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Integrating representations for learning higher-order correlations in
a brain-inspired cognitive framework

Martin Heracles, Alexander Gepperth, Jannik Fritsch, Christian Goerick

Abstract— An important biological mechanism for learning
in the human brain is Hebbian synaptic plasticity. However,
Hebbian learning is restricted to direct synaptic connections
between two neural populations, hence cannot directly account
for learning that involves multiple neural populations. In
order to overcome this limitation, we propose to combine
Hebbian learning with self-organizing maps. More specifically,
multiple lower-level representations are mapped onto self-
organizing maps in an unsupervised process, thus forming
higher-order representations of combinations of the lower-level
representations. This way, learning that involves multiple neural
populations can be reduced to learning that involves only two
(higher-order) neural maps, which makes Hebbian learning
applicable again.

In order to demonstrate the validity of our approach, we
consider a simple case of learning that involves three lower-level
representations, namely, learning the interrelationshipbetween
the 2D size of objects in monocular camera images, their
object class as obtained by an object classifier, and their 3D
distance to the camera. We present a technical system instance
of the proposed system architecture that is able to learn this
interrelationship at run-time and, after learning has finished,
to predict the 3D distance of objects from their 2D size and
their object class. Experiments using both simulated and real-
world image streams confirm the quality of these predictions
and support our hypothesis that the proposed combination of
Hebbian learning with self-organizing maps can serve as a
generic mechanism for system-wide unsupervised learning.

I. I NTRODUCTION

Despite recent advances in research fields that strive for
autonomous intelligent systems, examples of which include
robotics and intelligent vehicle research, state-of-the-art tech-
nical systems are still far from being comparable to the
performance of humans. This is in particular true when it
comes to highly complex, dynamic real-world environments
such as traffic scenes in an inner-city environment, for
example. One of the most striking capabilities of humans
is the high degree of robustness they exhibit at different
levels, be it robustness to unreliable percepts, to difficult
environmental conditions such as rain or direct sunlight, or
the ability to cope with unforeseen situations. To our mind,
any autonomous intelligent system will need such kind of
robustness when operating in unconstrained environments
like this.

We think of this high degree of robustness as the result
of an incremental learning process, similar to the way young
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children develop. This process involves observing the en-
vironment, discovering interrelationships and learning from
experience, which we consider to be largely unsupervised.
While there are certainly many things that cannot be learned
in an unsupervised manner but require explicit teaching, we
advocate the use of unsupervised learning methods to the
greatest extent possible because this significantly reduces
the effort one has to take in creating complex large-scale
systems.

Looking at the neural basis for learning in the human brain,
one important mechanism is Hebbian synaptic plasticity [1].
Thanks to this plasticity, it is possible to learn correlations
with respect to the activity of different neural populations.
However, Hebbian learning is inherently limited to correla-
tions between pairs of neural populations. It therefore cannot
directly be used for learning correlations between multiple
populations. In order to overcome this restriction, we propose
to combine Hebbian learning with self-organizing neural
maps [2].

Essentially, the approach we propose amounts to the
formation of increasingly abstract internal representations
from existing ones. This concept has been discussed in [3],
for example. The use of supervised learning methods in
order to infer information from such internal representations
has been discussed in [4] and [5] and was applied to robot
control and manipulation tasks [6] [7] [8]. The importance of
self-organizing maps for the design and training of modular
neural networks has been emphasized in [5].

The main contribution of the work presented in this
paper is twofold: On the one hand, we want to demonstrate
that new internal representations as well as mechanisms to
infer knowledge from them can form concurrently and au-
tonomously, without requiring explicit teaching. On the other
hand, we want to demonstrate that the proposed combination
of Hebbian learning and self-organizing maps is sufficiently
robust to be applied in the context of a vision system dealing
with unconstrained real-world environments such as traffic
scenes. We consider this contrasting typical applicationsin
robotics, where the environmental conditions are usually
constrained and well-defined.

This paper is organized as follows. In section II, we briefly
review the concept of cross-module learning [9] and the
neural principles underlying the system architecture thatwe
propose in section III. We then consider a simple case of
correlation learning that involves three neural maps in order
to demonstrate the validity of our approach. In section IV, we
present a technical system instance of the proposed system
architecture that is able to learn this correlation at run-time



and, after that, to predict either of the neural maps given the
others. In order to evaluate the quality of these predictions,
we have conducted experiments using both simulated and
real-world image streams, which we describe and discuss in
section V. Finally, we summarize the main contributions of
this paper in section VI.

II. BASIC CONCEPTS

In this section, we briefly review the concept of cross-
module learning according to which the system architecture
we propose in section IV is designed, as well as the under-
lying neural principles we use. The purpose is to provide a
short overview of these concepts for the convenience of the
reader. It is not meant as an exhaustive description, since
these concepts are either well-known or have already been
presented in detail in the given references. The focus of
this paper is therefore not on the individual concepts but
rather on the way we combine them into an integrated system
architecture (see section IV).

A. Cross-module learning

Cross-module learning refers to a concept for the creation
of complex large-scale systems that has been proposed in [9].
It emphasizes that such systems should be composed of
individual components, in a way that facilitates the exchange
of information between components throughout the entire
system. This serves to enable system-wide learning and
exploitation of interrelationships, or correlations, between
various internal representations that the system has formed.

To achieve this, the concept of cross-module learning
formulates a number of constraints that should be taken
into account when designing large-scale systems. The most
important are the use of a common data format (CDF) for the
internal representations of the system which is shared by all
components, and the use of generic learning and data fusion
components that operate on these representations. Figure 1
shows an abstract example of a system architecture that
satisfies these constraints.

The system architecture we propose in section IV is de-
signed according to the principles of cross-module learning.
In particular, we employ population-coded neural maps as
common data format (see section II-B), dynamic neural fields
in order to model their temporal dynamics (see section II-C),
and combine Hebbian synaptic plasticity (see section II-D)
with self-organizing neural maps (see section II-E) in order
to achieve a generic learning mechanism. These techniques
are briefly reviewed in the following.

B. Population-coded neural maps

Population coding [10] is a biological principle for en-
coding information in (two-dimensional) neural populations.
Information is not encoded by the amplitude but rather by
the location of neural activity in the population. Instead,
the amplitude of neural activity can be interpreted as a
confidence measure.

Fig. 1. Abstract example of a system architecture that is designed according
to the principles of cross-module learning. The most important are the
modularization of the system by the use of algorithmic components (large
diamond boxes), the use of a common data format for their input and output
data (large rectangular boxes), and the employment of generic components
for learning and data fusion (small diamond boxes), thus achieving system-
wide learning and exploitation of correlations.

For example, if a neural population encodes object cate-
gories, neural activity at different locations within thispopu-
lation represents different object categories. The amplitude of
neural activity at a certain location represents the confidence
that an object belongs to the object category corresponding
to this location. Neural activity at more than one location,
having similar amplitudes, represents that it is not clear
which of the corresponding categories an object belongs to.
This way, uncertainty can be expressed in population-coded
neural maps, including the possibility to express that some
hypotheses are more likely than others.

We employ population coded neural maps as a common
data format for encoding all internal representations of the
system, including sensory input data and intermediate repre-
sentations.

Fig. 2. Example of a topographical neural map representing acontinuous
scalar quantity that comes with a similarity measure. Left:The neural map
representing the lowest value the quantity can assume. Right: The neural
map representing the highest value the quantity can assume.

More specifically, continuous scalar values such as the 2D
retinal size of objects or their 3D distance to the camera are
encoded by a single Gaussian activation along the x-axis of
a neural map (see figure 2). This mapping is topographic, i.e.
similar values are encoded by Gaussian activations at similar
positions in the map. In order to make use of the entire range
of a neural map, the value to be encoded is scaled by the
factor

κ =
vmax− vmin

xmax− xmin

wherevmin andvmax denote the minimal and maximal value



to be encoded, respectively, andxmin and xmax denote the
borders of the neural map. The location of the Gaussian
activation with respect to the x-axis of the map is then
obtained as

x = κv

For scalar values, the location with respect to the y-axis can
be set to any constant value since it does not encode any
information. The scaling ensures that the value is encoded
at the highest resolution possible, given the dimensions
of the neural map, which is important if the neural map
is to be correlated with another neural map by Hebbian
learning. Note that each neural map has its own scaling
factor. Regarding the opposite direction, given a neural map
with maximum activity at locationx∗ with respect to the
x-axis of the map, and the (known) scaling factorκ, the
corresponding scalar valuev∗ can be obtained as

v∗ =
x∗

κ

Fig. 3. Example of a non-topographical neural map representing a discrete
scalar quantity that does not come with a similarity measure. Note that by
design, the centers of activation are equi-distant from each other.

Discrete scalar values that do not come with a similarity
measure, e.g. object class IDs as obtained by an object
classifier, are encoded in non-topographic neural maps. Each
value is encoded by a Gaussian activation at a pre-defined
position in the neural map, all these positions being equi-
distant from each other (see figure 3).

C. Dynamic neural fields

In order to model the temporal dynamics of the neural
maps introduced in section II-B, we employ dynamic neural
fields (DNF, see [11]). DNFs are a class of recurrent neural
networks with fixed lateral connectivity. Basic units of this
model are two-dimensional layers of rate-coded model neu-
rons u~x,t evolving according to the temporally discretized
equation

u~x,t+1 =(1 − χ)u~x,t + χ{αfI[I~x,t]+

β
∑

~x′

w(~x′ − ~x)fu[u~x,t] + urest + γσ(t)} (1)

whereχ ≡
∆t

τ

fu[z] = {1 + e−
2(z−θu)

σu }−1

fI[z] = atan
2(z − θI)

σI

Here,∆t and τ denote the time discretization step and the
time constant of the model, respectively. The numbersα, β, γ

are parameters of the model,I~x,t denotes the sum of all
inputs to the neural field,σ(t) is Gaussian white noise and
urest denotes theresting potentialas a simple form of global
inhibition. By the point-wise application oftransfer functions
fu[x] andfI[x], we regulate the input and output activity in
the neural field. The lateral connectivity is defined by the
interaction kernelw(~x−~x′), for which we use a Difference-
of-Gaussians filter with variancesσ2

on andσ2
off .

Average activity is controlled by a recurrent inhibition
mechanism mediated by a single interneuron evolving ac-
cording to equation (1) using a time constantτFB. These are
bi-directionally connected to all model neurons of a layer.
While the interneuron receives an activity average of the
whole neural layer as input signal, each neuron in a layer
receives the state of the interneuron, scaled by a constant
wFB. Since there are no lateral connections introduced by
the interneuron and its afferent connectivity is fixed, the
only additional free parameter introduced by this activity
control mechanism is the time constantτFB. This mechanism
is comparable to the proposal of [12].

By the “bubble solution” property of two-dimensional
DNFs [11] it is ensured that neural map activities will
converge to a population-coded state, provided that the inputs
are population coded themselves. In particular, there is a class
of solutions for DNFs characterized by a localized “bubble”
of excitation [11]. This is important for the interaction of
DNFs with the population coding approach chosen here (see
section II-B). Details can be found in [13], [11], [14], for
example. In the following, we will refer to the temporal dy-
namics of two-dimensional neural fields asneural dynamics.

D. Hebbian synaptic plasticity

The dynamic transmission of information between two
neural mapsu~x,t and v~x,t, which is also referred to as
synaptic dynamics, is governed by the equation

Iv→u
~x,t+1 =

∑

~x′

wvu
~x~y,tfu[u~x,t] (2)

wherewvu
~x~y,t represents theweight, i.e. the strength, of the

model synapse between two neuronsu~x,t and v~y,t. The
quantitiesfu[z], fI[z] and Iv→u

~x,t+1
are the same as defined

in section II-C. In parallel, weight adaptation is performed
according to the Hebbian learning rule

wvu
~x~y,t+1 = wvu

~x~y,t + ǫlfu[v~y,t]fu[u~x,t] − ǫfwvu
~x~y,t (3)

where ǫl and ǫf denote the learning and forgetting rate of
the model, respectively. For maximum input, this mechanism
has a stable fixed point forwvu

~x~y = ǫl

ǫf
, thus limiting weight

growth.
While Hebbian synaptic plasticity provides a generic

mechanism for learning correlations between two neural
maps, it cannot directly be used to learn correlations between
multiple neural maps. In order to overcome this limita-
tion, we propose to combine Hebbian learning with self-
organizing neural maps.



E. Self-organizing maps

Self-organizing maps (SOMs, see [2]) are a class of single-
layered feed-forward neural networks which essentially per-
form a clustering of their input using an online learning rule.

Let u~x,t denote the state of model neurons at position~x

and timet. Furthermore, let~v~x,t denote the afferent weight
vector attached to each neuron. In the presence of an input
pattern ~pt being fed into the network, let~x∗ denote the
position of the best-matching unit (BMU), i.e. the neuron
whose attached weight vector best fits the input. As for the
SOM algorithm, letgσ

~x−~x∗ denote a Gaussian neighborhood
function centered at~x∗ with varianceσ, and letǫt denote the
learning rate at timet. In these terms, let us reconsider the
standard SOM algorithm as given in [2] in a slightly different
form:

1) Initialize ǫ = ǫ0, σ = σ0

2) At time t, present pattern~pt and propagate activation
to the model neurons according tou~x,t = ~v~x,t · ~pt.

3) Determine the BMUn~x∗,t.
4) Adapt weight vector~v~x∗ :

~v~x,t+1 = ~v~x,t + ǫgσ
~x−~x∗{~v~x,t − ~pt}. (4)

5) Increase t by1, calculate new values ofǫ and σ and
continue at step 2.

As stated in [2], the temporal dynamics of the parameters
ǫ and σ have a strong influence on the output layer of the
SOM. In the work presented here, we use a parametric model,
given as

σ(t) = σ0

1

τσt
(5)

ǫ(t) = ǫ0
1

τǫt
(6)

III. SYSTEM ARCHITECTURE

Figure 4 depicts the basic structure of the system architec-
ture we propose. It is compliant with the concept of cross-
module learning (see section II-A) and employs the neural
mechanisms that were briefly reviewed in section II. The
most important aspects comprise

• the use of image processing methods in order to de-
tect regions of interest (ROIs) in the image, localizing
potential objects (e.g. cars),

• the extraction of object-specific features (e.g. 2D size
and 3D distance) and their encoding in population-
coded neural maps,

• the use of a self-organizing map for the unsupervised
formation of an intermediary, higher-order neural map
that represents a combination of the (lower-level) input
maps, and

• the use of standard Hebbian learning in order to learn
correlations between the higher-order map and another
neural map (which can be a lower-level map like in the
figure, or another higher-order map).

The crucial point is the mapping of multiple lower-level maps
onto a single higher-order map representing combinations of

the lower-level maps. This way, learning correlations between
multiple neural maps can be reduced to learning correlations
between two (higher-level) neural maps, which makes Heb-
bian learning applicable again. We consider the proposed
combination of Hebbian learning with self-organizing mapsa
generic mechanism for system-wide unsupervised correlation
learning, even in the case of multiple neural maps, which
cannot be handled directly by standard Hebbian learning.

Image Processing

neural map1 neural map2 neural mapn neural mapn+1

Encoding Encoding Encoding Encoding

feature1 2feature featuren featuren+1

Self−Organizing Map

Hebbian Learning

Prediction

image

...

...

...

higher−order map

correlation

predicted map

Fig. 4. Basic structure of the proposed system architecture, combining
Hebbian learning with self-organizing maps. See section III for an explana-
tion.

IV. T ECHNICAL SYSTEM INSTANCE

Before presenting the technical system instance of the
system architecture we have proposed in section III, we
briefly introduce the most important algorithmic components
we use.

A. Algorithmic components

This section intends to give a brief overview over the most
prominent algorithms used in the technical system instance
described in section IV. Since the precise working of many
algorithms is quite complex, we only give a general picture
here and refer the interested reader to the cited references.
We feel that this is a justified approach since, although the
algorithms are necessary to achieve the technical system
instance, they are not the focus of this publication.

1) Adaptive saliency maps for point-of-interest detection:
In order to analyze a visual image for candidate objects, it
is usually assumed that those objects can at least partly be
distinguished from the background by certain visual proper-
ties. Thus, points of interest (POIs), which may be subject
to further analysis, can be generated where such properties
are present in the image. Motivated by studies of visual
attention in humans [15], the concept of saliency maps as first
proposed by [16] obtains POIs by analyzing several simple
features computed from an image. In this contribution, we
use the saliency map model proposed in [17] which extends
previous models by considering more sophisticated image
features, and the ability to adapt its processing parameters to
detect POIs in different situations. Output of the model is an



activity-encoded image (asaliency map), of which we take
the point of maximal activation to be the POI for subsequent
processing stages.

2) Image segmentation for region-of-interest generation:
For extracting regions of interest (ROIs) around a POI, we
use a simple color-based region-growing approach [18], with
the seed value computed at the POI. For the described
experiments, this method was able to compute size estimates
of sufficient accuracy to allow the prediction of distance.
It is nevertheless clear that for complex scenes, a more
sophisticated method will have to be employed in order to
obtain precise and informative estimates of object size.

3) Object recognition by a visual hierarchy:We use the
Visual Hierarchy object recognition system as described
in [19] to determine the identity of an ROI’s content. The
recognition system (also termed “classifier”) is designed
to be trained prior to application using training examples
of known identity. It is essentially a feed-forward neural
network, enriched by successive pooling and competitive
and self-organizing stages, which models the convergent
hierarchical processing in the human visual system. As
will be described in section V, the classifier is used here
for discriminating real-world objects such as cars from the
background, as well as artificial objects (toy duck, cola can)
in a simulated environment. The training procedure and the
adaptation of the classifier architecture to the car domain
using color information has been described in [20]. For
artificial objects, the procedure of [20] is used, however with
a strongly reduced number of training examples.

4) Stereo vision for 3D distance estimation:Distance
estimates are obtained using the commercially available SVS
stereo-correlation software [21], which operates on a pair
of images provided by a stereo camera. The output is a
disparity image. Since the stereo camera is calibrated, the
disparity image can be transformed into a 3D distance map
by using the camera parameters. The SVS algorithm imple-
ments a local window-based correlation method, therefore it
suffers from the aperture problem which leads to unreliable
disparity and 3D distance estimates. This is a problem that
is inherent in any local correlation method, including optical
flow approaches. However, the SVS algorithm also provides
a confidence value for each pixel in the disparity image. In
practice, all disparities in the disparity image are markedas
invalid if their confidence is below a certain threshold. This
leads to a disparity image in which some regions have dense
disparities, while other regions may not have valid disparities
at all.

5) Implementation issues:For all implementation pur-
poses, we use the component-based middle-ware system
RTBOS [22] which allows the creation of large applications
with an emphasis on scalability (automatic distribution over
several machines) and computational efficiency (all com-
ponents written in C/C++). All functionalities described in
this contribution are realized as RTBOS components. In this
way, a favorable processing speed (10 frames per second
on two off-the-shelf notebook computers) can be achieved

while the details of the parallelization are decoupled from
the application development process.

B. Real-time implementation
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Fig. 5. Detailed overview of the proposed system architecture. See
section IV for a detailed explanation.

The real-time implementation (shown in detail in figure 5)
operates on a sequence of camera images which is processed
frame by frame as follows: As a first step, a saliency map
is computed, using the method described in section IV-A.1.
From the saliency map, the most salient point in the image
is determined. A region growing approach (see section IV-
A.2) operating on a disparity map (see section IV-A.4)
corresponding to the camera image then determines an area
of similar disparities, where the most salient point is used
as seed point. The ROI thus obtained is represented as
a bounding box in the image. Given this ROI, different
quantities are computed from its content and each quantity
is represented in an individual neural map. The quantities
comprise the average 3D distance of all pixels in the ROI
(in terms of disparity), the 2D retinal size calculated as the
area of the bounding box, and the object class ID obtained as
the result of the object classifier operating on the ROI. As for
the latter, we use the object classifier described in sectionIV-
A.3. It is important to note that we assume that this object
classifier has been trained to recognize the relevant objects in
the scene beforehand, as described in IV-A.3. The conversion
between the resulting scalar values of the quantities and the
neural maps representing them is performed as described
in section II-B. The resulting population-coded neural maps
representing the 2D object size and the object class are
then fed into a SOM as afferent inputs, which adapts the



weights between the afferent inputs and its output activation
layer according to section II-E. Thereby, pairs of object
class and 2D object size are mapped onto a single neural
map, which is the intermediary, higher-order neural map
mentioned before. Thanks to the properties of self-organizing
maps, this higher-order neural map is again topographical,
i.e. similar combinations of object class and 2D object size
are represented at similar positions. The output layer of the
SOM is connected to the neural map encoding the average
3D distance of the pixels in the bounding box, adapting the
connection weights by a Hebbian (correlation-based) learning
mechanism (see section II-D). This way, the system is able
to detect correlations and dependencies between these two
neural maps. Essentially, dependencies between the higher-
order map representing a combination of 2D object size and
object class on the one hand and the (simple) neural map
representing the average 3D distance of the object on the
other hand can now be learned by direct association.

V. EXPERIMENTS

From the learned correlation between the higher-order map
representing combinations of the 2D size and the class of an
object on the one hand and the neural map representing its
average 3D distance on the other hand (see section IV), the
system should be able to predict either of the two given the
other. For example, if the system perceives an object and
recognizes its object class, it should be able to predict its3D
distance from its 2D retinal size alone. We have conducted
two experiments in order to evaluate the quality of these
predictions.

A. Experimental setup

The real-time implementation of the proposed system
architecture is executed in an offline setting, operating on
a recorded image sequence instead of a live-stream. In the
first experiment, the image sequence has been recorded from
a simulated 3D environment in which two objects at camera
height were randomly moved back and forth, independently
of each other. The purpose of this experiment is to establish
the feasibility of the chosen approach under ideal conditions,
as well as to demonstrate that the mechanism is capable of
handling distinct object classes with different size-distance
dependencies. The distance of each object with respect to the
camera varied between0.75 m and2.00 m. In the second
experiment, the image sequence has been recorded from a
real-world traffic scene in which a car waiting at a red traffic
light is approached. This experiment is conducted in order
to demonstrate that our approach is capable of dealing with
the complexity of real-world scenes. Example images of both
streams are shown in figures 6 and 7, respectively. In both
experiments, the image streams are repeated after the last
frame in order to provide a continuous input.

For both experiments, we assume that the object classifier
has been trained beforehand to recognize the objects in the
scene (see section IV-A.3). The first 2000 frames of the im-
age sequence are processed by our system without evaluation.
This serves as a training phase, giving the learning methods

Fig. 6. Example images of the simulator sequence used in the first
experiment. Left: Both objects are as far away as possible. Right: Both
objects are as close as possible. Note that the distance of the objects is
varied independently of each other.

Fig. 7. Example images of the real-world sequence used in thesecond
experiment. Left: The car being far away. Right: The car being close.

enough time to learn the aforementioned correlation. As soon
as the first 2000 frames have been processed, learning is
stopped and evaluation is being enabled. Table I provides an
overview of the parameters used in the experiment.

TABLE I

PARAMETER VALUES USED IN THE EXPERIMENT

Method Parameters Values
SOM r0, ǫ0 5.0, 1.0

Hebbian learning ǫl, ǫf 0.001, 0.001

Neural field τ, α, β, γ, urest 10,1.0, 5.0, 0.1,-0.4

B. Evaluation measures

For the sake of a simple yet systematic evaluation, the
prediction accuracy is evaluated for one of the two objects
only in the first experiment (once the training phase is over).
The results are unchanged if the other object is used for
evaluation. There is no such change in the second experiment
since the car is the only object that can sensibly be focussed
in the used video stream. For each image framei, we com-
pare the actual 3D distance of the object as obtained by stereo
vision (see section IV-A.4) with the 3D distance of the object
as predicted by our system after the training phase. The
latter is determined by finding the maximum activation in the
neural prediction map (see bottom of Fig. 5) and translating
it back into a real number by the procedure explained in
section II-B. Letδi denote the difference between the actual
and the predicted 3D distance of the object. We define
the following measure in order to evaluate the quality of
the prediction. The measure is defined as the root of the
squared prediction error, averaged over the image frames



i ∈ {1, . . . , N} after the training phase:

δRMSE ≡

√

1

N

∑

i

δ2
i . (7)

C. Results

The results of the two experiments are depicted in figures 8
and 9, respectively. It is worth noting that the complete
system instance used for both conducted experiments runs
in real-time (10+ frames per second) on a standard desktop
computer. In terms of the (scaled) disparity, the dark green
graph shows the 3D distance of the focused object as
predicted by our system while the light green graph shows the
3D distance of the object as obtained by stereo vision, using
the SVS algorithm (see section IV-A.4). The light red graph
shows the prediction error in terms of the absolute difference
between the two green graphs. The dark red graph represents
the average prediction error.

Fig. 8. Results of the first experiment (simulated sequence).

D. Discussion

Obviously, the presented system is able to predict the
3D distance of visual objects. This is true for the entire
range of distances that occur, as can be seen in frames
2700 – 2725 in figure 8 and in frames 2000 – 2025 in
figure 9, for example. In both cases, the focused object is
far away at the beginning (corresponding to low disparity
values) and then gets increasingly closer (corresponding to
high disparity values). A closer look at the error graphs
reveals that the prediction error does not seem to depend
significantly on the distance itself, instead, the error is rather
the same for the object being close or far away. However,
one can see by comparing figures 8 and 9 that the prediction
is significantly coarser for the real-world sequence than it
is for the simulated sequence. We attribute this to the fact
that in the real-world sequence, it is more difficult to reliably

Fig. 9. Results of the second experiment (real-world sequence).

segment the focused object, which leads to inaccuracies in
the ROI sizes that are involved in learning the correlation.
We argue that the use of a more sophisticated segmentation
component would compensate for this effect and increase the
accuracy of the prediction.

At the conceptual level, we have shown that the combina-
tion of self-organization, nonlinear maximum selection and
associative learning can produce a new quality of predictions.
We have demonstrated that individual, strongly non-linear
prediction models can be acquired autonomously for different
object classes. Moreover, the described technical system
instance is capable of real-time operation and therefore well
suited for application in, .e.g, the car domain. Extending
previous work, our model introduces a strong nonlinearity
(the maximum selection, in contrast to [5], [3]) on the one
hand, and a experimental evaluation on visual sensory data
on the other hand (as opposed to [6], [7]).

VI. CONCLUSION

We have presented an architecture that enables a system
to learn correlations between multiple neural maps, which
can then be used to make predictions about one map given
the others. This is achieved by the self-organized formation
of an intermediary, higher-order map that combines multiple
neural map representations. The correlations can then be
learned by means of standard Hebbian learning methods.
Both the self-organizing maps and the Hebbian learning can
evolve in parallel during run-time of the system. In our
experiments we have shown that the proposed architecture
can, for example, learn the correlation between the 2D retinal
size of objects, the object class they belong to and their 3D
distance from the viewer, and that it can then use the learned
correlation to predict the 3D distance of objects from their
2D retinal size alone, provided that it recognizes the object
class. Since the proposed architecture represents a way to



learn correlations between multiple neural maps, we consider
the aforementioned combination of self-organizing maps and
Hebbian learning a generic principle for learning correlations
at various levels within large-scale systems.
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