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Martin Heracles, Alexander Gepperth, Jannik Fritsch, €tam Goerick

Abstract— An important biological mechanism for learning  children develop. This process involves observing the en-
in the human brain is Hebbian synaptic plasticity. However, vironment, discovering interrelationships and learnirgyf
Hebbian learning is restricted to direct synaptic connectbns experience, which we consider to be largely unsupervised.

between two neural populations, hence cannot directly acemt - . .
for learning that involves multiple neural populations. In While there are certainly many things that cannot be learned

order to overcome this limitation, we propose to combine N an unsupervised manner but require explicit teaching, we
Hebbian learing with self-organizing maps. More specificdy, = advocate the use of unsupervised learning methods to the
multiple lower-level representations are mapped onto seif greatest extent possible because this significantly reduce

organizing maps in an unsupervised process, thus forming {he effort one has to take in creating complex large-scale
higher-order representations of combinations of the loweilevel

representations. This way, learning that involves multipé neural SVStem_s' . . .
populations can be reduced to learing that involves only ta Looking at the neural basis for learning in the human brain,
(higher-order) neural maps, which makes Hebbian learning one important mechanism is Hebbian synaptic plasticity [1]
applicable again. Thanks to this plasticity, it is possible to learn correlat

consider a simple cage o learming hat mvolves three lowdevel U 1ESPECt (0 the activity o different neural population
representations, namely, learning the interrelationshipbetween However, Hebb|a_n learning is mhere_ntly limited to correla
the 2D size of objects in monocular camera images, their UONS between pairs of neqral populatlpns. It thereforenoah
object class as obtained by an object classifier, and their 3D directly be used for learning correlations between mutipl
distance to the camera. We present a technical system inste® populations. In order to overcome this restriction, we jis®p

of the proposed system architecture that is able to learn 8 {5 combine Hebbian learning with self-organizing neural
interrelationship at run-time and, after learning has finished, maps [2]

to predict the 3D distance of objects from their 2D size and .
their object class. Experiments using both simulated and ral- Essentially, the approach we propose amounts to the
world image streams confirm the quality of these predictions formation of increasingly abstract internal represeotei

and support our hypothesis that the proposed combination of from existing ones. This concept has been discussed in [3],
Hebbian learning with self-organizing maps can serve as a for example. The use of supervised learning methods in
generic mechanism for system-wide unsupervised leaming. order to infer information from such internal represeatasi
has been discussed in [4] and [5] and was applied to robot
control and manipulation tasks [6] [7] [8]. The importande o
Despite recent advances in research fields that strive feelf-organizing maps for the design and training of modular
autonomous intelligent systems, examples of which includeeural networks has been emphasized in [5].
robotics and intelligent vehicle research, state-ofahtaech- The main contribution of the work presented in this
nical systems are still far from being comparable to theaper is twofold: On the one hand, we want to demonstrate
performance of humans. This is in particular true when ithat new internal representations as well as mechanisms to
comes to highly complex, dynamic real-world environmentiifer knowledge from them can form concurrently and au-
such as traffic scenes in an inner-city environment, fdonomously, without requiring explicit teaching. On thaert
example. One of the most striking capabilities of humanBand, we want to demonstrate that the proposed combination
is the high degree of robustness they exhibit at differerstf Hebbian learning and self-organizing maps is sufficientl
levels, be it robustness to unreliable percepts, to difficufobust to be applied in the context of a vision system dealing
environmental conditions such as rain or direct sunlight, ovith unconstrained real-world environments such as traffic
the ability to cope with unforeseen situations. To our mindscenes. We consider this contrasting typical applications
any autonomous intelligent system will need such kind ofobotics, where the environmental conditions are usually
robustness when operating in unconstrained environmerggnstrained and well-defined.
like this. This paper is organized as follows. In section Il, we briefly
We think of this high degree of robustness as the resuigview the concept of cross-module learning [9] and the
of an incremental learning process, similar to the way youngeural principles underlying the system architecture tat
propose in section Ill. We then consider a simple case of
M. Heracles is with the Research Institute for Cognition &ubotics ~correlation learning that involves three neural maps ireord
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I. INTRODUCTION



and, after that, to predict either of the neural maps given th

others. In order to evaluate the quality of these predistion -—> —> - learn
we have conducted experiments using both simulated and Vi ’
real-world image streams, which we describe and discuss in

section V. Finally, we summarize the main contributions of 7 o I:;:;l:t learn, fuse <>->-

this paper in section VI. predict

[I. BASIC CONCEPTS - S
conver
In this section, we briefly review the concept of cross- &‘Iﬂ_‘ﬂ\ _» —[prop /

module learning according to which the system architecture gnvert

we propose in section IV is designed, as well as the under-

lying neural principles we use. The purpose is to provide a

short overview of these concepts for the convenience of tiig. 1. Abstract example of a system architecture that igydesl according

reader. It is not meant as an exhaustive description, sinfethe principles of cross-module learning. The most imguurtare the
. ’ modularization of the system by the use of algorithmic congmts (large

these ConC?ptS are ?'ther W?”'known or have already begBmond boxes), the use of a common data format for theirtiapd output

presented in detail in the given references. The focus déta (large rectangular boxes), and the employment of geoemponents

this paper is therefore not on the individual concepts bﬁ?r learning and data fusion (small diamond boxes), thusesitty system-

. . . wide learning and exploitation of correlations.
rather on the way we combine them into an integrated system

architecture (see section V).

) For example, if a neural population encodes object cate-
A. Cross-module learning gories, neural activity at different locations within tigiepu-

Cross-module learning refers to a concept for the creatid@tion represents different object categories. The annpditof
of complex large-scale systems that has been proposed in [g];ural activity at a certain location represents the confide
It emphasizes that such systems should be composed @t an object belongs to the object category corresponding
individual components, in a way that facilitates the exgen t0 this location. Neural activity at more than one location,
of information between components throughout the entif@aving similar amplitudes, represents that it is not clear
system. This serves to enable system-wide learning aMdich of the corresponding categories an object belongs to.
exploitation of interrelationships, or correlations, ween This way, uncertainty can be expressed in population-coded
various internal representations that the system has fhrmeeural maps, including the possibility to express that some

To achieve this, the concept of cross-module learningyPotheses are more likely than others.
formulates a number of constraints that should be taken'We employ population coded neural maps as a common
into account when designing large-scale systems. The mé&ta format for encoding all internal representations ef th
important are the use of a common data format (CDF) for th&yStem, including sensory input data and intermediateerepr
internal representations of the system which is shared lby &ntations.
components, and the use of generic learning and data fusion
components that operate on these representations. Figure 1
shows an abstract example of a system architecture that
satisfies these constraints.

The system architecture we propose in section IV is de-
signed according to the principles of cross-module learnin
In particular, we employ population-coded neural maps &5y 2. Example of a topographical neural map representingrainuous
common data format (see section II-B), dynamic neural fieldgalar quantity that comes with a similarity measure. LEfte neural map
in order to model their temporal dynamics (see section |I-C epresenting the lowest value the quantity can assume.t:Rigie neural
and combine Hebbian synaptic plasticity (see section I1-D ap representing the highest value the quantity can assume.
with self-organizing neural maps (see section II-E) in orde

to achieve a generic learning mechanism. These techniquet orle _spec:cﬁcs_lly,tcontltnhuquzscglatr vaIut;,\s tShUCh as the 2D
are briefly reviewed in the following. retinal size of objects or their istance to the camera are

encoded by a single Gaussian activation along the x-axis of

a neural map (see figure 2). This mapping is topographic, i.e.

similar values are encoded by Gaussian activations atasimil
Population coding [10] is a biological principle for en-positions in the map. In order to make use of the entire range

coding information in (two-dimensional) neural populaio of a neural map, the value to be encoded is scaled by the

Information is not encoded by the amplitude but rather bjactor

the location of neural activity in the population. Instead, 4o — Zmax — Umin

the amplitude of neural activity can be interpreted as a ZTmax — Tmin

confidence measure. wherevmin and vmax denote the minimal and maximal value

B. Population-coded neural maps



to be encoded, respectively, angin and zmax denote the are parameters of the moddl; . denotes the sum of all
borders of the neural map. The location of the Gaussianputs to the neural fieldy(¢) is Gaussian white noise and
activation with respect to the x-axis of the map is then,.,; denotes theesting potentiahs a simple form of global
obtained as inhibition. By the point-wise application dfansfer functions
T = Kv fulz] and fi[x], we regulate the input and output activity in

) ) . the neural field. The lateral connectivity is defined by the
For scalar values, the location with respect to the y-axis Canteraction kerneko(# — ), for which we use a Difference-

be set to any constant value since it does not encode ag¥Gaussians filter with varianceg, and o2
. . . . n or*
information. The scaling ensures that the value is enCOdedAverage activity is controlled by a recurrent inhibition

at the highest resolutl_on P°$S'b'e’ given the d'mens'or}ﬁechanism mediated by a single interneuron evolving ac-
of thebneural :“apo'l W_h'hCh IS |r:nportant Ilf the r;)eural l;TQ)‘T"FE:ording to equation (1) using a time constaps. These are
s to be correlated with another neural map by Hebbiag; yjrectionally connected to all model neurons of a layer.

learning. Note that each neural map has its own scalifgije the interneuron receives an activity average of the
factor. Regarding the opposite direction, given a neurg M&vhole neural layer as input signal, each neuron in a layer
with maximum activity at location:* with respect to the

x-axis of the map, and the (known) scaling factar the
corresponding scalar valug can be obtained as

receives the state of the interneuron, scaled by a constant
weg. Since there are no lateral connections introduced by
the interneuron and its afferent connectivity is fixed, the
. T only additional free parameter introduced by this activity
K control mechanism is the time constaag. This mechanism

is comparable to the proposal of [12].

By the “bubble solution” property of two-dimensional
DNFs [11] it is ensured that neural map activities will
converge to a population-coded state, provided that th&snp
are population coded themselves. In particular, there lassc
of solutions for DNFs characterized by a localized “bubble”
of excitation [11]. This is important for the interaction of
Fig. 3. Example of a non-topographical neural map represgiat discrete DNF_S with the pop_ulatlon coding approach chosen here (see
scalar quantity that does not come with a similarity meashime that by ~ S€Ction [I-B). Details can be found in [13], [11], [14], for
design, the centers of activation are equi-distant fronh esber. example. In the following, we will refer to the temporal dy-

. ) .....namics of two-dimensional neural fields @esural dynamics
Discrete scalar values that do not come with a similarity

measure, e.g. object class IDs as obtained by an objeﬁt
classifier, are encoded in non-topographic neural maps$ Eac’
value is encoded by a Gaussian activation at a pre-definedThe dynamic transmission of information between two
position in the neural map, all these positions being equieural mapsuz; and vz, which is also referred to as

Hebbian synaptic plasticity

distant from each other (see figure 3). synaptic dynamicss governed by the equation
C. Dynamic neural fields I = Zw§§7tfu[uf,t] @)
In order to model the temporal dynamics of the neural a

maps introduced in section 11-B, we employ dynamic neurglhere vt , represents theveight i.e. the strength, of the
fields (DNF, see [11]). DNFs are a class of recurrent neurgh,qel sgg;Jr’lapse between two neuroms; and v;,. The
networks with fixed lateral connectivity. Basic units ofshi quantities fu[z], fi[z] and Iy7 are the same ;s defined

x

model are two-dimensional layers of rate-coded model ney; section 11-C. In parallel, weight adaptation is perfodne
rons ug evolving according to the temporally d'scret'zedaccording to the Hebbian learning rule
equation
VU I _ =] — vu
Uz 1 =1 — x)uze + x{afillz ]+ Wi ir1 = Wi, + @fulvgel fuluzd] —epwzg, ()
5Zw(f/ — @) fuluzs] + trest +y0(t)} (1) wheree¢; and ey denote the learning and forgetting rate of
= the model, respectively. For maximum input, this mechanism

At has a stable fixed point far% = <L, thus limiting weight
wherey = — Y s
T growth.
fulz] = {1+ eﬂ“;fw 31 While Hebbian synaptic plasticity provides a generic
! 9 p mechanism for learning correlations between two neural
filz] = atanw maps, it cannot directly be used to learn correlations betwe

i multiple neural maps. In order to overcome this limita-

Here, At and r denote the time discretization step and théion, we propose to combine Hebbian learning with self-
time constant of the model, respectively. The numbers v+  organizing neural maps.



E. Self-organizing maps the lower-level maps. This way, learning correlations lestw

Self-organizing maps (SOMs, see [2]) are a class of Sing@]ultiple neural maps can be reduced to Iearning correlation
layered feed-forward neural networks which essentially peP€tween two (higher-level) neural maps, which makes Heb-
form a clustering of their input using an online learningerul Pian leaming applicable again. We consider the proposed

Let u;; denote the state of model neurons at position combl_natlon of I-_|ebb|an learning Wlth self-orga_mzmg maps
and timet. Furthermore, lez; denote the afferent weight 9€Neric mechanism for system-wide unsupervised coroelati
vector attached to each neuron. In the presence of an infg@/ning. even in the case of multiple neural maps, which
pattern 7, being fed into the network, lef* denote the cannot be handled directly by standard Hebbian learning.

position of the best-matching unit (BMU), i.e. the neuron

whose attached weight vector best fits the input. As for the e

SOM algorithm, letg?_ ... denote a Gaussian neighborhood [Image Processirig

function centered af* with varianceo, and lete; denote the featurgq  feature, .. featurg feature,,

learning rate at time. In these terms, let us reconsider the S $oo oo | S .

standard SOM algorithm as given in [2] in a slightly diffeten [Encoding [Encoding .. [Encoding - [Encoding

form: neural mag neural mag ... neural map neural map,.
1) Initialize e = ¢, 0 = 0y \‘

2) At time t, present patterm; and propagate activation

. » ., higher—qrder map
to the model neurons according i@ ; = Uz - p;.

3) Determine the BMUnz- ;. Hebb'ar:,"eamm

4) Adapt weight vectotz-: | corrglation
N . - . N Prediction|
Uz 41 = Uzt + €95z {Uz,t — Dt} 4)

predicted map

5) Increase t byi, calculate new values af and o and
continue at step 2 Fig. 4. Basic structure of the proposed system architecttmenbining
) ’ ] Hebbian learning with self-organizing maps. See sectibfotlan explana-
As stated in [2], the temporal dynamics of the parametersn.
e ando have a strong influence on the output layer of the

SOM. In the work presented here, we use a parametric model, IV. TECHNICAL SYSTEM INSTANCE

given as ) _ _
Before presenting the technical system instance of the
o(t) = UOL (5) system architecture we have proposed in section lll, we
Tcit briefly introduce the most important algorithmic composent
€(t) = eo— (6) We use.
Tel

A. Algorithmic components
Ill. SYSTEM ARCHITECTURE

Fi 4 debi he basi fth hi This section intends to give a brief overview over the most
igure 4 depicts the basic structure of the system arc 'te'gfominent algorithms used in the technical system instance

ture we Propose. Itis com_pllant with the concept of cros escribed in section IV. Since the precise working of many
module _Iearnlng (see sect_lon ”'A). and e_mploys_ the neurillgorithms is quite complex, we only give a general picture
mechgmsms that were br|efly_ reviewed in section Il. Thgg e anq refer the interested reader to the cited references
most Important aspects comprise We feel that this is a justified approach since, although the
« the use of image processing methods in order to dejgorithms are necessary to achieve the technical system
tect regions of interest (ROIs) in the image, localizingnstance, they are not the focus of this publication.
potential objects (e.g. cars), 1) Adaptive saliency maps for point-of-interest detection
» the extraction of object-specific features (e.g. 2D sizfh order to analyze a visual image for candidate objects, it
and 3D distance) and their encoding in population;s ysually assumed that those objects can at least partly be
coded neural maps, distinguished from the background by certain visual preper
« the use of a self-organizing map for the unsuperviseges. Thus, points of interest (POIs), which may be subject
formation of an intermediary, higher-order neural magg further analysis, can be generated where such properties
that represents a combination of the (lower-level) inpujre present in the image. Motivated by studies of visual
maps, and attention in humans [15], the concept of saliency maps ds firs
« the use of standard Hebbian |earning in order to |earﬁr0posed by [16] obtains POls by ana'yzing several Simp|e
correlations between the higher-order map and anothgfatures computed from an image. In this contribution, we
neural map (which can be a lower-level map like in theise the saliency map model proposed in [17] which extends
figure, or another higher-order map). previous models by considering more sophisticated image
The crucial point is the mapping of multiple lower-level nsap features, and the ability to adapt its processing paras&ter
onto a single higher-order map representing combinatiéns detect POlIs in different situations. Output of the modelris a



activity-encoded image (saliency majp of which we take while the details of the parallelization are decoupled from
the point of maximal activation to be the POI for subsequerthe application development process.
processing stages.

2) Image segmentation for region-of-interest generation:
For extracting regions of interest (ROIs) around a POI, we
use a simple color-based region-growing approach [18] wit

B. Real-time implementation

image sequence

the seed value computed at the POI. For the described
experiments, this method was able to compute size estimates Salienfy map diSPaTy map
of sufficient accuracy to allow the prediction of distance. [Maximum|]  [Region Growing

It is nevertheless clear that for complex scenes, a more
sophisticated method will have to be employed in order to
obtain precise and informative estimates of object size.

3) Object recognition by a visual hierarchyWe use the

most salient point  disparity regions

egion ‘if interest

Visual Hierarchy object recognition system as described [ GetSize | [ Classifier | [ Average |
in [19] to determine the identity of an ROI's content. The 2D retinal size objectid  averae disparit
recognition system (also termed “classifier”) is designed ”\*55”;&;5;\”\*50;136;3}0;@’(’C’Ogve;s&,;’(
to be trained prior to application using training examples retinal‘ize map obje‘t idmap  avg disparity m
of known identity. It is essentially a feed-forward neural _ Y

network, enriched by successive pooling and competitive

and self-organizing stages, which models the convergent id+size map

hierarchical processing in the human visual system. As [DNF Maximum Selectioh

will be described in section V, the classifier is used here maximuny, activation

for discriminating real-world objects such as cars from the
background, as well as artificial objects (toy duck, cola)can Yo
in a simulated environment. The training procedure and the | ____________ ot S

adaptation of the classifier architecture to the car domain
using color information has been described in [20]. For predicted map

artificial objects, the procedure of [20] is used, howevehwi
a strongly reduced number of training examples.

4) Stereo vision for 3D distance estimatiomistance
estimates are obtained using the commercially availabl® SV The real-time implementation (shown in detail in figure 5)

stereo-correlation software [21], which operates on a pagperates on a sequence of camera images which is processed
of images provided by a stereo camera. The output is flame by frame as follows: As a first step, a saliency map
disparity image. Since the stereo camera is calibrated, tRecomputed, using the method described in section IV-A.1.
disparity image can be transformed into a 3D distance magom the saliency map, the most salient point in the image
by using the camera parameters. The SVS algorithm implgs determined. A region growing approach (see section IV-
ments a local window-based correlation method, therefore A 2) operating on a disparity map (see section IV-A.4)
suffers from the aperture problem which leads to unreliablgorresponding to the camera image then determines an area
disparity and 3D distance estimates. This is a problem that similar disparities, where the most salient point is used
is inherent in any local correlation method, including opli as seed point. The ROI thus obtained is represented as
flow approaches. However, the SVS algorithm also provides bounding box in the image. Given this ROI, different
a confidence value for each pixel in the disparity image. Iguantities are computed from its content and each quantity
practice, all disparities in the disparity image are maréed s represented in an individual neural map. The quantities
invalid if their confidence is below a certain threshold. §Thi comprise the average 3D distance of all pixels in the ROI
leads to a disparity image in which some regions have dengf terms of disparity), the 2D retinal size calculated as th
disparities, while other regions may not have valid dispesi  area of the bounding box, and the object class ID obtained as
at all. the result of the object classifier operating on the ROI. As fo
5) Implementation issuesFor all implementation pur- the latter, we use the object classifier described in setiton
poses, we use the component-based middle-ware systén3. It is important to note that we assume that this object
RTBOS [22] which allows the creation of large applicationglassifier has been trained to recognize the relevant ahiject
with an emphasis on scalability (automatic distributioreiov the scene beforehand, as described in 1V-A.3. The conversio
several machines) and computational efficiency (all conbetween the resulting scalar values of the quantities a@d th
ponents written in C/C++). All functionalities described i neural maps representing them is performed as described
this contribution are realized as RTBOS components. In thia section II-B. The resulting population-coded neural smap
way, a favorable processing speed (10 frames per secomgresenting the 2D object size and the object class are
on two off-the-shelf notebook computers) can be achievaten fed into a SOM as afferent inputs, which adapts the

Fig. 5. Detailed overview of the proposed system architectiBee
section |V for a detailed explanation.



weights between the afferent inputs and its output activati
layer according to section II-E. Thereby, pairs of objec
class and 2D object size are mapped onto a single neu
map, which is the intermediary, higher-order neural mal
mentioned before. Thanks to the properties of self-orgagiz

maps, this higher-order neural map is again topographlc_ﬁ _—ﬁ
i.e. similar combinations of object class and 2D object SIZ__ _—

are represented at similar positions. The output layer ef t-......._____________________

SOM is connected to the neural map encoding the averagg. 6. Example images of the simulator sequence used in tie fi
3D distance of the pixels in the bounding box, adapting thexperiment. Left: Both objects are as far away as possibightRBoth
connection weights by a Hebbian (correlation-based) lagrn nge(ﬁsm%r:pgﬁdgﬁtsli ;Seggﬁs(')%eer'\‘me that the distanceeobttiects is
mechanism (see section 1I-D). This way, the system is able

to detect correlations and dependencies between these f
neural maps. Essentially, dependencies between the hig
order map representing a combination of 2D object size a
object class on the one hand and the (simple) neural m
representing the average 3D distance of the object on t
other hand can now be learned by direct association.

V. EXPERIMENTS

From the learned correlation between the higher-order map
representing combinations of the 2D size and the class of &i§- 7- Example images of the real-world sequence used irs¢oend
{(é)erlment Left: The car being far away. Right: The car peilose.
object on the one hand and the neural map representing i
average 3D distance on the other hand (see section 1V), the

system should be able to predict either of the two given th gnough time to learn the aforementioned correlation. Asisoo

other. For example, if the system perceives an object a % the first 2000 frames have been processed, learning is
recognizes its object class, it should be able to predi@hts opped and evaluation is being enabled. Table | provides an
distance from its 2D retinal size alone. We have CondUCteo(i/erwew of the parameters used in the experiment.

two experiments in order to evaluate the quality of these
predictions. TABLE |

. PARAMETER VALUES USED IN THE EXPERIMENT
A. Experimental setup

The real-time implementation of the proposed system Method Parameters Values
architecture is executed in an offline setting, operating on Hebb;ﬁ'}’éaming C?;? 0.86%7, 01.'(?0 -
a recorded image sequence instead of a live-stream. In the Neural field | 7., 3,7, urest | 10,1.0, 5.0, 0.1,-0.4
first experiment, the image sequence has been recorded from
a simulated 3D environment in which two objects at camera
height were randomly moved back and forth, independentl
of each other. The purpose of this experiment is to establi
the feasibility of the chosen approach under ideal condiio = For the sake of a simple yet systematic evaluation, the
as well as to demonstrate that the mechanism is capablemgdiction accuracy is evaluated for one of the two objects
handling distinct object classes with different size-aigte only in the first experiment (once the training phase is over)
dependencies. The distance of each object with respectto thhe results are unchanged if the other object is used for
camera varied betweei75 m and2.00 m. In the second evaluation. There is no such change in the second experiment
experiment, the image sequence has been recorded frorsilace the car is the only object that can sensibly be focussed
real-world traffic scene in which a car waiting at a red traffién the used video stream. For each image framgse com-
light is approached. This experiment is conducted in ordgrare the actual 3D distance of the object as obtained byostere
to demonstrate that our approach is capable of dealing witlision (see section 1V-A.4) with the 3D distance of the objec
the complexity of real-world scenes. Example images of boths predicted by our system after the training phase. The
streams are shown in figures 6 and 7, respectively. In bothtter is determined by finding the maximum activation in the
experiments, the image streams are repeated after the lastiral prediction map (see bottom of Fig. 5) and translating
frame in order to provide a continuous input. it back into a real number by the procedure explained in

For both experiments, we assume that the object classifiegction 11-B. Letd; denote the difference between the actual
has been trained beforehand to recognize the objects in thed the predicted 3D distance of the object. We define
scene (see section IV-A.3). The first 2000 frames of the inthe following measure in order to evaluate the quality of
age sequence are processed by our system without evaluatitve prediction. The measure is defined as the root of the
This serves as a training phase, giving the learning methodguared prediction error, averaged over the image frames

Evaluation measures



170 4

i€ {1,..., N} after the training phase: 160 -
1 150 —
5RMSEEH_251‘2' (7) 140 1
N5 130 |
C. Results 1128 i
The results of the two experiments are depicted in figures > 100 —
and 9, respectively. It is worth noting that the complete 0 \‘
system instance used for both conducted experiments ru@a 89 "\ prediction
in real-time (10+ frames per second) on a standard deskt® 7% ] stereo vision
. . 60 | . emor
computer. In terms of the (scaled) disparity, the dark gree c0
graph shows the 3D distance of the focused object & 40
predicted by our system while the light green graph shows th 30 4
3D distance of the object as obtained by stereo vision, usin 20 ﬂ 0 HWH ] n] rﬂ 1 n] HJ‘
the SVS algorithm (see section IV-A.4). The light red grapt 10+
shows the prediction error in terms of the absolute diffeeen 0 wu W J“Ul} M “u AT_‘JH u m|
between the two green graphs. The dark red graph represe 2000 2025 2050 2075 2100
the average prediction error. frame
750 Fig. 9. Results of the second experiment (real-world secgjen
700
650
600 — segment the focused object, which leads to inaccuracies in
550 the ROI sizes that are involved in learning the correlation.
§ 500 We argue that the use of a more sophisticated segmentation
® 450 component would compensate for this effect and increase the
400 accuracy of the prediction.
2 350 " prediction At the conceptual level, we have shown that the combina-
E 300 \Stereo CRE tion of self-organization, nonlinear maximum selectiord an
o 250 Sror associative learning can produce a new quality of predistio
= 200 We have demonstrated that individual, strongly non-linear
150 — prediction models can be acquired autonomously for differe
100 — object classes. Moreover, the described technical system
50 | i instance is capable of real-time operation and therefoike we
oL suited for application in, .e.g, the car domain. Extending

2700 2750 2800 2850 2600 previous work, our model introduces a strong nonlinearity
(the maximum selection, in contrast to [5], [3]) on the one
hand, and a experimental evaluation on visual sensory data
Fig. 8. Results of the first experiment (simulated sequence) on the other hand (as opposed to [6], [7]).

frame

VI. CONCLUSION

D. Discussion We have presented an architecture that enables a system

Obviously, the presented system is able to predict the learn correlations between multiple neural maps, which
3D distance of visual objects. This is true for the entire€an then be used to make predictions about one map given
range of distances that occur, as can be seen in frantég others. This is achieved by the self-organized formatio
2700 — 2725 in figure 8 and in frames 2000 — 2025 if an intermediary, higher-order map that combines mutipl
figure 9, for example. In both cases, the focused object ireural map representations. The correlations can then be
far away at the beginning (corresponding to low disparityearned by means of standard Hebbian learning methods.
values) and then gets increasingly closer (corresponding Both the self-organizing maps and the Hebbian learning can
high disparity values). A closer look at the error graphsvolve in parallel during run-time of the system. In our
reveals that the prediction error does not seem to depesgperiments we have shown that the proposed architecture
significantly on the distance itself, instead, the erromather can, for example, learn the correlation between the 2Daktin
the same for the object being close or far away. Howevesijze of objects, the object class they belong to and their 3D
one can see by comparing figures 8 and 9 that the predictidistance from the viewer, and that it can then use the learned
is significantly coarser for the real-world sequence than @orrelation to predict the 3D distance of objects from their
is for the simulated sequence. We attribute this to the fa2D retinal size alone, provided that it recognizes the dbjec
that in the real-world sequence, it is more difficult to rblia  class. Since the proposed architecture represents a way to



learn correlations between multiple neural maps, we censid
the aforementioned combination of self-organizing maygs an
Hebbian learning a generic principle for learning coriiela

at various levels within large-scale systems.
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