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Online and markerless motion retargeting with kinematic constraints

Behzad Dariush ~ Michael Gienger

Abstract— Transferring motion from a human demonstrator
to a humanoid robot is an important step toward developing
robots that are easily programmable and that can replicate
or learn from observed human motion. The so called motion
retargeting problem has been well studied and several off-
line solutions exist based on optimization approaches that
rely on pre-recorded human motion data collected from a
marker-based motion capture system. From the perspective
of human robot interaction, there is a growing interest in
online and marker-less motion transfer. Such requirements
have placed stringent demands on retargeting algorithms and
limited the potential use of off-line and pre-recorded methods.
To address these limitations, we present an online task space
control theoretic retargeting formulation to generate robot joint
motions that adhere to the robot’s joint limit constraints, self-
collision constraints, and balance constraints. The inputs to the
proposed method include low dimensional normalized human
motion descriptors, detected and tracked using a vision based
feature detection and tracking algorithm. The proposed vision
algorithm does not rely on markers placed on anatomical
landmarks, nor does it require special instrumentation or
calibration. The current implementation requires a depth image
sequence, which is collected from a single time of flight imaging
device. We present online experimental results of the entire
pipeline on the Honda humanoid robot - ASIMO.

I. INTRODUCTION

Learning from human demonstration, also referred to
as imitation learning, has become an important topic of
research in robotics with applications spanning across many
disciplines such as robot motion control, human-robot in-
teraction, and machine learning. Imitation learning promises
to simplify the process of programming complex humanoid
robot motions by replacing the time-consuming manual pro-
gramming of a robot by an automatic programming process,
solely driven by showing the robot the task by an expert
teacher [1] [2]. Examples from a human demonstrator also
provide a powerful mechanism for reducing the complexity
of search spaces in learning algorithms by either starting
the search from the observed locally optimal solutions, or
by eliminating from the search space what are known as
infeasible solutions.

A long standing trend in learning from demonstration
methods has been to approach the problem from the stand-
point of motion replication, although recent work inspired by
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this rational is not just about observing and replicating the
motion, but rather about understanding the goals of a given
action. Indeed, many aspects of imitation are goal-directed,
that is, actions are meant to fulfill a specific purpose and
convey the intention of the teacher [3]. Nevertheless, one
can argue that an important pre-requisite step in learning
from imitation involves mimicry, or the reproduction of the
actions of the human demonstrator.

Mimicry can be viewed as a sophisticated transfer of
the observed human motion to the robot, a procedure re-
ferred to as motion retargeting by the computer graphics
community [4], [5], [6], [7], [8]. The representation of
motion by descriptors which capture the essence of motion or
encode meaningful information about the task is an important
research problem. Typically, motion descriptors are simply
described by either joint space or task (Cartesian) space
coordinates. Task space methods offer an advantage in that
the large number of mechanical degrees of freedom involved
in the execution of movement tasks by humanoids can be rep-
resented by lower dimensional descriptors. These descriptors
may be referred to as task descriptors because they are used
to describe motion by higher level task variables which may
be encoded to convey the intention of the human performer.
A task oriented approach is also compatible with current
views in motor learning that suggest that the central nervous
system organizes or simplifies the control of large degrees of
freedom during motion execution and motor learning phases.
That is, the controlled operation of the neuromuscular system
with an exorbitant number of degrees of freedom requires a
reduction of mechanical redundancy, achieved by reducing
the number of degrees of freedom [9].

Regardless of how the motion is represented, by task
variables or joint variables, a suitable retargeting algorithm
must deal with complex kinematic constraints due to differ-
ences in topology, anthropometry, joint limits, and degrees
of freedom between the human demonstrator and the robot.
Similar problems have been widely studied and partially
addressed, particularly for transferring human motion to an
animated character. The problem is often formulated and
solved as a constrained non-linear optimization problem,
where the objective is to minimize the error between the
human motion and the target motion, subject to the kinematic
constraints [10], [11]. Such approaches are often performed
off-line, in static environments, using pre-recorded human
motion obtained from marker based motion capture sys-
tems [12]. The resulting motion is then used as the reference
trajectory to be executed by the robot’s motion controller.

Off-line methods using prerecorded motions do not ac-
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count for a dynamically changing environment and have
no provision for sensory feedback from the robot’s current
state to the motion retargetter. Therefore, there is a lack
of robustness to uncertainties in the environment. Assuming
the environment is static, the edited motion is likely to be
admissible by the robot’s structure and can to a certain
degree be executed by the robot’s control scheme during run-
time. Balance constraints [13], and obstacle avoidance [14]
are sometimes considered. To our knowledge, self collisions
constraints have not been explicitly considered as part of a
motion retargeting procedure, although recent work demon-
strated a control formulation for a real time self collision
avoidance on a humanoid robot [15].

In many human-robot interaction applications, the require-
ments of interactivity in dynamically changing environments
as well as simplicity in sensing and instrumentation have
placed stringent demands on the retargeting procedure. These
requirements include capturing the demonstrator’s motions
unobtrusively, without instrumenting them with markers.
Also, human motion capture with multiple cameras in a
special environment may neither be feasible nor practical.
The imaging modality must be simple and the underlying
retargeting mechanism must cope with this.

In this paper, we present an online, Cartesian space
control theoretic retargeting formulation to generate robot
joint motions that adhere to the robot’s joint limit con-
straints, self-collision constraints, and balance constraints.
The inputs to the proposed method include low dimensional
normalized human task descriptors, detected and tracked
using a vision based feature detection and tracking algorithm.
The proposed vision algorithm does not rely on markers
placed on anatomical landmarks, nor does it require special
instrumentation or calibration. The current implementation
requires a depth image sequence, which is collected from
a single time of flight imaging device. We present online
experimental results of the entire pipeline on the Honda
humanoid robot - ASIMO.

II. OVERVIEW OF THE ENTIRE PIPELINE

Figure 1 illustrates an overview of the proposed online
motion retargeting framework. The first step in this pipeline
involves visual detection and tracking of a set of anatom-
ical landmarks (or features) in the upper-body from image
observations obtained using a time of flight depth imaging
device [16]. The detected features, registered to a human
model, correspond to 3D position vectors at the waist joint,
two shoulder joints, two elbow joints, two wrist joints, and
the head center (See right image in Figure 2). The output of
the feature detection module is represented by the vector pg,
where the subscript d denotes detected features.

These features are subsequently low pass filtered and
normalized (limb lengths re-scaled) to our humanoid robot
model, ASIMO, which has different dimensions, physical
parameters, geometry, and degrees of freedom than the
human model. Furthermore, the filtered and scaled features
are up-sampled to a higher rate (100 HZ) to achieve nu-
merical stability and good tracking within the retargeting

module. The resulting vector, denoted by the p,., represents
the reference motion of positional task descriptors ' which
are used as input in our retargeting module. Taking the
reference task descriptors as input, the retargeting module
outputs kinematically constrained robot joint variables which
are commanded to the robot.

Detected Reference

Feature Anatomical Robot Task gabat JDth
Features « Filtering Descriptors 7 ommands
Depth Point . Scaling P Motion
Images Detection « Interpolation Retargeting
Pa P,
Fig. 1. System diagram of the entire pipeline.
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Fig. 2. Left) Head-Neck-Torso template. Right) Position descriptors used
in our experiments

III. FEATURE DETECTION

We use depth image streams to extract anatomical land-
marks (or features) in the upper body. Such data, obtainable
by using active or passive stereo, or time-of-flight sensors,
provides a blob corresponding to a human body. Our ex-
perimental results are based on a single 3D time of flight
depth camera sensor [16] which captures depth and intensity
images at approximately 15 frames per second. The details
of the feature detection algorithm are described in [18]. In
this section, we will describe the overview of the approach.

An important first step in our feature detector is the
monitoring and tracking of the head and torso. We design
a head-neck-torso (H-N-T) deformable template depicted by
a circle, trapezoid, and rectangle, respectively (Left image
in Figure 2). Let L = {H,N,T} denote a configuration
of the H-N-T template, that localizes the head circle, neck
trapezoid, and torso rectangle. Let 6 be a set of distribution
parameters used to define the H-N-T template which are
learned by collecting training examples from image process-
ing operations and distribution functions. Let P(I|L, ) be
the likelihood function measured from the image observa-
tions, and let P(L|#) be the prior probability of the H-N-T

'Note that a task descriptor may in general describe the position of
landmark and/or the orientation of a coordinate frame attached to a rigid
body. A retargeting framework which includes both position and orientation
descriptors was described in our earlier work [17].



Fig. 3.

configuration. From Bayes’ rule, we can define the posterior
distribution, P(L|I,9), as,

P(L|1,0) o« P(I|L,0) P(L|9) (1)

The posterior probability given in Equation 1 leads to
standard log-likelihood hypothesis test for determining the
likelihood that the H-N-T template is detected [18]. If the H-
N-T template is detected, we first perform a morphological
operation referred to as skeletonization to detect an arm
blob. If one or two arm blobs are detected, we further
examine the arm blobs in order to determine the hand points
corresponding to each detected arm blob. The hand blobs
are located at the end-points of the distance transformed
skeleton which have a sufficiently large distance values. If a
hand point is detected, an arm template is formed by tracing
back along the skeleton until we reach the torso template. If
needed, i.e. one or fewer arm blobs are detected, we perform
a second image processing operation that we refer to as depth
slicing in order to form the arm template. This operation is
typically necessary when the arms occlude the body. In this
operation, we extract the connected blobs by decreasing the
cut-off thresholds until the area of blob is too large to be an
arm.

Once the arm templates are formed, they must accordingly
be labeled as right arm or left arm. If the arm is detected
by skeleton analysis, it can be labeled as right or left based
on the location of the entry point (right or left) at the torso
template. If the arm template is detected by depth-slicing,
the arm label is assigned based on temporal continuity,
i.e. the smaller distance to the left or right arm rectangles
obtained from the previous frame. The top row in Figure 3
illustrates the results of the H-N-T template (outlined in
red) as well as the arm detection using the skeletonization
approach (outlined in blue for right arm and green for the
left arm) and the depth-slicing approach (outlined in pink for
the right arm and yellow for the left arm).

With the detected body parts including the head, torso,
left and right arms, we localize the 3D features shown in
the right image of Figure 2 for further processing. The head
center feature is simply the 3D center of the head circle
template. The right and left shoulder features correspond to
the upper right and left corner point of the torso template,
respectively. The waist joint feature is obtained by projecting
a vector from the mid-point of the top edge of the torso
template toward the midpoint of the bottom edge of the torso

Taiji sequence. Top row: depth image sequence with the detected arm and H-N-T templates. Bottom row: reconstructed pose.

template.

Localizing the arm features, including left and right elbows
and wrists is more challenging. If the arm is detected by
skeleton analysis, the wrist joint is located near the end-
point of the skeleton. The elbow joint feature is located at
the intersection of the upper arm and forearm in the skeleton.
If the arm is detected based on the depth slicing operation,
we assume that the feature points are located approximately
at either ends of the arm rectangle. If the H-N-T template is
undetected, or if the features are occluded, we use temporal
prediction to estimate the missing features [18].

IV. RETARGETING

As previously described, Figure 2 illustrates a possible
set of features corresponding to prominent landmarks on the
body. The position of each detected feature is represented by
the vector pg and described in the base frame corresponding
to the waist joint coordinate system. Subsequently, the de-
tected features are normalized to the robot dimensions, low
pass filtered, and interpolated. The resulting position vector
represents the reference positions on the robot model which
are analogous to the detected features on the human model.
These reference positions, denoted by the vector p, will be
referred to as task descriptors because they correspond to
Cartesian space (or task space) positions in our proposed
task space control retargeting framework.

The proposed retargeting algorithm can be described as a
local constrained optimization problem. The objective is to
estimate the robot joint commands that minimize the tracking
error between the reference and predicted task descriptors
subject to kinematic and balance constraints. We previously
presented a task space control framework to solve this
problem without considering self collision constraints [17].
In this section, we highlight key features of the algorithm
and introduce a novel self collision avoidance algorithm. As
in our previous work [17], we will use the existing balance
controller on the humanoid robot, ASIMO, and a whole body
motion control system to ensure that the humanoid robot is
balanced [19].

A. Differential Kinematics

Let n represent the number of upper body joint variables
on the robot model and the vector ¢ = [q1, - ,qn]”
describe the degrees of freedom which fully characterize
the configuration space, or joint space, of the upper-body
humanoid robot. Let ¢ (i = 1---k) be the index of the



iy, task descriptor velocity p; and the associated Jacobian

Ji = %’;. We form an augmented spatial velocity vector p
and an augmented Jacobian matrix J as follows,
. . . 71T
po= [ - B B 2)
Jo= [ T A C)

The mapping between the joint space velocities and task
space velocities is obtained by considering the differential
kinematics relating the two spaces,

p=J()q “)
B. Cartesian tracking control

We wish to create a control policy that produces the robot
joint commands (g) such that the Cartesian error between
the predicted robot task descriptors and the reference task
descriptors (normalized and processed from the detected
human features) are minimized. The tracking performance
is very much subject to the robot’s kinematic constraints,
as well as the execution of multiple and often conflicting
task descriptor requirements. Our formulation of such a con-
strained optimization is based on a Cartesian space kinematic
control method known as closed loop inverse kinematics
(CLIK). The CLIK equation is given by,

g=J"(pr + K e) (5)

where J* denotes the regularized right pseudo-inverse of J
weighted by the positive definite matrix W7,

J =Wt gt (Jw gt 4 D)t (6)

The parameter A > 0 is a damping term, and [ is an identity
matrix. The vector p, corresponds to the concatenated veloc-
ity of the individual reference task descriptors. The vector e
expresses the position error given by e = p,, — p. The rate
of convergence of the error is controlled by K, a diagonal
positive definite gain matrix.

Managing multiple task descriptors as described above
is referred to as task augmentation, i.e. the concatenation
of individual spatial velocities and the associated Jacobian
matrices and feedback gain matrices. The tracking error rate
for each element of a task descriptor can be controlled by the
augmented feedback gain matrix K. The trajectory tracking
error convergence rate depends on the eigenvalues of the
feedback gain matrix: the larger the eigenvalues, the faster
the convergence. A particular task descriptor or its individual
components can be more tightly tracked by increasing the
eigenvalues of K associated with that direction. By mod-
ulating the elements of K, we can effectively encode the
importance or the relative level of confidence we have in
our observations. Measurements which are more important
or have higher confidence values will be assigned higher
feedback gain values.

Alternatively, if the system exhibits redundancy, task man-
agement can be more tightly enforced by prioritization. That
is, we can execute task descriptors according to the order
of priority. Recursive methods which handle an arbitrary
number of prioritized task descriptors have been described
elsewhere [17], [20].

C. Joint limit avoidance constraints

Chan and Dubey [21] proposed joint limit avoidance based
on a Weighted Least-Norm (WLN) solution. The WLN
solution considers a candidate joint limit function, denoted
by H(q) , that has higher values when joints near their limit
and tends to infinity at the joint limits. One such candidate
function is given by

42

where ¢; represents the generalized coordinates of the
degree of freedom, and ¢; ynin and g¢; yq. are the lower and
upper joint limits, respectively. The upper and lower joint
limits represent the more conservative limits between the
physical joint limits and the virtual joint limits used to avoid
self collision as will be described in the Section IV-D. Note
that H (q) is normalized to account for variations in the range
of motion. The gradient of H, denoted as V H, represents the
joint limit gradient function, an n x 1 vector whose entries
point in the direction of the fastest rate of increase of H.

- qi,min)2
- Qz)(qi - qiﬂmin)

q’L max

ql max

VH:%—ZI: o, B 7)
The element associated with joint ¢ is given by
OH(q) _ (%imaz — Gi.min)® (200 = Gi;maz — Qi.min)
dq; 4(¢Ii,maz - Qi)z (Qi - Qi,min)Q
The gradient ag;?) is equal to zero if the joint is at the

middle of its range and goes to infinity at either limit. As
described in [21], we define the joint limit gradient weighting
matrix, denoted by W, by an n x n diagonal matrix with
diagonal elements w;r; (¢ = 1---n). The scalars w;r; are
defined by

OH ; .
WL = { 1+|Tqi| if A|OH/0q;| >0

if AJOH/dq) <0 ®

The term A|OH /0q;| represents the change in the magnitude
of the joint limit gradient function. A positive value indicates
the joint is moving toward its limit while a negative value
indicates the joint is moving away from its limit. When a
joint moves toward its limit, the associated weighting factor,
described by the first condition in Equation 8, becomes very
large causing the motion to slow down. When the joint
nearly reaches its limit, the weighting factor is near infinity
and the corresponding joint virtually stops. If the joint is
moving away from the limit, there is no need to restrict or
penalize the motions. In this scenario, the second condition
in Equation (8) allows the joint to move freely.

D. Avoiding self collision

Self collision avoidance may be categorized as one of
two types: 1) collision between two connected segments,
and 2) collision between two unconnected segment pairs.
By connected segment pairs, we imply that the two segments
are connected at a common joint and assume that the joint
is rotational.



1) Collision avoidance between two connected bodies:
If two segments are connected at a common rotational joint,
i.e. connected segments, self collision may be handled by
limiting the joint range as described in Section IV-C. Joint
limits for self collision avoidance need not correspond to
the physical joint limits; rather, they may be more con-
servative virtual joint limits whose values are obtained by
manually verifying the bounds at which collision does not
occur. Therefore, for two segments connected by a rotation
joint, joint limit avoidance and self collision avoidance may
be performed by using the same formulation presented in
Section IV-C.

2) Collision avoidance between unconnected bodies:
Consider two unconnected rigid bodies, i.e. bodies which
do not share a joint, as shown in Figure 4. In general,
Body A and body B may both be in motion. However,
for simplicity of presentation and without loss of generality,
suppose body A is moving toward a stationary body B. Let
po and p; represent the coordinates of the shortest distance
d(d > 0) between the two bodies, described in the base
reference frame. Hereafter, we refer to p, and p; as collision
points. The coordinates p, and p, can be obtained using a
standard collision detection software. In this work, we use
the SWIFT++ library [22].

Let n, = ;i:gzl be the unit normal vector and d =
d 1 the vector from p, to pp. Consider a 3D virtual surface
surrounding body A, shown by a dashed line in Figure 4. For
every point on body A, its associated virtual surface point
is located by the vector d; = d. n, where d, is the critical
distance, and 7 is the unit normal vector at the surface point.
Let p,s, be the coordinates of a point on the virtual surface
of A defined by

Pvsqy = Pa + dcﬁa (9)

We define the region between the actual surface of body
A and its virtual surface as the critical zone. If body B
is stationary, we can redirect the motion at p, to prevent
collision in the critical zone. This redirection is invoked when
(d < d.).

Virtual surface

e Pa Dy Py,
o——
d ]

d,

Fig. 4. Body A moving towards a fixed body B

In our CLIK control framework, one way to control (or
redirect) the motion of p, is by modifying the trajectory
of the desired task descriptor p,.. Let us specify a redirected

motion of p, by p/, and its associated velocity by p/,. To find
the mapping between p!, and p,., consider first the equivalent
redirected joint velocity vector, given by

¢ =J; P+ ST (pr + K e) (10)

where J, = dp,/dq is the Jacobian at the collision point(s)
and J is its weighted Damped Least Squares inverse. The
matrix S = diag(s1---sy,) is a diagonal selection matrix
where s; = 1 when the 74, column of .J, has all zero entries
and s; = 0 elsewhere. The term J*(p, + K e) is simply
the joint velocity solution obtained from Equation 5. The
physical interpretation of Equation 10 is as follows. The
first term determines the joint velocities needed to redirect
the collision point velocities along p/,. Any zero column of
J, (all zero entries) implies that the associated degree of
freedom does not contribute to the motion of the collision
point. The second term in Equation 10 is the orthogonal
complement of the first term which computes the entries for
those joint velocities which do not affect the motion of the
collision point(s).

Intuitively, it would seem more appropriate to formulate
Equation 10 using a two priority inverse kinematics strategy
similar to the control of redundant manipulators [23]. In such
a strategy, the first priority term corresponds to satisfying
self collision avoidance by redirection (as in first term in
Equation 10). Utilizing redundancy, the second priority term
can be constructed to satisfy the requirements for tracking
the task descriptors. However, our first implementation of
such an approach resulted in jerky motions under certain
situations.

A redesigned position task descriptor trajectory may be
computed as follows

Y

The closed loop inverse kinematics equation with the modi-
fied parameters is given by

i= TG+ K )

where €/ = p/ —p’ and K’ is an adaptively changing diagonal
feedback gain matrix whose values decrease as the distance d
decreases. Note that p!. at the current time ¢ may be computed
by a first order numerical integration.

The instantaneous redirection p, — pl, as described
above, produces a discontinuous first derivative of p, at
the boundary d = d.. The discontinuity at p, results in a
discontinuity in p,., as given by the solution in Equation 11.
To preserve first order continuity, we may blend the solutions
of pl. before and after redirection occurs. A blended solution
to Equation 11 is given by

po=Jd

12)

Pr=0=0)pr+bJ ¢ (13)
where b is a suitable blending function such as,
—a(d/do=0)
e
b(d) = T e a5 (14)

where o and ¢ are scalar parameters used to modulate the
blending rate and shift of the blending function, respectively.



Figure 5 shows the plot of the b in relation to the ratio d/d..
for a = 15. The blending function is plotted for § = .5 and
0 = 1.0. The parameter 4 may be used to shift the distance
d where blending is initiated and terminated. In the case
d = .5, when d > d, the function b(d) ~ 0, implies that the
second term in Equation 13 is effectively zero so that there
is no redirection of the original task descriptor velocity (i.e.
Pl = pr). At the other extreme, when d = 0, the function
b(d) = 1, implies that the first term in Equation 13 is zero
and the reference trajectory is altered in order to redirect
the collision points along the tangent surface. To be more
conservative, we may chose § = 1.0 in the blending function.
This way, blending initiates even before the collision points
reach their critical distance.

Blending Function o =15
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Fig. 5. Blending function at two values of &

Thus far, we have not described how to specify the
magnitude and direction of p/. The most straightforward,
and perhaps conservative solution is to redirect the collision
point in a direction opposite to the unit normal vector 7.
A more effective strategy is to redirect the collision point so
that it slides along a direction which is tangent to the surface
at the collision point, as shown in Figure 4.

Py = Pa— < PasNa > N 15)
In theory, the above redirection vector will guide the collision
point motion along the virtual surface boundary, producing a
more natural motion toward the target. The case when body
A is stationary and body B is in motion is the dual of the
problem considered above. When both body A and body
B are in motion, we can specify the redirection vectors at
the collision points p, and p; and use task augmentation to
control both critical points.

Figure 6(a) and (b) illustrate two snapshots of a Taiji
motion sequence and the corresponding collision detection
and avoidance results. These simulated results are generated
using the humanoid robot ASIMO’s model and geometry.
In each snapshot, the depth image and the reconstructed
human pose are shown in the upper left and upper right
image, respectively. The bottom left image illustrates colli-
sion between the hand and the torso segment when collision

avoidance is turned off. The colliding body segments, de-
tected using the SWIFT++ collision detection software, are
highlighted in yellow. The lower right image illustrates that
no collision is detected when collision avoidance is invoked.
Figure 7 shows the minimum distance between two collision

Fig. 6.
avoidance

Snapshots of simulated Taiji motion with and without collision

points attached to the hand and head segments as a human
performer moves his hand toward his head in a drinking
motion sequence. The blending parameter was set at 6 = .5
such that blending is initiated at the critical distance of
d. = 0.05 meters; therefore, collision points are not fully
redirected at the virtual surface. Redirection is gradual, and
penetration into the critical zone occurs. However, the two
bodies do not collide.

Minimum Distance To Collision
0s . - - : T .

Time (seconds)

Fig. 7. Minimum distance between two collision points attached to the
hand and head segments as a human performer moves his hand toward his
head in a drinking motion

E. Balance Control

The presented control scheme does not yet consider the
constraints that are required to maintain balance during
standing and walking. These aspects are not handled within
the retargeting framework, but rather by a separate walking
and balancing controller that is described in [24], [25].

In detail, the retargeted motion is commanded to the whole
body motion controller. The motion generated by the whole
body controller will cause some momentum and moment of
momentum from a desired reference. This deviation is com-
pensated by the ZMP based balance controller by shifting the



upper body in forward and/or lateral direction. The whole
body control and the ZMP control operate cooperatively.

To account for the body shift, the upper body translational
degrees of freedom are incorporated in the kinematic model
of the robot. However, they are not actively driven, but rather
considered as external input into the controller equations
of the whole body control. Whole body control and ZMP
control are coupled through momentum and state feedback,
which turns out to be an efficient way to separate these
controllers.

V. MOTION INTERFACE

We have developed a motion interface to provide a com-
munication link and command interface between off-board
computations to generate retargeted joint commands and the
on-board real time control. The motion interface provides
a comprehensive way to give motion commands to the
robot, without having the user to care about issues such as
synchronization, delays, or on-board control for maintaining
balance. Such an interface is desirable since the real-time
implementation requires synchronization between critical
control processes that may not be satisfied dependably with
a network connection.

Issues like balance control and other critical aspects are
handled within the real-time controller. There is also a
second (fail safe) collision avoidance system onboard the
robot within the real-time controller. The onboard collision
avoidance is designed to be faster, but more conservative
than the off-board collision avoidance algorithm described
in Section IV-D. Details of the onboard collision avoidance
algorithm are given in [19], [15]. The motion interface has
been successfully used in various other applications, as for
instance in [26].

VI. EXPERIMENTAL RESULTS

Experiments were performed on the Honda humanoid
robot, ASIMO, using a single time-of-flight range image
sensor [16], to obtain depth images at approximately 15
frames per second. The visual processing algorithm generates
eight upper-body task descriptors, which represent Cartesian
coordinates corresponding to the waist, shoulders, elbows,
wrists, and head center. This module operates at approxi-
mately 10 frames per second. The retargeting module then
generates collision free joint commands for the Humanoid
Robot ASIMO at 100 Hz. A socket program sends the joint
commands to the motion interface, described in Section V,
over a wireless network. The whole body motion interface
then communicates these joint space coordinates to low level
controllers on the robot, including the balance controller, that
run on a dedicated real time processing computer onboard
the robot, through UDP sockets. The Experimental setup of
the entire pipeline is illustrated Figure 8.

Figure 9 illustrates snapshots of the online motion retar-
geting for a Taiji sequence. A slight delay was observed
in the tracking of the human motion by ASIMO during
experiments, although the visual processing and retargeting
performed with little software latency. This delay could be

attributed to network latency or other software overhead.
Efforts to identify and resolve these latency issues are in
progress.

VII. SUMMARY AND FUTURE WORK

We have presented an online (real-time) Cartesian control
theoretic approach to retarget human motion to humanoid
robots based on low dimensional human task descriptors
obtained from marker-less visual observations. Although
several systems have previously demonstrated human to
humanoid motion retargeting, our approach is among a few
to use an online and marker-less algorithm based on a single
camera. To our knowledge, the system presented in this paper
may be the first to explicitly enforce self collision constraints
within the retargeting formulation and to demonstrate it on
a humanoid robot.

Although we have reported results of eight upper body task
descriptors, the proposed formulation can handle arbitrary
number of task descriptors. The algorithm is suitable when
there is redundant degrees of freedom as well as when
the system is over-constrained. In fact, for many of the
motions tested, we observed that utilizing as few as four
task descriptors (waist, two hands, head) could reproduce
realistic and natural looking robot motions. This attribute
enables flexibility in sensing and instrumentation required to
acquire human motion, as well as flexibility in controlling
the robot from a reasonable, yet arbitrary number of task
descriptors.

Our upper body retargeting algorithm relies on ASIMO’s
existing balance controller in order to make balance adjust-
ments by modulating the pelvis position. In future work, we
plan to extend the current framework to whole body motion
retargeting which may require the robot to take steps to
regain stability if necessary.
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