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Abstract— Machine learning is inherently a multi-objective set of data is to be assigned to different subsets (clusters)
task. Traditionally, however, either only one of the objecives is 5o that the data in each subset share some common trait
aoped as the cost uncion o ultpl obectives e 2088A(ed (simiarty) defined by a distance measure. The third catego
fact that most conventional learning algorithms can only dal is reinforcement _Iearmng, Wh'C_h _alms to find a policy for an_
with a scalar cost function. Over the last decade, efforts on agent to take actions that maximize the cumulated rewards in

solving machine learning problems using the Pareto-based ufti-  a given environment.

objective optimization methodology have gained increasim im- All learning algorithms perform model selection and pa-

petus, particularly thanks to the great success of multi-ofective . . . o i
optimization using evolutionary algorithms and other popuation- rameter estimation based on ane or muliple criteria. In su

based stochastic search methods. It has been shown that Pare P€rvised learning, the common criterion is an error functio
based multi-objective learning approaches are more powedl that reflects the approximation quality, whereas in cluster
compared to learning algorithms with a scalar cost functiors the similarity between the elements in the same clusteerint
::grian(z]dr?;astlgtgeVsaé:ggtsiof’lopilr?’]spI?)fvgnn?gzltn?)flzz:’]né?agﬁzsafi%hnaisiﬁg- cluster similarity) should be maximized and the similarity
knowledge extraction, and ensemble generation. One common of the eleme_nfcs .|n dlfferen_t Clusters (Intra-c!uster S‘“’?‘.V)
benefit in the different multi-objective leaming approaches is Should be minimized. In reinforcement learning, the cidter
that a deeper insight into the learning problem can be gainedy is a value function that predicts the reward to perform amive
analyzing the Pareto front composed of multiple Pareto-ofitnal  action in a given state. Therefore, all learning problenTsima
solutions. _ _ o _considered as an optimization problem. Hereafter, weicgestr
This paper provides an overview of the existing work on mults |- 4isessions mainly to supervised learning and data clus
objective machine learning, focusing on supervised learng. In . . . ..
addition, a number of case studies are provided to illustra¢ (€1iNg, since little work has been reported on multi-crier
the major benefits of the Pareto-based approach to machine reinforcement learning with few exceptions [94]. In adulitj
learning, e.g., how to identify interpretable models and mdels we term any learning criterion aobjectivebecause we are

that can generalize on unseen data from the obtained Pareto- going to discuss learning problems from the optimizatiompo
optimal solutions. Three approaches to Pareto-based multi of view

objective ensemble generation are compared and discussed i o o . .
detail. Finally, potentially interesting topics in multi- objective A categorization of the existing supervised learning algo-
machine learning are suggested. rithms from the optimization point of view is provided in

Section Il according to how many objectives are considered
in the learning algorithms and whether a scalarized or BParet
|. INTRODUCTION based multi-objective optimization approach is adopted. A

Machine learning is concerned with the development gp'i_ef qverview of_ representative Worl_< on Paret_o-ba_lsed_imult_
computer algorithms and techniques that are able to learn, joPjective supervised and unsupervised learning is given in
to improve automatically through experience [5], [71]. Amﬁ(_ectlon IIl and Section 1V, respectively. To |I_Iustrate ﬂtren
machine learning method consists of two steps, i.e., setpct€fits of the Pareto-based approach to machine learning, a few
a candidate model and then estimating the parameters of Hfistrative examples are presented in the next sectiohs. T
model using a learning algorithm and available data. VefXPerimental setup of the case studies, including the heura
often, model selection and parameter estimation are cadbiffl€fwork model, the multi-objective evolutionary algonith
in an iterative process and in many cases, model select®f three benchmark problems are outlined in Section V.
has been done only once intuitively and empirically. In oth&@se studies on how to identify interpretable models froen th
words, the user chooses a model empirically and then emp@gneved F_’areto front, how to select models that are magylik
a learning algorithm to estimate the parameters of the mod® generalize on unseen data, and how to generate ensembles

Machine learning algorithms can largely be divided int§Sing the Pareto-based approach are Qescnb_ed in Sectlo_n Vi
three categories. One large category is supervised legrnift SUmmary and outlook of the paper is provided in Section
where the model should approximate the mapping betwe¥H-
the input and output of the given data, typically known as
regression or classification. Unsupervised learning lgedo
the second category of learning algorithms. Data cluggerin
is a typical unsupervised learning method, where a given

Il. SINGLE AND MULTI -OBJECTIVE LEARNING

We divide learning algorithms into three categories, ngmel
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A. Single Objective Learning The scalarized multi-objective learning approach has been

By single objective learning, we mean learning algorithrﬁgidely adopted in machine_ learning, such as regularizing ne
in which only one objective function is optimized. Takd@l networks [31], creating interpretable fuzzy rules [46H],
supervised learning as an example, a single objectiveilqarnand generating negatively correlated ensemble membe}s [65

algorithm often minimizes the mean squared error on thehlike neural networks and fuzzy systems for regression and
training data: classification, where complexity control is not a must, some

learning models, like support vector machines [15], sparse
. 472 coding [73], or learning tasks, such as receiver operating
f= N Z(y(l) —y(@)7, (1) characteristics analysis [23], explicitly consider mdrart one
objective, which naturally fall into the category of scéad
wherey(i) and y%(i) are the model output and the desirednulti-objective learning.
output, respectively, and/ is the number of data pairs in the Similar to supervised learning, multiple objectives can be
training data. Several other error measures can also be usedsidered in data clustering as well. On the one hand, it is
as the objective function. well recognized that the objective function defined in EqQ. (2
The most often used data clustering algorithm is the ks strongly biased towards spherically shaped clusters. Fo
means clustering algorithm, where the following objectivdata with different types of cluster structures, other ofije

function is minimized: functions may be more appropriate [7]. On the other hand, it i
p also suggested that stability, which reflects the variaitioithe
9 clustering solutions under perturbations should be cenel
f= Z Z [l = el &) in developing clustering algorithms [63].
J=twed; There are two main weaknesses if a scalarized objective
where||-|| is a chosen distance measure between a data pdintction is used for multi-objective optimization. Firite de-
x and the centercf) of clusterC;. termination of an appropriate hyperparametdhat properly

reflects the purpose of the user is not trivial. Second, only
a single solution can be obtained, from which little insight
S o . into the problem can be gained. This is particularly impor-
Learning is inherently multi-objective. In supervisedriea tant f the multiple objectives conflict with each other, and
ing, memorizing the training data is not the only target.e8al  consequently, no single optimal solution exists that ojzis
other objectives have often to be taken into consideration. 5| the objectives simultaneously. This is particularlyetrfor
regression and classification, a learning model should nigt 0y ti-objective learning, e.g., reducing the approxiragrror
have good approximation performance on the training dagien leads to an increase of the complexity of the model. In
but also on unseen data from the same problem. But thiggition to the above two drawbacks, it has been pointed out
target cannot be achieved by minimizing the single objedtv from the optimization point of view that a desired solutioayn
Eq. (1) or any other similar error measures. In fact, miningz ot pe achieved using a scalar objective function even if the
Fhe app.ro_ximation error on the trqining data only can resy perparameter is specified properly [16]. Note, howevert, t
in overfitting the training data, which means that the modglis weakness can be addressed in part if the hyperparameter
is likely to perform poorly on unseen data. In other wordgg changed dynamically during optimization [51].
the model is not able to generalize to unseen data. To prevenk, additional, potential advantage of the Pareto-based

the model from overfitting the training data, the complexity learning approach is that multi-objectivization may hete t
the model must be controlled. Another common objective th@arning algorithm from getting out of local optima, thus

often needs to be taken into account is the comprehengibilit,,ving the accuracy of the learning model. Some emyirica
or interpretability of the learned model, which is partely o\ idence has been reported in [3], [17]. However, a rigorous

important when the supervised learning is used for knowéedgroof of the favorable change to the learning curve by multi-

discovery from data. As suggested in [53], interpretapitif objectivization remains to be shown.
machine learning models depends strongly on the complexity

of the model and in general, the lower the complexity, the S _
easier it is to understand the model. In both cases, a secéndPareto-Based Multi-Objective Learning

objective reflecting the complexity of the model must be ysing the Pareto approach to address multiple objectives

considered too. To control the complexity, the two objesiv j, machine learning is actually a natural idea. However,

can be aggregated into a scalar objective function: this approach has not been adopted until a decade ago and
f=E+AQ 3) has become popular only very recently. The reason is, in

’ our opinion, that traditional learning algorithms, and mos

where E/ is a common error function such as the one defingdhditional optimization algorithms are inefficient in giwlg

in Eq. (1), Q is a measure for the model complexity, sucimulti-objective problems using the Pareto-based apprdach

as the number of free parameters in the model, and 0 a Pareto-based approach to multi-objective optimizatiba,

is a positive hyperparameter to be defined by the user. In toisjective function is no longer a scalar value, but a vecter.

way, the learning algorithm is able to optimize two objeetiy a consequence, a number of Pareto-optimal solutions should

though the objective function is still a scalar function. be achieved instead of one single solution.

B. Scalarized Multi-Objective Learning



Pareto-optimality is the most important concept in Paretdvhere is then the difference between the scalarized multi-
based multi-objective optimization. Consider the follogiin- objective learning and the Pareto-based multi-objectaeri-

objective minimization problem: ing? As we will show in the next sections, Pareto-based multi
objective learning algorithms are able to achieve a number o
min F(X), Pareto-optimal solutions, from which the user is able toaett
F={/(X), fa(X), ... fm(X)}. knowledge about the problem and make a better decision when
choosing the final solution.
A solution X is said to dominate a solutiol” if V; = In the following sections, selected existing work on Pareto

1,2,...,m, f;(X) < f;(Y), and there existé € {1,2,..m} based supervised and unsupervised learning algorithrhbavil

such that fx(X) < fi(Y). Solution X is called Pareto- priefly reviewed. For an updated and more detailed account of

optimal if it is not dominated by any other feasible solutionthe existing work on multi-objective learning, the readsr i

As previously mentioned, there often exists more than opgferred to [48].

Pareto-optimal solution if the objectives are conflictinghw

each other. The curve or surface composed of the Pareto-

optimal solutions is known as the Pareto front. In practice, |||, M ULTI-OBJECTIVE SUPERVISED LEARNING

we often do not know where the global Pareto front of a real-

world optimization problem lies, and therefore, non-doatétl A Earlier Ideas

solutions achieved by a multi-objective evolutionary aiton

are not necessarily Pareto-optimal. However, non-domihat The first ideas to formulate supervised learning as a Pareto-

solutions achieved by multi-objective optimization aigjoms based multi-objective optimization were reported in thel i

are loosely called Pareto-optimal solutions. 1990's. One of the earliest work in which the neural learning
Pareto-based multi-objective learning follows the Paret§roblem was formulated as a multi-objective optimization

based multi-objective optimization approach to handleniiegy  Problem was reported in [64], where two error measules (

problems. For example, the scalarized bi-objective legyninorm andL..-norm) and one complexity measure (the number

problem in Equation (3) can be formulated as a Pareto-bagéd10n-zero elements) of a Volterra polynomial basis foreti
multi-objective optimization as follows: network and a Gaussian radial basis function network were

minimized using the min-max approach:

min {fl, f2} (4)
fi = B, (5) AW) = [ly(W) =y (W)]l2, 9)
fo = Q. (6) o W) = |ly(W) =y (W)]|co, (10)
fs(W) = C, (11)
The most popular error measure is the mean square error FW) = minw{maz{fl(W), fo(W), fi(W)}},(12)

(MSE) defined in Eq. (1). The complexity of a neural network

model can, among others, either be the sum of the squaged. .~ is the number of non-zero weights

weights f1OW), f5(W), f4(W) are the normalized values of
M 9 f1(W), f2(W), fs(W). Unfortunately, a single objective
Q= Zwi’ @ genetic algorithm has been employed to implement the
=1 learning process and as a result, only one single solutisn ha
or the sum of the absolute weights been achieved.
o The weakness of the scalarized approach to handling com-
O- Z ] (®) petitive objectives in learning and the necessity to cardide
- — v tradeoff using the Pareto-based approach has been diddasse

[70]. An important step forward was made in [60] where the

wherew;,i = 1, ..., M is a weight in the neural model, aidd  training of a multi-layer perceptron network was formuthtes
is the number of weights in total. The above two complexitg bi-objective optimization problem. The mean squaredrerro
measures are often used for neural network regularizatidn a&and the number of hidden nodes of the network were taken into
Eq. (7) is known as the Gaussian regularizer and Eq. (8) thecount. A branch and bound algorithm was employed to solve
Laplacian regularizer. the mixed integer multi-objective problem. Due to the lieait

Comparing the scalarized multi-objective learning ddsaxti ability of the branch-and-bound algorithm, the advantafe o
by Eqg. (3) and the Pareto-based multi-objective learnite Pareto-based approach to machine learning was not fully
described by Eq. (4), we find that we no longer need @emonstrated in the paper.
specify the hyperparameter in the Pareto-based multetige ~ With the increasing popularity of multi-objective evolut
learning. On the one hand, this spares the user the burderaip algorithms (MOEA) [19], the idea of employing MOEAs
determine the hyperparameter before learning, on the oth@dearning problems became more and more practical. Exist-
hand, the user needs to pick out one or a number of solutiang work on Pareto-based approaches to supervised learning
from the achieved Pareto-optimal solutions according ® tican roughly be divided into three categories according éir th
user’'s preference after learning. One question may ariseotivations.



B. Generalization Improvement value of the weights. Two objectives are considered for the
gtwork population, namely, the performance and the fitness

One major concern in supervised learning is to generaﬁ
each module.

learning models that not only have good approximation pe(i‘—

formance on training data, but can also generalize to unseer]1n addition to fe(;adforwtl':\rd. neu_ral ne;works,btraddeoff be-
data. To achieve this, several objectives in addition to ggeen accuracy and complexity using a Pareto-base agproac

training error can be taken into account. Inspired from aku as also been considered for generation of radial-basiaheu

network regularization, the training error and the sum & tHwetworks [92], [37], support vector machines [9], [40], 72

absolute weights were minimized using aconstraint based decgon_ trees [57] and classme_r systems (8] .Interestlng
multi-objective optimization method [17]. The Tikhonowre applications of Pareto-based multi-objective learningace

larization term was used as a second objective for a paramé:itgt(_a(:t'on [90], feature extraction [93], robotics [84] datext

identification problem in [28] and the bi-objective problen{eme\/aI [67] have been reported.

was solved by a multi-objective real-coded evolutionagoal

rithm. Similar to [60], the training error and the number of. Interpretability Enhancement in Rule Extraction

hidden nodes of a feedforward neural network are minimizedExtraction of logic or fuzzy rules from data or from

using a Pareto-based differential evolution algorithm Tije trained neural networks is an important approach to knogeed

influence of three different regularization terms on comitye discovery. One critical issue here is the interpretabitiigo

minimization has been discussed in [49] using an multknown as understandability or transparency of the gengrate

objective optimization approach. Different to the con@us rules. Several aspects can be highly related to the intaigite

drawn from gradient-based regularization algorithms,sit ity of rules [47], such as the compactness (number of rules,

shown that the Gaussian regularizer is also able to effigienhumber of premises) and the consistency of the rules. For

reduce the network complexity like the Laplacian regukariz fuzzy rules, the partition of the fuzzy subsets should bd wel

when an evolutionary method is used [50]. distinguishable so that a meaningful term can be attached to
Another idea to improve the generalization performance the fuzzy subsets. Different aspects of interpretabiligwen

neural networks is to minimize different, potentially cict! been coped with using the scalarized multi-objective ojzin

ing error measures [24], such as the Euclidian error, and tfien [46], [54].

robust error, which can be defined by The first idea to improve understandability of rule systesns i
L g to select a small subset from a large number of rules gentkrate
E, = expAly — 7°["), (13) from data. A Pareto-based multi-objective genetic alganit

MOGA) was used to generate fuzzy rules by trading off

where A and p are two parameters to be defined. In [25]5 e :
. . . . the classification error against the number of rules [42].
two different methods for determining nondominated solui Similar work has also been reported in [32], [82]. A step

were investigated, one using a validation data set ratteer t . . ) L ]
9 9 hfurther is to include a third objective that minimizes théeru

the training set, and the other using a boosting approach. :
9 ; g g.app {ength (number of premises) [43], or the number of selected
Cooperative coevolution of neural networks based on multf-

ple objectives have been studied in [29]. Two populations clélj ggt Vaazlr?iltailcfrf [31:2' ;(;Xlirrnn%rr%v;mﬁaglsngg?ﬁ:::%ﬁﬂszz
evolve in the algorithm, the module (sub-network) popolati yp ! y Y

and the network pobulation. The module population consisﬁgbsets has also been minimized in addition to accuracy and
pop ' pop compactness [45]. To further improve the distinguishabif

again of a number of sub-populations, each of which evoIve§the fuzzy partition, similar subsets are merged, singist

both the structure and weights of a sub-network (a sub- - .
are removed and overlapped subsets are separated in multi-

component of a neural network). The chromosome of th jective optimization of fuzzy rules considering accyrac
network population encodes which sub-components should o P y 9 o

picked out to construct the whole neural network. A stea nd compactness with application to both classification and

state genetic algorithm is used for the network population.greSS'on pr_oblc_ams [88], [89). . . . _
. . L ; Several objectives have to be optimized in extracting logic
For co-evolutionary algorithms, it is not straightforwatal

determine the fitness value of the individuals in the modu[leJIeS from trained neural networks, such as coveragefe.,

population. In [29], several criteria for evaluating theniss number of patterns correctly classified by a rule set, error,

of the modules are discussed. The first criterion is concerng. ™ the number of the pattems that are misclassified, and
compactness [69].

with the performance of the modules, which can again be ;
. o The main advantage of the Pareto-based approach to gen-
determined in different ways. For example, the performance

of a module can be the mean fitness value of a number of bgr ting interpretable fuzzy rules is that the user is able to

neural networks in which the model participates. Altewesj Roose a preferred solution from a number of Pareto-optimal

the performance of a module can be determined by the avergglauuons'

fitness change of the best neural networks when the module .

is replaced or removed. The second criterion is the numder Diverse Ensemble Generation

of neural networks the module is present in, which is to An ensemble of learning models performs much better than
be maximized during the optimization. The third criteriom single learning model, if the members of the ensemble
is the complexity of the module, including the number ofre sufficiently different [35]. However, there is a tradeof
connections, the number of nodes, and the sum of the absoléween accuracy and diversity and it is essential that the



ensemble members are highly diverse and sufficiently aghereC' is the number of connections in the neural network.
curate [12], [75]. Previously, the diversity of the enseenblin this way, the diversity of the networks is achieved in
members has been promoted through the use of different da¢ams of different network structures, which is ensured by
different learning algorithms or different learning maglfl0].  the fact that ensemble members always have different number
An alternative approach is to develop a learning algorithof connections. Simulation results on both regression and
that reduces the training error and minimizes the cor@taticlassification problems show that the approach is effedtive
among the outputs of the ensemble members. Traditionalignerating neural network ensembles. It should be noticed,
the approximation error and the output correlation betwe&iowever, that very simple Pareto-optimal neural networitis w
the ensemble members are summed up to a scalar objectieegenerated whose error on the training data can be very
function [65], [79]. In [12], the Pareto-based approach isrge. These networks should not be included in the ensemble
adopted to generate diverse and accurate ensembles, wifar@dels of high accuracy are targeted. One question that ha

the following two objectives are minimized: not been answered in [49], [50] is how to choose ensemble
N members from the nondominated solutions. We will come back
fi = 1 Z(y(i) — ()2, (14) to this issue again in the case studies.
N i1 The method for multi-objective cooperative co-evolution
N M of the neural networks in [29] has also been applied to
fo = Z(yk (i) — y(i)) Z (y; (i) — y(@)) | ,(15) generating neural network ensembles [30]. In case of erlgemb
im1 k=1 generation, one population evolves single neural netwankis

the other evolves neural network ensembles. For the papnlat
evolving single networks, objectives with respect to the pe
formance of the single network, the performance on difficult
atterns (measured, e.g., by the number of ensembles mis-
cﬁq ssifying it), and the average performance of the ensesnbl
which the network is present can be taken into account for

wherey (i) is the output of thé:-th ensemble membeyyi)

is the output of the ensemble for theth training sample,
N is the number of training samples, aidd is the number
of members in the ensemble. This work has been exten
to a framework for evolving ensembles that is composed

lthree_ Ievels(;)flevoluté]on [13]-|t9|” the first Ie;/el, a mlx_tulrie Oevaluating the performance of the single networks. In aafait
earning modeis, such as mutti-layer perceptrons, r S ncftwork complexity, ability to cooperate, and diversitye ar

gjnctrllon netwc()erTs, aln((jj_?fupport vgc_tor r(;1ach|nes are evog/?gher objectives to consider. In addition to the correlatio
n the second level, different training data sets are Used 00 qre ysed in [12], functional diversity, which measures

evoIvmg the hybrid ensembles produced on the f|r§t level. e average Euclidean distances among the outputs of two
the third level, all subsets of homogenous learning mod

t the hvbrid bl red h q level Bural networks, mutual information between the output of
of the nhybrid ensembles generated on the second 1eVel gifs natworks, and the Yule® statistics [61], which measures

evolved separately to minimize training error and corietat the correlation of the errors made by two models, are also
between the ensemble members. In each iteration, the CUTel} cidered. For the ensemble population, performance and
ensemblg, Wh'9h c<_3n_5|sts c_)f each of the_ different types biguity are two objectives to optimize. It has been shown
models, is arqh_lved if it dominates the previous best enfnfam at the generalization performance of the ensembles geter
based on training error and test error. The ensemble in th ng the multi-objective approach is significantly bettean

ar(:‘g’.if servte% as ;[het f||(nal be”td ensefn;ble.t based | that of the ensembles generated by classical approaches.
imerent idea fo taxe advaniage of Fareto-based leamings , o aseqd generation of ensembles for radial-basis-

for.e-nsemble-geltle.ratm_n has been presented in [2], where ﬁﬂ]ﬁction networks [38] and fuzzy rule systems [44] have also
training data is divided into two sets and the errors on the t‘%een reported

data sets are used as two objectives for learning:

N1
i = Z(y(i)—?/ii(i))Qa (16) E. Miscellaneous
=1 Much early work on Pareto-based multi-objective learning
Noooo PP has been motivated by specific applications, where multiple
o= Z(y(l) —y2(2)%, (17)  objectives have to be considered even without thinking &bou
=1

generalization. For example, in generating the receiver-op

Whereyf are the training data in data sgtj = 1,2, N; and ating characteristics (ROC) curve for classifiers, bothtthe

N, are the size of the data sets. One should take care tpaesitive rate (TPR) and the false positive rate (FPR) areeto b

the neural network model used should be sufficiently small ininimized. In [62], the Niched Pareto GA [39] was employed

order not to overfit both data sets. to generate the ROC curves of neural network classifiers [62]
Another idea suggested for generating neural network €fhas been shown that better results can be obtained by using

sembles is to include the complexity measure as the secahd Pareto-based approach compared to the traditionabeheth

objective [49], [50]: for generating ROC curve usually by changing the threshold
N of the neural classifier after training. Notice that trauiglly,
i = Z(y(i) —y4(0))?, (18) ROC analysis is just a method for evaluating a given classifie
i=1 but in the Pareto-based approach, the classifiers on the ROC

fo = C, (19) curve are different. Most recently, the generalizationligbi



of neural classifiers using the Pareto-based approachto ROx W Y connection weignt
curve generation has been studied in [33], and Pareto-base W« ~ Wk

multi-objective multi-class ROC analysis has been ingad&d

in [22].

Systems control is another area in which multiple objec-
tives need to be satisfied. In [76], Pareto-based evolutjona
programming was used to minimize the undershooting anc
overall tracking error of a neural network based controller . _
A number of Pareto-optimal solutions are obtained and th&: 1- Coding of the structure and parameters of neural arésvusing a

. . cohnection matrix and a WEIght matrix.
control performance of some typical Pareto-solutions are a
alyzed.

Supervised feature selection is one of the machine leamiggeiysters contained in the Pareto-optimal solutionseases
tasks where a tradeoff between the number of selected &alyfom left to right. It is argued that the overall deviation
and the performance of the learning model using the featuigscreases with the increasing number of clusters and wigen th
must be considered. As a result, the Pareto-based mulfgster number is larger than the “true” number of clusters,
objective learning has been investigated [14], [21], [74].  the gain in deviation minimization will be minor while the

cost in connectivity increases rapidly. Thus, the Paretintal

solution that delivers the maximal gain in performance asfai

In this section, we discuss existing research work on Pare{fe increase in the number of clusters provides the correct
based multi-objective unsupervised learning, mainly multhumber of clusters, as suggested in [86].

objective data clustering. In [58], four objectives are sidn
ere_d i_n P_areto-based eV(_)Iutionary data cluste_ring. The fi_rs V. CASE STUDIES: EXPERIMENTAL SETUP
objective is concerned with the cluster cohesiveness, lwhic

favors dense clusters, the second objective is to maxirhize £ Neural Network Model

separateness between the clusters measured by theircgistanFeedforward neural networks with one hidden layer are used
from the global centroid, the third objective is meant tousel in the case studies. The hidden neurons are nonlinear and the
the number of clusters, and the fourth one minimizes the nu@utput neurons are linear. The activation function usedtfer

ber of selected features. Rather than combining the obgecti hidden neurons is as follows:

a Pareto-based evolutionary algorithm has been employed to o
achieve multiple Pareto-optimal solutions. Through analy 9(z) = 1+ |z|

the individual Pareto-optimal solutions, significant feas and In the optimization, the maximum of hidden nodes is set to

an appropriate number of clusters can be identified. 10. Weights are initialized between -0.2 and 0.2
The advantage of Pareto-based data clustering has been ' o

convincingly demonstrated in [34], where the number of clus . . ]
ters can be determined automatically by analyzing the ®ar&: Evolutionary Algorithms for Pareto-Based Learning
front. In this work, two objectives are minimized to refleaeét 1) Coding of Neural NetworksA connection matrix and a
compactness of clusters and the connectedness of data.poiméight matrix are employed to describe the structure and the
The cluster compactness is described by the overall dewiatiweights of the neural networks, see Fig. 1. The connection
of a partitioning and the connectedness checks the degreentatrix specifies the structure of the network, whereas the
which data points in a neighborhood are assigned to the sawwight matrix determines the strength of each connection.
cluster: Assuming that a neural network consists &f neurons in
total, including the input and output neurons, then the size
h > 2 M= culle, (20) " the connecti0?1 matrif i x (M —?— 1), where an element in
N L the last column indicates whether a neuron is connected to
ZZ%j 1 @ bias value. In the connection matrix, if elementf, i =
’ 1,..M,j = 1,...,M equals1, it means that there is a
) ) connection between theth andj-th neuron and the signal
where ' = {C1,C%, ..., Cx} is @ union of all clusterses  fiows from neurony to neuroni. If j = M+ 1, it indicates that
is the center of cluste€,k = 1,2..., K, z; is @ data point ihere is a bias in theth neuron. Fig. 2 illustrates a connection
assigned to clustef’y, , K is the number of clusterd, is the a4y and the corresponding network structure. It can e se
number of data points in a predefined neighborhood,B0d fom the figure that the network has two input neurons, two

XHY T X HY T

Hﬂ|:>x ooo...oio X (0000..00 {00

0305..00 {08
0.60.2..0.0 | 0.1

T

IV. MULTI-OBJECTIVE UNSUPERVISED LEARNING

(23)

CreCux;eCy

f2

i=1 j=1

is defined by: hidden neurons, and one output neuron. Besides, both hidden
B %, if 2; and NN;(z;) are not in the same cluster neurons have a bias.
i 0, otherwise ’ 2) Mutations of Structure and Weightsvolutionary al-

(22) gorithms have widely been employed to optimize both the

where N N;(x;) is the j-th nearest neighbor of data point. ~ structure and parameters of neural networks, often cordbine

The Pareto-optimal solutions trading off between deviatiovith a gradient-based local search method [91]. The frame-
and connectivity are plotted in such a way that the numbenrk for evolutionary multi-objective optimization of neal



each weight is adjusted as follows:

000000
1 O\ 5 et AE-D if 22~V aE® _
000000 iJ ’ Owi; Ow;

— (t) _ _ A1) . gE(t-D gl
110001 - 2 A =94 & A , f doowy <0 (26)
110001 AS-*” , otherwise
4
001100

where0 < £~ < 1 < £T. To prevent the step-sizes from

Fig. 2.  An example of a connection matrix and its correspogdieural becomlng too Iarge or too small, thEy are boundedy?f’ﬁn <

network structure. Aij < Amax
After the weights are updated, it is necessary to check if
Initialization the partial derivative changes sign, which indicates that t
previous step might be too large and thus a minimum has
Combing paren Evaluation been missed. In this case, the previous weight change should
and offspring Terminate be retracted:
Parent
S domi b ° ®) (t-1) o OECTD M
on—dominated J—
- Awgyr = =4y, f dwy, s, <0.  (27)

Structure and parame’
mutation

Recall that if the weight change is retracted in tth iteration,
the 9E™) /ow;; should be set to.

In reference [41], it is argued that the condition for weight
retraction in equation (27) is not always reasonable. The
O Lifetime learning weight change should be retracted only if the partial dériea
changes sign and if the approximation error increases.,Thus
the weight retraction condition in equation (27) is modifaed
follows:

Fig. 3. The framework for evolutionary multi-objective opization of neural (t—1) ()
networks. Aw® — _AED OF OF
ij

Crowding distanc
sorting

Crowded tourname
selection

Offspring

<0and E® > B,

(28)
networks employed in our case studies is shown in Fig. 3 It has been shown on several benchmark problems that the
In comparison to conventional evolutionary optimizatiorg Medified Rprop (termed as Rprop) exhibits consistently
note that only mutation operations are used in the framewd?R{t€r performance than the Rprop algorithm [41].

for varying the structure and parameters of neural networks4) Selection: The most significant difference of multi-
which are specific to neural networks, including inserting @Pi€ctive optimization to scalar optimization is the sétat

new neuron or deleting an existing neuron, adding or rengpviff’€thod. In our work, the selection method from NSGA-I1 [20]
a connection between two neurons. A Gaussian mutationi§s@dopted, which consists of four major steps. First, the

3

6wij 6wij

applied to the weights: parent and offspring populations are combined. This ingplie
that NSGA-II is an elitism. Second, the combined population
Aw;; = N(0,0), (24) s sorted according to the non-dominance ranks. During the

ranking, non-dominated solutions in the combined poporati

wherew,; denotes the weight connecting neuroand neuron are assigned a rank 1, which belongs to the first non-dontnate
i, o, is the standard deviation of the Gaussian distribution.front. These individuals are removed temporally from the
3) Life-Time Learning: After mutation, lifetime learning POPulation and the non-dominated individuals in the rest of
using an improved version of the Rprop algorithm [41] habe popu_latlon are identified, Whlch_con5|sts of the .second
been employed to fine tune the weights. After lifetime Iearr'i‘-on'dOm'na_Ited front of the populanpn aqd are ass'gned a
ing, the fitness of each individual regarding the approxiomat rank 2 This proc_edure repe_ats untl_l all individuals in the
error (f,) is updated. In addition, the weights modified during®MPined population are assigned with a rank from 1o
the life-time learning are encoded back to the chromosonfsSUMing thatz non-dominated fronts can be identified in
which is known as the Lamarckian type of inheritance. total. Third, a crowding distance reflecting the crowdednes

The Rprop learning algorithm [78] is believed to be a fadf the.ne|ghborhood of a pgr‘upglar solution is cglculaféluie
and robust learning algorithm. In each iteration, the wisig crowding distance of solution in the non-dominated front

are modified in the following manner: J, (j =1,..., R) is the distance between the two neighbors of
' solutions! in the objective space:

]

O an(OEDN o) om | _
Awi = S'gn(a Aif' (25) d] =31 filshy) = fulslyo)l, (29)
k=1

Wi

wheresign(-) is the sign functionAz(.lt.) > 0 is the step-size, wherem is the number of objectives in the multi-objective
which is initialized toA, for all weights. The step-size for optimization problem, solutions!_, and s} , are the two



TABLE |

three classes are: Iris Setosa (class 1, represented blyis1),
PARAMETER SETTINGS OF THE ALGORITHMS

Versicolor (class 2, represented by 0), and Iris Virginidags
3, represented by 1). Four attributes are used to predict the

Neural Network Initialization I, . .

aXmam number of hidden neurors 10 iris class, i.e., sepal Iength:(_), sepa}l width ¢-), petal length
initial weights 02~02 (z3), and petal width,), all in centimeters. Among the three

___ Evolutionary Algorithm classes, class 1 is linearly separable from the other tvsseta
population size 100 and class 2 and 3 are not linearly separable from each other.
mutation rate 0.20 . .
o 01 To ease knowledge extraction, we reformulate the data with

Rprop™ Algorithm three outputs, where class 1 is represented by, 0}, class

&t 12 2 by {0,1,0} and class 3 by{0,0,1}.
£ 05
Ao 0.01
Amax 50 VI. CASE STUDIES: RESULTS
Amin 10—6

Based on the multi-objective evolutionary algorithm de-
scribed in the previous section, we show in this section how
one can benefit from Pareto-based multi-objective leariivey

enerate a number of Pareto-optimal neural network models
?ﬁ‘ft trade off between the accuracy on training data and the

neighboring solutions of solution;{. A large distance is
assigned to the boundary solutions in each non-domina

front. Here, the larger the crowding distance, the less dealv network complexity. We show on the three benchmark prob-

arqund the solutions; it is. Fourth, a tournam(_ent selection|ems how to identify interpretable neural networks from evhi
which leverages between non-dominated ranking and crowgs o standable logic rules can be extracted

fth luti h h K th ith -optimal solutions. Afterwards, we compar
If the two solutions have the same rank, the one wit firee methods for generating neural network ensembleg usin
larger crowding distance wins. If the two solutions have ﬂ}ﬁe Pareto-based multi-objective learning, which are sstggl

same rank and the same crowding distance, choose a W'n&?rAbbass [2], Chandra and Yao [12] and Jin et al [50]
randomly. This procedure continues until the required neimb ’ '

of offspring is generated.
The parameter settings used in the simulations are summa-ldentifying Interpretable Models

rized in Table I. As suggested in [53], interpretability of neural networks i

mainly determined by their complexity. The simpler a neteyor
C. Benchmark Problems the easier it is to understand the knowledge embedded in the

1) Wisconsin Breast Cancer Datafhe Wisconsin breast neural network. This is also true if we look at the definition
cancer diagnosis problem in the UCI repository of machif interpretability of fuzzy systems [46], [47].
learning database was collected by Dr. W.H. Wolberg at theWhen we minimize both accuracy and complexity of the
University of Wisconsin-Madison Hospitals [77]. The benchnetworks in a Pareto-based approach, we are able to achieve a
mark problem contains 699 examples, each of which hashumber of Pareto-optimal solutions with a complexity rangi
inputs and2 outputs. The inputs are: clump thickness)( from very simple networks to highly complex ones. We
uniformity of cell size ), uniformity of cell shape #;), argue that the simple Pareto-optimal neural networks on the
marginal adhesiona(), single epithelial cell sizea), bare Pareto front are actually the interpretable models fromctvhi

nuclei (z), bland chromatin«;), normal nucleoli ¢s), and understandable logic rules can be extracted. Before prayid
mitosis @y). All inputs are normalized, to be more exactexamples on the benchmark problems, we first briefly describe

x1,..,x9 € {0.1, 0.2, ...,0.8, 0.9, 1.0}. The two outputs the rule extraction method we adopted in this case study,
are a complementary binary value, i.e., if the first output,is Which is similar to the one used in [85]. Consider a simple
which means “benign”, then the second output.i©therwise, neural network with one single input, one hidden neuron, and
the first output i), which means “malignant”, and the secon@ne output neuron, refer to Fig. 4. For binary classification
output is1. Therefore, only the first output is used. problems, we usually assume that an instance is labeled as
2) Diabetes Data:The Pima Indians Diabetes Data consistélass 1 if the output is smaller than 0.5. Otherwise, it iela

of 768 data pairs withg attributes normalized betweet as class 2. To have more confidence in decision-making, we
and1 [77]. The eight attributes are number of pregnanf)( can also define a stronger criterion, for instance:

plasma glucose concentratian§, blood pressurexs), triceps

skin fold thicknessi,), 2-hour serum insulina(;), body mass I y = 0.75 then class 1;

index (z), diabetes pedigree function) , and age £s). In If y <0.25 then class 2;

this database, 268 instances are positive (output equalsdl) If 0.25<y<0.75 undecided.

500 instances are negative (output equals 0). (30)

3) Iris Data: The third data set we looked at is the lIris
data [77]. The data set contains 3 classes of 40 instandeshe following, we will show how to derive rules from neural
each, where each class refers to a type of iris plant. Thetworks using the defined thresholds. Let the output of the
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hidden neuron be;, then a rule that defines class 1 should

satisfy: Fig. 5. A typical Pareto-front obtained for the Breast Carigata composed
w3 z +wy > 0.75. (31) of 41 solutions.

Then we get 1.0 1.0

2> (0.75 — wa) w3, if wy >0 \1‘2.71 \i.ls
z < (075 — w4)/w3, if wy <0 ~0.537

O—O—>» vy
Consider the first case and defif®e75 — w4)/ws = 61 > 0,
we have Fig. 6. The simplest Pareto-optimal network model for the&Bt Cancer
w1 T+ wa 0. (32) Data, which exactly learns the mean of the training data.
1+ |wyz+ws| —
Sincef; > 0, wy x + wp must also be larger than zero to ) o )
satisfy the conditions for class 1. Consequently, the most important feature for determining whether an imsta
Wi T 4w is benign or malignant. The MSE of the network (€)51.
1172 > 04, (33) From the network, the following two rules can be extracted
q TwLT Wy using the previously described rule extraction method.
an
0, — 1—6 ] If 2o <0.2, then beni
o T w(l=0) wi(1—61) >0, (34) 2 nian
wy (1 —6h) If xzo > 0.4, then malignant
6‘1 — ’U}Q(l - 91) .
TS =) if wi(1—61) <0. (35)  with these two simple rules, the correct classification rate

(36) is 97.0% on 602 instances with the rest 97 instances undeter-
) o _ _ mined, recalling that the thresholds are se®)t65 and0.25
Let fiow28) — g, either of the following two rules can to make sure that the decision is confident enough. However,

wi (1 ) .
be extracted that defines the condition for class 1: if we set the classification threshold @5, the following rule
If > 05, then class 1 if wi(1—61) > 0 can be obtained with a correct classification rat®@nfL% on
=7 St ! ’ all instances.
If £ <6y,thenclass 1 if wi(1—61) <0,
Note, however, that it can happen that no rule can be If 22 < 0.3, then benign

extracted from the neural network. For instance/4f ws z + otherwise malignant.
wy < 0.75. In this case, the neural network is not able to
separate the two classes.

1) Wisconsin Breast Cancer DataFor rule extraction’ The next Simp|e Pal’etO-Optimal neural network has five
all available data are used for training the neural networkonnections, in which both:; and z¢ are chosen as input
The Pareto-optimal solutions from a typical run are plottegatures. The MSE of the model &029. From this neural
in Fig. 5. As we will show later on, the simplest Paretot€twork, the following two rules can be extracted.
optimal neural networks achieved from different runs are .
almost identical. If 1425 + 8.55x¢ < 5.81,then benign

Let us now look at the simplest Pareto-optimal neural If 1425 + 8.55 6 > 7.55, then malignant

networks. The simplest neural network has 3 connections in o _
total, in which no input is selected. In other words, the inpu Using these two rules, the correct classification rageig’%
of the neural network is constant, refer to Fig. 6. Interegyi, ©On 680 instances with the rest 19 instances undetermined. If

this neural network learns exactly the mean output of tiBe threshold is set to 0.5, the following rule can be obtine
training data. with a correct classification rate 66.4% on all instances.
The second simplest network is presented in Fig. 7, which If 14 855 o < 6.45 then beni
has 4 connections. Of the 9 input attributes, only(unifor- T2+ 89926 < 0.49, e.n enlqn
mity of cell sizes) is selected, which implies that might be otherwise malignant
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Fig. 9. A typical Pareto-front obtained for the Diabetes &abmposed of
Fig. 8. The Pareto-optimal network model with five connewidor the 37 solutions.

Breast Cancer Data.
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The same empirical study is conducted on the Diabetes
Data. The achieved Pareto front is shown in Fig 9. Fig. 10. The Pareto-optimal network model with four coniwett for the

Same as the Breast Cancer Data, the simplest Pareto-optiRi&ietes Pata.
solution contains 3 connections and learns the mean of the
output value. The two simple Pareto solutions with at least o 1) Iris Data: The Pareto front from the Iris Data is pre-
attribute chosen are plotted in Fig. 10 and Fig. 11, respeigti  genteq in Fig. 12, which consists of 20 solutions (two Pareto
The MSEs of the two simple network models are 0.17 anghtimal solutions have the same MSE and complexity). Again,

0.16. . . _the simplest network with seven connections approximaies t
From the neural network with four connections, see Fig. 1fhean value of the output.
the following two rules can be extracted: The two Pareto-optimal networks with eight connections are

plotted in Fig. 13 and Fig. 14, respectively. From the figures
we note that only one of the attribute (eithes or x4 is

If 22 < 0.83, then positive chosen). From the network in Fig. 13, the following rule can
If 25 > 0.56, then negative be extracted.

B_y_applying th_e above tW(_) rules, we are ap!e tp make a If 25 < 2.4, then Iris Setosa (39)
decision on 413 instances with a correct classification oate
85.4%. The rest 355 instances cannot be determined with thesé&imilarly, the following rule can be extracted form the
two rules. network in Fig. 13:
If we set the threshold to 0.5, the following rule is obtained
If 24 <0.80, then Iris Setosa (40)
If 2o <0.72, then positive

. . It can be easily verified that both rules are able to separate
otherwise negative.

37 Iris Sesota from the other two classes correctly.
The correct classification rate using the above rulgis% _The neural ngnNork modell with 13 connect_u_)ns.ls shown in
Fig. 15. Interestingly, only, is used for classification. From

on all 768 instances, his neural network, we can extract the following three sule
The following rules can be obtained for the neural networtk ' 9

in Fig. 11, when the threshold is set to 0.75 and 0.25.
If z4 <0.6, then Iris Setosa

If 1.1 <x4 <1.6, then Iris Versicolor
If x4 > 1.7, then Iris Virginica

If 3.77x9 4+ 2.67x¢ < 4.54, then positive
If 3.77 x5 4+ 2.67x¢ > 3.46, then positive

With these two rules, the correct classification ratefist’% The correct classification rate &1.3% on all instances.

with the rest 308 instances undecided.. If the thresholdtis $yte that the classification rate is almost the same when the
to 0.5, we then have the following rule: threshold is set to 0.5 on the Iris Data.

If 3.77x9 + 2.67 x4 < 3.97, then positive

otherwise negative. (38) C. Discussions

From the three benchmark problems, we can conclude
From the above rule, the correct classification rate on alat by trading off accuracy against complexity, the Pareto
768 instances i§7.0%. based multi-objective optimization algorithm is able todfin
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Fig. 13. The Pareto-optimal network model with eight cotioes for the
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Fig. 14. The Pareto-optimal network model with eight cotioes for the

Fig. 12. A typical Pareto-front obtained for the Iris Datamqmosed of 20 Iris Data. In this modelz4 is chosen as the input.

solutions.

work on determining the correct number of clusters in multi-
the simplest structures that solve the problem best. Bgsidebjective data clustering [34], the appropriate compiexit
the simple Pareto-optimal networks are able to capture tiie data can be determined by thermalized performance
main knowledge embedded in the data so that interpretablgn (NPG):
logic rules can be extracted. Compared to other methods used MSE. — MSE:
in extracting rules from trained neural network [56], [80]e NPG="TTL """
Pareto-based approach is very straightforward and efficien Ci =G
Besides, the multiple interpretable yet Pareto-optimeitsmns where M SE;, MSE;, and C;,C; are the MSE on training
provide additional knowledge that can help the user undedst data, and the number of connections of ttth andj-th Pareto
the problem, as we have shown on the three benchmayitimal solutions. When the solutions are ranked in the rorde
problems. of increasing complexity, the following relationships tiol

Ciy1. > Gy,
MSE;,, < MSE,.

; (41)

D. Model Selection by Analyzing the Pareto Front

Model selection is a well studied topic in machine learn-
ing [11], [36]. If sufficient data are available, the bestaggeh We hypothesize that if the model complexity is lower than
to model selection is to split the data into three subsetgrevhthat of the data, an increase in complexity will result in
the first subset (training data) is for constructing modts, significant increase in performance (NPG). As the complexit
second one (validation data) is used to estimate predicticontinues to increase, the NPG decreases gradually to zero.
error for selecting a model, and the third one (test data) fét this point, the complexity of the model matches that of the
accessing the generalization error of the selected model.data. Further increase in complexity will probably bringoab
case of insufficient data, which is often the case in realldvorfurther enhancement in performance on the training data, bu
applications, either analytical methods such as the indtion- with the increasing risk of overfitting the training data.
theoretic criteria [11], [36], e.g., the Akaike’s Inforniat We are now going to verify empirically the suggested
Criterion (AIC) and the Bayesian Information Criterion (Bl method for model selection on the three benchmark problems.
or resampling techniques like-fold cross-validation [36], are In this part of the simulations, available data are splibiat
used. training data set and a test data set. For the Breast Cancer

In this section, we show that the Pareto-approach to hdbata, 525 instances are used for training and 174 instances
dling the accuracy-complexity tradeoff provides an engpi;i for test. The training set of the Diabetes Data contains 576
yet interesting alternative to selecting models that hasedg samples, and the test set 192 samples. Finally, 120 ing&ance
generalization on unseen data. The basic argument is thatadhe used for training and the rest 30 instances for test for th
complexity of the model should match that of the data to H&s Data.
learned and the ability of the learning algorithm. When the The Pareto fronts generated from two independent runs on
complexity of the model is overly large, learning becomes sethe three benchmark problems are presented in Fig. 16, Fig. 1
sitive to stochastic influences, and results on unseen d#ita \wand Fig. 18, respectively. The dots denote the results on the
be unpredictable, i.e., overfitting can happen. Inspiredhlgy training data set, while the circles the results on test.deia
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Fig. 18. Accuracy versus complexity of the Pareto-optin@ltsons from

NPG from the two independent runs for the three problerﬁg&independent runs: Iris Data. Dots denote training datel circles test
are plotted in Fig. 19, Fig. 20 and Fig. 21, respectively.
We first analyze the results on the Breast Cancer Data. From
Fig. 19, we notice that the NPG decreases to 0 after the figsinstruct an ensemble. This topic will be discussed in thx¢ ne
peak in performance gain when the number of connectiogction.
(NC) is between 12-14. Meanwhile, it can be seen from
Fig. 16 that the learning performance on the training datnfr E. Generating Diverse and Accurate Ensemble Members
different runs begins to fluctuate when the NC is larger than | this section, we compare three Pareto-based multi-
17. These two facts suggest that the appropriate complexiiyiective approaches to ensemble generation. The first ap-
of the neural network for this problem is between 12 and 1§,4ch is presented in Abbass [2], where the accuracieson tw
We can see from Fig. 16 that the error on the test data is Wglita sets serve as two objectives. The second one is describe
controlled when the complexity is in the suggested range. ;, chandra and Yao [12], where a trade off between accuracy
Similar observations can be made on the Diabetes Data af}}§ diversity is taken into account to generate ensembles.
the Iris data. For the Diabetes Data, the NPG first drOpS tome final approach studied in the section is Suggested in
when the NC of the neural networks around 10. In addition,#n et al [49], [50], in which the accuracy and the number
discrepancy between the two runs becomes large after the BiCconnections of the neural network are adopted as two
reaches 13. From these two observations, we conclude #atdBnflicting objectives. The experimental setup is the same a
complexity of the neural network on the Diabetes Data shoujgl the previous studies, except that in the Abbass’ approach
be around 8-10. For the same reasons, the NC of the neyrd training data of the three benchmark problems are gquall
network should be between 16 and 18 for the Iris Data.  dijvided into two data sets so that the approximation errars o
The proposed method for model selection is empirical anlde two data sets can be computed as the two objectives.
needs to be verified on more problems. For clarity, we only Another issue, which has not been explicitly addressed in
plot results from two independent runs in the above analysesbass [2], is the life-time learning under the context of
The results of 10 independent runs are plotted in Figs. 28wilti-objective learning. Note that RProp is adopted as the
30. From these results, we can confirm that the generalizatiife-time learning algorithm, which works for single objae
performance of the neural network is good when the learnigarning only. This is not a problem in Chandra’s as well as
performance on the training data is stable in different runsin Jin's approach in that the lifetime learning is applied to
It is difficult to select one single model using our empiricabne of the objective only. However, when both objectives are
method. Instead, it will be more reliable if multiple modelgpproximation errors, multi-objective lifetime learnisgould
of potentially good generalization performance are chdasenbe applied, which is not straightforward for gradient-lthse
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Fig. 22. Achieved non-dominated solutions using Abbagsg@ach: Breast

Cancer Data. (a) Lifetime learning is switched between twatadsets. (b)

Lifetime learning applied on the combination of the data.

learning algorithms. In Jin et al [52], it is suggested that
the lifetime learning should be switched randomly betwedfrom the figures, we find that the achieved Pareto-optimal
the two objectives to achieve diverse Pareto-optimal &mist network models tend to overfit the data regardless the diyers
In this study, lifetime learning is switched between the twparticularly on the Diabetes Data and the Iris Data.
objectives at an equal probability. For comparison, sitiores Finally, we take a look at Jin et al's approach, which ensures
are also conducted where the lifetime learning is of singtBe diversity of the ensemble members by generating neural
objective nature, i.e., the RProp is applied on the comlanat networks with different complexities. The results are prasd
of the two data sets. in Fig. 28, Fig. 29, and Fig. 30, respectively. From the figure
The Pareto-optimal solutions from 10 runs on the Breaste can see that in all the three examples, the MSE on the test
Cancer Data are plotted in Fig. 22(a), where the lifetimgata is well constrained when the complexity of the neural
learning is switched between the two data sets, and Fig)22(hetwork is appropriately low. As suggested in the previous
where the lifetime learning is applied on the combination afection, the required complexity that matches the data ean b
the two data sets. In the figures, the dots denote the resultsestimated using the normalized performance gain. By chgosi
the training data and the circles the results on test datan Frthese networks as ensemble members, we are able to have a
these results, we can make the following observations, Bys neural network ensemble whose members are both accurate
switching the lifetime learning between the two data setsiem and diverse. The diversity of the networks is guaranteed by
diverse solutions can be achieved. Second, good perfoenatie difference in the complexity of the neural networks.
on the training data does not ensure good performance orComparing the three Pareto-based approaches to ensemble
the test data. As suggested in [75], ensemble members sha#dderation, we conclude that it is not straightforward to
be both accurate and diverse. In other words, ensemb&é®mose ensemble members from the achieved Pareto-optimal
whose members are of poor accuracy cannot perform wedblutions for constructing ensembles in Abbass’ as welhas i
This indicates that if the Pareto-optimal solutions areduse Chandra and Yao’s approaches. To ensure good performance
ensemble members, the quality of the ensemble will be poon unseen data of the ensemble, additional methods such as
Third, lifetime learning on the combination of the data tesu cross-validation must be employed. In contrast, it is nathe
in serious overfitting. easy to identify neural networks that can be used as ensemble
Very similar results are obtained for the Diabetes Data amiembers when Pareto-optimal solutions are generated using
the Iris data, which are plotted in Fig. 23 and Fig. 24. Agaidjn et al' approach. Another important point is that in Akdas
it is difficult to choose proper ensemble members from ttend Chandra and Yao's approaches, the achieved solutions
Pareto-optimal solutions. from the 10 independent runs are rather different along the
The simulation results using Chandra and Yao's approasimole Pareto front, which means that these two methods are
for the three benchmark problems are presented in Fig. 2fuite sensitive to stochastic influences. Opposite to tihat,
Fig. 26, and Fig. 27, respectively. Again, the results omsults from the 10 independent runs are quite stable intJin e
the training and test data are denoted by dots and circlas approach when the complexity is low.
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VII. SUMMARY AND OUTLOOK . _ _ o
Pareto-based approach to machine learning provides uge%rmng. One mtgrestmg _que_stlon is how the F.’areto-bas_ed
S’;\pproach to machine learning influences the learning behavi

new point of view for studying machine learning problem h fthe | ) 61 1261, It has b
By means of Pareto-based optimization, we are able to g:?ng"_t_ € property 0 t_e earning cur_ve_[ ].' [26]. It has tbee
pirically disclosed in general optimization problematth

a deeper insight into different aspects of machine learnin b ¢ local ; b duced b )
and thus develop new learning algorithms. The power of tfjge number of local optima can be reduced by converting

Pareto-based approach is made more attractive thanks to %t"nggdal ;mg:cle Ob]eCt'\t’)T probr:emshmtoh multl-obl{]aﬂl
successful application of evolutionary algorithms to Rare pnes[ ] [59]. | we are able to show that t '€ Same happens
based multi-objective optimization. in machine learning, it is then more convincing to argue

This paper provides an up-to-date yet not necessarily Cotpgt Pareto-based multi-objective learning is able to wupr

plete review of the existing work on Pareto-based multi€arning pgrformance. . .
objective learning algorithms. We illustrate, on three dfen Most topics discussed so far are mainly concerned with the

mark problems, how we can address important topics a;-v_arlance_tradeoff n machine 'earf“”g- Another intqor
fopic in machine learning, as well as in human memory sys-

machine learning, such as generating interpretable mod . _ - S
g g g P m tems, is the plasticity-stability tradeoff, which is alsadwn as

model selection for generalization, and ensemble geoerati line | ing 1181, i tal | ing 87 tashi
using the Pareto-based multi-objective approach. We sh?@v"ne earning [18], incremental learning [87] or cataphic

that the simplest Pareto-optimal model without any inp gerzgettm%d[ﬂ]. A prehmwarfy attempt h.as t;eelr; madi n
selected approximates the mean of the training data, wl ] to address catastrophic forgetting using the Parae:

the simple Pareto-optimal models with one or two mo&pproach. It ha_ls_ bee_n show_n t_hat the mu_lti-objectiv_e a'“’?*"oa
important features selected capture the essential kngwleﬂfS _mc;_re prom|tsmg Itn Tarllle\{ljatlng ff(;rgetttmg i_hanl_tlts ;ggle
in the data. In addition, we demonstrate empirically that Jective counterpart. The idea ot mareto-optimality Clo a

analyzing the Pareto-optimal solutions in terms of perfamge elex;ended t? thte Stl:(dy on dc;orl?]ectlvny an: comtpleﬁ;/ [41.
and complexity, and the learning performance w.r.t. mod ] of general networks, and to the research on structute an

complexity in independent runs, we are able to choose mod Qctlonahty of spiking neural networks [55], [68].
that are most likely to exhibit good performance on unseen ACKNOWLEDGMENT
data. Finally, we compare three Pareto-based approackies to
generation of neural ensembles and indicate that the metho
by trading off accuracy and complexity can provide reliable REFERENCES
results.
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