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Abstract. We recently proposed a recurrent neural network model for
the development of dynamic neural fields [1]. The learning regime in-
corporates homeostatic processes, such that the network is able to self-
organize and maintain a stable operation mode even in face of experience-
driven changes in synaptic strengths. However, the learned mappings
do not necessarily have to be topology preserving. Here we extend our
model by incorporating another mechanism which changes the positions
of neurons in the output space. This algorithm operates with a purely
local objective function of minimizing the wiring length and runs in par-
allel to the above mentioned learning process. We experimentally show
that the incorporation of this additional mechanism leads to a significant
decrease in topological defects and further enhances the quality of the
learned mappings. Additionally, the proposed algorithm is not limited to
our network model; rather it can be applied to any type of self-organizing
maps.

1 Introduction

Self-organizing maps (SOMs) describe a group of methods in the domain of
artificial neural networks. They provide learning algorithms for mapping high-
dimensional input data onto a (discretized) low-dimensional output space,
thereby pursueing two different goals. Firstly, SOMs perform vector quantization
and therewith aim at minimizing the quantization error. Secondly, they strive for
achieving topology preserving mappings by incorporating topological constraints
into the vector quantization process.

For technical applications the topology preserving properties of SOMs are of
particular interest. They have been used in the domains of data compression [2],
medical diagnosis [3], or the monitoring of industrial processes [4]. Unfortunately,
SOMs tend to privilege the minimization of the quantization error over topol-
ogy preservation. For this reason, various mechanisms for improving topology
preservation has been suggested [5,6,7].

Dynamic neural fields are special types of SOMs, which are particularly suited
for modeling cortical development [8]. However, their use in technical applica-
tions is very limited, which is mainly due to stability issues. In order to circum-
vent this problem, we recently proposed a recurrent neural network model for the
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594 C. Gläser, F. Joublin, and C. Goerick

Fig. 1. The structure of the recurrent neural network model

homeostatic development of dynamic neural fields [1]. It is able to self-organize
while maintaining a stable operation mode. However, the mappings learned by
the model do not necessarily have to be topology preserving.

Here we will extend our model by incorporating another process exclusively
dedicated to topology preservation. More precisely, we consider SOMs to be
elastic nets with neighborhood relations between units being subject to change.
We will show that a mechanism where units adapt their positions in the out-
put space based on the concept of wiring length minimization is suitable for
enhancing topology preservation. Furthermore, the method is not limited to our
network model, rather it can be applied to any type of SOM.

The remainder is organized as follows. In section 2 we will shortly review
our previously proposed network model. Next, we will propose a concept for
enhancing topology preservation, compare it to existing approaches, and suggest
a concrete implementation of it. After that, an experimental evaluation of the
method will be given in section 4. The paper is finalized by a conclusion.

2 The Network Model

The recurrent neural network we presented in [1] is composed of excitatory units
E and inhibitory units I, both being initially arranged on a 2-dimensional grid
mimicking the neural tissue. The wiring of the network is show in Fig. 1. Afferent
projections to excitatory units provide the input to the neural field. Furthermore,
the units are laterally connected such that E-cells excite other E-cells as well as
I-cells. In turn, E-cells receive inhibitory projections originating from I-cells.

The membrane potentials of excitatory and inhibitory units are denoted by
the variables u and v, respectively. We will use i for specifying the unit located
at position xi of the cortical plane. The spatio-temporal evolution of the activity
in the neural field following the presentation of a stimulus s can be described
by the differential equations (1) and (2), where τE and τI are time constants,
hE

i and hI are the resting potentials, and w∗
ij denotes the synaptic weight of a

connection from unit j to unit i, where ∗ ∈ {EE, EI, IE, EXT } specifies the
type of connection.
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τE
dui

dt
= −ui +

∑

j

g(dij) · wEE
ij ·f(uj) −

∑

j

wEI
ij ·f(vj) +

∑

j

wEXT
ij · sj + hE

i (1)

τI
dvi

dt
= −vi +

∑

j

g(dij) · wIE
ij ·f(uj) + hI (2)

Here, f is a monotonically increasing transfer function defining the relation be-
tween the membrane potential and the firing rate of a unit. We used a sigmoidal
function with θ and γ denoting the threshold value and the gain factor, respec-
tively. Additionally, we introduced a function g, which modulates the efficacy of
excitatory lateral connections depending on the distance dij between the pre-
and postsynaptic unit positions. The function g was chosen to follow the Gaus-
sian distribution with a mean of 0.

f(z) =
1

1 + exp (−γ(z − θ))
(3)

Thus, we define that excitatory lateral connections between units within a
local neighborhood are more efficient than those between far-distant units. It
is, however, important to note that this is a fundamentally different approach
from previously published network models. There the synaptic weight values of
lateral connections are chosen as a function of the distance between the pre- and
postsynaptic units, by which a topology on the neural tissue as well as within the
feature space is defined. In contrast, we introduce a distance-dependent mod-
ulation of synaptic efficacy, but do not make any assumption on the synaptic
weight values themselves. Following this argumentation, g could be understood
as a physical constraint. The synapse location-dependent integration of exci-
tatory synaptic input as it is carried out by passive dendrites is one possible
interpretation [9].

A direct consequence of this is that large synaptic weight values could com-
pensate for the distance-dependent modulation of connection efficacy. Thus, the
mapping described by the neural field does not necessarily have to be topology
preserving, that is nearby units having similar receptive fields. In the following
we will propose an additional mechanism which improves the topology preser-
vation of the learned mappings.

3 Topology Preservation

3.1 Existing Approaches

Several proposals have been made on how the topology preserving abilities of
SOMs could be enhanced. Most of them rely on a fixed metric (fixed neigh-
borhood relations) defined in the output space and try to dynamically adjust
the width of the active neighborhood based on global heuristics or more sophis-
ticated local measurements like input novelty [6], topology defects [5], or the
degree of local folding [10]. Other approaches aim at achieving a reasonable bal-
ance between the two objective functions of minimizing the quantization error



596 C. Gläser, F. Joublin, and C. Goerick

Vector Quantization

Topological
Constraints

input
space I

output
space A

(a)

Vector Quantization

input
space I

output space A

Topology Preservation

(b)

Fig. 2. An illustrative comparison between convential SOM learning algorithms (a)
and the proposed system for enhancing topology preservation of SOMs (b)

and topological defects by differently weighting their influence to the learning
algorithm [7]. Only a few approaches try to change the metric defined in the out-
put space. They mostly concentrate on building tree-like neighborhood relations
by hierarchically clustering codebook vectors [11].

3.2 Topology Preservation Via Wiring Length Minimization

According to Fig. 2(a) SOMs can be considered to be a group of methods for
vector quantization, insofar as the codebook vectors of their units are adapted
in order to minimize the quantization error. Thereby, topological constraints,
which are defined by the units’ neighborhood relations, are incorporated. By
doing so, SOMs aim at finding a reasonable balance between the two objec-
tives of minimizing the quantization error and minimizing topological defects
of the mapping. Nevertheless, when mapping high-dimensional input data to a
low-dimensional output space, the requirements described by the two objective
functions most often cannot be simultaneously satisfied. In these cases, SOMs
privilege vector quantization at the cost of an increase in topological defects.

We propose to release (or at least to relax) the topological constraints from
the process of vector quantization by incorporating another process which is
exclusively dedicated to topology preservation. This means that the objective
function of minimizing topological defects is no longer implicitly defined by in-
corporating topological constraints into the vector quantization method; rather
it is explicitly defined by a separate process running in parallel to vector quanti-
zation. Therefore, we propose to add another process to the usual SOM learning
algorithms for vector quantization which changes the positions of the units in
the output space based on the result of vector quantization, such that topology
preservation is improved (see Fig. 2(b)). This means that, in the output space,
a fixed metric is used (e.g. Euclidean distance), but the neighborhood relations
between units are changed by adjusting their positions.
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Therewith, SOMs can be seen as elastic networks of laterally connected units.
Elastic means that individual units are placed in the output space, which is a
continuous (physical) substrate with a fixed metric, and that individual units are
able to dynamically adjust their positions on this substrate. More precisely, units
are interconnected in a way, that the strength wij of the connection between two
units i and j denotes the similarity between the codebook vectors wi and wj of
the two units.

wij ∝ 1
‖ wi, wj ‖I

(4)

There ‖ · ‖I is the distance metric of the input space I.
We propose that the process of adjusting the position of units in the out-

put space is based on an individual unit’s objective function of minimizing the
weighted wiring length of its connections with other units of the SOM. Let xi

denote the position of a unit i in the output space and ‖ · ‖A be the distance
metric of the output space. Then the objective function of a unit i for changing
its position in the output space can be formulated according to (5), which is
a purely local objective function. Alternatively, the problem can be formulated
using a global objective function according to (6), which states to minimize the
total weighted wiring length of the elastic network.

∑

j

wij · ‖ xi, xj ‖A −→ min (5)

∑

i

∑

j

wij · ‖ xi, xj ‖A −→ min (6)

3.3 Implementation of Wiring Length Minimization

If we apply the above mentioned framework for topology preservation via wiring
length minimization to our network model described in section 2, we first have
to chose appropriate values for the connection strengths of the elastic network.
One possibility would be to chose them according to (4). However, in the case of
developing neural fields with learned lateral connections as those featured by our
network model, one can directly use the synaptic weight values of the within field
connections. This is possible, because the synaptic weights of lateral connections
are a measure for the similarity between the receptive fields of different units. If
we do so, we obtain the following objective functions of individual units, where
(7) and (8) hold for an excitatory unit i and an inhibitory unit i, respectively.
Furthermore, d∗ij with ∗ ∈ {EE, EI, IE} denotes the distance between units i

and j according to the distance metric of the output space ‖ · ‖A.

∑

j

wEE
ij · dEE

ij +
∑

j

wEE
ji · dEE

ji +
∑

j

wIE
ji · dIE

ji −→ min (7)

∑

j

wIE
ij · dIE

ij +
∑

j

wEI
ji · dEI

ji −→ min (8)
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Now, multiple optimization techniques could be applied in order to minimize
the wiring length. In example unit positions could be adapted via gradient de-
scent or evolutionary strategies. Here, we follow another approach in which we
interpret connections between units as springs with spring constants chosen ac-
cording to the strengths wij of the connections. Following this argumentation,
connections of the elastic net exert attractive forces on units in a way that the
force F+

i,ij exerted on a unit i by a connection between individual units i and j
increases with an increase in the connection strength wij or an increase in the
distance dij between the two units and vice versa.

F+
i,ij ∝ wij · dij = wij · ‖ xi, xj ‖A (9)

A trivial solution of (7) and (8) would be to set the distances between individ-
ual units to 0. The approach outlined above would converge to this solution as
well. This would mean that all units coincide at the same position in the output
space. For this reason, we additionally consider repulsive forces between units of
the elastic net, such that the repulsive force F−

i,ij exerted on a unit i increases
when the distance dij between the units i and j decreases and vice versa. The
resulting physical interaction between units is illustrated in Fig. 3.

F−
i,ij ∝ 1

dij
=

1
‖ xi, xj ‖A

(10)

Additionally, it is important to note that in our model repulsive forces only
exist between pairs of excitatory units as well as between pairs of inhibitory
units, whereas there is no repulsive force between an excitatory and an inhibitory
unit. This is reasonable when considering the output space to be the cortical
tissue with excitatory and inhibitory units being located in different layers of
it. Therewith the positions of excitatory and inhibitory units can be updated
according to the following equations:

ΔxE
i ∝

∑

j

F+,EE
i,ij +

∑

j

F+,IE
i,ij +

∑

j

F+,EI
i,ij +

∑

j

F−,EE
i,ij (11)

ΔxI
i ∝

∑

j

F+,IE
i,ij +

∑

j

F+,EI
i,ij +

∑

j

F−,II
i,ij (12)
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4 Experimental Results

In order to evaluate the presented method for improving the topology preser-
vation of neural fields, we carried out an experiment in the domain of reference
frame transformation. More precisely, we investigated the use of our recurrent
neural network model for 1-dimensional eye-hand coordination. In order to ro-
bustly perform eye-hand coordination, an animal has to be able to transform
between the different reference frames, an ability usually attributed to an in-
termodal body-calibration obtained in the early stages of development. The key
aspect there is that simultaneously present stimuli become linked together and
can later be used for the transformation from one modality into another. Here we
want to use our network for modeling the calibration process during early self-
exploration. Therefore, we have chosen three stimuli s1,s2,s3 with s1, s2 ∈ [−1, 1]
and s3 = s1 − s2, where s1 and s2 mimic the gaze and hand position in a
body-centered reference frame, respectively, as well as s3 representing the hand
position in eye-centered coordinates.

Each of the three stimuli s1,s2,s3 is represented by a population code com-
posed of 21 neuron responses, resulting in a total of 63 inputs to the neural field.
Target gaze- and hand-positions (s1, s2) were chosen randomly. The recurrent
neural network is composed of 100 excitatory units and 100 inhibitory units,
both initially being arranged on a 10x10 grid. The synaptic weight values of
afferent projections to the field wEXT

ij were initialized with small random values.
Weights of lateral connections were initialized uniformly. In order to evaluate
the effect of topology preservation via wiring length minimization (WLM), we
compared the results obtained by two simulation runs; one run using WLM and
one run not using WLM.

Firstly, we investigated if our interpretation of a neural field to be an elastic net
with lateral connections exerting attractive forces on units is a suitable choice for
minimizing wiring length. Therefore, the total weighted wiring length (see (6))
was calculated and normalized by the mean distance between units. Fig. 4(a)
shows the temporal evolution of this measure for two developing neural fields,
one using the process of WLM and one not using WLM. As can be seen the
process of WLM eliminates the initial increase in total wiring length, which can
be attributed to an initial rough adjustment of synaptic weight values. Later
in training, the competitive nature of the learning regime incorporated by our
network model induces a ”die off ” of many synapses, which results in a decrease
in total weighted wiring length for both simulation runs. However, the neural field
using WLM converges to a smaller value, which shows that our implementation
is a suitable choice for WLM.

Secondly, the way how neurons change their positions in the output space will
be illustrated. For the sake of simplicity we will concentrate on excitatory units.
Therefore, Fig. 4(b) shows the starting and end positions of individual units.
The neuron traces of four exemplarily chosen units are additionally shown. They
illustrate that some units change their positions considerably. Furthermore, the
traces indicate that position changes are large during the initial training phase,
whereas units maintain their positions at the end of training.
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Fig. 4. (a) The total wiring length of the elastic net as a function of training time. (b)
The positions of excitatory units before (open circles) and after training (filled circles)
using WLM. Additionally, the traces of 4 exemplarily chosen units are shown (dotted
lines).

The results presented so far focused on how WLM is achieved, however, they
do not demonstrate the suitability of WLM for improving topology preserva-
tion. In order to do so we investigated the topology preserving properties of the
mapping described by the neural field with a special emphasize on the effect of
WLM. Therefore, we trained two neural fields: one using the learning regime
incorporating WLM and one not using WLM. After training neighborhood re-
lations were defined using Delaunay triangulation of the units’ end positions.
Finally, we plotted the position of the units’ receptive fields (codebook vectors)
in the input space (see Fig. 5 (a) and (b)), where the connections between units
are plotted according to the neighborhood relations defined in output space. For
a topology preserving mapping, this would result in a network, where adjacent
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Fig. 5. The position of the units’ receptive fields (codebook vectors) in input space as
well as their neighborhood relations defined in output space for a neural field trained
not using WLM (a) and one using WLM (b)
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Fig. 6. The topographic function as a measure for the degree of topological defects is
plotted for neural fields using WLM or not using WLM in the course of training

units in input space feature a connection according to the neighborhood rela-
tions defined in output space. As can be seen, this is the case for the neural field
which was trained using WLM, whereas it is not the case when not using WLM.

In order to give a quantitative measure for the topology preserving properties
of the learned mappings, we calculated the topographic function [12], which is a
widely used method for characterizing the degree of topology preservation. Fig. 6
shows the corresponding plots, where the rank k determines the effective neigh-
borhood range on which topology preservation was analyzed. More precisely,
the topographic function for small |k| describes the degree of local topological
defects, whereas the topographic function for large |k| describes the degree of
global topological defects. Furthermore, a topographic function of 0 would be
obtained when analyzing a mapping which is perfectly topology preserving. The
plots of Fig. 6 show that the incorporation of WLM into the learning regime
for the development of dynamic neural fields results in a significant decrease of
topological defects on both a local scale and particularly on a global scale.

5 Conclusion

Our previous work [1] focused on the incorporation of recent advances in the
understanding of how homeostatic processes regulate neuronal activity. There
we could show that our network model is able to self-organize while maintaining
a stable operation mode even in face of experience-driven changes. In this paper
we extended our existing network model by another process, which enhances
the topology preserving properties of the learned mappings. Therefore, we
consider the neural field to be an elastic net with unit positions (and therewith
neighborhood relations) being subject to change, where the objective function
for changing the unit positions is the minimization of wiring length. With other
words, units try to adapt their positions in the output space such that the
distance to their neighbors in input space becomes minimized. For a concrete
implementation we suggested to interpret connections between units as springs
exerting forces on units. We experimentally showed that the incorporation of
this additional mechanism for wiring length minimization significantly decreases
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the topological defects of the learned mapping. Furthermore, the self-regulatory
properties of our network are not affected by this additional process.

The combination of these two algorithms further improves the quality of our
network model and should ease its application in various domains. On the one
hand, the self-regulatory nature of the model avoids stability problems, which
one usually faces when using dynamic neural fields. On the other hand, the now
incorporated enhancement of topology preservation broadens the domains to
which the model can be potentially applied.

Additionally, the proposed mechanism for enhancing topology preservation is
not limited to our network model. It is even not limited to dynamic neural fields.
Rather it can be applied to various methods in the field of self-organizing maps,
i.e. the widely used Kohonen-maps [13].
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