Germany

Available online 29 September 2007

Abstract

In this paper, we describe the principles and the methodologies that we have researched for the creation of a software infrastructure for
bridging the gap from brain-like systems design to standard software technology. Looking at the brain, we constantly take inspiration and choose
the relevant principles that our computer-base model should/could be based on. This ranges from the evolution of the brain (phylogenetically and
ontogenetically), the inherent autonomy of the currently identified areas, the intrinsic synchronization through the most basic control mechanisms
that regulates interaction, communication, and modulation. With these principles in mind, we started to make a subdivision of our system into
instance, functional and computing architecture, modeling each sub-system with processes and tools in order to create a basic infrastructure that
supports the research and creation of intelligent systems. The basic elements of our infrastructure are the BBCM (Brain Bytes Component Model)
and BBDM (Brain Bytes Data Model), created to enable the modularization and reuse of our systems. Based on those, we have developed DTBOS
(Design Tool for Brain Operating System), the design environment for supporting graphical design, RTBOS (Real-Time Brain Operating System),
the middleware that supports real-time execution of our modular systems, and CMBOS (Control-Monitor Brain Operating System) to enable
the monitoring of running modules. We will show the feasibility of the established environment by shortly describing some of the experimental
systems in the area of cognitive robotics that we have created. This will serve to give a more concrete understanding of the dimensions and the
type of systems that we have been able to create.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Real-time; Modularity; Multiprocessing; Multithreaded; Parallel; Middleware; Integration

1. Introduction

The main focus of our research is to create large
scale biologically inspired intelligent systems capable of
interaction in the real world with real-time constraints. The
underlying assumptions are that major progress in brain-like
computing can only be achieved if the systems aspect is a
central point of research and that the real power of brain-like
computing will only unfold if real world tasks are approached.
The general concept is not defined as copying the brain,
but as understanding and transferring brain-like processing
principles to technical systems in order to solve problems of
computational intelligence. Therefore, great care has to be
taken in order to transfer the principles of biological processing

∗ Corresponding author.
E-mail address: Antonello.Ceravola@honda-ri.de (A. Ceravola).

and not the constraints present in biological systems. Such
principles constitute the main focus of our research, and, as
proof of concept, we implement them on our target platforms
(ASIMO and automobile). With such a process, we try to enable
fundamental research to deal with problems and allow usage of
methods that may result in concrete applications realizable in
real world conditions.

The notion of a system comprises sensing, processing,
and the generation of behavior in the real world by means
of actuators, which close the loop to the sensors via the
environment. We demand also a sufficient generality of the
system with respect to the solution of several different tasks
without a separate system-design for each task. Therefore, the
spectrum of research topics ranges from biological models and
processes via abstract system-theoretical aspects, simulation,
and real-time processing environments to the engineering of
hardware and software computing elements (see [23]). A large
influence on the design of such intelligent systems comes from

0921-8890/$ - see front matter c© 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2007.09.015



Author's personal copy

A. Ceravola et al. / Robotics and Autonomous Systems 56 (2008) 14–28 15

the area of real-time computing, since the systems must interact
with the outside world by means of sensors and actuators. This
demand for real-time execution exists in the sense of a defined
upper limit of the time span from an (environmental) event to
a system response. It is our strong belief that all those aspects
have to be addressed concurrently in order to design a consistent
overall system.

Since the knowledge of biological neural systems is
still continuously growing, an iterative analysis by synthesis
approach is pursued:

• Start the incremental design from the general to the specific;
• Observe and analyze the behavior of the system;
• Condense the gained knowledge into an increasingly

dedicated architecture.

In order to research brain-like systems, a critical mass
of architecture, infrastructure, and implementation has to be
established. This will allow previously isolated concepts about
some functional mechanisms in the brain to be tested in a
comprehensive environment.

Standard computers and programming languages are,
implicitly or explicitly, accepted as a general platform
for researching and creating intelligent systems (very few
researchers are building their own computing architectures like
analog or neural computers). Our assumption here is that such
technologies are sufficiently general and powerful, and that
they do not represent a limitation for the targeted brain-like
computing system we aim to build. But still, a set of generic
tools and computers alone cannot solve all the issues that
usually emerge in researching and creating intelligent systems.
Current technologies, in the states are now available, are still
too complex to be used for a large spectrum of researchers
working in fields and having knowledge not closely related
to the computer science domain. It is clearly necessary to
research the hardware/software architectures and the methods
and approaches towards the creation of such large-scale systems
through a general research and development environment.
Here, the effort is on the principles that regulate and organize
the research work into a coherent and consistent design and
implementation of the many parts that an intelligent system
is composed of. Here, libraries, modules, components, and
software infrastructures are necessary elements. Systems with
a basic set of behaviors are also an indispensable part. But still,
substantial work has to be carried out in defining a common set
of data types, thereby identifying the language that the module’s
interface would use. With it, the way towards representation
will be pursued. Additionally, a set of basic synchronization
principles has to be defined, governing the data flow of a
complex system: when does a signal trigger a computation?
When is it only modulatory? How many inputs are necessary
for starting the computation of a module? How to align parallel
streams of data?

We are focusing on a research environment with seemingly
contradictory requirements:

• Provide the necessary freedom for exploration, but
• make an interactive evaluation of the research possible.

This means that issues like synchronization, communication,
granularity etc. are not determined a priori, but must be
realizable in different forms within the environment.

The lessons we learned from the brain are as follows (some
of them are not addressed for the first time, but according to our
understanding they have not been addressed so coherently and
comprehensively so far):

(1) The brain has been modeled as several areas that act
autonomously but can be coherently processing when
necessary. As a consequence, we assume basically
all processing units as autonomous, and allow for a
synchronization by events, data streams, or grouping
of processing units. Even more radically, our basic
communication framework guarantees that units cannot
block each other in processing, but data can always be read
and written.

(2) Our traditional understanding of units may finally not
be applicable to the brain. Nevertheless, we start with
some units (while acknowledging that the boundaries of
those units may dissolve). As a consequence, we provide
dedicated communication means at low computational
cost for handling the massive amount of data to be
communicated. This is done by considering interfaces
between units that can become bigger and bigger. The
technical requirements here are high bandwidth with low
latency communication.

(3) Developmental or incremental design: We pursue an
analysis by the synthesis approach, which means that our
environment has to evolve with the knowledge gained
from the research results. It resembles, to some extent,
the processes of phylogeny and ontogeny in biology.
As a consequence, we provide only very basic means
for organizing processing and communication, but allow
for adding more mechanisms on top of those means.
This underlying computing architecture should not impose
constraints on the functional model of the systems
architecture to be researched (see [11,7]).

(4) The brain is the most complex structure known to man.
Researching brain-like intelligence means that we have to
be able to cope with large-scale systems. This applies to
the design, to the execution, and to the evaluation of the
experiments. There are three major consequences:
• Design: GUIs and means for defining hierarchies are

available now. Means for growing systems are under
evaluation.

• Execution: Deterministic distributed execution of large-
scale systems (see [32,22] for an overview on distributed
systems).

• Evaluation: Means for observing large-scale systems
with minimal interference with the processing inside
these systems.

(5) The brain is embedded in the real world and organizes
interactions. We consider interaction in a sufficiently rich
environment as crucial in order to ask the relevant research
questions. As a consequence, our environment must support
this interaction, which essentially means that it must be
predictable in execution time. This is a major difference



Author's personal copy

16 A. Ceravola et al. / Robotics and Autonomous Systems 56 (2008) 14–28

to other biologically oriented approaches, though of course
not to traditional robotics oriented ones.

(6) In the brain, the communication determines the control
flow. How this works exactly is unknown. Therefore, we
need to be able to investigate various communication
topologies and patterns without changing any local
processing. As a consequence, we introduced a strict
separation between processing and communication.

(7) Researchers should be able to experiment on the conceptual
level without the burden of the concrete technical
implementation. This was already partially addressed in
the first point. As a consequence here, we consider an
abstraction layer above the mechanisms for the necessary
parallelization and synchronization.

These points are the main driving forces for the work
described in this paper. They will be referred to throughout
this document when we describe our contributions to a research
infrastructure. The paper is organized along the structure of
the overall process we use in our software system research and
the tools that support us in the creation of real-time distributed
embodied intelligent systems.

We have decided to support the research with the standard
software engineering process: design, development, and testing.
This means that for every cycle we may review our systems (see
(3) in Section 1), consolidate and make a more coherent design
and implementation (following an evolutionary approach –
monotonically – and reusing the old part of the systems). The
need for such a process comes from the inherent complexity of
cutting an overall system into pieces (modules). In identifying
the atomic parts and modeling them into software components
for algorithms and components for data (see (6) in Section 1),
we have made a clear distinction between processing and
communication (see (6) in Section 1). All these concepts
have been encapsulated into a uniform and fully integrated
framework, reaching an infrastructure that is undoubtedly not
common in computer science, and especially in the robotics
domain.

2. Related approaches

Researchers are currently sharing the necessity of basing
their research on a more structured software process, where it
is possible to reuse and maintain large systems that can grow
over time, instead of rebuilding a system from scratch when
new principles or new functionalities need to be tested (without
reusing much, in most cases nothing, from the old systems). In
recent years, in the field of intelligent systems, robotics, and
real-time systems, researchers have started to build software
environments like the one we describe in this paper. Such a need
comes from the assumption that the creation of intelligence
requires a scientific and engineering effort focused on the same
targets [19].

The approaches vary mainly in their abstraction levels and
the pursued targets (see [35] for a comprehensive description
of the main benefits of modular and dynamic systems). On
a basic abstraction level, a modular approach is proposed
by [24,33], which uses a component model (software packaging

Fig. 1. Typical format of COM interface nodes (picture taken from [24]).

Fig. 2. Basic structure of an APOC component (picture taken from [33]).

patterns, [13]). In [24] Lüders refers to Component-Based
Software Engineering (CBSE) as the base for the inspiration
for achieving modularity. He reviews some of the widely
used component models like: JavaBeans, ActiveX, Component
Object Model, and CORBA. The main focus here is the
applicability of such a component model to real-time systems.
In this context, the major constraints are the possible overheads
introduced by such a component model in terms of execution
predictability and memory consumption. For the same reasons,
we decided to base our BBCM/BBDM component model on the
principles coming from CBSE. On the other hand, we did not
adopt an existing component model. We decided to create our
own in order to minimize overheads through: (a) a component
interface that does not require any additional computation other
than the functionality the user wants to encapsulate into the
component (execution predictability); (b) defining input/output
communication with components through pointers in order to
avoid unnecessary memory copying (memory overhead).

In [24], several benefits gained through the adoption of a
component model are highlighted, including the possibility of
having a more intensive module-test phase, where a single
component can be separated from the rest of the system
and tested in a confined test environment. Also, the dynamic
instantiation is facilitated due to the property of components
having a well defined interface (see COM interface in Fig. 1).
This property becomes very important once components
are automatically handled by a middleware or execution
environment.

In [33], the problem of organizing a behavior-based
system is analyzed by means of using the APOC framework
(Activating – Processing – Observing – Components). In such
an architecture, the concept of behavior is mapped to the
definition of a component. A component can represent a single
behavior; and the links between components represents the
information and control flow among behaviors. In Fig. 2 the
basic structure of a component is represented.



Author's personal copy

A. Ceravola et al. / Robotics and Autonomous Systems 56 (2008) 14–28 17

Fig. 3. Structure of a YARP port concept (picture taken from [16]).

Several types of input/output connections are implemented
in the APOC component model: A-Link (activation links,
transferring information within a time interval); O-Link
(observe link, observe state of other components); C-Link
(instantiate component or link, run-time creation of new
components or new connections). In our BBCM/BBDM
component model, we decided to implement only two type of
links: (a) data links (links for data values, like an integer or
an image; need a pointer to the data); (b) event links (links
that simply trigger an event; need a pointer to a function).
These two types of links are sufficiently general for covering
the types of interaction a component can have with other
components or with an external context. A similar concept
of port-based interfaces can be found in [5]. Taken from the
way a port is defined in CORBA 3.0, the concept of port has
been realized with more attention on performance through the
creation of providers/uses interfaces. These applications are
parallel in a data-flow context. For a more analytical analysis
of the component performance, see [37].

In [10], the system Player/Stage is composed by a
set of libraries that support data communication. Even if
communication is one of the most important issues in modular
systems, especially when building component-based systems,
Player/Stage exports such functionality as a set of libraries. The
focus of Player/Stage is more on the definition of drivers for
the support of several sensors and effectors than on the actual
support of a component-based infrastructure.

A similar approach is followed by YARP [16], which
proposes a library that implements a data communication
model. The emphasis here is on modeling a concept of
input/output ports that handle several data types and buffering
methodologies (see Fig. 3). Ports are represented by a triplet
consisting of an IP address, a port, and an interface name.
Through a name server, the user can access the port directly by
the interface name. In addition to the YARP library, in [16] the
usage of image/matrix manipulation libraries in combination
with their development systems is proposed. The advantage
here is that components/modules can benefit from a low level
library that may give a significant acceleration for common
image/sound manipulation or matrix operations.

Fig. 4. Real-time toolkit layers (picture taken from [34]).

Approaches which are closer to the one that we propose
in this paper, are described in [8,31,26,34,36,28], where the
aim is placed on an integrated environment which includes
designing and monitoring tools. In these papers, many different
approaches are pursued, custom to specific problems or to
particular architectures.

OROCOS (Open Robot Control Software, [4,34]) is
one of the most comprehensive systems that follows a
similar approach to the one we have described in this
paper. OROCOS is composed of: Real-Time Toolkit (Real-
Time engine for control execution and communication of
components); OROCOS Component Library (library of control
components); OROCOS Kinematics and Dynamics Library,
and Orocos Bayesian Filtering Library. The Real-Time Toolkit
(RTT) is the engine used to execute OROCOS applications. It
is organized as depicted in Fig. 4.

Generally, the most visible shortcoming of the cited
solutions is that each of them is specialized for a particular
domain or for a specific purpose. In other cases, some of the
solutions described put too much focus on specific features,
overloading them with too much functionality, which, in
practice, is not really necessary.

We believe that it is crucial to have one single research
and development environment that, while giving freedom
to design and implement any architecture (see [26] for
similar arguments), provides all the necessary support for
system decomposition, communication patterns, scalability,
and execution with different sequential or parallel paradigms.
Moreover, simplicity and modularity are, in this respect,
key issues in the development and the usage of such
research and development environments. We believe that the
adoption of a component model is a crucial aspect for
developing intelligent systems, since building systems out of
components/modules allows cutting complex problems into
smaller pieces, reducing complexity, increasing reusability, and
decreasing dependencies (see [27,12]).

3. Architectural structure and incremental design process

The design of the system is separable into three major
parts: The computing architecture, the functional architecture,
and the instance of an application. The computing architecture
comprises all of the software and computer technology in order
to provide a framework and an infrastructure for computing.



Author's personal copy

18 A. Ceravola et al. / Robotics and Autonomous Systems 56 (2008) 14–28

Fig. 5. Subdivision into computing architecture, functional architecture, and
instance.

Here, the major design constraints and means are determined
by technology, by real-time computing, and, at this stage,
by only a few but fundamental principles from biology (see
(7) in Section 1). Those constraints lead to a computing
architecture, where several different functional architectures
can be implemented.

A functional architecture represents the constraints of a
hypothesis or model of the network of functional areas in
the brain or any other general system concept that makes
different modules or components interact. Since the design of
the functional architecture is not a ‘simple’ design but a major
research field, it can only be approached in an iterative fashion.
Within a functional architecture, several different instances
of applications can be implemented (see Fig. 5). The design
decision to separate the system into computing and functional
architecture was made in order to lead to a stable computing
environment, one within which several functional architecture
revisions can be evaluated. Any advances on the functional side
may call for changes on the computing side, especially since
the separation can never be perfect. But the idea is that changes
on the computing side are on a slower time scale than on the
functional side if the computing side is sufficiently general. The
same applies to the relation of the functional architecture and
instances (see (3) in Section 1). We use the term ’instance’ for a
system hypothesis that implements a certain set of functionality
(e.g. object recognition system control-loop, interactive object
learning system, . . . ); it represents one of the systems we build
and investigate at a certain moment in time. The instance is
the most frequently changing part of the whole system. By
means of the different instances, some common knowledge and
principles can be researched that are condensed in the next
version of the functional architecture. This process leads to a
continuously growing functional architecture providing richer
means for future instances. See Fig. 5 for a visualization of this
process.

Under our architectural assumptions, there are several
dimensions which should be investigated for researching and
creating intelligent systems. These are:

• Granularity or abstraction level of modules;
• Asynchronous vs. synchronous processing;
• Sequential vs. parallel processing;
• Elementary connectivity patterns;
• Communication paradigms;
• Generality of modules, learning, and additivity;
• State vs. stateless modules;

• Time scale of modules; and
• Data formats and types.

The first design of our system was composed of two
layers: computing architecture and software architecture. As
proposed in [6], we designed our modules on the required
hardware for our system. Extending this architecture, we
started with some principal considerations of the functional
architecture, because this defines the global direction of the
overall system. The computing architecture must provide the
means for implementing this kind of a functional architecture,
and the application will be realized within such a framework
as a system instance. Again, both the architectures have to be
sufficiently general in order not to limit the application, because
here the new knowledge has to be gained that will be condensed
into both the functional and the computational architecture.

3.1. Computing architecture

The computing architecture is the framework and the means
for implementing functional architectures. In order to allow
optimal flexibility for the different design dimensions on the
functional side, the appropriate means of the computing side
have to be provided. The computing architecture that we refer
to in this paper is currently based on standard computers and
standard operating systems. A certain degree of portability
should be supported by a computing architecture in order
to leave the possibility of testing systems on platforms that
provide support for special hardware or software libraries.

The computing architecture should cover:

• Modularization support;
• System integration support;
• Simplifying the definition of parallel applications;
• Automatic data synchronization among modules/threads/

processes;
• Ensure real-time performance (deterministic execution);
• Multi-platform support.

An abstraction layer over standard operating systems and
compilers is necessary in order to support such features. We
have created a middleware that, running on top of the operating
system, handles concepts like modules, parallelism, and
synchronization (see (7) in Section 1). Real-time performance
and multi-platform support is achieved through a balanced
combination of customized implementation (for most of the
time critical parts) and external libraries (see (5) in Section 1).

3.2. Functional architecture

It is our opinion that ex post integration of independently
designed modules will never lead to a well integrated system
as a whole. Therefore, we propose inverse integration, i.e. a
series of constitutive functional architecture hypotheses has
to be devised, which guide the research and development
of functional modules. There are several partial solutions to
specific problems available in the scientific community, but
their integration is either rather low or less coherent than
necessary. According to our opinion it is crucial to aim for



Author's personal copy

A. Ceravola et al. / Robotics and Autonomous Systems 56 (2008) 14–28 19

an integrated, incremental, and convergent development effort
to reach the critical mass necessary for tackling fundamental
problems of computational intelligence (see Section 1). The
functional architecture provides the concepts that allow for the
process stated above. Some of these elements are:

• General means for supporting the kinds of targeted process-
ing needed, like image, sound, and matrix manipulation li-
braries;

• Computing and data module definitions;
• High level communication and timing protocols;
• On-line and off-line data inspection;
• Design phase support through both scripting and graphical

environment.

A general assumption on the functional side is that the
computational resources are sufficiently large in order not to
limit the research and the development of concepts. It is the
responsibility of the computing architecture to provide such
kind of resources. Nevertheless, the research for functional
algorithms should be guided by a set of principles that
ensure that the fundamental design philosophy is met and
the functionalities contribute to the goals. This requires
a proper scalability and computational complexity of the
algorithm. Here, with scalability we mean the possibility for
an algorithm to produce meaningful results in a consistent
time, independently of the size or frequency of the input data
stream. Meanwhile, with computational complexity we identify
the CPU usage and the overall dimension of an algorithm.
Modularization, parallelization, and distribution are approaches
for handling complex algorithms (reduction of complexity per
module is a significant target). Algorithms, in a real-time
context, should always take such issues into account. We have
implemented such services by creating libraries for image,
sound, and matrix manipulation, defining component models
for data and computing modules, creating a graphical design
tool, as well as an integrated monitoring system. The issues
raised here will be discussed in more detail in Section 4.

3.3. Instance

If the described constraints in Sections 3.1 and 3.2 are
met, a wide range of applications can be created with
the proposed infrastructure. However, there is still a full
spectrum of conventions and decisions that have to be
considered/established in order to implement any instance
application. But in this phase, the computing architecture and
the functional architecture already provide a broad support.
At this stage, new solutions, new approaches, and new
methodologies should be researched and implemented in order
to achieve the desired functionality.

In the instance layer, the following issues should be taken
into account:

• Definition of a process for system design, creation, test, and
development (more in the biological sense);

• Interface standardization;
• Architecture definitions at different levels;
• Module repository organization.

Fig. 6. Systems resarch process.

We have implemented such services by the definition of
processes organizing our research and development phases.
We have also created standard interfaces for our modules and
a common data set in order to standardize communication
channels (see Section 5). This standardization process has been
achieved through the identification of a common set of port
names (for our BBCM components), with a common data type
and behavior. When a component uses one of them, we can
relay the name, type, and behavior of the port. For the data
set (the BBDM components), we have defined a minimal set
of common data types used in our system for communicating
data from/to a module (BBCM). We decided to follow a more
generic data type definition: unspecific in the semantics –
e.g. Image –, but instead, specific on the representation —
e.g. Vector2D.

4. Systems research process

In Software Engineering, it is well known that the creation
of large-scale systems must be supported by a well defined
process. Such a process defines the various phases a project
is composed of, the relation between such phases, and the
interactions and the tools required to accomplish the necessary
tasks. We decided to employ such a process for our systems
research in order to gain advantage from it and structure our
work. The overall process is shown in Fig. 6.

This process governs the life-cycle of our systems research.
An iteration of the full process runs on the time scale of years.
Each step of this process is executed by several actors and is
actually governed by sub-processes that determine the more
fine grained actions.

We distribute a set of checkpoints in the process to ensure
a certain level of quality at each step. The process starts with a
conceptual phase where we maturate and formalize the ideas we
want to realize in our systems. In this phase, every researcher
may use a different approach to reach his/her results. But in the
transition phase (arrows in the graph), we coordinate and collect
hypotheses into one common form. This is very important in



Author's personal copy

20 A. Ceravola et al. / Robotics and Autonomous Systems 56 (2008) 14–28

order to cross-check the weak points or the unclear ones, or
simply to confirm what seems to be accepted by the researchers.
Other steps in the implementation phase are more concrete and
require the creation of software modules, the testing of the
functionality, or the analysis of properties that modules should
have. For such steps we decided to develop a set of tools that
support the accomplishment of the related tasks.

We will now revisit the process of Fig. 6 and analyze each
step in more detail:

4.1. Define system hypothesis

This step belongs to the conceptual phase where the research
work is concentrated on the definition of a system hypothesis.
In this phase we elaborate the architecture, the functionality,
and the methods to be researched. The goal here is to reach a
coherent system hypothesis that contains all the functionalities
and the principles we want to experiment on in an integrated
concept.

4.2. Design system instance

This last step of the conceptual phase aims at a concrete
design of the system. Here ideas and principles are mapped
to concrete functions (component hypotheses) and relations
(communication hypotheses). This step allows us to understand
what type of components are required in order to develop the
target system. This phase and the previous one belongs to the
instance layer of our system subdivision (refer to Section 3.3).

Decomposing a system into components requires a
certain balance between generality and specialization. The
space of components can go from a simple operation
like addition or multiplication, to more complex ones like
filter banks, integrators and components that perform object
recognition or speech synthesis. The main driving forces for
choosing granularity are openness for extensions, reuse, and
performance. In our experience, we have had the need to
develop components which implement simple operations, and
components that perform more complex functionality. The
systems we are targeting are real-world systems. Decomposing
a system in too fine-grained components may overload the
communication channels. This has to be balanced with
the choice of the employed communication paradigms.
Communication between several components that use the
memory channel of a single machine is much more convenient
(in certain circumstances) than a communication channel over
network connections among computers. Here there is again
a wide spectrum of possibilities. Network communication
between computers can be implemented in many different
ways, e.g. TCP, UDP, and Reflective Memory Cards. The goal
of this step is to identify the components we need and the
communication patterns we want to employ for each part of
the graph of the system (see (6) in Section 1). In this step, we
also identify which components can be reused and assign them
to a pool or dedicated computers. This partition for some part
of the system may be constrained by the availability of sensors
and effectors on certain hosts.

Fig. 7. (a) Brain Bytes Component Model interface; (b) Brain Bytes Data
Model interface.

4.3. Design component

The implementation phase starts with the design of compo-
nents. In our philosophy, we clearly separate processing from
communication, to allow experimenting with different systems
architectures, connectivity graphs, and communication means
without touching the internals of the processing algorithms.
Therefore, we decided to encapsulate the processing (algo-
rithms) into components. We have defined the BBCM (Brain
Bytes Component Model) specification, a very simple but pow-
erful component model that implements the interface shown in
Fig. 7(a).

All communication with a component is performed via
this interface, which in the case of input and output are
simple memory blocks handed over to the component from
the outside. Events are data-less function calls. The BBCM
has been implemented in the languages C, C++ and Matlab.
The data being communicated usually follow a data component
specification for data types. It is called the BBDM (Brain Bytes
Data Model) and allows wrapping any data type into standard
components with a well defined interface (see Fig. 7(b)).

The two component models (BBCM and BBDM) have been
designed to work together (but they do not depend on each
other). Furthermore, a C BBCM and a C++ BBCM component
can be used and can be connected together in the same source
code file. The proposed standardization level is, on the one
hand, sufficiently strict in order to be a suitable basis for
additional tools that bear much on the implementation burden
from the researchers, and on the other hand sufficiently flexible
in order to allow for experimenting with different processing
and communication paradigms.

Through the adoption of software components, our systems
are actually flexible and reconfigurable. We can easily reuse old
components and test new ones with a very minimal effort. But
now we have to deal with the following issues:

• Select the appropriate size for components (complexity): A
system can be composed of components that implement sim-
ple functions like: addition, subtraction, loop, conditional,
etc. On the other hand, components may implement a full
object recognition algorithm or a full set of motion behav-
iors. Surely in the first system each module can be easily



Author's personal copy

A. Ceravola et al. / Robotics and Autonomous Systems 56 (2008) 14–28 21

reused, but the connectivity graphs of such a system would
not clearly reflect the control flow of the system but rather
an intricate net of modules interconnected with each other.
By contrast, the second system would more clearly show the
functionalities of the system, but it cannot easily be extended
through the insertion of new modules since it would not be
possible to affect the computation done within a module.

• Define an appropriate interface: The questions here are:
What should be exposed? With what granularity? Should
specific or general data types be exposed? It is surely
beneficial to define interfaces that expose generic data types
(integers, vectors, . . . ), since this approach leads to an easily
connectivity between components.

• Handle synchronization: When should a component gene-
rate an output? When are all inputs available? Should
output be generated when the first input arrives? If a
component has more than one output, should it produce
a new value for all each time? Surely part of the need
for synchronization comes from the matured culture of
sequential computing/programming. Standard computing
environments assume that a program is composed of
a set of instructions that are executed one after the
other (sequentially). In these conditions, synchronization
is implicitly given by the fact that an operation is
executed only after the execution of the previous one.
Looking at biological systems, more parallelism and more
asynchronous processing is perceived. Therefore, it is
possible that more than one operation is executed at the
same time, raising the need to create operations with less
interdependency, and thence more capabilities of keeping
coherence even in unexpected sequences of execution.

• Maintain a sufficient level of documentation: Once a certain
number of components is reached in a group of researchers,
the need for clear and accessible documentation becomes
an important matter. Reusability can be technologically
achieved, but retrievability is a different issue.

4.4. Implement component

This step consists of creating and coding the different
components. It can be performed by the researcher or
outsourced to external companies. Sufficient care should be
taken in this step and the previous one. Since both of
them belong to the functional architecture (see Section 3.2),
decisions about the generality or the specificity of a component
may influence the next iteration of the full process. This step is
supported by different tools and conventions:

Coding and naming conventions: We decided to employ
a set of conventions for our software. Through the coding
conventions, we improve readability and ensure a certain level
of quality. Here, we tried to keep the set of conventions as small
as possible in order to minimize the effort to learn and use them.
We support their usage through web tools.

Image and sound libraries: Among others, main fields of
research are image, sound, and speech understanding as well
as robot manipulation. For these reasons we have created
VLW (Visual Library Wrapper), and SLW (Sound Library

Wrapper); libraries that support image and sound manipulation
(e.g. arithmetic operations, filtering, transformation, and
conversions). These libraries are wrappers (providing a
standard interface to our software) around existing libraries.
The wrapped libraries are: the IPP library [1], the Media Lib
library [3] and a plain C version used on platforms that do
not support IPP or Media Lib. These libraries are heavily
used for building the algorithms implemented in our BBCM
components.

Template generator: The creation of components is a
fundamental step in the process, and therefore supported by
automatic code generators that create the initial skeleton for a
BBCM or BBDM component from a simple textual description
of its interface. We created SMDL (Simple Macro Descriptive
Language), a language for transforming any document into a
template. The usage of automatic code generators has many
benefits, like:

• The generated code always conforms to our standards
(conventions and libraries);

• The generated code is less prone to errors;
• Large amounts of source code, makefiles, settings and

directory structures can be generated in a fraction of time.

4.5. Compile, test, and install

This traditional step is supported by several standard and
custom tools that remove some of the tasks that are usually
associated with this phase for a multiplatform environment:

Versioning system: We are currently using SVN (Subver-
sion [2]) for source code versioning. This tool (open-source,
freely available on the internet) handles directory and source
code file versioning in a local or networked configuration.

Multiplatform makefile system: We have based our build
system on the GNU make [39]. Our build system is composed
of two sets of files: ‘makefile’ (read-only for users), which
contains all rules we need for building, installing, and handling
the versioning system for all types of modules and ‘makeVar’,
which contains user settings (including paths, libraries, and
compiler options). Our build system is multi-platform and
supports projects for C, C++, PHP, Matlab CMEX and Java.

Multiplatform deployment structure: In order to store and
share our components, libraries, and applications, we have
created a multi-platform installation directory structure. This
directory structure (that looks the same for all platforms we
use) includes files, shared libraries, binaries, documentation
and configuration files. In order to avoid the common problem
of parallel development on a single source tree, we opt for a
solution where we share compiled code (binaries, libraries).
Every installed module contains the following configuration
files: packageVar (for compiler settings and paths) and a file
TcshSrc (for execution settings). To include a module just
the respective packageVar and TcshSrc have to be used. In
this way, the required compiler and execution settings are
inherited. Moreover, our build system gives support for this
multi-platform installation tree when compiling and installing
modules.



Author's personal copy

22 A. Ceravola et al. / Robotics and Autonomous Systems 56 (2008) 14–28

Fig. 8. Design Tool for Brain Operating System (DTBOS).

4.6. Creation of system graph

At this step of the implementation phase, the communication
hypothesis and the implemented components are used to build
the system graph. Clearly, we are in the instance layer of our
system subdivision (see Section 3.3). To support and simplify
the design and the creation of our applications, we have
developed DTBOS (Design Tool for Brain Operating System).
The tools described in this section are part of our functional
architecture (see Section 3.2).

DTBOS is an “RAD-like” development environment that
allows importing of RTBOS modules (code (CM) and data
(DM) modules) into a template-tree with which users can draw
applications in a graphical way (see (4) in Section 1). CMs/DMs
are drawn as boxes with input/output ports; connections can
be created by just dragging links from one port to another.
DTBOS can read and save files in the same script format
(CML, C Macro Language) accepted by RTBOS. Moreover,
with DTBOS we can debug our applications through a
playback functionality that reads an RTBOS log session and
shows, through animation, the executed modules, step by step.
A screenshot of DTBOS is shown in Fig. 8.

With DTBOS, we can easily handle graphs composed of
several hundreds of components; the same applies to controlling
the data and functional flows as well as modifying portions
of graphs without touching the entire system. Such flexibility
yields a high speed in creating systems, so that now they are
quite rapidly increasing in size. This new situation raised new
issues that we have had to deal with:

• Explicit wiring vs. generating graphs through scripts:
Designing and creating a system composed of a well defined
set of modules is a task that can be handled without too
much effort. But in a system where more developmental
aspects should be tackled, the purely static design becomes
insufficient. In this case, it is not possible to explicitly
add some more modules and draw a fixed connectivity for
them. Here the growth process may be supported by a
developmental program that runs in the system itself. In this
case, it becomes necessary to have a script-based (or run-
time based) generation of portions of the graphs.

• Manual vs. automatic thread/process assignment: With
DTBOS, we have created the possibility of assigning
threads and processes to each module of a graph. This is

necessary for controlling the CPU usage depending on the
type of computation a system should perform and for the
synchronization of module execution. Parts of a graph can
be executed within one thread in order to avoid too many
threads that would simply wait for each other and compute
their functionality one after the other. The partitioning into
processes is necessary (see (4) in Section 1) in order to be
able to distribute the execution of a big system over several
machines (we partition our system in order to execute only
one process per machine).

• How to visualize synchronization conditions: Implicitly or
explicitly, we need to implement a set of synchronization
points in our graphs. Synchronization is used to ensure that
certain properties of the data flow towards some components
are respected. Consider a component of a vision system
that receives the left and the right camera images and
computes a disparity map. The component would require
that the images it receives in the left-image and right-image
input have been taken from the cameras at the same time.
Such synchronization conditions may have local and global
dependencies. In case of local dependencies, the component
may implement such conditions directly inside its algorithm.
If there is a global dependency, usually we have specialized
components that only perform the synchronization, and then
propagate the synchronized data to the next components.
Due to the specialization of the synchronization conditions,
it is currently not possible to display them in the graph.

• Layout of big graphs: With DTBOS we use a two
dimensional canvas to draw our graphs. All components
are represented as rectangular boxes and placed in the
canvas. To support the creation of such big graphs, it is
convenient to have automatic layout functionalities. Such
functionalities should respect a monotonic organization of
the graph in order to keep the relative position of the
components throughout the growth process of the graph.

• Computing startup parameters: Each instance of the
BBCM/BBDM components can be customized through
a set of reference parameters. Currently, in our graphs,
such references are represented through constants that can
be set at the graph level. This is not sufficient, since
there are several cases where two or more components
share a set of references with functional dependencies (a
reference value of a component can be computed from
one or more references of other components). To handle
such inheritance-like situations, the possibility of computing
references (through the necessary equations) is required.

4.7. Executing, monitoring, and debugging

The last step of the implementation phase consists of
the execution of the system, the debugging, and the testing
in simulated and real-world conditions. The following tools
support this step:

Distributed middleware for real-time applications: We
have created RTBOS (Real-Time Brain Operating System), a
distributed middleware for multi-platform real-time modular
applications. The requirements from the beginning were to



Author's personal copy

A. Ceravola et al. / Robotics and Autonomous Systems 56 (2008) 14–28 23

Fig. 9. Run Time Brain Operating System (RTBOS).

provide an integration environment that is suitable for vision,
sound, internal prediction and decisions, as well as for
behavior generation and the control of actuators. The sensory
streams demand for a high data bandwidth, the internal
processes for a high connectivity, and the control aspects for
a low latency and a strict determinism in processing and
communication. The internal mechanisms account for those
requirements by providing low overhead communication and
data sharing mechanisms as well as deterministic thread control
(see (6) in Section 1). An RTBOS application is defined by
a set of: Computing Modules (CM), Data Modules (DM),
a Connectivity Graph and Execution Patterns. A CM is an
RTBOS module that encapsulates a BBCM component; a DM
is an RTBOS module that encapsulates a BBDM component; a
Connectivity Graph defines the connections between CM and
DM, while an Execution Pattern determines the ways CMs are
executed. We have identified several patterns, which can be
defined for arbitrary sub-partitions of the system instance.

The major Execution Patterns are:

• Parallel, which executes each CM in a separate thread. This
execution pattern is necessary for executing parts of the
system in parallel. It is the basic execution pattern, since our
underlying hypothesis is an asynchronous system that can be
synchronized if necessary (see (1) in Section 1).

• Sequential, which executes all CMs in a sequence, all in one
single thread. The choice of this execution pattern allows for
a fine grained control of the computing resource allocation.

When RTBOS starts an application, it loads the CM/DM
modules defined in the CML script file (generated by DTBOS);
connects them following the Connectivity Graphs, initializes all
modules and then executes the full application (Setup engine in
Fig. 9). The parallelism of an RTBOS application may employ
threads (within a machine) or processes (across machines).
RTBOS, through the concept of Execution Patterns drastically
simplifies the design and the creation of parallel applications.
Moreover, RTBOS automatically handles data allocation,
communication, and synchronization between threads and

processes even across computer boundaries (see (7) in
Section 1). RTBOS is part of the computing architecture since
it deals with more technical aspects strongly related to the
hardware (refer to Section 3.1).

The script file (CML) is plain text and can be quickly edited
with any text editor. It is a simple language providing a set
of commands for managing applications as described above.
It can be easily parsed and generated by other tools like the
design environment DTBOS (actually it can also be compiled
statically with RTBOS and all modules, since it conforms to the
C language). This feature leads to a higher acceptance for both
researchers preferring to work with script files and researchers
preferring GUIs.

The experience with RTBOS has shown us that we can easily
execute several systems, distributed on many machines, with a
minimal effort and with good performance. The adoption of
a script file for the definition of an application is surely an
efficient solution. On the other hand, we have now to deal with:

• Keeping real-time constraints in a constantly growing
system: Currently some of our applications are the result of
the contribution of several researchers. Each one of them is
able to research and develop a part of the system alone; and
only in a later stage integrate his modules into the common
system. Even if we all try to develop our algorithms with
low time-execution requirements, in the integration phase
we still discover time-execution problems when assembling
our systems. To keep certain real-time constraints (even if
in most of the cases we need soft-real-time) additional tools
and methods are required. In an integrated system composed
of several hundreds of modules, it is still difficult to identify
the reasons for timing problems. It is also difficult to find the
possible approaches to keep time-execution to the required
ranges with our current methodologies.

• Debugging and monitoring system behavior: Debugging and
monitoring our applications is still a rather complex task for
all researchers. It is surely possible to debug one or a few
modules alone, but when we are in the integration process,
it is still not possible for us to keep track of several modules,



Author's personal copy

24 A. Ceravola et al. / Robotics and Autonomous Systems 56 (2008) 14–28

Fig. 10. Control-Monitor for Brain Operating System (CMBOS).

threads and machines in a way that enables us to determine
the behavior of the whole system in an easy way. Here
again, new tools and methods are required in order to reduce
complexity and let users understand, on-line or off-line, the
actual system flow (see (4) in Section 1).

• Startup of a system: Our applications are still requiring
a strictly synchronous startup. This implies that the first
iteration of all modules is started at the same time. This
is due to the fact that some modules strongly depend on
the sequentiality of events when executed with respect to
data initialization (setting of default values to data modules).
We are aware that such restrictions cannot be present in
the long term, but removing this restriction means actually
redesigning the data flow of some components.

Monitoring control system: We have also created the
monitoring system CMBOS (Control Monitor system for Brain
Operating System). CMBOS is a daemon process that runs
in a monitoring machine (see Fig. 10). This daemon accepts
requests for data monitoring from one side while it displays the
requested data in an appropriate user interface automatically.
CMBOS contains a set of already defined user interfaces
that show 2D graphs, counters, images and other types of
visualization tools. Users can implement new visualization
tools and new data types to expand the functionality of CMBOS
(see (4) in Section 1). CMBOS is the youngest part of our
software environment and still needs further development. The
main problems we are currently facing are:

• Minimize interferences with the running system: Clearly,
like any monitoring system, we have to ensure that the
usage of a monitor process to inspect the internal data of
a running system induces the least possible interference.
The system should behave nearly the same with or without
inspection of the data. Here there are several approaches
available, like assigning a dedicated CPU for monitoring-
related computations, and adopting reflective memory or
delegating monitoring to a low priority process/thread. The
solution we have adopted employs a server (the Monitor
Server) that listens for any monitoring data and sends this
data to another computer that physically shows the data.

• Define appropriate visualization and/or combine visualiza-
tion: The process of monitoring requires that the internal
data of a system are visualized on a computer screen in a
form that helps the researchers to understand and relate the
system’s behavior with what has been visualized. It is not
always possible to display the same data in the same format
(LCD display, 2D graph, histogram). In some cases the vi-
sualization format has to be defined specifically for certain
modules in order to really capture how a module is func-
tioning. In other cases, it is also required to combine several
data streams and display all of them in one single view, so
that time and spatial relations are kept.

4.8. Closing the loop

Based on the described overall process, we have now
introduced all tools for supporting the workflow. In close
collaboration with researchers, we are continuously working
on the refinement and the extension of the covered concepts.
We have already started the integration of all of the mentioned
tools into one single environment. Our target is to make DTBOS
the central interface, and ultimately the only tool that users
would need to know. From DTBOS it will be possible to
create new BBCM/BBDM components, edit them, compile
them, import them automatically into the toolbar, use them to
draw applications, execute RTBOS sessions and open CMBOS
monitoring sessions directly through the DTBOS interface (see
Fig. 8).

All our tools have been designed to work on several
platforms. We currently support Linux, Sun Solaris, partially
Windows (native and CygWin) and VxWorks. We are interested
in expanding the list of supported platforms in order to improve
stability, portability, and performance.

5. Application and experiments

The tools described in this paper have been growing together
with our scientific research systems over the last couple
of years. The valuable feedback from researchers concerned
with their own functional methods and algorithms has found
its way directly into the conceptual improvements of our
tools. The tools, especially RTBOS, have been tested on
benchmark problems in order to examine their theoretical
performance. As a result of these experiments, we could
estimate the overhead introduced by RTBOS compared to a
hand coded system. Assuming extremely simple processing
elements and spending very little time on actual computation,
the system is mainly communicating, putting a high load on
the middleware. This assumption represents a theoretical worst
case setting for middleware systems. The value we measured
was approximately one percent of the overall processing time.

We will now report on some experiments using the tools in
real-time, real world settings. There are three major areas of
applications and experiments to report on; others are subject to
current research with publications under preparation.



Author's personal copy

A. Ceravola et al. / Robotics and Autonomous Systems 56 (2008) 14–28 25

Fig. 11. DTBOS graph of our active vision system. (a) Online object recognition and learning sub-system; (b) Gaze control sub-system.

5.1. Interactive vision system

The first area is concerned with an interactive vision system
composed of: image acquisition, saliency computation (from
several cues: color, intensity, saturation, motion, disparity),
visuo-motor mapping and learning, gaze selection, object
recognition and learning and camera head control.

This system is able to accomplish the following tasks: visuo-
motor mapping learning, interactive attention modulation,
object fixation and recognition, scene exploration, and simple
feature-based object search. Some of the corresponding work
has been published in [30,18,21,17,25,38].

In total, 13 researchers have been contributing to and
working with this system in an incremental fashion.

The system has a brain-like systems architecture, corre-
sponding to the dorsal and ventral processing streams in the hu-
man visual cortex including the superior colliculus’ controlling
gaze. The snapshot of the connectivity graph with the respective
subsystems is shown in Fig. 11. It has now been growing over
the last four years, reaching 202 BBCM instances as processing
modules and 157 BBDM instances as data modules. The aver-
age number of instances per coded BBCM is around two, while
the average number of instances per coded BBDM is five.

Those numbers are a mild estimate for the reuse of
components within one systems instance. There are several
variations of the system from at least six computational threads
up to a fully parallel system with the number of threads in
the order of the number of processing modules. The execution
time for the gaze selection computation cycle is in the range
of 200 ms, the time for the on-line learning between 80 and
320 ms, and the time for the actuator control is about 500 ms.
The current version runs distributed across two Pentium IV
3 GHz, one with 2 CPUs and the other with 4 CPUs, both
running Linux connected via dedicated GigaBit Ethernet.

For this system, clearly the connectivity/communication and
the number of processing modules to manage them are the
main challenges for the software environment, less the latency
constraints for the processing.

5.2. Binaural sound localization system

More emphasis on the latency constraints is put in the
second area, which is concerned with a real-time binaural sound

localization system. The system performs the estimation of the
pan angle of incoming sound events and the control of the
gaze direction of a robot head based on this estimation in real-
time. It is composed of the following stages: sound acquisition;
3 streams for sound position computation (IIT, IID and IED);
integration stage and head control. The corresponding work has
been published in [20] and [29].

The main two subsystems are the hardware interface and
the sound localization computation. The hardware interface
performs the stereo acquisition of the sound streams and the
control of the ASIMO head, while the sound localization
computation performs a parallel estimation of the sound source
pan angle. The stream cycle is 50 ms for both subsystems
and the number of threads is ten. The total number of BBCM
instances is 222, and the total number of BBDM instances is
275. Again, the two subsystems are distributed across several
Xeon 3.6 GHz computers, four with 2 CPUs and one with a
single CPU, all running under Linux connected via dedicated
GigaBit Ethernet. The connectivity graph of the system is
sketched in Fig. 12. In total, seven researchers are contributing
to this system.

While the previously presented vision system is mainly
asynchronous, the auditory system is more synchronous. The
reason is that the visual setting’s signal type is more continuous,
allowing for a more loose kind of synchronization, while
the auditory setting is composed of rare events that have to
be tightly synchronized in order to meaningfully fuse the
different analysis streams into one stable pan angle estimation.
Both kinds of processing paradigms could be equally well
implemented using the proposed tools.

5.3. Visually guided whole body interaction system

The third area is concerned with a visually guided whole
body interaction system for our robot ASIMO. The system
allows ASIMO to gaze, looking for close objects, selecting
one and trying to approach the selected target by whole body
motions. Parts of this work are being published in [14,15,9].
This system is composed of three main sub-systems: ASIMO;
a vision sub-system; and a behavior control sub-system.
The vision sub-system receives images form ASIMO’s stereo



Author's personal copy

26 A. Ceravola et al. / Robotics and Autonomous Systems 56 (2008) 14–28

Fig. 12. DTBOS graph of our real-time binaural sound localization system. (a) sound localization computation parallelized on three processors; (b) Hardware
interface sub-system.

camera and creates a set of possible targets. The control sub-
system selects one target and then controls the behaviors that
ASIMO has to execute. Behaviors are currently: searching,
tracking, and reaching. The vision subsystem has a stream
cycle of 150 ms, the control system has a stream cycle of
5 ms. The total number of instantiated BBCMs is 29, the total
number of instantiated BBDMs is 33. The connectivity graph
is sketched in Fig. 13. The system is distributed across three
different machines, one equipped with an ARM CPU on-board
on ASIMO, and two Pentium IV 3 GHz with two CPUs, the
first running under VxWorks and the other two with Linux
connected with a dedicated GigaBit Ethernet. The mixture of
handling sensor data coming from the environment and the
actual systems control puts the hardest constraints on the tools,
especially on RTBOS.

6. Summary

In this paper, we described the principles and the
methodologies that we have researched for the creation of an
integrated research and development environment, the base
of our brain-like intelligent systems. We have described the
process that governs the life-cycle of our systems research;
through this process we have analyzed the main tools we use
for integrating our software systems. The component models
(BBCM and BBDM), the design tool (DTBOS), the execution
engine (RTBOS) and the monitoring tool (CMBOS) constitute
the main parts that an integrated software environment should
have in order to ensure a certain level of quality and efficiency.

In addition to the experience within the three different fields
cited in Section 5, there are some general observations we
would like to report on. We could experience that the limits
of our tools are reached if we are close to the limits of the

Fig. 13. DTBOS graph of our visually guided whole body interaction system.
(a) vision sub-system; (b) behavior control sub-system.

underlying operating systems and hardware. Those limits are
mainly due to general purpose schedulers and limited network
bandwidth. For us, this is a mild indicator that the overall
overhead introduced by our tools is small.

Major parts of our experiments have been contributed by
non-systems programmers. With the aid of the offered tools,
they were able to create and manage real-time multi-threaded
parts of the systems. The overall reuse of components across
the different fields depends on the level of granularity of the
components. Generally speaking, the reuse is higher for finer-
grained components. For example, there is a large overlap of the
simple components between the visual components of the first
and the third system, but exact numbers have to be determined.

The chosen decomposition of the systems as well as the
means for working visually and monitoring various systems’



Author's personal copy

A. Ceravola et al. / Robotics and Autonomous Systems 56 (2008) 14–28 27

properties allows for real research on the systems level. As
pointed out in the paragraph on the auditory systems, different
kinds of processing and communication paradigms can be
created and managed with the same tools. For example, in
the area of the active vision system, we could investigate
different synchronization mechanisms without touching any of
the processing modules.

In the last four years, we have gained experience in using
our integrated software environment, and we have clearly
demonstrated that we are now able to setup large systems as
the result of the work of several researchers in our lab.

Acknowledgments

The work presented in this paper has been created by a
small group, but has been supported and inspired by the ideas
and the work of several researchers in our lab. We want to
thank Frank Joublin for his continuous requests for necessary
features and for the time he invested in meeting and reviewing,
especially when this project started. Thanks to Mark Dunn
for his contribution on the basic software infrastructure and to
Julian Eggert for inspiring several solutions and for the creation
and maintenance of the libraries that constitute the core of
several algorithms.

References

[1] Intel IPP Library. http://www3.intel.com/cd/software/products/asmo-
na/eng/perflib.

[2] Subversion (SVN). http://svnbook.red-bean.com/.

[3] Sun Media Lib. http://www.sun.com/processors/vis/mlib.html.

[4] The OROCOS project. http://www.orocos.org.

[5] Rob Armstrong, Dennis Gannon, Al Geist, Katarzyna Keahey, Scott
Kohn, Lois McInnes, Steve Parker, Brent Smolinski, Toward a common
component architecture for high-performance scientific computing, in:
Proceedings of the 1999 Conference on High Performance Distributed
Computing, Redondo Beach, CA, 1999.

[6] Tamim Asfour, Karsten Berns, Rüdiger Dillmann, The humanoid robot
ARMAR: Design and control, in: Proceedings International Conference
on Humanoid Robots, Humanoids 2000, Boston, MIT, USA, 2000.

[7] Len Bass, Dr. Paul Clements, Dr. Rick Kazman, Software Architecture in
Practice, Addison-Wesley, Boston, MA, 1998.

[8] Berthold Bäuml, Gerd Hirzinger, Agile robot development (aRD): A
pragmatic approach to robotic software, in: Proceedings International
Conference on Intelligent Robots and Systems, IROS, Beijing, China,
2006.

[9] Bram Bolder, Mark Dunn, Michael Gienger, Herbert Janßen, Hisashi
Sugiura, Christian Goerick, Visually guided whole body interaction, in:
IEEE Int. Conf. on Robotics and Automation, 2007.

[10] Brian Gerkey, Richard T. Vaughan, Andrew Howard, The player/stage
project: Tools for multi-robot and distributed sensor systems, in: 11th
International Conference on Advanced Robotics, Coimbra, Portugal,
ICAR’03, 2003.

[11] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerkand,
Michael Stal, Pattern-Oriented Software Architecture: A System of
Patterns — Volume 1–2, John Wiley & Sons, West Sussex, England, 1996.

[12] Peter Carruthers, Moderately massive modularity, in: A. O’Hear (Ed.),
Mind and Persons, Cambridge University Press, 2003.

[13] William T. Councill, George T. Heineman, Component-Based Software
Engineering: Putting the Pieces Together, Addison-Wesley, USA, 2001.

[14] Michael Gienger, Herbert Janßen, Christian Goerick, Task-oriented whole
body motion for humanoid robots, in: Proceedings of the IEEE/RSJ
International Conference on Humanoid Robots, Humanoids, 2005,
Tsukuba, Japan, 2005.

[15] Michael Gienger, Herbert Janßen, Christian Goerick, Exploiting task
intervals for whole body robot control, in: Proceedings of the International
Conference on Intelligent Robots & Systems, IROS, IEEE, 2006.

[16] Giorgio Metta, Paul Fitzpatrick, Lorenzo Natale, YARP: Yet another robot
platform, International Journal on Advanced Robotics Systems (2005).

[17] Christian Goerick, Inna Mikhailova, Heiko Wersing, Stephan Kirstein,
Biologically motivated visual behaviors for humanoids: Learning to
interact and learning in interaction, in: Proceedings of the IEEE/RSJ
International Conference on Humanoid Robots, Humanoids, 2006, Genoa,
Italy, 2006.

[18] Christian Goerick, Heiko Wersing, Inna Mikhailova, Mark Dunn,
Peripersonal space and object recognition for humanoids, in: Proceedings
of the IEEE/RSJ International Conference on Humanoid Robots,
Humanoids, 2005, Tsukuba, Japan, 2005.

[19] Gordon Cheng, Sang-Ho Hyon, Jun Morimoto, Ales Ude, Stephen C.
Jacobsen, Cb: A humanoid research platform for exploring neuroscience,
in: Proceedings of the International Conference on Humanoid Robots,
Humanoids, 2006.

[20] Martin Heckmann, Tobias Rodemann, Frank Joublin, Christian Goerick,
Björn Schölling, Auditory inspired binaural robust sound source
localization in echoic and noisy environments, in: Proceedings of the
International Conference on Intelligent Robots & Systems, IROS, IEEE,
2006.

[21] S. Kirstein, H. Wersing, E. Körner, Rapid online learning of objects
in a biologically motivated recognition architecture, in: 27th Pattern
Recognition Symposium DAGM, Springer, 2005, pp. 301–308.

[22] Jeff Kramer, Distributed software engineering — invited state-of-the-art
report. http://citeseer.ist.psu.edu/167613.html.

[23] Phillip A. Laplante, Real-Time Systems Design and Analysis, Wiley-
IEEE, Piscataway, NJ, 2004.

[24] Frank Lüders, Adopting a software component model in real-time systems
development, in: Proceedings of the 28th Annual NASA/IEEE Software
Engineering Workshop, IEEE Computer Society Press, February 2004.

[25] Inna Mikhailova, Werner von Seelen, Christian Goerick, Usage of
general developmental principles for adaptation of reactive behavior, in:
Proceedings of the 6th International Workshop on Epigenetic Robotics,
Paris, France, 2006.

[26] Issa A.D. Nesnas, CLARAty: Towards standardized abstractions for
robotic systems, in: Workshop Principle and Practice of Software
Development in Robotics, ICRA2005, Barcellona, Spain, 2005.

[27] Richard N. Langlois, Modularity in technology, organization, and society,
in: Department of Economics, University of Connecticut, 1999.

[28] Olivier Stasse, Yasuo Kuniyoshi, PredN: Achieving efficiency and code
re-usability in a programming system for complex robotic applications,
in: International Conference on Robotics and Automation, ICRA, San
Francisco, CA, USA, 2000.

[29] Tobias Rodemann, Martin Heckmann, Björn Schölling, Frank Joublin,
Christian Goerick, Real-time sound localization with a binaural head-
system using a biologically-inspired cue-triple mapping, in: Proceedings
of the International Conference on Intelligent Robots & Systems, IROS,
IEEE, 2006.

[30] Tobias Rodemann, Frank Joublin, Edgar Körner, Saccade adaptation
on a 2 dof camera head, in: Horst-Michael Groß, Klaus Debes,
Hans-Joachim Böhme (Eds.), Third Workshop on Self-Organization of
AdaptiVE Behavior, SOAVE 2004, Ilmenau, VDI-Verlag, Düsseldorf,
2004, pp. 94–103. Fortschrittsberichte des VDI.

[31] RTI, ControlShell User’s Manual, Version 7.0, Real-Time Innovation Inc.,
California, USA, 2001.



Author's personal copy

28 A. Ceravola et al. / Robotics and Autonomous Systems 56 (2008) 14–28

[32] The PDP Research Group, David Rumelhart, James L. McClelland,
Parallel Distributed Processing, MIT Press, Cambridge, Massachusetts,
USA, 1986.

[33] Matthias Scheutz, Virgil Andronache, Architectural mechanisms for
dynamic changes of behavior selections strategies in behavior-based
systems, 2004.

[34] Christian Schlegel, A component approach for robotics software:
Communication patterns in the OROCOS contex, in: Workshop
Principle and Practice of Software Development in Robotics, ICRA2005,
Barcellona, Spain, 2004.

[35] David B. Stewart, G. Arora, Dynamically reconfigurable embedded
software—does it make sense? in: Second IEEE International Conference
on Engineering of Complex Computer Systems, ICECCS’96, Montreal,
1996.

[36] Kazuo Tanie, Standardization of robotics components and future robotics
business, in: AIST, Japan, 2004.

[37] Shengquan Wang, Sangig Rho, Riccardo Bettati, Wei Zhao, Toward
real-time component-based systems, in: Proceedings of IEEE Interna-
tional Real-time Systems Symposium (RTSS) Work-In-Progress Session,
Lisbon, Portugal, 2004.

[38] H. Wersing, S. Kirstein, M. Götting, H. Brandl, M. Dunn, I. Mikhailova,
C. Goerick, J.J. Steil, H. Ritter, E. Körner, A biologically motivated
system for unconstrained online learning of visual objects, in: Proc. Int.
Conf. Art. Neur. Netw. ICANN, 2006.

[39] GNU Make. http://www.gnu.org/software/make/manual/make.html.

Antonello Ceravola studied Computer Science at
the University of Pisa, Italy. He worked in the
field of IT software for five years dealing with
multimedia systems, large scale software infrastructure
for telecomunication systems, multi-tier applications
and workflow engine for process management systems.
From 2001 he joined Honda Research Institute Europe
GmbH where he is currently Project Leader for the
group of Brain-like Software Technology. His research
interest inlcude software component engineering, real-

time computing, middleware, integration environments and biologically
inspired software systems.

Christian Goerick studied Electrical Engineering at
the Ruhr-Universität, Bochum, Germany, and at the
Purdue University, Indiana, USA. He holds a Doctoral
Degree in Electrical Engineering and Information
Processing from the Ruhr-University of Bochum.
During his time in Bochum he was Research Assistant,
Doctoral Worker, Project Leader and Lecturer at the
Institute for Neural Computation, Chair for Theoretical
Biology. The research was concerned with biologically
motivated computer vision for autonomous systems

and learning theory of neural networks. Dr. Goerick is currently Chief
Scientist at the Honda Research Institute Europe GmbH, with responsibility
for Embodied Brain-like Intelligence covering research on behavior based
vision, audition, behavior generation, robotics, car assistent systems, systems
architecture as well as hard- and software environments.


