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Abstract— Autoregulation, toggle switch and relaxation os-
cillators are important regulatory motifs found in biologi cal
gene regulatory networks and interesting results have been
reported on theoretical analyses of these regulatory units.
However, it is so far unclear how evolution has shaped these
motifs based on elementary biochemical reactions. This paper
presents a method of designing important dynamics such as
bistability and oscillation with these network motifs using an
artificial evolutionary algorithm. The evolved dynamics of the
network motifs are then verified when the initial states and the
parameters of the network motifs are perturbed. It has been
found that while it is straightforward to evolve the switching
behavior, it is difficult to evolve stable oscillatory dynamics. We
show that a higher Hill coefficient will facilitate the generation
of undamped oscillation, however, an evolutionary path that
can lead to a high Hill coefficient remains an open question for
future research.

I. I NTRODUCTION

Gene regulatory networks play a central role in the evo-
lution and development of biological systems. In order to
understand natural evolution, it is of essence to understand
the structure and dynamics of gene regulatory networks.
There are two possible ways to achieve this. On the one
hand, the availability of huge amount of microarray data
for gene expression makes it possible to reconstruct the
underlying gene regulatory network for a particular function
using mathematical methods [1], [2]. Two main difficulties
arise in building mathematical models of gene regulatory
networks. First, the microarray data are often very noisy.
Second, the dimension of the model, i.e., the number of genes
involved, is extremely high, whereas the number of records
are few.

On the other hand, a small number of sub-networks, also
known as network motifs, occur very often in complex
gene regulatory networks. These network motifs serve as
building blocks of regulatory networks and the dynamics
of the whole networks can be analyzed by looking at these
motifs. Detection and analysis of the regulatory motifs in
biological systems has now become one important research
topic in systems biology [3], [4].

While most work concentrates on the analysis of dynamics
of network motifs, this paper investigatesin silico whether it
is able to evolve the desired dynamics given the structure ofa
network motif. To this end, we employ an evolution strategy,
one of the widely used artificial evolutionary algorithms [5],
to evolve the parameters of the given network motifs. Though
evolution of the desired dynamics for a given network motif
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appears straightforward at the first sight, we find out that itis
nontrivial to evolve undamped oscillations, i.e., limit cycles.
Our experimental results reveal that oscillation seems to be
relatively more easily evolvable for large Hill coefficients.
In addition, only a limited range of oscillation periods can
be evolved. Finally, once undamped oscillation is evolved,it
is quite robust against perturbations in the parameters of the
network motifs, but may be sensitive to initial states.

Evolving dynamics for gene regulatory networksin silico
has been reported in the literature. In [6], both bistable
switches and oscillators are evolved based on a number of
predefined basic biochemical reactions. In that work, the
fitness function is the difference between the real output
and the desired amplitudeA1 at half-integer periods, and the
difference between the real output and the desired amplitude
A2 at integer periods. However, it was indicated in [7] that
the results reported in [6] are not easily reproducible, which
implies that successful evolution of sustained oscillation
is sensible to experimental setups. In [7], a correlation
based fitness function has been suggested, though no definite
conclusion can be drawn on its influence on the successful
evolution of oscillators. Similar work has also been reported
in [8], where two different fitness functions are suggested
for evolving oscillation. The first approach is the same as
in [6], and the second one is based on the condition for
generating Hopf bifurcation. In [9], oscillatory dynamicsis
evolved using theBiosysmodel developed in [10].

This paper is structured as follows. In Section II, a brief
introduction to gene expression and its mathematical model-
ing is provided along with a description of the mathematical
models of the network motifs we study in the paper. An
evolution strategy is presented in Section III. Experimental
results are presented and discussed in Section IV, and Section
V concludes this paper.

II. REGULATORY NETWORK MOTIFS

A simplified view of gene expression consists of two
main steps, namely, transcription and translation, where in
transcription an mRNA copy of the DNA is made, and in
translation, proteins are synthesized from mRNA. Whether
a structural gene will be expressed (activated) or not (re-
pressed) is decided by a series of interactions within the
regulatory network.

If the expression of a gene can be regulated (activated
or repressed) by the protein produced by itself, it is termed
autoregulation. The mathematical model of gene expression
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Fig. 1. Three regulatory motifs studied in the paper. (a) PAR, (b) Toggle
switch with PAR, and (c) relaxation oscillation.

with autoregulation can be described by:

d [R]

d t
= −γR [R] + αRH([P ]), (1)

d [P ]

d t
= −γP [P ] + αP [R], (2)

where, [R] and [P ] are the concentration of mRNA and
protein, respectively,γR and γP are the decay rate of the
mRNA and protein,αR and αP are the synthesis rate
of the mRNA and protein,H(X) is the Hill function. If
the autoregulation is a repression, also know as negative
autoregulation, the Hill function can be described by

Hr(x) =
β

θn + xn
, (3)

and if the autoregulation is activation, the Hill function can
be written as:

Ha(x) =
β xn

θn + xn
, (4)

whereβ is the activation coefficient,θ is the threshold,n is
the Hill coefficient.

Three network motifs will be studied in the paper, in-
cluding the positive autoregulation (PAR), toggle switch with
positive autoregulation, and relaxation oscillation, as shown
in Fig. 1 (a), (b), and (c), respectively. For the sake of
convenience, we provide again the mathematical model of
the three motifs as follows. The mathematical models of a
PAR can be given by:

ẋ1 = −a11x1 + a12Ha(x2), (5)

ẋ2 = a21x1 − a22x2, (6)

wherex1 corresponds to[R], is the concentration of mRNA,
and x2 corresponds to[P ], the concentration of protein.
There are different ways to combine multiple regulatory
inputs to the promoter of a particular gene, which lead to
slightly different mathematical models. In [3], logic functions
such as logic AND or OR are suggested to combine multiple
regulatory inputs. In this work, we suppose the regulatory
inputs are additive. In this case, the dynamics of the toggle
switch with PAR can be described by:

ẋ1 = −a11x1 + a12Ha(x2), (7)

ẋ2 = a21x1 − a22x2 + a23Hr(x3), (8)

ẋ3 = a32Hr(x2) − a33x3, (9)

where x1 represents the mRNA concentration, andx2, x3

the concentration of two proteins.
And finally, the oscillation motif can be expressed by:

ẋ1 = −a11x1 + a12Ha(x2), (10)

ẋ2 = a21x1 − a22x2 + a23Hr(x3), (11)

ẋ3 = a32Ha(x2) − a33x3. (12)

Similar to the toggle switch,x1 represents the mRNA
concentration, andx2, x3 denote the concentration of two
proteins.

III. E VOLUTION STRATEGY

Evolution strategies are one of the main streams of ar-
tificial evolutionary algorithms that are very effective for
evolving real-valued parameters. Since the structure of the
regulatory motifs is fixed, and only the parameters are
evolved in this work,we adopt a canonical evolution strategy
for evolving the desired dynamics. In a canonical evolution
strategy (ES), the mutation of the objective parameters is per-
formed by adding anN(0, σ2

i
) distributed random number.

The stepsizesσi are also encoded in the genotype and subject
to mutations. The ES used in this work can be described as
follows:

x(t) = x(t − 1) + z̃ (13)

σi(t) = σi(t − 1)exp(τ ′z)exp(τzi); i = 1, ..., n, (14)

wherex is ann-dimensional parameter vector to be evolved,
z̃ is an n-dimensional random number vector with̃z ∼
N(0, σ(t)2), z and zi are normally distributed random
numbers withz, zi ∼ N(0, 1). Parametersτ , τ ′ and σi are
called strategy parameters, whereσi is mutated as in equation
(14) andτ , τ ′ are constants as follows:

τ =

(

√

2
√

n

)

−1

; τ ′ =
(√

2n
)

−1

(15)

Two selection schemes have been proposed in evolution
strategies, known as comma and plus strategies. Suppose
there areµ and λ individuals in the parent and offspring
population, usuallyµ ≤ λ. In the comma strategy,µ parent
individuals are selected only from theλ offspring individuals,
which is usually noted as (µ,λ)-ES. In the plus strategy,
µ parent individuals are selected from a combination ofµ
parent individuals andλ offspring individuals, which is noted
as (µ + λ)-ES. In our study, the (µ, λ)-ES is adopted.

In the evolution, all parameters in the regulatory models,
i.e., four decay and synthesis rates in PAR model and seven in
the toggle and oscillation models, together with the activation
coefficient (β), the threshold (θ), and Hill coefficient (n) are
encoded in the genome and subject to evolution.

IV. SIMULATION RESULTS

A. Experimental setup

A (50, 300)-ES has been adopted in our experiments. All
parameters to be evolved are randomly initialized between 0
and 4. According to the physical meaning of the parameters,
a lower bound is set to 0 for all parameters, but no upper



bound is given. The initial stepsize is set to 0.1. In all
simulations, 1000 generations are run for each case.

To evolve the bistable dynamics for the PAR, the initial
state of the regulatory model is randomly set between 0 and
4. The target function of the protein concentration ofx2 for
the PAR is as follows:

xd

2
(∞) =

{

0, if x2(0) < 2;
4, if x2(0) ≥ 2.

(16)

For the toggle switch motif, the same initial states are set
and the target ofx3 is defined similar to equation (16).

The target function forx3 in evolving oscillation is defined
by a sinus function as follows:

xd

3
(t) = sin(2 π t/T) + 1.0, (17)

wheret is time instant, andT is the period of the desired
oscillation.

The evolution of oscillation is more tricky. As indicated
in [7], the success rate of achieving the desired dynamics is
very low when both the structure and parameters are evolved.
we find even in our case, where the structure of the network
motif is predefined, is it not straightforward to evolve limit
cycles. This issue will be discussed further in Section II.C.

B. Evolving Bistability

The fitness profile including the mean fitness (dotted line)
and best fitness (solid line) in evolving bistability for the
PAR is presented in Fig. 2. After evolution, the dynamics
of the system is verified using 50 random initial states. The
state-space trajectories ofx1 and x2 are given in Fig. 3(a),
and the time course of statex2 is provided in Fig. 3(b). It can
be seen that the evolved bistability is very robust to different
initial states. Besides, we also found that the evolution of
bistability has been successful for all test runs.
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Fig. 2. Mean and best fitness in evolving switching behavior for the positive
autoregulation motif.

Similar results have been obtained for the toggle switch
with positive autoregulation. Its state-space trajectories and
time course are presented in Figs. 4.
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Fig. 3. Dynamics of the evolved positive autoregulation motif for different
initial states. (a) state-space trajectories, and (b) timecourse.

C. Evolving Oscillation

In the first runs, we were not able to achieve a limit cycle
in 10 independent runs. We then check the success rate for
six different desired oscillation periodsT and four different
encoding schemes for the Hill coefficientn:

n = N × gn, (18)

wheregn is the gene that encodes the Hill coefficient in the
chromosome,N ≥ 1 is a constant that adjusts the coding
range of this gene. Clearly, ifN = ∞, the Hill function will
always be a step function, no matter howgn changes. In our
experiments, simulations are conducted forN = 1, 5, 10,∞.
The success rates for different cases are show in Fig. 5,
where 0 means no success in ten independent runs, and
1 means all ten runs have succeeded in achieving stable
oscillation. Note that in many of unsuccessful runs, the state
(x3) does oscillate, but becomes asymptotically stable, see
e.g., in Fig. 6. In this case, we do not count it as a successful
run.

From Fig. 5, we find that the larger the Hill coefficient,
the easier it is to evolve undamped oscillation. When the Hill
function becomes a step function (n = ∞), the success rate
becomes one for desired oscillation periods ranging from 3
to 9. Meanwhile, we find that although there is no upper
bound for the Hill coefficientn during the evolution, it is
not straightforward for the evolutionary algorithm to find an
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Fig. 4. Dynamics of the evolved toggle switch with PAR for different
initial states. (a) state-space trajectories, and (b) timecourse.
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Fig. 5. Success rate in evolving stable oscillation for differentT andN .
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Fig. 6. Evolved damped oscillation whenN = 5 andT = 7.

evolutionary path toward a largern that facilitates a sustained
oscillation. This problem may be attributed to the fitness
function used: unlike in evolving the switching behavior, a
smaller (better) fitness value does necessarily lead to a stable
oscillation.

For the successfully evolved oscillators, We first verify the
robustness of the oscillatory dynamics against different initial
states after evolution. Five different initial states are tested
for two evolved oscillators generated in two independent runs
when N = 10 for desired oscillation period ofT = 5.
Although the evolved dynamics appears very similar, their
behaviors forx1(0) = 1.0, 2.0, 3.0, 4.0, 5.0 are different,
refer to Fig. 7. In Fig. 7(a), all five initial states ofx1 lead
to stable oscillation, while in Fig. 7(b), the evolved motif
can produce stable oscillation only for two of the five initial
states ofx1.
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Fig. 7. Two oscillators evolved in two independent runs forT = 5,
N = 10. In (a), the evolved oscillator shows undamped oscillationfor all
the five initial states, whereas in (b), the oscillator exhibits limit cycle for
only two of the initial states.

We then check how well the evolved oscillator is able to
approximate the desired oscillation period. The time course
of x3 of two evolved oscillators for a desired oscillation
period T = 5, N = 10 and T = 9, N = ∞ are presented
in Fig. 8 and Fig. 9, respectively. We can see from the
figures that the evolved oscillations is roughly the same
as the desired one. The state-space trajectory of these two
oscillators are presented in Fig. 10 and Fig. 11, respectively.

We finally compare the robustness of the evolved oscilla-
tors against perturbations in the parameters for differentHill
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Fig. 8. Real and the desired states ofx3 of an evolved oscillator.T = 5,
N = 10.
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Fig. 9. Real and the desired states ofx3 of an evolved oscillator.T = 9,
N = ∞.
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Fig. 10. Oscillation dynamics of the evolved oscillator forN = 10, T = 5.
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Fig. 11. Oscillation dynamics of the evolved oscillator forN = ∞, T = 9.
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Fig. 12. The oscillation dynamics when the parameters of theevolved
oscillator (n = 10.7) are perturbed with various noise strength. (a) 5%, (b)
10%, (c) 15%, and (d) 20%.
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Fig. 13. The oscillation dynamics when the parameters of theevolved
oscillator (n = ∞) are perturbed with various noise strength. (a) 5%, (b)
10%, (c) 15%, and (d) 20%.

coefficients. After evolution, noise with a strength varying
from 5% to 20% is added to the parameters of the oscillators,
one with a Hill coefficientn = 10.7, and the other with
n = ∞. The state-space dynamics of the two oscillators in
the presence of noise in parameters are presented in Fig. 14
when n = 10.7, and Fig. 13, whereas the time courses of
x3 are given in Fig. 14 and Fig 15, respectively. From these
figures, we can conclude that the evolved oscillators are quite
robust to perturbations in the parameters. However, it appears
that the oscillator with an infinite Hill coefficient shows more
robust oscillatory behavior than the one with a smaller Hill
coefficient.
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Fig. 14. Time course ofx3 of the oscillator when the parameters of the
evolved oscillator (n = 10.7) are perturbed with various noise strength. (a)
5%, (b) 10%, (c) 15%, and (d) 20%.
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Fig. 15. Time course ofx3 of the oscillator when the parameters of the
evolved oscillator (n = ∞) are perturbed with various noise strength. (a)
5%, (b) 10%, (c) 15%, and (d) 20%.

V. CONCLUSIONS

This paper presents a method for evolvingin silico bistable
and oscillatory dynamics for three regulatory networks mo-
tifs, i.e., the positive autoregulation (PAR), the toggle switch
with PAR, and the relaxation oscillation. We find that while
it is straightforward to evolve bistability, it is nontrivial to
evolve sustainable oscillation. We find that in general, it is
easier to achieve stable oscillation for large Hill coefficients
(e.g., when the Hill function becomes the step function).
However, it is not straightforward for the evolutionary algo-
rithm to evolve a large Hill coefficient, even no upper bound
is set for the parameters. This may be attributed to the simple

fitness function used in this work. Alternatively, we can use
other fitness functions such as correlation studied in [7], or a
more loosely constrained fitness function suggested in [11].
However, as found in above works, it is nevertheless non-
trivial to evolve stable oscillatory dynamics. We also show
that the evolved oscillators are quite robust to perturbations
in parameters, though they can be sensitive to initial states.

One main constraint of this paper is that the structure
of the motifs is predefined and only their parameters are
evolved. On the other hand, it has been argued both in [11]
and [7] that evolving oscillators from scratch is a daunting
task. Therefore, further efforts are needed to understand
the evolution of most basic regulatory motifs. On the basis
of these understandings, we can then study how to evolve
regulatory complex dynamics given that some most basic
motifs, such as the autoregulation, are available.
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