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Pareto-based Multi-Objective Machine Learning:
An Overview and Case Studies

Yaochu Jin,Senior Member, IEEE, and Bernhard Sendhoff,Senior Member, IEEE

Abstract— Machine learning is inherently a multi-objective
task. Traditionally, however, either only one of the objectives is
adopted as the cost function or multiple objectives are aggregated
to a scalar cost function. This can mainly attributed to the
fact that most conventional learning algorithms can only deal
with a scalar cost function. Over the last decade, efforts on
solving machine learning problems using the Pareto-based multi-
objective optimization methodology have gained increasing im-
petus, particularly thanks to the great success of multi-objective
optimization using evolutionary algorithms and other population-
based stochastic search methods. It has been shown that Pareto-
based multi-objective learning approaches are more powerful
compared to learning algorithms with a scalar cost functions
in addressing various topics of machine learning, such as clus-
tering, feature selection, improvement of generalizationability,
knowledge extraction, and ensemble generation. One common
benefit in the different multi-objective learning approaches is
that a deeper insight into the learning problem can be gainedby
analyzing the Pareto front composed of multiple Pareto-optimal
solutions.

This paper provides an overview of the existing work on multi-
objective machine learning, focusing on supervised learning. In
addition, a number of case studies are provided to illustrate
the major benefits of the Pareto-based approach to machine
learning, e.g., how to identify interpretable models and models
that can generalize on unseen data from the obtained Pareto-
optimal solutions. Three approaches to Pareto-based multi-
objective ensemble generation are compared and discussed in
detail. Finally, potentially interesting topics in multi- objective
machine learning are suggested.

I. I NTRODUCTION

Machine learning is concerned with the development of
computer algorithms and techniques that are able to learn, i.e.,
to improve automatically through experience [5], [71]. Any
machine learning method consists of two steps, i.e., selecting
a candidate model and then estimating the parameters of the
model using a learning algorithm and available data. Very
often, model selection and parameter estimation are combined
in an iterative process and in many cases, model selection
has been done only once intuitively and empirically. In other
words, the user chooses a model empirically and then employs
a learning algorithm to estimate the parameters of the model.

Machine learning algorithms can largely be divided into
three categories. One large category is supervised learning,
where the model should approximate the mapping between
the input and output of the given data, typically known as
regression or classification. Unsupervised learning belongs to
the second category of learning algorithms. Data clustering
is a typical unsupervised learning method, where a given
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set of data is to be assigned to different subsets (clusters)
so that the data in each subset share some common trait
(similarity) defined by a distance measure. The third category
is reinforcement learning, which aims to find a policy for an
agent to take actions that maximize the cumulated rewards in
a given environment.

All learning algorithms perform model selection and pa-
rameter estimation based on one or multiple criteria. In su-
pervised learning, the common criterion is an error function
that reflects the approximation quality, whereas in clustering,
the similarity between the elements in the same cluster (inter-
cluster similarity) should be maximized and the similarity
of the elements in different clusters (intra-cluster similarity)
should be minimized. In reinforcement learning, the criterion
is a value function that predicts the reward to perform a given
action in a given state. Therefore, all learning problems can be
considered as an optimization problem. Hereafter, we restrict
our discussions mainly to supervised learning and data clus-
tering, since little work has been reported on multi-criterion
reinforcement learning with few exceptions [94]. In addition,
we term any learning criterion anobjectivebecause we are
going to discuss learning problems from the optimization point
of view.

A categorization of the existing supervised learning algo-
rithms from the optimization point of view is provided in
Section II according to how many objectives are considered
in the learning algorithms and whether a scalarized or Pareto-
based multi-objective optimization approach is adopted. A
brief overview of representative work on Pareto-based multi-
objective supervised and unsupervised learning is given in
Section III and Section IV, respectively. To illustrate theben-
efits of the Pareto-based approach to machine learning, a few
illustrative examples are presented in the next sections. The
experimental setup of the case studies, including the neural
network model, the multi-objective evolutionary algorithm,
and three benchmark problems are outlined in Section V.
Case studies on how to identify interpretable models from the
achieved Pareto front, how to select models that are most likely
to generalize on unseen data, and how to generate ensembles
using the Pareto-based approach are described in Section VI.
A summary and outlook of the paper is provided in Section
VII.

II. SINGLE AND MULTI -OBJECTIVE LEARNING

We divide learning algorithms into three categories, namely,
single objective learning, scalarized multi-objective learning
and Pareto-based multi-objective learning.
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A. Single Objective Learning

By single objective learning, we mean learning algorithms
in which only one objective function is optimized. Take
supervised learning as an example, a single objective learning
algorithm often minimizes the mean squared error on the
training data:

f =
1

N

N
∑

i=1

(y(i) − yd(i))2, (1)

where y(i) and yd(i) are the model output and the desired
output, respectively, andN is the number of data pairs in the
training data. Several other error measures can also be used
as the objective function.

The most often used data clustering algorithm is the k-
means clustering algorithm, where the following objective
function is minimized:

f =

K
∑

j=1

∑

x∈Cj

||x − cj ||
2, (2)

where|| · || is a chosen distance measure between a data point
x and the center (cj) of clusterCj .

B. Scalarized Multi-Objective Learning

Learning is inherently multi-objective. In supervised learn-
ing, memorizing the training data is not the only target. Several
other objectives have often to be taken into consideration.In
regression and classification, a learning model should not only
have good approximation performance on the training data,
but also on unseen data from the same problem. But this
target cannot be achieved by minimizing the single objective in
Eq. (1) or any other similar error measures. In fact, minimizing
the approximation error on the training data only can result
in overfitting the training data, which means that the model
is likely to perform poorly on unseen data. In other words,
the model is not able to generalize to unseen data. To prevent
the model from overfitting the training data, the complexityof
the model must be controlled. Another common objective that
often needs to be taken into account is the comprehensibility
or interpretability of the learned model, which is particularly
important when the supervised learning is used for knowledge
discovery from data. As suggested in [53], interpretability of
machine learning models depends strongly on the complexity
of the model and in general, the lower the complexity, the
easier it is to understand the model. In both cases, a second
objective reflecting the complexity of the model must be
considered too. To control the complexity, the two objectives
can be aggregated into a scalar objective function:

f = E + λΩ, (3)

whereE is a common error function such as the one defined
in Eq. (1), Ω is a measure for the model complexity, such
as the number of free parameters in the model, andλ > 0
is a positive hyperparameter to be defined by the user. In this
way, the learning algorithm is able to optimize two objectives,
though the objective function is still a scalar function.

The scalarized multi-objective learning approach has been
widely adopted in machine learning, such as regularizing neu-
ral networks [31], creating interpretable fuzzy rules [46], [54],
and generating negatively correlated ensemble members [65].
Unlike neural networks and fuzzy systems for regression and
classification, where complexity control is not a must, some
learning models, like support vector machines [15], sparse
coding [73], or learning tasks, such as receiver operating
characteristics analysis [23], explicitly consider more than one
objective, which naturally fall into the category of scalarized
multi-objective learning.

Similar to supervised learning, multiple objectives can be
considered in data clustering as well. On the one hand, it is
well recognized that the objective function defined in Eq. (2)
is strongly biased towards spherically shaped clusters. For
data with different types of cluster structures, other objective
functions may be more appropriate [7]. On the other hand, it is
also suggested that stability, which reflects the variationin the
clustering solutions under perturbations should be considered
in developing clustering algorithms [63].

There are two main weaknesses if a scalarized objective
function is used for multi-objective optimization. First,the de-
termination of an appropriate hyperparameterλ that properly
reflects the purpose of the user is not trivial. Second, only
a single solution can be obtained, from which little insight
into the problem can be gained. This is particularly impor-
tant if the multiple objectives conflict with each other, and
consequently, no single optimal solution exists that optimizes
all the objectives simultaneously. This is particularly true for
multi-objective learning, e.g., reducing the approximation error
often leads to an increase of the complexity of the model. In
addition to the above two drawbacks, it has been pointed out
from the optimization point of view that a desired solution may
not be achieved using a scalar objective function even if the
hyperparameter is specified properly [16]. Note, however, that
this weakness can be addressed in part if the hyperparameter
is changed dynamically during optimization [51].

An additional, potential advantage of the Pareto-based
learning approach is that multi-objectivization may help the
learning algorithm from getting out of local optima, thus
improving the accuracy of the learning model. Some empirical
evidence has been reported in [3], [17]. However, a rigorous
proof of the favorable change to the learning curve by multi-
objectivization remains to be shown.

C. Pareto-Based Multi-Objective Learning

Using the Pareto approach to address multiple objectives
in machine learning is actually a natural idea. However,
this approach has not been adopted until a decade ago and
has become popular only very recently. The reason is, in
our opinion, that traditional learning algorithms, and most
traditional optimization algorithms are inefficient in solving
multi-objective problems using the Pareto-based approach. In
a Pareto-based approach to multi-objective optimization,the
objective function is no longer a scalar value, but a vector.As
a consequence, a number of Pareto-optimal solutions should
be achieved instead of one single solution.
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Pareto-optimality is the most important concept in Pareto-
based multi-objective optimization. Consider the followingm-
objective minimization problem:

min F (X),

F = {f1(X), f2(X), ..., fm(X)}.

A solution X is said to dominate a solutionY if ∀j =
1, 2, ..., m, fj(X) ≤ fj(Y ), and there existsk ∈ {1, 2, ...m}
such thatfk(X) < fk(Y ). Solution X is called Pareto-
optimal if it is not dominated by any other feasible solutions.
As previously mentioned, there often exists more than one
Pareto-optimal solution if the objectives are conflicting with
each other. The curve or surface composed of the Pareto-
optimal solutions is known as the Pareto front. In practice,
we often do not know where the global Pareto front of a real-
world optimization problem lies, and therefore, non-dominated
solutions achieved by a multi-objective evolutionary algorithm
are not necessarily Pareto-optimal. However, non-dominated
solutions achieved by multi-objective optimization algorithms
are loosely called Pareto-optimal solutions.

Pareto-based multi-objective learning follows the Pareto-
based multi-objective optimization approach to handle learning
problems. For example, the scalarized bi-objective learning
problem in Equation (3) can be formulated as a Pareto-based
multi-objective optimization as follows:

min {f1, f2} (4)

f1 = E, (5)

f2 = Ω. (6)

The most popular error measure is the mean square error
(MSE) defined in Eq. (1). The complexity of a neural network
model can, among others, either be the sum of the squared
weights

Ω =

M
∑

i=1

w2
i , (7)

or the sum of the absolute weights

Ω =

M
∑

i=1

|wi|, (8)

wherewi, i = 1, ..., M is a weight in the neural model, andM
is the number of weights in total. The above two complexity
measures are often used for neural network regularization and
Eq. (7) is known as the Gaussian regularizer and Eq. (8) the
Laplacian regularizer.

Comparing the scalarized multi-objective learning described
by Eq. (3) and the Pareto-based multi-objective learning
described by Eq. (4), we find that we no longer need to
specify the hyperparameter in the Pareto-based multi-objective
learning. On the one hand, this spares the user the burden to
determine the hyperparameter before learning, on the other
hand, the user needs to pick out one or a number of solutions
from the achieved Pareto-optimal solutions according to the
user’s preference after learning. One question may arise:

Where is then the difference between the scalarized multi-
objective learning and the Pareto-based multi-objective learn-
ing? As we will show in the next sections, Pareto-based multi-
objective learning algorithms are able to achieve a number of
Pareto-optimal solutions, from which the user is able to extract
knowledge about the problem and make a better decision when
choosing the final solution.

In the following sections, selected existing work on Pareto-
based supervised and unsupervised learning algorithms will be
briefly reviewed. For an updated and more detailed account of
the existing work on multi-objective learning, the reader is
referred to [48].

III. M ULTI -OBJECTIVE SUPERVISED LEARNING

A. Earlier Ideas

The first ideas to formulate supervised learning as a Pareto-
based multi-objective optimization were reported in the mid of
1990’s. One of the earliest work in which the neural learning
problem was formulated as a multi-objective optimization
problem was reported in [64], where two error measures (L2-
norm andL∞-norm) and one complexity measure (the number
of non-zero elements) of a Volterra polynomial basis function
network and a Gaussian radial basis function network were
minimized using the min-max approach:

f1(W ) = ||y(W ) − yd(W )||2, (9)

f2(W ) = ||y(W ) − yd(W )||∞, (10)

f3(W ) = C, (11)

F (W ) = minW {max{f ′
1(W ), f ′

2(W ), f ′
3(W )}},(12)

where C is the number of non-zero weights,
f ′
1(W ), f ′

2(W ), f ′
3(W ) are the normalized values of

f1(W ), f2(W ), f3(W ). Unfortunately, a single objective
genetic algorithm has been employed to implement the
learning process and as a result, only one single solution has
been achieved.

The weakness of the scalarized approach to handling com-
petitive objectives in learning and the necessity to consider the
tradeoff using the Pareto-based approach has been discussed in
[70]. An important step forward was made in [60] where the
training of a multi-layer perceptron network was formulated as
a bi-objective optimization problem. The mean squared error
and the number of hidden nodes of the network were taken into
account. A branch and bound algorithm was employed to solve
the mixed integer multi-objective problem. Due to the limited
ability of the branch-and-bound algorithm, the advantage of
the Pareto-based approach to machine learning was not fully
demonstrated in the paper.

With the increasing popularity of multi-objective evolution-
ary algorithms (MOEA) [19], the idea of employing MOEAs
to learning problems became more and more practical. Exist-
ing work on Pareto-based approaches to supervised learning
can roughly be divided into three categories according to their
motivations.
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B. Generalization Improvement

One major concern in supervised learning is to generate
learning models that not only have good approximation per-
formance on training data, but can also generalize to unseen
data. To achieve this, several objectives in addition to the
training error can be taken into account. Inspired from neural
network regularization, the training error and the sum of the
absolute weights were minimized using anǫ-constraint based
multi-objective optimization method [17]. The Tikhonov regu-
larization term was used as a second objective for a parameter
identification problem in [28] and the bi-objective problem
was solved by a multi-objective real-coded evolutionary algo-
rithm. Similar to [60], the training error and the number of
hidden nodes of a feedforward neural network are minimized
using a Pareto-based differential evolution algorithm [1]. The
influence of three different regularization terms on complexity
minimization has been discussed in [49] using an multi-
objective optimization approach. Different to the conclusion
drawn from gradient-based regularization algorithms, it is
shown that the Gaussian regularizer is also able to efficiently
reduce the network complexity like the Laplacian regularizer
when an evolutionary method is used [50].

Another idea to improve the generalization performance of
neural networks is to minimize different, potentially conflict-
ing error measures [24], such as the Euclidian error, and the
robust error, which can be defined by

Er = exp(λ|~y − ~yd|p), (13)

where λ and p are two parameters to be defined. In [25],
two different methods for determining nondominated solutions
were investigated, one using a validation data set rather than
the training set, and the other using a boosting approach.

Cooperative coevolution of neural networks based on multi-
ple objectives have been studied in [29]. Two populations co-
evolve in the algorithm, the module (sub-network) population
and the network population. The module population consists
again of a number of sub-populations, each of which evolves
both the structure and weights of a sub-network (a sub-
component of a neural network). The chromosome of the
network population encodes which sub-components should be
picked out to construct the whole neural network. A steady
state genetic algorithm is used for the network population.
For co-evolutionary algorithms, it is not straightforwardto
determine the fitness value of the individuals in the module
population. In [29], several criteria for evaluating the fitness
of the modules are discussed. The first criterion is concerned
with the performance of the modules, which can again be
determined in different ways. For example, the performance
of a module can be the mean fitness value of a number of best
neural networks in which the model participates. Alternatively,
the performance of a module can be determined by the average
fitness change of the best neural networks when the module
is replaced or removed. The second criterion is the number
of neural networks the module is present in, which is to
be maximized during the optimization. The third criterion
is the complexity of the module, including the number of
connections, the number of nodes, and the sum of the absolute

value of the weights. Two objectives are considered for the
network population, namely, the performance and the fitness
of each module.

In addition to feedforward neural networks, tradeoff be-
tween accuracy and complexity using a Pareto-based approach
has also been considered for generation of radial-basis neural
networks [92], [37], support vector machines [9], [40], [72],
decision trees [57] and classifier systems [8]. Interesting
applications of Pareto-based multi-objective learning toface
detection [90], feature extraction [93], robotics [84], and text
retrieval [67] have been reported.

C. Interpretability Enhancement in Rule Extraction

Extraction of logic or fuzzy rules from data or from
trained neural networks is an important approach to knowledge
discovery. One critical issue here is the interpretability, also
known as understandability or transparency of the generated
rules. Several aspects can be highly related to the interpretabil-
ity of rules [47], such as the compactness (number of rules,
number of premises) and the consistency of the rules. For
fuzzy rules, the partition of the fuzzy subsets should be well
distinguishable so that a meaningful term can be attached to
the fuzzy subsets. Different aspects of interpretability have
been coped with using the scalarized multi-objective optimiza-
tion [46], [54].

The first idea to improve understandability of rule systems is
to select a small subset from a large number of rules generated
from data. A Pareto-based multi-objective genetic algorithm
(MOGA) was used to generate fuzzy rules by trading off
the classification error against the number of rules [42].
Similar work has also been reported in [32], [82]. A step
further is to include a third objective that minimizes the rule
length (number of premises) [43], or the number of selected
input variables [83]. To improve the distinguishability ofthe
fuzzy partition, the maximum similarity between the fuzzy
subsets has also been minimized in addition to accuracy and
compactness [45]. To further improve the distinguishability of
of the fuzzy partition, similar subsets are merged, singletons
are removed and overlapped subsets are separated in multi-
objective optimization of fuzzy rules considering accuracy
and compactness with application to both classification and
regression problems [88], [89].

Several objectives have to be optimized in extracting logic
rules from trained neural networks, such as coverage, i.e.,the
number of patterns correctly classified by a rule set, error,
i.e., the number of the patterns that are misclassified, and
compactness [69].

The main advantage of the Pareto-based approach to gen-
erating interpretable fuzzy rules is that the user is able to
choose a preferred solution from a number of Pareto-optimal
solutions.

D. Diverse Ensemble Generation

An ensemble of learning models performs much better than
a single learning model, if the members of the ensemble
are sufficiently different [35]. However, there is a tradeoff
between accuracy and diversity and it is essential that the
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ensemble members are highly diverse and sufficiently ac-
curate [12], [75]. Previously, the diversity of the ensemble
members has been promoted through the use of different data,
different learning algorithms or different learning models [10].
An alternative approach is to develop a learning algorithm
that reduces the training error and minimizes the correlation
among the outputs of the ensemble members. Traditionally,
the approximation error and the output correlation between
the ensemble members are summed up to a scalar objective
function [65], [79]. In [12], the Pareto-based approach is
adopted to generate diverse and accurate ensembles, where
the following two objectives are minimized:

f1 =
1

N

N
∑

i=1

(y(i) − yd(i))2, (14)

f2 =
N

∑

i=1

(yk(i) − y(i))





M
∑

j 6=k,j=1

(yj(i) − y(i))



 , (15)

whereyk(i) is the output of thek-th ensemble member,y(i)
is the output of the ensemble for thei-th training sample,
N is the number of training samples, andM is the number
of members in the ensemble. This work has been extended
to a framework for evolving ensembles that is composed of
three levels of evolution [13]. On the first level, a mixture of
learning models, such as multi-layer perceptrons, radial-basis-
function networks, and support vector machines are evolved.
On the second level, different training data sets are used for
evolving the hybrid ensembles produced on the first level. On
the third level, all subsets of homogenous learning models
of the hybrid ensembles generated on the second level are
evolved separately to minimize training error and correlation
between the ensemble members. In each iteration, the current
ensemble, which consists of each of the different types of
models, is archived if it dominates the previous best ensemble
based on training error and test error. The ensemble in the
archive serves as the final hybrid ensemble.

A different idea to take advantage of Pareto-based learning
for ensemble generation has been presented in [2], where the
training data is divided into two sets and the errors on the two
data sets are used as two objectives for learning:

f1 =

N1
∑

i=1

(y(i) − yd
1(i))2, (16)

f2 =

N2
∑

i=1

(y(i) − yd
2(i))2, (17)

whereyd
j are the training data in data setj, j = 1, 2, N1 and

N2 are the size of the data sets. One should take care that
the neural network model used should be sufficiently small in
order not to overfit both data sets.

Another idea suggested for generating neural network en-
sembles is to include the complexity measure as the second
objective [49], [50]:

f1 =
N

∑

i=1

(y(i) − yd(i))2, (18)

f2 = C, (19)

whereC is the number of connections in the neural network.
In this way, the diversity of the networks is achieved in
terms of different network structures, which is ensured by
the fact that ensemble members always have different number
of connections. Simulation results on both regression and
classification problems show that the approach is effectivein
generating neural network ensembles. It should be noticed,
however, that very simple Pareto-optimal neural networks will
be generated whose error on the training data can be very
large. These networks should not be included in the ensemble
if models of high accuracy are targeted. One question that has
not been answered in [49], [50] is how to choose ensemble
members from the nondominated solutions. We will come back
to this issue again in the case studies.

The method for multi-objective cooperative co-evolution
of the neural networks in [29] has also been applied to
generating neural network ensembles [30]. In case of ensemble
generation, one population evolves single neural networksand
the other evolves neural network ensembles. For the population
evolving single networks, objectives with respect to the per-
formance of the single network, the performance on difficult
patterns (measured, e.g., by the number of ensembles mis-
classifying it), and the average performance of the ensembles
in which the network is present can be taken into account for
evaluating the performance of the single networks. In addition,
network complexity, ability to cooperate, and diversity are
other objectives to consider. In addition to the correlation
measure used in [12], functional diversity, which measures
the average Euclidean distances among the outputs of two
neural networks, mutual information between the output of
two networks, and the Yule’sQ statistics [61], which measures
the correlation of the errors made by two models, are also
considered. For the ensemble population, performance and
ambiguity are two objectives to optimize. It has been shown
that the generalization performance of the ensembles generated
using the multi-objective approach is significantly betterthan
that of the ensembles generated by classical approaches.

Pareto-based generation of ensembles for radial-basis-
function networks [38] and fuzzy rule systems [44] have also
been reported.

E. Miscellaneous

Much early work on Pareto-based multi-objective learning
has been motivated by specific applications, where multiple
objectives have to be considered even without thinking about
generalization. For example, in generating the receiver oper-
ating characteristics (ROC) curve for classifiers, both thetrue
positive rate (TPR) and the false positive rate (FPR) are to be
minimized. In [62], the Niched Pareto GA [39] was employed
to generate the ROC curves of neural network classifiers [62].
It has been shown that better results can be obtained by using
the Pareto-based approach compared to the traditional method
for generating ROC curve usually by changing the threshold
of the neural classifier after training. Notice that traditionally,
ROC analysis is just a method for evaluating a given classifier,
but in the Pareto-based approach, the classifiers on the ROC
curve are different. Most recently, the generalization ability
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of neural classifiers using the Pareto-based approach to ROC
curve generation has been studied in [33], and Pareto-based
multi-objective multi-class ROC analysis has been investigated
in [22].

Systems control is another area in which multiple objec-
tives need to be satisfied. In [76], Pareto-based evolutionary
programming was used to minimize the undershooting and
overall tracking error of a neural network based controller.
A number of Pareto-optimal solutions are obtained and the
control performance of some typical Pareto-solutions are an-
alyzed.

Supervised feature selection is one of the machine learning
tasks where a tradeoff between the number of selected features
and the performance of the learning model using the features
must be considered. As a result, the Pareto-based multi-
objective learning has been investigated [14], [21], [74].

IV. M ULTI -OBJECTIVE UNSUPERVISED LEARNING

In this section, we discuss existing research work on Pareto-
based multi-objective unsupervised learning, mainly multi-
objective data clustering. In [58], four objectives are consid-
ered in Pareto-based evolutionary data clustering. The first
objective is concerned with the cluster cohesiveness, which
favors dense clusters, the second objective is to maximize the
separateness between the clusters measured by their distance
from the global centroid, the third objective is meant to reduce
the number of clusters, and the fourth one minimizes the num-
ber of selected features. Rather than combining the objectives,
a Pareto-based evolutionary algorithm has been employed to
achieve multiple Pareto-optimal solutions. Through analyzing
the individual Pareto-optimal solutions, significant features and
an appropriate number of clusters can be identified.

The advantage of Pareto-based data clustering has been
convincingly demonstrated in [34], where the number of clus-
ters can be determined automatically by analyzing the Pareto
front. In this work, two objectives are minimized to reflect the
compactness of clusters and the connectedness of data points.
The cluster compactness is described by the overall deviation
of a partitioning and the connectedness checks the degree to
which data points in a neighborhood are assigned to the same
cluster:

f1 =
∑

Ck∈C

∑

xi∈Ck

||xi − ck||2, (20)

f2 =

N
∑

i=1

L
∑

j=1

γij , (21)

where C = {C1, C2, ..., CK} is a union of all clusters,ck

is the center of clusterCk,k = 1, 2..., K, xi is a data point
assigned to clusterCk, , K is the number of clusters,L is the
number of data points in a predefined neighborhood, andγij

is defined by:

γij =

{ 1
j
, if xi andNNj(xi) are not in the same cluster

0, otherwise
,

(22)
whereNNj(xi) is thej-th nearest neighbor of data pointxi.

The Pareto-optimal solutions trading off between deviation
and connectivity are plotted in such a way that the number

Fig. 1. Coding of the structure and parameters of neural networks using a
connection matrix and a weight matrix.

of clusters contained in the Pareto-optimal solutions increases
from left to right. It is argued that the overall deviation
decreases with the increasing number of clusters and when the
cluster number is larger than the “true” number of clusters,
the gain in deviation minimization will be minor while the
cost in connectivity increases rapidly. Thus, the Pareto-optimal
solution that delivers the maximal gain in performance against
the increase in the number of clusters provides the correct
number of clusters, as suggested in [86].

V. CASE STUDIES: EXPERIMENTAL SETUP

A. Neural Network Model

Feedforward neural networks with one hidden layer are used
in the case studies. The hidden neurons are nonlinear and the
output neurons are linear. The activation function used forthe
hidden neurons is as follows:

g(z) =
x

1 + |x|
. (23)

In the optimization, the maximum of hidden nodes is set to
10. Weights are initialized between -0.2 and 0.2.

B. Evolutionary Algorithms for Pareto-Based Learning

1) Coding of Neural Networks:A connection matrix and a
weight matrix are employed to describe the structure and the
weights of the neural networks, see Fig. 1. The connection
matrix specifies the structure of the network, whereas the
weight matrix determines the strength of each connection.
Assuming that a neural network consists ofM neurons in
total, including the input and output neurons, then the sizeof
the connection matrix isM × (M + 1), where an element in
the last column indicates whether a neuron is connected to
a bias value. In the connection matrix, if elementcij , i =
1, ..., M, j = 1, ..., M equals 1, it means that there is a
connection between thei-th and j-th neuron and the signal
flows from neuronj to neuroni. If j = M +1, it indicates that
there is a bias in thei-th neuron. Fig. 2 illustrates a connection
matrix and the corresponding network structure. It can be seen
from the figure that the network has two input neurons, two
hidden neurons, and one output neuron. Besides, both hidden
neurons have a bias.

2) Mutations of Structure and Weights:Evolutionary al-
gorithms have widely been employed to optimize both the
structure and parameters of neural networks, often combined
with a gradient-based local search method [91]. The frame-
work for evolutionary multi-objective optimization of neural
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Fig. 3. The framework for evolutionary multi-objective optimization of neural
networks.

networks employed in our case studies is shown in Fig. 3.
In comparison to conventional evolutionary optimization,we
note that only mutation operations are used in the framework
for varying the structure and parameters of neural networks,
which are specific to neural networks, including inserting a
new neuron or deleting an existing neuron, adding or removing
a connection between two neurons. A Gaussian mutation is
applied to the weights:

∆wij = N(0, σw), (24)

wherewij denotes the weight connecting neuronj and neuron
i, σw is the standard deviation of the Gaussian distribution.

3) Life-Time Learning: After mutation, lifetime learning
using an improved version of the Rprop algorithm [41] has
been employed to fine tune the weights. After lifetime learn-
ing, the fitness of each individual regarding the approximation
error (f1) is updated. In addition, the weights modified during
the life-time learning are encoded back to the chromosome,
which is known as the Lamarckian type of inheritance.

The Rprop learning algorithm [78] is believed to be a fast
and robust learning algorithm. In each iteration, the weights
are modified in the following manner:

∆w
(t)
ij = −sign

(

∂E(t)

∂wij

)

· ∆
(t)
ij , (25)

wheresign(·) is the sign function,∆(t)
ij ≥ 0 is the step-size,

which is initialized to∆0 for all weights. The step-size for

each weight is adjusted as follows:

∆
(t)
ij =















ξ+ · ∆
(t−1)
ij , if ∂E(t−1)

∂wij
· ∂E(t)

∂wij
> 0

ξ− · ∆
(t−1)
ij , if ∂E(t−1)

∂wij
· ∂E(t)

∂wij
< 0

∆
(t−1)
ij , otherwise

, (26)

where 0 < ξ− < 1 < ξ+. To prevent the step-sizes from
becoming too large or too small, they are bounded by∆min ≤
∆ij ≤ ∆max.

After the weights are updated, it is necessary to check if
the partial derivative changes sign, which indicates that the
previous step might be too large and thus a minimum has
been missed. In this case, the previous weight change should
be retracted:

∆w
(t)
ij = −∆

(t−1)
ij , if

∂E(t−1)

∂wij

·
∂E(t)

∂wij

< 0. (27)

Recall that if the weight change is retracted in thet-th iteration,
the ∂E(t)/∂wij should be set to0.

In reference [41], it is argued that the condition for weight
retraction in equation (27) is not always reasonable. The
weight change should be retracted only if the partial derivative
changes sign and if the approximation error increases. Thus,
the weight retraction condition in equation (27) is modifiedas
follows:

∆w(t) = −∆
(t−1)
ij , if

∂E(t−1)

∂wij

·
∂E(t)

∂wij

< 0 and E(t) > E(t−1).

(28)
It has been shown on several benchmark problems that the

modified Rprop (termed as Rprop+ ) exhibits consistently
better performance than the Rprop algorithm [41].

4) Selection: The most significant difference of multi-
objective optimization to scalar optimization is the selection
method. In our work, the selection method from NSGA-II [20]
is adopted, which consists of four major steps. First, the
parent and offspring populations are combined. This implies
that NSGA-II is an elitism. Second, the combined population
is sorted according to the non-dominance ranks. During the
ranking, non-dominated solutions in the combined population
are assigned a rank 1, which belongs to the first non-dominated
front. These individuals are removed temporally from the
population and the non-dominated individuals in the rest of
the population are identified, which consists of the second
non-dominated front of the population and are assigned a
rank 2. This procedure repeats until all individuals in the
combined population are assigned with a rank from 1 toR,
assuming thatR non-dominated fronts can be identified in
total. Third, a crowding distance reflecting the crowdedness
in the neighborhood of a particular solution is calculated.The
crowding distance of solutioni in the non-dominated front
j, (j = 1, ..., R) is the distance between the two neighbors of
solutionsj

i in the objective space:

dj
i =

m
∑

k=1

|fk(sj
i−1) − fk(sj

i+1)|, (29)

where m is the number of objectives in the multi-objective
optimization problem, solutionssj

i−1 and sj
i+1 are the two



8

TABLE I

PARAMETER SETTINGS OF THE ALGORITHMS

Neural Network Initialization
maximum number of hidden neurons 10
initial weights -0.2∼ 0.2

Evolutionary Algorithm
population size 100
mutation rate 0.20
σw 0.1

Rprop+ Algorithm
ξ+ 1.2
ξ− 0.5
∆0 0.01
∆max 50
∆min 10−6

neighboring solutions of solutionsj
i . A large distance is

assigned to the boundary solutions in each non-dominated
front. Here, the larger the crowding distance, the less crowded
around the solutionsj

i it is. Fourth, a tournament selection
which leverages between non-dominated ranking and crowd-
edness is conducted. Given two randomly chosen individuals,
the solution with the better (lower) rank wins the tournament.
If the two solutions have the same rank, the one with the
larger crowding distance wins. If the two solutions have the
same rank and the same crowding distance, choose a winner
randomly. This procedure continues until the required number
of offspring is generated.

The parameter settings used in the simulations are summa-
rized in Table I.

C. Benchmark Problems

1) Wisconsin Breast Cancer Data:The Wisconsin breast
cancer diagnosis problem in the UCI repository of machine
learning database was collected by Dr. W.H. Wolberg at the
University of Wisconsin-Madison Hospitals [77]. The bench-
mark problem contains 699 examples, each of which has9
inputs and2 outputs. The inputs are: clump thickness (x1),
uniformity of cell size (x2), uniformity of cell shape (x3),
marginal adhesion (x4), single epithelial cell size (x5), bare
nuclei (x6), bland chromatin (x7), normal nucleoli (x8), and
mitosis (x9). All inputs are normalized, to be more exact,
x1, ..., x9 ∈ {0.1, 0.2, ..., 0.8, 0.9, 1.0}. The two outputs
are a complementary binary value, i.e., if the first output is1,
which means “benign”, then the second output is0. Otherwise,
the first output is0, which means “malignant”, and the second
output is1. Therefore, only the first output is used.

2) Diabetes Data:The Pima Indians Diabetes Data consists
of 768 data pairs with8 attributes normalized between0
and1 [77]. The eight attributes are number of pregnant (x1),
plasma glucose concentration (x2), blood pressure (x3), triceps
skin fold thickness (x4), 2-hour serum insulin (x5), body mass
index (x6), diabetes pedigree function (x7) , and age (x8). In
this database, 268 instances are positive (output equals 1)and
500 instances are negative (output equals 0).

3) Iris Data: The third data set we looked at is the Iris
data [77]. The data set contains 3 classes of 40 instances
each, where each class refers to a type of iris plant. The

three classes are: Iris Setosa (class 1, represented by -1),Iris
Versicolor (class 2, represented by 0), and Iris Virginica (class
3, represented by 1). Four attributes are used to predict the
iris class, i.e., sepal length (x1), sepal width (x2), petal length
(x3), and petal width (x4), all in centimeters. Among the three
classes, class 1 is linearly separable from the other two classes,
and class 2 and 3 are not linearly separable from each other.
To ease knowledge extraction, we reformulate the data with
three outputs, where class 1 is represented by{1, 0, 0}, class
2 by {0, 1, 0} and class 3 by{0, 0, 1}.

VI. CASE STUDIES: RESULTS

Based on the multi-objective evolutionary algorithm de-
scribed in the previous section, we show in this section how
one can benefit from Pareto-based multi-objective learning. We
generate a number of Pareto-optimal neural network models
that trade off between the accuracy on training data and the
network complexity. We show on the three benchmark prob-
lems how to identify interpretable neural networks from which
understandable logic rules can be extracted, and networks
that are most likely to generalize on unseen data, from the
achieved Pareto-optimal solutions. Afterwards, we compare
three methods for generating neural network ensembles using
the Pareto-based multi-objective learning, which are suggested
by Abbass [2], Chandra and Yao [12] and Jin et al [50].

A. Identifying Interpretable Models

As suggested in [53], interpretability of neural networks is
mainly determined by their complexity. The simpler a network,
the easier it is to understand the knowledge embedded in the
neural network. This is also true if we look at the definition
of interpretability of fuzzy systems [46], [47].

When we minimize both accuracy and complexity of the
networks in a Pareto-based approach, we are able to achieve a
number of Pareto-optimal solutions with a complexity ranging
from very simple networks to highly complex ones. We
argue that the simple Pareto-optimal neural networks on the
Pareto front are actually the interpretable models from which
understandable logic rules can be extracted. Before providing
examples on the benchmark problems, we first briefly describe
the rule extraction method we adopted in this case study,
which is similar to the one used in [85]. Consider a simple
neural network with one single input, one hidden neuron, and
one output neuron, refer to Fig. 4. For binary classification
problems, we usually assume that an instance is labeled as
class 1 if the output is smaller than 0.5. Otherwise, it is labeled
as class 2. To have more confidence in decision-making, we
can also define a stronger criterion, for instance:

If y ≥ 0.75 then class 1;

If y ≤ 0.25 then class 2;

If 0.25 < y < 0.75 undecided.

(30)

In the following, we will show how to derive rules from neural
networks using the defined thresholds. Let the output of the
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Fig. 4. A typical simple network for extracting logic rules.

hidden neuron bez, then a rule that defines class 1 should
satisfy:

w3 z + w4 ≥ 0.75. (31)

Then we get

z ≥ (0.75 − w4)/w3, if w3 > 0

z ≤ (0.75 − w4)/w3, if w3 < 0

Consider the first case and define(0.75 − w4)/w3 = θ1 > 0,
we have

w1 x + w2

1 + |w1 x + w2|
≥ θ1. (32)

Since θ1 > 0, w1 x + w2 must also be larger than zero to
satisfy the conditions for class 1. Consequently,

w1 x + w2

1 + w1 x + w2
≥ θ1, (33)

and

x ≥
θ1 − w2(1 − θ1)

w1(1 − θ1)
, if w1(1 − θ1) > 0, (34)

x ≤
θ1 − w2(1 − θ1)

w1(1 − θ1)
, if w1(1 − θ1) < 0. (35)

(36)

Let θ1−w2(1−θ1)
w1(1−θ1)

= θ2, either of the following two rules can
be extracted that defines the condition for class 1:

If x ≥ θ2, then class 1, if w1(1 − θ1) > 0,

If x ≤ θ2, then class 1, if w1(1 − θ1) < 0,

Note, however, that it can happen that no rule can be
extracted from the neural network. For instance, if∀z, w3 z +
w4 < 0.75. In this case, the neural network is not able to
separate the two classes.

1) Wisconsin Breast Cancer Data:For rule extraction,
all available data are used for training the neural network.
The Pareto-optimal solutions from a typical run are plotted
in Fig. 5. As we will show later on, the simplest Pareto-
optimal neural networks achieved from different runs are
almost identical.

Let us now look at the simplest Pareto-optimal neural
networks. The simplest neural network has 3 connections in
total, in which no input is selected. In other words, the input
of the neural network is constant, refer to Fig. 6. Interestingly,
this neural network learns exactly the mean output of the
training data.

The second simplest network is presented in Fig. 7, which
has 4 connections. Of the 9 input attributes, onlyx2 (unifor-
mity of cell sizes) is selected, which implies thatx2 might be
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Fig. 5. A typical Pareto-front obtained for the Breast Cancer Data composed
of 41 solutions.

1.0                         1.0

 y
−0.537

12.71 1.15

Fig. 6. The simplest Pareto-optimal network model for the Breast Cancer
Data, which exactly learns the mean of the training data.

the most important feature for determining whether an instance
is benign or malignant. The MSE of the network is0.051.
From the network, the following two rules can be extracted
using the previously described rule extraction method.

If x2 ≤ 0.2, then benign,

If x2 ≥ 0.4, then malignant.

With these two simple rules, the correct classification rate
is 97.0% on 602 instances with the rest 97 instances undeter-
mined, recalling that the thresholds are set to0.75 and 0.25
to make sure that the decision is confident enough. However,
if we set the classification threshold to0.5, the following rule
can be obtained with a correct classification rate of92.4% on
all instances.

If x2 ≤ 0.3, then benign,

otherwise malignant.

The next simple Pareto-optimal neural network has five
connections, in which bothx2 and x6 are chosen as input
features. The MSE of the model is0.029. From this neural
network, the following two rules can be extracted.

If 14 x2 + 8.55 x6 ≤ 5.81, then benign,

If 14 x2 + 8.55 x6 ≥ 7.55, then malignant.

Using these two rules, the correct classification rate is97.2%
on 680 instances with the rest 19 instances undetermined. If
the threshold is set to 0.5, the following rule can be obtained
with a correct classification rate of96.4% on all instances.

If 14 x2 + 8.55 x6 ≤ 6.45, then benign,

otherwise malignant.
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Fig. 8. The Pareto-optimal network model with five connections for the
Breast Cancer Data.

B. Diabetes Data

The same empirical study is conducted on the Diabetes
Data. The achieved Pareto front is shown in Fig 9.

Same as the Breast Cancer Data, the simplest Pareto-optimal
solution contains 3 connections and learns the mean of the
output value. The two simple Pareto solutions with at least one
attribute chosen are plotted in Fig. 10 and Fig. 11, respectively.
The MSEs of the two simple network models are 0.17 and
0.16.

From the neural network with four connections, see Fig. 10,
the following two rules can be extracted:

If x2 ≤ 0.83, then positive,

If x2 ≥ 0.56, then negative.

By applying the above two rules, we are able to make a
decision on 413 instances with a correct classification rateof
85.4%. The rest 355 instances cannot be determined with these
two rules.

If we set the threshold to 0.5, the following rule is obtained:

If x2 ≤ 0.72, then positive,

otherwise negative. (37)

The correct classification rate using the above rule is75.0%
on all 768 instances.

The following rules can be obtained for the neural network
in Fig. 11, when the threshold is set to 0.75 and 0.25.

If 3.77 x2 + 2.67 x6 ≤ 4.54, then positive,

If 3.77 x2 + 2.67 x6 ≥ 3.46, then positive.

With these two rules, the correct classification rate is85.4%
with the rest 308 instances undecided. If the threshold is set
to 0.5, we then have the following rule:

If 3.77 x2 + 2.67 x6 ≤ 3.97, then positive,

otherwise negative. (38)

From the above rule, the correct classification rate on all
768 instances is77.0%.
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Fig. 9. A typical Pareto-front obtained for the Diabetes Data composed of
37 solutions.
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Fig. 10. The Pareto-optimal network model with four connections for the
Diabetes Data.

1) Iris Data: The Pareto front from the Iris Data is pre-
sented in Fig. 12, which consists of 20 solutions (two Pareto
optimal solutions have the same MSE and complexity). Again,
the simplest network with seven connections approximates the
mean value of the output.

The two Pareto-optimal networks with eight connections are
plotted in Fig. 13 and Fig. 14, respectively. From the figures,
we note that only one of the attribute (eitherx3 or x4 is
chosen). From the network in Fig. 13, the following rule can
be extracted.

If x3 ≤ 2.4, then Iris Setosa. (39)

Similarly, the following rule can be extracted form the
network in Fig. 13:

If x4 ≤ 0.80, then Iris Setosa. (40)

It can be easily verified that both rules are able to separate
Iris Sesota from the other two classes correctly.

The neural network model with 13 connections is shown in
Fig. 15. Interestingly, onlyx4 is used for classification. From
this neural network, we can extract the following three rules:

If x4 ≤ 0.6, then Iris Setosa,

If 1.1 ≤ x4 ≤ 1.6, then Iris Versicolor,

If x4 ≥ 1.7, then Iris Virginica.

The correct classification rate is91.3% on all instances.
Note that the classification rate is almost the same when the
threshold is set to 0.5 on the Iris Data.

C. Discussions

From the three benchmark problems, we can conclude
that by trading off accuracy against complexity, the Pareto-
based multi-objective optimization algorithm is able to find
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Fig. 11. The Pareto-optimal network model with five connections for the
Diabetes Data.
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Fig. 12. A typical Pareto-front obtained for the Iris Data composed of 20
solutions.

the simplest structures that solve the problem best. Besides,
the simple Pareto-optimal networks are able to capture the
main knowledge embedded in the data so that interpretable
logic rules can be extracted. Compared to other methods used
in extracting rules from trained neural network [56], [80],the
Pareto-based approach is very straightforward and efficient.
Besides, the multiple interpretable yet Pareto-optimal solutions
provide additional knowledge that can help the user understand
the problem, as we have shown on the three benchmark
problems.

D. Model Selection by Analyzing the Pareto Front

Model selection is a well studied topic in machine learn-
ing [11], [36]. If sufficient data are available, the best approach
to model selection is to split the data into three subsets, where
the first subset (training data) is for constructing models,the
second one (validation data) is used to estimate prediction
error for selecting a model, and the third one (test data) for
accessing the generalization error of the selected model. In
case of insufficient data, which is often the case in real-world
applications, either analytical methods such as the information-
theoretic criteria [11], [36], e.g., the Akaike’s Information
Criterion (AIC) and the Bayesian Information Criterion (BIC),
or resampling techniques likek-fold cross-validation [36], are
used.

In this section, we show that the Pareto-approach to han-
dling the accuracy-complexity tradeoff provides an empirical,
yet interesting alternative to selecting models that have good
generalization on unseen data. The basic argument is that the
complexity of the model should match that of the data to be
learned and the ability of the learning algorithm. When the
complexity of the model is overly large, learning becomes sen-
sitive to stochastic influences, and results on unseen data will
be unpredictable, i.e., overfitting can happen. Inspired bythe
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Fig. 13. The Pareto-optimal network model with eight connections for the
Iris Data. In this model,x3 is chosen as the input.
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Fig. 14. The Pareto-optimal network model with eight connections for the
Iris Data. In this model,x4 is chosen as the input.

work on determining the correct number of clusters in multi-
objective data clustering [34], the appropriate complexity of
the data can be determined by thenormalized performance
gain (NPG):

NPG =
MSEj − MSEi

Ci − Cj

, (41)

where MSEi, MSEj, and Ci, Cj are the MSE on training
data, and the number of connections of thei-th andj-th Pareto
optimal solutions. When the solutions are ranked in the order
of increasing complexity, the following relationships hold:

Ci+1 > Ci,

MSEi+1 ≤ MSEi.

We hypothesize that if the model complexity is lower than
that of the data, an increase in complexity will result in
significant increase in performance (NPG). As the complexity
continues to increase, the NPG decreases gradually to zero.
At this point, the complexity of the model matches that of the
data. Further increase in complexity will probably bring about
further enhancement in performance on the training data, but
with the increasing risk of overfitting the training data.

We are now going to verify empirically the suggested
method for model selection on the three benchmark problems.
In this part of the simulations, available data are split into a
training data set and a test data set. For the Breast Cancer
Data, 525 instances are used for training and 174 instances
for test. The training set of the Diabetes Data contains 576
samples, and the test set 192 samples. Finally, 120 instances
are used for training and the rest 30 instances for test for the
Iris Data.

The Pareto fronts generated from two independent runs on
the three benchmark problems are presented in Fig. 16, Fig. 17
and Fig. 18, respectively. The dots denote the results on the
training data set, while the circles the results on test data. The
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Fig. 16. Accuracy versus complexity of the Pareto-optimal solutions from
two independent runs: Breast Cancer Data. Dots denote training data, and
circles test data.

NPG from the two independent runs for the three problems
are plotted in Fig. 19, Fig. 20 and Fig. 21, respectively.

We first analyze the results on the Breast Cancer Data. From
Fig. 19, we notice that the NPG decreases to 0 after the first
peak in performance gain when the number of connections
(NC) is between 12-14. Meanwhile, it can be seen from
Fig. 16 that the learning performance on the training data from
different runs begins to fluctuate when the NC is larger than
17. These two facts suggest that the appropriate complexity
of the neural network for this problem is between 12 and 17.
We can see from Fig. 16 that the error on the test data is well
controlled when the complexity is in the suggested range.

Similar observations can be made on the Diabetes Data and
the Iris data. For the Diabetes Data, the NPG first drops to 0
when the NC of the neural networks around 10. In addition, a
discrepancy between the two runs becomes large after the NC
reaches 13. From these two observations, we conclude that the
complexity of the neural network on the Diabetes Data should
be around 8-10. For the same reasons, the NC of the neural
network should be between 16 and 18 for the Iris Data.

The proposed method for model selection is empirical and
needs to be verified on more problems. For clarity, we only
plot results from two independent runs in the above analyses.
The results of 10 independent runs are plotted in Figs. 28-
30. From these results, we can confirm that the generalization
performance of the neural network is good when the learning
performance on the training data is stable in different runs.

It is difficult to select one single model using our empirical
method. Instead, it will be more reliable if multiple models
of potentially good generalization performance are chosento
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Fig. 17. Accuracy versus complexity of the Pareto-optimal solutions from
two independent runs: Diabetes Data. Dots denote training data, and circles
test data.
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Fig. 18. Accuracy versus complexity of the Pareto-optimal solutions from
two independent runs: Iris Data. Dots denote training data,and circles test
data.

construct an ensemble. This topic will be discussed in the next
section.

E. Generating Diverse and Accurate Ensemble Members

In this section, we compare three Pareto-based multi-
objective approaches to ensemble generation. The first ap-
proach is presented in Abbass [2], where the accuracies on two
data sets serve as two objectives. The second one is described
in Chandra and Yao [12], where a trade off between accuracy
and diversity is taken into account to generate ensembles.
The final approach studied in the section is suggested in
Jin et al [49], [50], in which the accuracy and the number
of connections of the neural network are adopted as two
conflicting objectives. The experimental setup is the same as
in the previous studies, except that in the Abbass’ approach,
the training data of the three benchmark problems are equally
divided into two data sets so that the approximation errors on
the two data sets can be computed as the two objectives.

Another issue, which has not been explicitly addressed in
Abbass [2], is the life-time learning under the context of
multi-objective learning. Note that RProp is adopted as the
life-time learning algorithm, which works for single objective
learning only. This is not a problem in Chandra’s as well as
in Jin’s approach in that the lifetime learning is applied to
one of the objective only. However, when both objectives are
approximation errors, multi-objective lifetime learningshould
be applied, which is not straightforward for gradient-based
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Fig. 19. Normalized performance gain from two independent runs for the
Breast Cancer Data.
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Fig. 20. Normalized performance gain from two independent runs for the
Diabetes Data.

learning algorithms. In Jin et al [52], it is suggested that
the lifetime learning should be switched randomly between
the two objectives to achieve diverse Pareto-optimal solutions.
In this study, lifetime learning is switched between the two
objectives at an equal probability. For comparison, simulations
are also conducted where the lifetime learning is of single
objective nature, i.e., the RProp is applied on the combination
of the two data sets.

The Pareto-optimal solutions from 10 runs on the Breast
Cancer Data are plotted in Fig. 22(a), where the lifetime
learning is switched between the two data sets, and Fig. 22(b),
where the lifetime learning is applied on the combination of
the two data sets. In the figures, the dots denote the results on
the training data and the circles the results on test data. From
these results, we can make the following observations. First, by
switching the lifetime learning between the two data sets, more
diverse solutions can be achieved. Second, good performance
on the training data does not ensure good performance on
the test data. As suggested in [75], ensemble members should
be both accurate and diverse. In other words, ensembles
whose members are of poor accuracy cannot perform well.
This indicates that if the Pareto-optimal solutions are used as
ensemble members, the quality of the ensemble will be poor.
Third, lifetime learning on the combination of the data results
in serious overfitting.

Very similar results are obtained for the Diabetes Data and
the Iris data, which are plotted in Fig. 23 and Fig. 24. Again,
it is difficult to choose proper ensemble members from the
Pareto-optimal solutions.

The simulation results using Chandra and Yao’s approach
for the three benchmark problems are presented in Fig. 25,
Fig. 26, and Fig. 27, respectively. Again, the results on
the training and test data are denoted by dots and circles.
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Fig. 21. Normalized performance gain from two independent runs for the
Iris Data.

0 0.02 0.04 0.06 0.08 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

MSE on data set 1

M
S

E
 o

n 
da

ta
 s

et
 2

0 0.01 0.02 0.03 0.04
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

MSE on data set 1

M
S

E
 o

n 
da

ta
 s

et
 2

(a) (b)

Fig. 22. Achieved non-dominated solutions using Abbass’s approach: Breast
Cancer Data. (a) Lifetime learning is switched between two data sets. (b)
Lifetime learning applied on the combination of the data.

From the figures, we find that the achieved Pareto-optimal
network models tend to overfit the data regardless the diversity,
particularly on the Diabetes Data and the Iris Data.

Finally, we take a look at Jin et al’s approach, which ensures
the diversity of the ensemble members by generating neural
networks with different complexities. The results are presented
in Fig. 28, Fig. 29, and Fig. 30, respectively. From the figures,
we can see that in all the three examples, the MSE on the test
data is well constrained when the complexity of the neural
network is appropriately low. As suggested in the previous
section, the required complexity that matches the data can be
estimated using the normalized performance gain. By choosing
these networks as ensemble members, we are able to have a
neural network ensemble whose members are both accurate
and diverse. The diversity of the networks is guaranteed by
the difference in the complexity of the neural networks.

Comparing the three Pareto-based approaches to ensemble
generation, we conclude that it is not straightforward to
choose ensemble members from the achieved Pareto-optimal
solutions for constructing ensembles in Abbass’ as well as in
Chandra and Yao’s approaches. To ensure good performance
on unseen data of the ensemble, additional methods such as
cross-validation must be employed. In contrast, it is rather
easy to identify neural networks that can be used as ensemble
members when Pareto-optimal solutions are generated using
Jin et al’ approach. Another important point is that in Abbass’
and Chandra and Yao’s approaches, the achieved solutions
from the 10 independent runs are rather different along the
whole Pareto front, which means that these two methods are
quite sensitive to stochastic influences. Opposite to that,the
results from the 10 independent runs are quite stable in Jin et
al’s approach when the complexity is low.
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Fig. 23. Achieved non-dominated solutions using Abbass’s approach:
Diabetes Data. (a) Lifetime learning is switched between two data sets. (b)
Lifetime learning applied on the combination of the data.
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Fig. 24. Achieved non-dominated solutions using Abbass’s approach: IRIS
Data. (a) Lifetime learning is switched between two data sets. (b) Lifetime
learning applied on the combination of the data.

VII. SUMMARY AND OUTLOOK

Pareto-based approach to machine learning provides us a
new point of view for studying machine learning problems.
By means of Pareto-based optimization, we are able to gain
a deeper insight into different aspects of machine learning,
and thus develop new learning algorithms. The power of the
Pareto-based approach is made more attractive thanks to the
successful application of evolutionary algorithms to Pareto-
based multi-objective optimization.

This paper provides an up-to-date yet not necessarily com-
plete review of the existing work on Pareto-based multi-
objective learning algorithms. We illustrate, on three bench-
mark problems, how we can address important topics in
machine learning, such as generating interpretable models,
model selection for generalization, and ensemble generation,
using the Pareto-based multi-objective approach. We show
that the simplest Pareto-optimal model without any input
selected approximates the mean of the training data, while
the simple Pareto-optimal models with one or two most
important features selected capture the essential knowledge
in the data. In addition, we demonstrate empirically that by
analyzing the Pareto-optimal solutions in terms of performance
and complexity, and the learning performance w.r.t. model
complexity in independent runs, we are able to choose models
that are most likely to exhibit good performance on unseen
data. Finally, we compare three Pareto-based approaches tothe
generation of neural ensembles and indicate that the method
by trading off accuracy and complexity can provide reliable
results.

Many issues remain to be solved and new areas could be
opened up in the field of Pareto-based multi-objective machine
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Fig. 25. Achieved non-dominated solutions using the Chandra and Yao’s
approach: Breast Cancer Data.
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Fig. 26. Achieved non-dominated solutions using the Chandra and Yao’s
approach: Diabetes Data.

learning. One interesting question is how the Pareto-based
approach to machine learning influences the learning behavior,
e.g., the property of the learning curve [6], [26]. It has been
empirically disclosed in general optimization problems that
the number of local optima can be reduced by converting
multi-modal single objective problems into multi-objective
ones [66], [59]. If we are able to show that the same happens
in machine learning, it is then more convincing to argue
that Pareto-based multi-objective learning is able to improve
learning performance.

Most topics discussed so far are mainly concerned with the
bias-variance tradeoff in machine learning. Another important
topic in machine learning, as well as in human memory sys-
tems, is the plasticity-stability tradeoff, which is also known as
on-line learning [18], incremental learning [87] or catastrophic
forgetting [27]. A preliminary attempt has been made in
[52] to address catastrophic forgetting using the Pareto-based
approach. It has been shown that the multi-objective approach
is more promising in alleviating forgetting than its single
objective counterpart. The idea of Pareto-optimality can also
be extended to the study on connectivity and complexity [4],
[81] of general networks, and to the research on structure and
functionality of spiking neural networks [55], [68].
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