
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

RM-MEDA: A regularity model-based
multiobjective estimation of distribution
algorithm

Qingfu Zhang, Aimin Zhou, Yaochu Jin

2008

Preprint:

This is an accepted article published in IEEE Transactions on Evolutionary
Computation. The final authenticated version is available online at:
https://doi.org/[DOI not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

1

Modelling the Regularity in an Estimation of
Distribution Algorithm for Continuous

Multiobjective Optimization with Variable Linkages
Qingfu Zhang, Aimin Zhou and Yaochu Jin

Abstract— Under mild conditions, it can be induced from the
Karush-Kuhn-Tucker condition that the Pareto set, in the deci-
sion space, of a continuous multiobjective optimization problem
is (m − 1)-D piecewise continuous, where m is the number
of objectives. Based on this regularity property, we propose
a Regularity Model based Multiobjective Estimation of Distri-
bution Algorithm (RM-MEDA) for continuous multiobjective
optimization problems with variable linkages. At each generation,
the proposed algorithm models a promising area in the decision
space by a probability distribution whose centroid is a (m−1)-D
piecewise continuous manifold. The Local PCA algorithm is used
for building such a model. New trial solutions are sampled from
the model thus built. A non-dominated sorting based selection is
used for choosing solutions for the next generation. Systematic
experiments have shown that, overall, RM-MEDA outperforms
other three state-of-the-art algorithms, namely, GDE3, PCX-
NSGA-II and MIDEA, on a set of test instances with variable
linkages. We have demonstrated that, compared with GDE3, RM-
MEDA is not sensitive to algorithmic parameters, and has good
scalability to the number of decision variables in the case of
nonlinear variable linkages. A few shortcomings of RM-MEDA
have also been identified and discussed in this paper.

Index Terms— Multiobjective optimization, estimation of dis-
tribution algorithm, regularity, Karush-Kuhn-Tucker condition,
local principal component analysis, variable linkages, sensitivity,
scalability.

I. INTRODUCTION

Multiobjective optimization problems (MOP) arise in many
engineering areas. Very often, the objectives in a MOP conflict
with each other, no single solution can optimize all the
objectives at the same time. The Pareto set/front is the set of all
the optimal tradeoffs in the decision/objective space. When the
preference of a decision maker is unavailable or very difficult
to specify mathematically as it is in many applications, the
decision maker usually requires an approximation to the Pareto
set and/or Pareto front for making their final choice. Such an
approximation can be a finite set of Pareto optimal solutions or
a mathematical approximation model of the Pareto set/front.

Since the publication of Schaffer’s seminal work [1], a
number of evolutionary algorithms (EA) have been developed
for multiobjective optimization problems [2]–[5]. The major
advantage of these multiobjective evolutionary algorithms
(MOEA) over other methods are that they work with a

Q. Zhang and A. Zhou are with Department of Computer Science,
University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, U.K ({qzhang,
azhou}@essex.ac.uk).

Y. Jin is with Honda Research Institute Europe, Carl-Legien-Str. 30, 63073
Offenbach, Germany (Yaochu.Jin@honda.ri.de).

population of candidate solutions and thus can produce a set
of Pareto optimal solutions to approximate the Pareto front
and/or Pareto set in a single run. The current MOEA research
mainly focuses on the following highly related issues:

• Fitness Assignment and Diversity Maintenance: Like
their counterparts for scalar optimization, most MOEAs
employ a selection operator to direct its search into
promising areas in the decision space. Since Pareto
domination is not a complete ordering, conventional
selection operators, which were originally developed for
scalar objective optimization, cannot be directly applied
to multiobjective optimization. Furthermore, the task of
most MOEAs is to produce a set of solutions which are
evenly distributed in the Pareto front, a selection operator
in MOEAs should not encourage the search to converge
to a single point. Therefore, it is not a trivial job to
assign a relative fitness value to each individual solution
for reflecting its utility in selection in MOEAs. Fitness
assignment has been subject to much research over the
last two decades [6]–[8]. Some techniques such as fitness
sharing and crowding have been frequently used within
fitness assignment for maintaining the diversity of search
[9], [10].

• External Population: It is usually very hard to balance
diversity and convergence with a single on-line popu-
lation in current MOEAs. The on-line population may
be unable to store some representative solutions found
during the search due to its limited size. To overcome
this shortcoming, an external population (archive) is often
used in MOEAs for recording nondominated solutions
found during the search. Some effort has been made
to study how to maintain and utilize such an external
population [11], [12].

• Combination of MOEA and Local Search: Combina-
tions of EAs and local search heuristics, often called
memetic algorithms, have been shown to outperform
traditional evolutionary algorithms in a wide variety of
scalar objective optimization problems. A few multiobjec-
tive memetic algorithms (MOMA) have been developed
over the past decade. MOMAs need to consider how to
evaluate solution quality for their local search operators.
In multiobjective genetic local search (MOGLS) [13],
[14], a scalarizing function with random weights are
used as its evaluation function in both its local search
and selection. Memetic Pareto archived evolution strategy

(M-PAES) evaluates solutions by using domination ranks
[15].

Surprisingly, not much work has been done on how to
generate new solutions in MOEAs. The implementations of
most current MOEAs directly adopt traditional genetic re-
combination operators such as crossover and mutation. The
characteristics of MOPs have not well been utilized in gener-
ating new solutions in current MOEAs. Very recently, Deb et
al. have compared the performance of several recombination
operators on some test problems with variable linkages [16].
Their experimental results suggest that variable linkages could
cause difficulties for MOEAs and recombination operators are
crucial to the performance of a MOEA.

It has been observed that under mild smoothness conditions,
the Pareto set (in the decision space) of a continuous MOP is
a piecewise continuous (m− 1)-dimensional manifold where
m is the number of the objectives. This observation has been
used in several mathematical programming methods for ap-
proximating the Pareto front or Pareto set [17]–[19]. However,
as suggested in [20], such regularity has not been exploited
explicitly by most current MOEAs except for those combining
local search that take advantage of the regularity implicitly,
such as the dynamic weighted aggregation method [21]. The
work in this paper will show that reproduction of new trial
solutions based on this regularity property can effectively cope
with the variable linkages in continuous MOPs.

Estimation of distribution algorithms (EDA) are a new
computing paradigm in evolutionary computation [22]. There
is no crossover or mutation in EDAs. Instead, they explicitly
extract globally statistical information from the selected solu-
tions and build a posterior probability distribution model of
promising solutions, based on the extracted information. New
solutions are sampled from the model thus built and fully or
in part replace the old population. Several EDAs have been
developed for continuous MOPs [23]–[25]. However, these
EDAs do not take the regularity into consideration in building
probability models. Note that probability modelling techniques
under regularity have been widely investigated in the area
of statistical learning [26], [27], it is very suitable to take
the advantage of the regularity in the design of EDAs for a
continuous MOP.

As one of the first attempts to capture and utilize the
regularity of the Pareto set in the decision space, we have
recently proposed using local principal component analysis
for extracting regularity patterns of the Pareto set from the
previous search. We have studied two naive hybrid MOEAs
in which some trial solutions are generated by traditional
genetic operators and others by sampling from probability
models built based on regularity patterns [28], [29]. Our
preliminary experimental results are very encouraging. This
paper conducts a further and thorough investigation alone this
line. In comparison with our work presented in [28] and [29].
The main contributions of this paper include:
• Based on the regularity property of continuous MOPs,

an estimation of distribution algorithm for continuous
multiobjective optimization has been developed. Unlike
our previous algorithms, it does not use crossover or
mutation operators for producing new offspring. And

besides, the parameter estimation for model building in
this paper is more statistically sound and yet simpler than
that used in [28] and [29]. Our experimental studies have
shown that the algorithm presented in this paper performs
similarly to its predecessors.1

• Systematic experiments have been conducted to compare
the proposed algorithm with other three state-of-the art
algorithms on a set of bi- or tri-objective test instances
with linear or nonlinear variable linkages. Only original
NSGA-II with SBX [30] was compared on a few test
instances in [28] and [29].

• The sensitivity to algorithmic parameters and the scal-
ability to the number of decision variables of the pro-
posed algorithm and Generalized Differential Evolution
3 (GDE3) [31] have been experimentally studied.

The rest of the paper is organized as follows. The next sec-
tion introduces continuous multiobjective optimization prob-
lems, Pareto optimality and the regularity property induced
from Karush-Kuhn-Tucker condition. Section III presents the
motivation and the details of the proposed algorithm. Sec-
tion IV briefly describes the three other algorithms used in
comparison. Section V presents and analyzes the experimental
results. Section VI experimentally studies the sensitivity and
scalability, and presents CPU-time costs of the proposed
algorithm and GDE3. The final section concludes the paper
and outlines future research work.

II. PROBLEM DEFINITION

In this paper, we consider the following continuous multi-
objective optimization problem (continuous MOP):

minimize ~F (x) = (f1(x), f2(x), . . . , fm(x))T (1)
subject to x ∈ X

where X ⊂ Rn is the decision space and x = (x1, . . . , xn)T ∈
Rn is the decision variable vector. ~F : X → Rm consists
of m real-valued continuous objective functions fi(x) (i =
1, 2, . . . , m). Rm is the objective space. In the case of m =
2, this problem is referred to as a continuous bi-objective
optimization problem.

Let a = (a1, . . . , am)T , b = (b1, . . . , bm)T ∈ Rm be two
vectors, a is said to dominate b, denoted by a ≺ b, if ai ≤ bi

for all i = 1, . . . , n, and a 6= b. A point x? ∈ X is called
(globally) Pareto optimal if there is no x ∈ X such that
~F (x) ≺ ~F (x?). The set of all the Pareto optimal points,
denoted by PS, is called the Pareto set. The set of all the
Pareto objective vectors, PF = {y ∈ Rm|y = ~F (x), x ∈
PS}, is called the Pareto front [2], [17].

Under certain smoothness assumptions, it can be induced
from Karush-Kuhn-Tucker condition that the PS of a continu-
ous MOP defines a piecewise continuous (m−1)-dimensional
manifold in the decision space [17], [19]. Therefore, the PS of
a continuous bi-objective optimization problem is a piecewise
continuous curve in Rn while the PS of a continuous MOP
with three objectives is a piecewise continuous surface. In fact,

1Due to the page limit of this paper, the experimental comparison between
this algorithm and its predecessors will be presented in a furthercoming
working report, but not in this paper.

the PSs of ZDT test problems [6], [20], [32], the widely-
used test instances for continuous bi-objective optimization
problems in the evolutionary computation community, are line
segments in the decision space.

III. ALGORITHM

A. Basic Idea
EDAs build a probability model for characterizing promis-

ing solutions in the search space based on statistical informa-
tion extracted from the previous search and then sample new
trial solutions from the model thus built. A very essential issue
is what kind of model one should use for such a task. A good
model should be easy to build and sample, and be able to
describe promising areas with good fidelity [33], [34].

The population in the decision space in an EA for (1)
will hopefully approximate the PS and be uniformly scattered
around the PS as the search goes on. Therefore, we can envis-
age the points in the population as independent observations
of a random vector ξ ∈ Rn whose centroid is the PS of (1).
Since the PS is an (m−1)−dimensional piecewise continuous
manifold, ξ can be naturally described by:

ξ = ζ + ε (2)

where ζ is uniformly distributed over a piecewise continuous
(m − 1)-dimensional manifold. ε is an n-dimensional zero-
mean noise vector.

Fig.1 illustrates our basic idea.

B. Algorithm Framework
At each generation t, the proposed algorithm for (1), called

Regularity Model based Multiobjective Estimation of Distrib-
ution Algorithm (RM-MEDA) hereafter, maintains:
• a population of N solutions (i. e. points in X):

Pop(t) = {x1, x2, . . . , xN}
and

• their ~F -values: ~F (x1), ~F (x2), . . . , ~F (xN).
The algorithm works as follows:

RM-MEDA

Step 0 Initialization: Set t := 0. Generate an initial
population Pop(0) and compute the ~F -value of each
individual solution in Pop(0).
Step 1 Stopping Condition: If stopping condition is
met, stop and return the nondominated solutions in
Pop(t) and their corresponding ~F vectors. All these
~F vectors constitute an approximation to the PF.
Step 2 Modelling: Build the probability model (2)
for modelling the distribution of the solutions in
Pop(t).
Step 3 Reproduction: Generate a new solution set
Q from the model (2). Evaluate the ~F -value of each
solution in Q.
Step 4 Selection: Select N individuals from
Q

⋃
Pop(t) to create Pop(t + 1).

Step 5 Set t := t + 1 and go to Step 1.
In the following, we discuss the implementation of modelling,
reproduction and selection in the above algorithm.

C. Modelling

Fitting the model (2) to the points in Pop(t) is highly related
to principal curve or surface analysis, which aims at finding a
central curve or surface of a set of points in Rn [35]. However,
most current algorithms for principal curve or surface analysis
are rather expensive due to the intrinsic complexity of their
models. Since modelling needs to be conducted at each gener-
ation of RM-MEDA, a too complicated model is not affordable
in RM-MEDA. On the other hand, a complicated model is not
necessary since the actual distribution of the points in Pop(t)
could hardly be exactly described by (2).

In our implementation, we assume, for the sake of simplic-
ity, that the centroid of ξ consists of K manifolds Ψ1, . . . , ΨK

(i.e., ζ in (2) is uniformly distributed on these manifolds), each
Ψj is a (m− 1)-dimensional hyper-rectangle. Particularly,

• in the case of two objectives (i.e., m = 2): Each Ψj is a
line segment in Rn.

• in the case of three objectives (i.e., m = 3): Each Ψj is
a 2-D rectangle in Rn.

Let Aj denote the event that ζ is from Ψj . Then

K∑

j=1

Prob(Aj) = 1.

We make the following assumptions that under the condition
that the event Aj happens:

• ζ is uniformly randomly generated over Ψj .
• ε ∼ N(0, σjI), where I is the n× n identity matrix and

σj > 0. In other words, all the components in ε are i. i.
d..

The modelling problem, under the above assumptions, be-
comes estimating Ψj , σj and Prob(Aj) (j = 1, 2, . . . , K).
To solve it, we need to firstly partition Pop(t) into K disjoint
clusters S1, . . . , SK such that the points in Sj can be regarded
as being sampled under the condition of Aj . Then we can
estimate the parameters.

In this paper, we use the (m− 1)-dimensional Local Prin-
cipal Component Analysis ((m− 1)-D Local PCA) algorithm
[36] for partitioning Pop(t). Let S be a finite subset of Rn,
the (sample) mean of S is

x̄ =
1
|S|

∑

x∈S

x

where |S| is the cardinality of S. The (sample) covariance
matrix of the points in S is

Cov =
1

|S| − 1

∑

x∈S

(x− x̄)(x− x̄)T .

The i-th principal component U i is a unity eigenvector as-
sociated with the i-th largest eigenvalue of the matrix Cov.
Then the affine (m−1)-dimensional principal subspace of the
points in S is defined as

{x ∈ Rn|x = x̄ +
m−1∑

i=1

θiU
i, θi ∈ R, i = 1, 2, . . . , m− 1}.

The partition S1, . . . , SK obtained by the (m − 1)-D Local
PCA algorithm minimizes the following error function:

K∑

j=1

∑

x∈Sj

dist(x,Lm−1
j)2

where Lm−1
j is the affine (m − 1)-dimensional principal

subspace of the points in Sj , dist(x,Lm−1
j) is the Euclidean

distance from x to its projection in Lm−1
j .

The (m − 1)-D Local PCA [36] partitions Pop(t) =
{x1, . . . , xN} into S1, . . . , SK in the following iterative way:

Step 1 Randomly initialize Lm−1
i to be an affine

(m − 1)-dimensional space containing a point ran-
domly chosen from Pop(t).
Step 2 Partition the points in Pop(t) into K disjoint
clusters S1, . . . , SK :

Sj = {x | x ∈ Pop(t), and dist(x,Lm−1
j)

≤ dist(x,Lm−1
k) for all k 6= i}.

Step 3 Set Lm−1
j j = 1, . . . , K to be the affine

(m−1)-dimensional principal subspace of the points
in Sj .
Step 4 Iterate Steps 2 and 3 until no change in
partition is made.

The Local PCA algorithm is more suitable for partitioning
Pop(t) for building the model (2) than the widely used K-
means clustering method in which a cluster centroid is a point
[27], since we assume that the centroid of each cluster should
be a (m− 1)-D hyper-rectangle instead of a point.

Schematically, modelling (i.e., estimating Ψk and σk) in
RM-MEDA works as follows:

Modelling by the (m− 1)-D Local PCA
Step 2.1 Partition Pop(t) into K disjoint clusters
S1, . . . , SK by the (m−1)-D Local PCA algorithm.
Step 2.2 For each cluster Sj . Let x̄j be its mean and
U j

i be its i-th principal component. Compute

aj
i = min

x∈Sj
(x− x̄j)T U j

i (3)

and
bj
i = max

x∈Sj
(x− x̄j)T U j

i (4)

for i = 1, 2, . . . , m− 1. Then set

Ψj = {x ∈ Rn|x = x̄j +
∑m−1

i=1 αiU
j
i ,

aj
i − 0.25(bj

i − aj
i) ≤ αi ≤ bj

i + 0.25(bj
i − aj

i),
i = 1, . . . , m− 1.}.

Let λj
i be the i−th largest eigenvalue of the covari-

ance matrix of the points in Sj , set

σj =
1

n−m

n∑

i=m

λj
i . (5)

We would like to make the following comments on the above
modelling method:

• The smallest hyper-rectangle, containing the projections
of all the points of Sj in the affine (m− 1)-dimensional
principal subspace of Sj , is

Φj = {x ∈ Rn|x = x̄ +
m−1∑

i=1

αiU
j
i ,

aj
i ≤ αi ≤ bj

i , i = 1, . . . , m− 1}.
Ψj in Step 2.2 extends Φj by 50% along each of the
directions U j

1 , . . . , U j
m−1. The motivation behind this ex-

tension is that Pop(t) often could not cover the whole PS
and thus the union of all these smallest hyper-rectangles
Φj can only approximate part of the PS, while the union
of all the Ψj’s may provide a good approximation to the
PS. Fig. 2 illustrates this motivation.

• λj
m, λj

m+1, . . . , λ
j
n characterize the derivation of the

points in Sj from its centroid. It is ideal to model ε as

ε =
n∑

i=m

λj
iU

j
i εi (6)

when εm, . . . , εn are n−m independent N(0, 1) noises.
Since it is often the case that m << n and λj

i , i =
m, . . . , n is very small compared with the first (m − 1)
largest eigenvalues, the difference between the noise
sampled from N(0, σj) and that in (6) is tiny when σj is
defined as in (5). Moreover, sampling from (6) is more
complicated than from N(0, σj). This is why we use
N(0, σj) for facilitating the sampling procedure. σj also
controls the degree of the exploration of the search in the
reproduction step.

D. Reproduction

In our implementation of Reproduction in this paper, N new
solutions are generated. The first issue we need to consider
is how many new trial solutions are generated around each
Ψi. Since it is desirable that final solutions are uniformly
distributed on the PS. We set

Prob(Aj) =
vol(Ψj)∑K
i=1 vol(Ψi)

where vol(Ψj) is the (m − 1)-D volume of Ψj . Therefore,
the probability that a new solution is generated around Ψj is
proportional to vol(Ψj).

A simple reproduction scheme for generating a new solution
x, used in our experimental studies, works as follows:

Reproduction by Sampling (Reproduction/S)

Step 1 Randomly generate an integer τ ∈
{1, 2, . . . , K} with

Prob(τ = k) =
vol(Ψk)∑K

j=1 vol(Ψj)

Step 2 Uniformly randomly generate a point x′ from
Ψτ . Generate a noise vector ε′ from N(0, στI).
Step 3 Return x = x′ + ε′.

In Step 3 in RM-MEDA, N new solutions can be produced
by repeating Reproduction/S N times.

In Reproduction/S, x′, the main part of x is from Ψτ , which
is the extension of Φτ . Therefore, the search will, hopefully,
perform exploitation around the PF. Such exploitation, guided
by the extension, is mainly along the first m − 1 principal
components. ε′, the noise part of x is necessary since Ψτ is
just an approximation to part of the PF. Moreover, it provides
diversity for the further search.

E. Selection

In principle, any selection operators for MOEAs can be used
in RM-MEDA. The selection procedure used in the experimen-
tal studies of this paper is based on the non-dominated sorting
of NSGA-II [6]. It is called NDS-Selection in the following.

NDS-Selection partitions Q ∪ Pop(t) into different fronts
F1, . . . , Fl such that the j-th front Fj contains all the non-
dominated solutions in {Q ∪ Pop(t)}\(∪j−1

i=1Fi). Therefore,
there is no solution in {Q ∪ Pop(t)}\(∪j−1

i=1Fi) that could
dominate a solution in Fj . Roughly speaking, F1 is the best
non-dominated front in Q ∪ Pop(t), F2 is the second best
non-dominated front and so on.

The crowding distance, dc(x, S), of point x in set S is
defined as the average side length of the largest m-D rectangle
in the objective space subject to the two constraints: a) each
of its sides is parallel to a coordinate axis, and b) ~F (x) is the
only point in ~F (S) = {~F (y)|y ∈ S} that is an interior point in
the rectangle. A solution with larger crowding distance should
be given priority to enter Pop(t + 1) since it could increase
the diversity of Pop(t + 1).

The details of the selection procedure is given as follows:
NDS-Selection

Step 1 Partition Q ∪ Pop(t) into different fronts
F1, . . . , Fl by using the fast non-dominated sorting
approach. Set Pop(t + 1) = ∅ and k = 0.

Do
k = k + 1,
Pop(t + 1) = Pop(t + 1) ∪ Fk,

Until |Pop(t + 1)| ≥ N .
Step 2 While |Pop(t + 1)| > N , Do

For all the members in Fk ∩ Pop(t + 1),
compute their crowding distances in Fk ∩
Pop(t + 1). Remove the element in Fk ∩
Pop(t + 1) with the smallest crowding dis-
tance from Pop(t + 1). In the case when
there are more than one members with
the smallest crowding distance, randomly
choose one and remove it.

This selection operators selects N members from Q∪Pop(t)
for forming Pop(t+1). Step 1 implements an elitism mecha-
nism. The best fronts in Q∪Pop(t) are added to Pop(t+1).
After Step 1,

Pop(t + 1) =
k⋃

j=1

Fj ,

the last front in Pop(t+1) is Fk, the k-th front, which contains
the ”worst” solutions in Pop(t + 1). When |Pop(t + 1)| is
larger than N , |Fk| will be larger than |Pop(t+1)|−N . Step

2 removes |Pop(t+1)|−N worst solutions from Pop(t+1) to
reduce its size to N . The crowding distance is used to compare
the quality of solutions in Step 2.

This selection procedure is the same as that used in NSGA-
II except that we remove solutions from Pop(t + 1) one by
one and we re-calculate the crowding distances before deciding
which solution should be deleted from Pop(t+1), which can
increase the diversity of Pop(t + 1) at extra computational
cost. We noticed that GDE3 [31] use a very similar selection.

IV. THREE OTHER ALGORITHMS IN COMPARISON

The major purpose of this work is to tackle variable linkages
in continuous MOPs. The studies conducted in [16] show
that PCX-NSGA-II and GDE3 [31] perform better than others
algorithms for continuous MOPs with variable linkages. In this
paper, we compare RM-MEDA with these two algorithms.
Since RM-MEDA is an EDA based on regularity, we also
compare it with MIDEA [24], which is an EDA without using
regularity, to investigate whether or not using regularity can
improve the performance of EDAs.

A. Generalized Differential Evolution 3 (GDE3) [31]

Let x = (x1, . . . , xn)T be a solution in the current popula-
tion, its offspring y = (y1, . . . , yn)T in GDE3 is generated as
follows:

1. Randomly select from the current population three
distinct solutions xr1, xr2, xr3.

2. Set z = xr1 + F × (xr2 − xr3).
3. Set the i-th element of y:

yi =
{

zi if rand < CR,
xr1

i otherwise.

where rand is a random number uniformly generated from
[0, 1], F and CR are two control parameters.

In GDE3, all the solutions in the current population first
generate their offspring, these offspring and their parents
undergo a selection operator similar to one used in RM-MEDA
and then the selected solutions form a new population for the
next generation. The details of GDE3 can be found in [31].
The code of GDE3 used in comparison is written in C by
ourselves.

B. PCX-NSGA-II [16]

Parent-Centric Recombination (PCX) [37] generates a trial
solution y from µ parent solutions x1, . . . , xµ as follows:

1. Select a solution xp from x1, . . . , xµ and let it be the
“index parent”.

2. Compute the direction vector dp from xp to the
center of these µ parent solutions, i.e., dp =
xp − 1

µ

∑µ
i=1 xi, and n − 1 orthogonal directions

e1, . . . , en to dp. Compute average prependicular
distance, D, of the other µ − 1 parents to the line
from passing xp and the center.

3. Set

y = xp + ωζd
p +

µ∑

i=1,i 6=p

ωηDei

where ωζ and ωη are two zero-mean normally dis-
tributed random variables with variance σ2

ζ and σ2
η ,

respectively.
In PCX-NSGA-II [16], PCX with µ = 3 is used to gen-
erate a set of new trial solutions. All of these new solu-
tions are mutated by a polynomial mutation operator. The
PCX-NSGA-II used in comparison is implemented in C by
modifying the code of SBX-NSGA-II from KanGAL web
(http://www.iitk.ac.in/kangal/). In our implementation of PCX-
NSGA-II, the NDS-selection operator described in Section
III.E is used for selecting from the old solutions and new
solutions for creating a new population for the next generation,
this is the only difference from the implementation of Deb et
al. in [16]. Our first experiments show that our implementation
is slightly better in terms of solution quality. The motivation
that we use the NDS-selection in the implementation of PCA-
NSGA-II is to have a fair comparison with RM-MEDA.

C. MIDEA [24]

MIDEA is an EDA for MOPs. It has been applied to
continuous MOPs. Its major difference from RM-MEDA is
that it uses a mixture of Gaussians. It does not take the
regularity of the PS into consideration and thus does not
impose any constraints on distribution of the centers of the
Gaussians. A specialized diversity preserving selection is used
in MIDEA. The number of Gaussians is determined by an
adaptive clustering method. The C code of MIDEA written
by its authors is used in our experimental studies.

V. COMPARISON STUDIES

A. Performance Metric

The inverted generational distance (IGD) is used in assess-
ing the performance of the algorithms in our experimental
studies.

Let P ∗ be a set of uniformly distributed points in the
objective space along the PF. Let P be an approximation to
the PF, the inverted generational distance from P ∗ to P is
defined as:

D(P ∗, P) =
∑

v∈P∗ d(v, P)
|P ∗|

where d(v, P) is the minimum Euclidean distance between v
and the points in P . If |P ∗| is large enough to represent the
PF very well, D(P ∗, P) could measure both the diversity and
convergence of P in a sense. To have a low value of D(P ∗, P),
P must be very close to the PF and cannot miss any part of
the whole PF.

In our experiments, we select 500 evenly distributed points
in PF and let these points be P ∗ for each test instance with
2 objectives, and 1, 000 points for each test instance with 3
objectives.

IGD has been recently used by some other researchers (e.g,
[38]). As its name suggests, it is an inverted variation of the
widely-used generational distance (GD) performance metric.
[39]. The GD represents the average distance of the points
in an approximation to the true PF, which cannot effectively
measure the diversity of the approximation. There are several

different ways in computing and averaging the distances in
the GD performance metrics (e.g., [39] and [6]), the version
of IGD used in this paper inverts the Υ version of GD in [6].

B. General Experimental Setting

RM-MEDA is implemented in C. The machine used in our
experiments is Pentium(R) 4 (3.40GHz, 1.00GB RAM). In this
section, the experimental setting is as follows:
• The number of new trial solutions generated at each

generation: The number of new solutions generated at
each generation in all the four algorithms is set to be 100
for all the test instances with two objectives, and 200
for the test instances with three objectives. Since in RM-
MEDA, GDE3 and PCX-NSGA-II, the population size is
the same as the number of new trial solutions generated
at each generation, these three algorithms have the same
population size for each test instance in our experiments.

• The Number of Decision Variables: It is set to be 30 for
all the test instances.

• Parameter Setting in RM-MEDA: In Local PCA algo-
rithm, K, the number of clusters, is set to be 5.

• Parameter Setting in GDE3: Both CR and F in the DE
operator is set to be 1, which was the best setting for
most test instances in the simulation studies in [16].

• Parameter Setting in PCX-NSGA-II: σ in PCX is set to
be 0.4, which worked very well for most test instances
in the simulation studies in [16].

• Parameter Setting in MIDEA: τ is set to be 0.3, therefore,
the population size is d 100

1−0.3e = 143 in the case of two
objectives and d 200

1−0.3e = 286 in the case of three objec-
tives. In [24], large populations were used in simulation
studies. Our first experiments show that a large population
does not improve the performance of MIDEA on the test
instances with variable linkages significantly. Following
[24], we set δ = 1.5.

• Number of Runs and Stopping Condition: We run each
algorithm independently 20 times for each test instance.
The algorithms stop after a given number of ~F -function
evaluations. The maximal number of function evaluations
in each algorithm is 10,000 for F1, F2, F5 and F6, 40,000
for F4 and F8, and 100,000 for F3, F7, F9 and F10.

• Dealing with Boundary in RM-MEDA: In all the test
instances, the feasible decision space is a hyperrectangle.
If an element of a solution x, sampled from a model in
RM-MEDA, is out of boundary, we simple reset its value
to be a randomly selected value inside the boundary. This
method is very similar to that used in GDE3.

• Initialization: Initial populations in all the algorithms are
randomly generated.

C. Test Instances with Linear Variable Linkages

We first compare RM-MEDA with the other three algo-
rithms on continuous MOPs with linear variable linkages. The
test instances F1-4 in Table I are used for this purpose.

F1-4 are variants of ZDT1, ZDT2, ZDT6 [6] and DTLZ2
[40], respectively. Due to g(x) used in these instances, F1-3

have the same PS. Their PS is a line segment:

x1 = . . . = xn,

0 ≤ xi ≤ 1, 1 ≤ i ≤ n.

The PS of F4 is a 2-D rectangle:

x1 = x3 = . . . = xn,

0 ≤ xi ≤ 1, 1 ≤ i ≤ n.

There are linear variable linkages in these test instances.
The variable linkages in these instances [41] are obtained by
performing the following linear mapping on the variables in
the original ZDT and DTLZ instances:

x1 → x1

xi → xi − x1, i = 2, . . . , n.

Therefore, our scheme for introducing variable linkages can be
regarded as a special implementation of the general strategy
proposed in [16], which is based on variable linear or nonlinear
mappings.

Fig. 3-6 show that the evolution of the average D-metric of
the nondominated solutions in the current populations among
20 independent runs with the number of function evaluations
in four algorithms. As many researchers pointed out [11],
no single metric is always able to rank different algorithms
appropriately. For this reason, Fig. 7-10 plot the nondominated
front with the lowest D-metric obtained in 20 runs of each
algorithm on each test instance. All the 20 fronts found are
also plotted together for showing their distribution ranges in
the objective space in Fig. 7-10.

It is clear from the above experimental results that both
RM-MEDA and GDE3 perform significantly better than PCX-
NSGA-II and MIDEA on these four test instances. Note than
CR = 1 is set in GDE3, an offspring y is a linear combination
of three old solutions xr1, xr2, xr3 and the PSs of these four
test instances are line segments or a 2-D rectangle. Therefore,
if xr1, xr2, xr3 are close to the PS, so is y. GDE3 exploits
the regularity of these PSs as RM-MEDA does in a sense.
In contrast, PCX-NSGA-II and MIDEA have no efficient
mechanism for using the regularity. This could be a major
reason why RM-MEDA and GDE3 are winners.

GDE3 slightly outperforms RM-MEDA on F1, F2 and F4
in terms of D-metric. The reason might be that RM-MEDA,
like many other EDAs, does not directly use the location
information of previous solutions in generating new solutions,
which makes it poorer than GDE3 at refining a solution,
particularly, where it is close to the PS. A possible way to
overcome this shortcoming is to hybridize location information
and globally statistical information, which has been proved
very successful in the guided mutation for scalar optimization
in [42] and [43].

F3 is the hardest among these four test instances. The
distribution of Pareto optimal solutions in the objective space
in this instance is very different from that in the other three
ones. If we uniformly sample a number of points in the PS
of F3 in the decision space, most of the corresponding Pareto
optimal vectors in the objective space will be more likely to
be in the left part of the PF. This makes it very difficult for an

algorithm to approximate the whole PF. RM-MEDA performs
much better than GDE3 on F3. This could be attributed to
the fact that RM-MEDA does extension along the principal
directions so that it has a good chance to approximate the
whole PF.

D. Test Problem with Nonlinear Variable Linkages

F5-8 in Table I are test instances with nonlinear variable
linkages. The PS of F5-7 is a bounded continuous curve
defined by

x1 = x2
i i = 2, . . . , n.

0 ≤ x1 ≤ 1.

The PS of F8 is a 2-D bounded continuous surface defined
by:

x1 = x2
i i = 3, . . . , n.

0 ≤ x1, x2 ≤ 1.

The variable linkages in these instances [41] are obtained by
performing the following nonlinear mapping on the variables
in the original ZDT and DTLZ instances:

x1 → x1

xi → x2
i − x1, i = 2, . . . , n.

Fig. 11-14 present that the evolution of the average D-
metric of the nondominated solutions in the current population
and Fig. 15-18 plot the final nondominated fronts founded by
each algorithm for each instance.

The experimental results show that RM-MEDA outperforms
all other three algorithms on these four instances. In fact, only
RM-MEDA is able to produce nondominated solutions which
approximate the whole PF well, in all or some runs for all
the test instances. These results are not surprising since only
RM-MEDA considers modelling nonlinear variable linkages.
In other three algorithms, even if all the parent solutions are
Pareto optimal, it is possible that their offspring is far from
the PS.

It is evident from Fig. 11-14 that PCX-NSGA-II and
MIDEA are stuck in terms of D-metric, which implies that
these two algorithms may not be able to make any more im-
provement on their solution quality even if more computational
time is used. This observation, in conjunction with the results
of Deb et al. [16], suggests that reproduction operators are
crucial in MOEAs. One should carefully design these operators
for dealing with nonlinear variable linkages.

Fig. 17 suggests that F7 is the hardest instance for RM-
MEDA. This might be due to the fact that the Pareto opti-
mal solutions of F7 are not uniformly distributed as in its
linear linkage counterpart F3 and RM-MEDA samples points
uniformly around the PS in the decision variable space. To
improve the performance of RM-MEDA on problems like
F3 and F7, one may need to consider the distribution of
solutions in the objective space when sampling solutions from
the models.

E. Test Instances with Many Local Pareto Fronts

There are nonlinear variable linkages in F9 and F10.
Furthermore, these two instances have many local Pareto
Fronts since their g(x) has many locally minimal points. The
experimental results presented in Figure 19 show that RM-
MEDA can approximate the PF very well in each run and
significantly outperforms other three algorithms on F9. It is
also evident that all the four algorithms fail in converging to
the global Pareto front of F10. The failure could be because
that, as Deb et al. have noticed on the ability of their NSGA-II
[6], it is not an easy task for these evolutionary algorithms to
find the globally minimal point of g(x). To tackle MOPs with
many local Pareto-optimal fronts, efficient mechanisms for
global optimization of a scalar objective may be worthwhile
tailored and used in MOEAs.

VI. SENSITIVITY, SCALABILITY AND CPU-TIME COSTS

The experimental results in Section V have shown that, over-
all, RM-MEDA outperforms the other three algorithms, and
GDE3 came second on these continuous MOP test instances
with variable linkages.

We have compared the sensitivity of population size in RM-
MEDA and GDE3 and investigated the effect of the number
of clusters on the performance of RM-MEDA on several test
instances. We also study how the computational cost, in terms
of the number of ~F -function evaluations, increases as the
number of decision variables increases in both RM-MEDA
and GDE3. We have also recorded the CPU time used by each
algorithm. Due to the limit of the paper length, however, only
the experimental results on F5 with nonlinear variable linkages
are presented in this section. The parameter settings in the
experiments are presented in Tables II and III. 20 independent
runs have made for each parameter setting.

A. Sensitivity to Population Size in RM-MEDA and GDE3

To study how the performances of RM-MEDA and GDE3
are sensitive to the population size, we have tried different
values of population size: 20, 30, 40, 50, 60, 80, 100, 150,
200, 250, 300, 350, 400 in both algorithms for F5.

Fig. 21 shows the average D-metrics v.s. the numbers of
~F -function evaluations under different population size settings
in RM-MEDA and GDE3, respectively. It is clear that RM-
MEDA is much less sensitive to the setting of population size
than GDE3 on F5. In fact, RM-MEDA can, with all the tested
population sizes, lower the D-metric value below 0.05 within
20,000 function evaluations. The convergence speed does not
change much over different population sizes from 20 to 200 in
RM-MEDA. In contrast, the performance of GDE3 is best with
the population size being 60 or 100, and worsens considerably
for small or large population sizes.

B. Sensitivity to the Number of Clusters in RM-MEDA

We have tested all the different cluster numbers from 1 to 15
in RM-MEDA. Fig. 22 presents the average D-metric values
v.s. the numbers of ~F -function evaluations with different

cluster numbers on F5. As clearly shown in this figure, RM-
MEDA is able to reduce the D-metric below 0.002 with
15, 000 function evaluations when the cluster number is from
2 to 13. It is also evident from this figure that the convergence
speed does not change dramatically over this range. Thus, we
could claim that RM-MEDA is not very sensitive to the setting
of the cluster number for MOP instances which are somehow
similar to F5. We should point out that the range of appropriate
cluster numbers in RM-MEDA is still problem-dependent.

The experimental results in Fig. 22 reveal that RM-MEDA
performs poorly when the cluster number is 1 or larger than
13. Part of the reason could be that the Local PCA reduces to
classic PCA and consequently underfits the population when
the cluster number is 1, and it could overfit in the case when
the cluster number is larger than 13.

We have tried RM-MEDA and GDE3 on different numbers
of decision variables. Fig. 23 presents the number of the
successful runs in which each algorithm has reached each
of four given levels of the D-metric within 20,000 function
evaluations for F5 with different numbers of decisions vari-
ables. The average numbers of function evaluations among
the successful runs in each algorithm are also plotted in this
figure. It can be seen that RM-MEDA succeeds in every run
for all the numbers of decision variables. It is also clear that
the number of function evaluations, for lowering the D-metric
below each of four levels, linearly scales up with the number
of decision variables in RM-MEDA. Although the average
numbers of function evaluations among the successful runs
in GDE3 also linearly scale up, its successful rate deceases
substantially as the number of decision variables increases. In
fact, GDE3 cannot reduce the D-metric value below 0.05 in
any single run when the number of the decision variables is
100.

The linear scalability of RM-MEDA in this test instance
should be due to two facts: a) the PS of F5 is always a 1-
D continuous curve no matter how large its number of the
decision variables is, which may explain that the hardness
of F5 does not exponentially increase as its number of the
decision variables increases; and b) in RM-MEDA, only 1-
D Local PCA is needed for F5 and sampling is always
performed along a 1-D curve, then the curse of dimensionality
may not exist in this test instance. Note that many real-world
continuous MOPs should meet the regularity condition, these
results imply that RM-MEDA could be more suitable for
solving large-scale MOPs.

C. CPU-Time Cost

The good performance of RM-MEDA does not come with-
out price. Modelling and reproduction in RM-MEDA is more
complicated than genetic operators such as crossover and
mutation used in other MOEAs. RM-MEDA needs more CPU
time for running Local PCA at each generation. The CPU time
used by RM-MEDA and GDE3 for F5 with different numbers
of decision variables are given in Table IV.

Since we use the setting in Section VI.C, the total number of
the function evaluations is 20, 000 and the number of genera-
tions is 200 in both algorithms. Therefore, the Local PCA was

run 200 times in RM-MEDA. From the above experimental
results, we can conclude that although RM-MEDA is more
time consuming than GDM3, it is still affordable in many
applications, where the CPU time of each function evaluation
is under half an hour and a cluster of (say, 100) computers
is available. To significantly reduce the number of function
evaluations in RM-MEDA and make it more applicable for
MOPs with very expensive function evaluations, one may need
to incorporate meta modelling techniques into RM-MEDA.

VII. CONCLUSION

It has not been well studied how to generate new trial
solutions in multiobjective evolutionary optimization. Repro-
duction operators such as crossover and mutation, which were
originally developed for scalar optimization, are directly used
in most of current multiobjective evolutionary algorithms. This
could be one of the major reasons why these algorithms did not
perform well on MOPs with variable linkages. In this paper,
the regularity property of continuous MOPs is used as a basis
for an estimation of distribution algorithm for dealing with
variable linkages. RM-MEDA, the proposed algorithm, models
a promising area in the search space by a probability model
whose centroid is a piecewise continuous manifold. The Local
PCA algorithm was employed for building such a model. New
trial solutions are sampled from the model thus built.

Experimental studies have shown that, overall, RM-MEDA
performs better than GDE3, PCX-NSGA-II and MIDEA on
a set of test instances with variable linkages. The sensitivity
and scalability of RM-MEDA and GDE3 have also been
experimentally studied.

We have found that RM-MEDA could perform slightly
poorer than GDE3 on some test instances with linear variable
linkages. We argued that it could be because RM-MEDA did
not directly use the location information of individual solutions
for generating new trial solutions. The experimental results
also reveal that RM-MEDA may fail in test instances with
many local Pareto fronts.

The future research topics along this line should include
• Combination of location information of individual solu-

tions and globally statistical information for improving
the ability of RM-MEDA to refine a solution. Guided
mutation [42], [43] could be worthwhile studying for this
purpose.

• Incorporating other techniques into RM-MEDA for im-
proving its ability for global search. Effective global
search techniques for scalar optimization should be con-
sidered.

• Combination of RM-MEDA with metamodelling tech-
niques [44] for reducing the number of function eval-
uations.

• Use of other machine learning techniques, particularly,
generative model learning for building distribution mod-
els such as mixtures of probabilistic principal component
analyzers [45], for building models in RM-MEDA.

• Extension of RM-MEDA to constrained and/or dynamic
MOPs. We should exploit properties of these MOPs in
modifying or designing algorithms.

ACKNOWLEDGMENT

The authors would like to acknowledge the help of Mr
H. Li, Dr. B. Sendhoff, and Professor E. Tsang on this work.
They also thank X. Yao, the anonymous reviewers, and the
anonymous associate editor for their insightful comments.

REFERENCES

[1] J. D. Schaffer, “Multiple objective optimization with vector evaluated
genetic algorithms,” in Proceedings of the 1st International Conference
on Genetic Algorithms. Pittsburgh, PA, USA: Lawrence Erlbaum
Associates, July 1985, pp. 93–100.

[2] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms.
Baffins Lane, Chichester: John Wiley & Sons, LTD, 2001.

[3] C. A. Coello Coello, D. A. van Veldhuizen, and G. B. Lamont,
Evolutionary Algorithms for Solving Multi-Objective Problems. New
York: Kluwer Academic Publishers, 2002.

[4] K. C. Tan, E. F. Khor, and T. H. Lee, Multiobjective Evolutionary
Algorithms and Applications. Springer-Verlag, 2005.

[5] J. Knowles and D. Corne, Recent Advances in Memetic Algorithms.
Springer, 2004, ch. Memetic Algorithms for Multiobjective Optimiza-
tion:Issues, Methods and Prospects, pp. 313–352.

[6] K. Deb, “A fast and elitist multiobjective genetic algorithm: NSGA-
II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp.
182–197, 2002.

[7] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: improving the strength
Pareto evolutionary algorithm for multiobjective optimization,” in Evo-
lutionary Methods for Design, Optimisation and Control. Barcelona,
Spain: CIMNE, 2002, pp. 95–100.

[8] C. A. Coello Coello, G. T. Pulido, and M. S. Lechuga, “Handling mul-
tiple objectives with particle swarm optimization,” IEEE Transactions
on Evolutionary Computation, vol. 8, no. 3, pp. 256–279, June 2004.

[9] N. Srinivas and K. Deb, “Multiobjective optimization using nondomi-
nated sorting in genetic algorithms,” Evolutionary Computation, vol. 2,
no. 3, pp. 221–248, 1994.

[10] J. Horn, N. Nafpliotis, and D. E. Goldberg, “A niched Pareto genetic
algorithm for multiobjective optimization,” in Proceedings of the First
IEEE Conference on Evolutionary Computation, vol. 1. Piscataway,
New Jersey: IEEE Service Center, 1994, pp. 82–87.

[11] J. D. Knowles and D. W. Corne, “Properties of an adaptive archiving
algorithm for storing nondominated vectors,” IEEE Transactions on
Evolutionary Computation, vol. 7, no. 2, pp. 100–116, 2003.

[12] E. Zitzler and L. Thiele, “Multiobjective evolutionary algorithms: A
comparative case study and the strength Pareto approach,” IEEE Trans-
actions on Evolutionary Computation, vol. 3, no. 4, pp. 257–271, 1999.

[13] H. Ishibuchi, T. Yoshida, and T. Murata, “Balance between genetic
search and local search in memetic algorithms for multiobjective per-
mutation flowshop scheduling,” IEEE Transactions on Evolutionary
Computation, vol. 7, no. 2, pp. 204–223, 2003.

[14] A. Jaszkiewicz, “Genetic local search for multiple objective combinato-
rial optimization,” European Journal of Operational Research, vol. 137,
no. 1, pp. 50–71, 2002.

[15] J. Knowles and D. Corne, “M-PAES: A memetic algorithm for mul-
tiobjective optimization,” in Proceedings of Congress on Evolutionary
Computation (CEC 2000), vol. 1. Piscataway, New Jersey: IEEE Press,
2000, pp. 325–332.

[16] K. Deb, A. Sinha, and S. Kukkonen, “Multi-Objective Test Problems,
Linkages, and Evolutionary Methodologies,” in 2006 Genetic and Evo-
lutionary Computation Conference (GECCO 2006), M. K. et al., Ed.,
vol. 2. Seattle, Washington, USA: ACM Press, July 2006, pp. 1141–
1148.

[17] K. Miettinen, Nonlinear Multiobjective Optimization, ser. Kluwer’s
International Series in Operations Research & Management Science.
Kluwer Academic Publishers, 1999, vol. 12.

[18] M. Ehrgott, Multicriteria Optimization, ser. Lecture Notes in Economics
and Mathematical Systems. Springer, 2005, vol. 491.

[19] O. Schütze, S. Mostaghim, M. Dellnitz, and J. Teich, “Covering Pareto
sets by multilevel evolutionary subdivision techniques,” in Second In-
ternational Conference on Evolutionary Multi-Criterion Optimization
(EMO 2003), ser. Lecture Notes in Computer Science, vol. 2632. Faro,
Portugal: Springer, April 2003, pp. 118–132.

[20] Y. Jin and B. Sendhoff, “Connectedness, regularity and the success of lo-
cal search in evolutionary multi-objective optimization,” in Proceedings
of the Congress on Evolutionary Computation (CEC 2003). Canberra,
Australia: IEEE Press, December 2003, pp. 1910–1917.

[21] Y. Jin, T. Okabe, and B. Sendhoff, “Adapting weighted aggregation for
multiobjective evolution strategies,” in Proceedings of the First Interna-
tional Conference on Evolutionary Multi-criterion Optimization(EMO-
2001), ser. Lecture Notes in Computer Science, vol. 1993. Zurich,
Switzerland: Springer, March 2001, pp. 96–110.

[22] P. Larrañaga and J. A. Lozano, Eds., Estimation of Distribution Algo-
rithms : A New Tool for Evolutionary Computation. Norwell, MA,
USA: Kluwer Academic Publishers, 2001.

[23] T. Okabe, Y. Jin, B. Sendhoff, and M. Olhofer, “Voronoi-based esti-
mation of distribution algorithm for multi-objective optimization,” in
Proceedings of the Congress on Evolutionary Computation (CEC 2004).
Portland, Oregon, USA: IEEE Press, June 2004, pp. 1594–1601.

[24] P. A. N. Bosman and D. Thierens, “The naive MIDEA: A baseline multi-
objective EA,” in Third International Conference on Evolutionary Multi-
Criterion Optimization(EMO 2005), ser. Lecture Notes in Computer
Science, vol. 3410. Guanajuato, Mexico: Springer, 2005, pp. 428–442.

[25] M. Pelikan, K. Sastry, and D. Goldberg, “Multiobjective hBOA, cluster-
ing, and scalability,” Illinois Genetic Algorithms Laboratory (IlliGAL),
Tech. Rep. 2005005, 2005.

[26] V. Cherkassky and F. Mulier, Learning From Data: Concepts, Theory,
and Methods. John Wiler & Sons, 1998.

[27] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer-Verlag,
2001.

[28] A. Zhou, Q. Zhang, Y. Jin, E. Tsang, and T. Okabe, “A model-based
evolutionary algorithm for bi-objective optimization,” in Proceedings of
the Congress on Evolutionary Computation (CEC 2005). Edinburgh,
U.K: IEEE Press, September 2005, pp. 2568–2575.

[29] A. Zhou, Y. Jin, Q. Zhang, B. Sendhoff, and E. Tsang, “Combining
model-based and genetics-based offspring generation for multi-objective
optimization using a convergence criterion,” in Proceedings of the
Congress on Evolutionary Computation (CEC 2006). Vancouver, BC,
Canada: IEEE Press, July 2006, pp. 3234–3241.

[30] K. Deb, A. Pratap, and T. Meyarivan, “Constrained test problems for
multi-objective evolutionary optimization,” KanGAL Report 2000002,
2000.

[31] S. Kukkonen and J. Lampinen, “GDE3: The third evolution step of
generalized differential evolution,” in Proceedings of the Congress on
Evolutionary Computation (CEC 2005). Edinburgh, U.K: IEEE Press,
September 2005, pp. 443–450.

[32] T. Okabe, Y. Jin, M. Olhofer, and B. Sendhoff, “On test functions for
evolutionary multi-objective optimization,” in Parallel Problem Solving
from Nature (PPSN VIII), ser. Lecture Notes in Computer Science, vol.
3242. Birmingham, UK: Springer, September 2004, pp. 792–802.

[33] Q. Zhang, “On stability of fixed points of limit models of univariate
marginal distribution algorithm and factorized distribution algorithm,”
IEEE Transactions on Evolutionary Computation, vol. 8, no. 1, pp. 80–
93, 2004.

[34] Q. Zhang and H. Mühlenbein, “On the convergence of a class of esti-
mation of distribution algorithms,” IEEE Transactions on Evolutionary
Computation, vol. 8, no. 2, pp. 127–136, 2004.

[35] T. Hastie and W. Stuetzle, “Principal curves,” Journal of the American
Statistical Association, vol. 84, no. 406, pp. 502–516, June 1989.

[36] N. Kambhatla and T. K. Leen, “Dimension reduction by local principal
component analysis,” Neural Computation, vol. 9, no. 7, pp. 1493–1516,
October 1997.

[37] K. Deb, A. Anand, and D. Joshi, “A computationally efficient evolution-
ary algorithm for real-parameter optimization,” Evolutionary Computa-
tion, vol. 10, no. 4, pp. 371–395, 2002.

[38] M. Reyes Sierra and C. A. Coello Coello, “A study of fitness inheritance
and approximation techniques for multi-objective particle swarm opti-
mization,” in Proceedings of the Congress on Evolutionary Computation
(CEC 2005). Edinburgh, U.K: IEEE Press, September 2005, pp. 65–72.

[39] D. A. van Veldhuizen and G. B. Lamont, “Evolutionary computation
and convergence to a Pareto front,” in Late Breaking Papers at the
Genetic Programming Conference. Madison, Wisconsin, USA: Stanford
University Bookstore, July 1998, pp. 221–228.

[40] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable Test Prob-
lems for Evolutionary Multiobjective Optimization,” in Evolutionary
Multiobjective Optimization. Theoretical Advances and Applications,
A. Abraham, L. Jain, and R. Goldberg, Eds. USA: Springer, 2005,
pp. 105–145.

[41] H. Li and Q. Zhang, “A multiobjective differential evolution based on
decomposition for multiobjective optimization with variable linkages,”
in International Conference on Parallel Problem Solving from Nature
(PPSN IX), 2006, pp. 583–592.

[42] Q. Zhang, J. Sun, and E. Tsang, “Evolutionary algorithm with the
guided mutation for the maximum clique problem,” IEEE Transactions
on Evolutionary Computation, vol. 9, no. 2, pp. 1–9, April 2005.

[43] Q. Zhang, J. Sun, G. Xiao, and E. Tsang, “Evolutionary algorithms
refining a heuristic: Hyper-heuristic for shared-path protections in WDM
networks under SRLG constraints,” IEEE Transactions on Systems, Man
and Cybernetics, Part B, 2006, accepted for publication.

[44] Y. Jin, “A comprehensive survey of fitness approximation in evolutionary
computation,” Soft Computing, vol. 9, no. 1, pp. 3–12, 2005.

[45] M. E. Tipping and C. M. Bishop, “Mixture of probabilistic principal
component analysers,” Neural Computation, vol. 11, no. 2, pp. 443–
482, 1999.

TABLE I
TEST INSTANCES

Instance Variables Objectives Characteristics
F1 [0, 1]n f1(x) = x1 convex PF

f2(x) = g(x)[1−
p

f1(x)/g(x)] linear variable linkage

g(x) = 1 + 9(
nP

i=2
(xi − x1)2)/(n− 1)

F2 [0, 1]n f1(x) = x1 concave PF
f2(x) = g(x)[1− (f1(x)/g(x))2] linear variable linkage

g(x) = 1 + 9(
nP

i=2
(xi − x1)2)/(n− 1)

F3 [0, 1]n f1(x) = 1− exp(−4x1)sin6(6πx1) concave PF
f2(x) = g(x)[1− (f1(x)/g(x))2] nonuniformly distributed

g(x) = 1 + 9[
nP

i=2
(xi − x0)2/9]0.25 linear variable linkage

F4 [0, 1]n f1(x) = cos(π
2
x1)cos(π

2
x2)(1 + g(x)) concave PF

f2(x) = cos(π
2
x1)sin(π

2
x2)(1 + g(x)) linear variable linkage

f3(x) = sin(π
2
x1)(1 + g(x)) 3 objectives

g(x) =
nP

i=3
(xi − x1)2

F5 [0, 1]n f1(x) = x1 convex PF
f2(x) = g(x)[1−

p
x1/g(x)] nonlinear variable linkage

g(x) = 1 + 9(
nP

i=2
(x2

i − x1)2)/(n− 1)

F6 [0, 1]n f1(x) =
√

x1 concave PF
f2(x) = g(x)[1− (f1(x)/g(x))2] nonlinear variable linkage

g(x) = 1 + 9(
nP

i=2
(x2

i − x1)2)/(n− 1)

F7 [0, 1]n f1(x) = 1− exp(−4x1)sin6(6πx1) concave PF
f2(x) = g(x)[1− (f1(x)/g(x))2] nonuniformly distributed

g(x) = 1 + 9[
nP

i=2
(x2

i − x0)2/9]0.25 nonlinear variable linkage

F8 [0, 1]n f1(x) = cos(π
2
x1)cos(π

2
x2)(1 + g(x)) concave PF

f2(x) = cos(π
2
x1)sin(π

2
x2)(1 + g(x)) nonlinear variable linkage

f3(x) = sin(π
2
x1)(1 + g(x)) 3 objectives

g(x) =
nP

i=3
(x2

i − x1)2

F9 [0, 1]× f1(x) = x1 concave PF
[0, 10]n−1 f2(x) = g(x)[1−

p
f1(x)/g(x)] nonlinear variable linkage

g(x) = 1
4000

nP
i=2

(x2
i − x1)2 −

nQ
i=2

cos(
(x2

i−x1)√
i−1

) + 2 multimodal with Griewank function

F10 [0, 1]× f1(x) = x1 concave PF
[0, 10]n−1 f2(x) = g(x)[1−

p
f1(x)/g(x)] nonlinear variable linkage

g(x) = 1 + 10(n− 1) +
Pn

i=2[(x
2
i − x1)2 − 10cos(2π(x2

i − x1))] multimodal with Rastrigin function

TABLE II
THE PARAMETER SETTINGS OF RM-MEDA FOR F5 IN SECTION VI

Population K in # of Decision Max. # of ~F
Size Local PCA Variables Evaluations

Section VI.A 20 ∼ 400 5 50 20,000
Section VI.B 100 1 ∼ 15 50 20,000
Section VI.C 100 5 20 ∼ 100 20,000
Section VI.D 100 5 20 ∼ 100 20,000

TABLE III
THE PARAMETER SETTINGS OF RM-MEDA FOR F5 IN SECTION VI

Population CR F # of Decision Max. # of ~F
Size Variables Evaluations

Section VI.A 20 ∼ 400 1 1 50 20,000
Section VI.C 100 1 1 20 ∼ 100 20,000
Section VI.D 100 1 1 20 ∼ 100 20,000

TABLE IV
THE CPU TIME (IN SECONDS) USED BY RM-MEDA AND GDE3 FOR F5 WITH DIFFERENT NUMBERS OF DECISION VARIABLES

The number of decision variables
Method 20 30 40 50 60 80 100
GDE3 0.75 0.79 0.75 0.78 0.82 0.79 0.78
RM-MEDA 8.09 16.65 28.92 45.73 69.00 136.04 238.28

Fig. 1. Illustration of the basic idea. Individual solutions should be scattered around the PS in the decision space in a successful MOEA.

Fig. 2. Illustration of Extension: The number of clusters (K) is 3 in this illustrative example. Φ1, Φ2 and Φ3 could not approximate the PS very well, their
extensions Ψ1, Ψ2 and Ψ3, however, can provide a better approximation.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

Number of Function Evaluations(× 104)

D
−

M
et

ric

RM−MEDA
GDE3
PCX−NSGA−II
MIDEA

Fig. 3. The evolution of the average D-metric of the nondominated solutions in the current populations among 20 independent runs with the number of
10,000-function evaluations in four algorithms for F1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

Number of Function Evaluations(× 104)

D
−

M
et

ric

RM−MEDA
GDE3
PCX−NSGA−II
MIDEA

Fig. 4. The evolution of the average D-metric of the nondominated solutions in the current populations among 20 independent runs with the number of
10,000-function evaluations in four algorithms for F2.

0 1 2 3 4 5 6 7 8 9 10
10

−2

10
−1

10
0

10
1

Number of Function Evaluations(× 104)

D
−

M
et

ric

RM−MEDA
GDE3
PCX−NSGA−II
MIDEA

Fig. 5. The evolution of the average D-metric of the nondominated solutions in the current populations among 20 independent runs with the number of
100, 000-function evaluations in four algorithms for F3.

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−2

10
−1

10
0

10
1

Number of Function Evaluations(× 104)

D
−

M
et

ric

RM−MEDA
GDE3
PCX−NSGA−II
MIDEA

Fig. 6. The evolution of the average D-metric of the nondominated solutions in the current populations among 20 independent runs with the number of
40,000-function evaluations in four algorithms for F4.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

RM−MEDA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

RM−MEDA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

GDE3

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

GDE3

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

PCX−NSGA−II

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

PCX−NSGA−II

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

MIDEA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

MIDEA

Fig. 7. The final nondominated fronts found by each algorithm on F1. The left panels show the nondominated fronts with the lowest D-metric obtained by
each algorithm, while the right panels plot all the 20 fronts together found by each algorithm.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

RM−MEDA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

RM−MEDA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

GDE3

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

GDE3

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

PCX−NSGA−II

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

PCX−NSGA−II

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

MIDEA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

MIDEA

Fig. 8. The final nondominated fronts found by each algorithm on F2. The left panels show the nondominated fronts with the lowest D-metric obtained by
each algorithm, while the right panels plot all the 20 fronts together found by each algorithm.

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

RM−MEDA

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

RM−MEDA

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

GDE3

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

GDE3

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

PCX−NSGA−II

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

PCX−NSGA−II

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

MIDEA

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

MIDEA

Fig. 9. The final nondominated fronts found by each algorithm on F3. The left panels show the nondominated fronts with the lowest D-metric obtained by
each algorithm, while the right panels plot all the 20 fronts together found by each algorithm.

0
1

2

0

1

2
0

1

2

f
1

RM−MEDA

f
2

f 3

0
1

2

0

1

2
0

1

2

f
1

RM−MEDA

f
2

f 3

0
1

2

0

1

2
0

1

2

f
1

GDE3

f
2

f 3

0
1

2

0

1

2
0

1

2

f
1

GDE3

f
2

f 3

0
1

2

0

1

2
0

1

2

f
1

PCX−NSGA−II

f
2

f 3

0
1

2

0

1

2
0

1

2

f
1

PCX−NSGA−II

f
2

f 3

0
5

10

0

5

10
0

5

10

f
1

MIDEA

f
2

f 3

0
5

10

0

5

10
0

5

10

f
1

MIDEA

f
2

f 3

Fig. 10. The final nondominated fronts found by each algorithm on F4. The left panels show the nondominated fronts with the lowest D-metric obtained
by each algorithm, while the right panels plot all the 20 fronts together found by each algorithm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−3

10
−2

10
−1

10
0

Number of Function Evaluations(× 104)

D
−

M
et

ric

RM−MEDA
GDE3
PCX−NSGA−II
MIDEA

Fig. 11. The evolution of the average D-metric of the nondominated solutions in the current populations among 20 independent runs with the number of
10,000-function evaluations in four algorithms on F5.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−2

10
−1

10
0

Number of Function Evaluations(× 104)

D
−

M
et

ric

RM−MEDA
GDE3
PCX−NSGA−II
MIDEA

Fig. 12. The evolution of the average D-metric of the nondominated solutions in the current populations among 20 independent runs with the number of
10,000-function evaluations in four algorithms on F6.

0 1 2 3 4 5 6 7 8 9 10
10

−2

10
−1

10
0

10
1

Number of Function Evaluations(× 104)

D
−

M
et

ric

RM−MEDA
GDE3
PCX−NSGA−II
MIDEA

Fig. 13. The evolution of the average D-metric of the nondominated solutions in the current populations among 20 independent runs with the number of
100,000-function evaluations in four algorithms on F7.

0 0.5 1 1.5 2 2.5 3 3.5 4
10

−2

10
−1

10
0

10
1

Number of Function Evaluations(× 104)

D
−

M
et

ric

RM−MEDA
GDE3
PCX−NSGA−II
MIDEA

Fig. 14. The evolution of the average D-metric of the nondominated solutions in the current populations among 20 independent runs with the number of
40,000-function evaluations in four algorithms on F8.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

RM−MEDA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

RM−MEDA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

GDE3

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

GDE3

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

PCX−NSGA−II

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

PCX−NSGA−II

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

MIDEA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

MIDEA

Fig. 15. The final nondominated fronts found by each algorithm on F5. The left panels show the nondominated fronts with the lowest D-metric obtained
by each algorithm, while the right panels plot all the 20 fronts together found by each algorithm.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

RM−MEDA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

RM−MEDA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

GDE3

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

GDE3

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

PCX−NSGA−II

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

PCX−NSGA−II

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

MIDEA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

MIDEA

Fig. 16. The final nondominated fronts found by each algorithm on F6. The left panels show the nondominated fronts with the lowest D-metric obtained
by each algorithm, while the right panels plot all the 20 fronts together found by each algorithm.

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

RM−MEDA

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

RM−MEDA

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

GDE3

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

GDE3

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

PCX−NSGA−II

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

PCX−NSGA−II

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

MIDEA

0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

MIDEA

Fig. 17. The final nondominated fronts found by each algorithm on F7. The left panels show the nondominated fronts with the lowest D-metric obtained
by each algorithm, while the right panels plot all the 20 fronts together found by each algorithm.

0
1

2

0

1

2
0

1

2

f
1

RM−MEDA

f
2

f 3

0
1

2

0

1

2
0

1

2

f
1

RM−MEDA

f
2

f 3

0
1

2

0

1

2
0

1

2

f
1

GDE3

f
2

f 3

0
1

2

0

1

2
0

1

2

f
1

GDE3

f
2

f 3

0
1

2

0

1

2
0

1

2

f
1

PCX−NSGA−II

f
2

f 3

0
1

2

0

1

2
0

1

2

f
1

PCX−NSGA−II

f
2

f 3

0
5

10

0

5

10
0

5

10

f
1

MIDEA

f
2

f 3

0
5

10

0

5

10
0

5

10

f
1

MIDEA

f
2

f 3

Fig. 18. The final nondominated fronts found by each algorithm on F8. The left panels show the nondominated fronts with the lowest D-metric obtained
by each algorithm, while the right panels plot all the 20 fronts together found by each algorithm.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

RM−MEDA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

RM−MEDA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

GDE3

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

GDE3

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

PCX−NSGA−II

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

PCX−NSGA−II

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

MIDEA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f
1

f 2

MIDEA

Fig. 19. The final nondominated fronts found by each algorithm on F9. The left panels show the nondominated fronts with the lowest D-metric obtained
by each algorithm, while the right panels plot all the 20 fronts together found by each algorithm.

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

f
1

f 2

RM−MEDA

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

f
1

f 2

RM−MEDA

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

f
1

f 2

GDE3

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

f
1

f 2

GDE3

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

f
1

f 2

PCX−NSGA−II

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

f
1

f 2

PCX−NSGA−II

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

f
1

f 2

MIDEA

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

f
1

f 2

MIDEA

Fig. 20. The final nondominated fronts found by each algorithm on F10. The left panels show the nondominated fronts with the lowest D-metric obtained
by each algorithm, while the right panels plot all the 20 fronts together found by each algorithm.

20 30 40 50 60 80 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Population Size

D
−

M
et

ric

GDE3

8,000
10,000
12,000
14,000
16,000
18,000
20,000

20 30 40 50 60 80 100 150 200 250 300 350 400
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Population Size

D
−

M
et

ric

RM−MEDA

8,000
10,000
12,000
14,000
16,000
18,000
20,000

Fig. 21. The average D-metric value v.s. the number of ~F -function evaluations under the different settings of population sizes in RM-MEDA and GDE3
for F5.

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Cluster Number

D
−

M
et

ric

3,000
4,000
5,000
7,500
10,000
15,000
20,000

Fig. 22. The average D-metric value v.s. the numbers of ~F -function evaluations with different cluster numbers in RM-MEDA for F5.

20 30 40 50 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Number of Decision Variables

E
va

lu
at

io
ns

D−metric=0.35

20

20

20

15

16

5
1

20 20
20

20 20
20 20

20 30 40 50 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Number of Decision Variables

E
va

lu
at

io
ns

D−metric=0.25

20

20

20

15

14

4

1

20
20

20
20

20

20

20

20 30 40 50 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Number of Decision Variables

E
va

lu
at

io
ns

D−metric=0.15

20

20

20

14

12

3

1

20
20

20

20
20

20

20

20 30 40 50 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 10
4

Number of Decision Variables

E
va

lu
at

io
ns

D−metric=0.05

20

20

19

13
9 1

0

20

20

20

20
20

20

20

Fig. 23. The average number of function evaluations among the successful runs for reaching each of four given levels of D-metric v.s. the number of
decision variables in two algorithms. The marked number is the number of successful runs. The solid line is for RM-MEDA while dash line for GDE3.

