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Abstract— Several Advanced Driver Assistance Systems re- ple reactive behaviors, a more sophisticated task-depende

alizing elementary perception and analysis tasks have been processing strategy is required. We see two major chalenge
introduced to market in recent years. For example, collisia ., achieving this target:

mitigation brake systems detect the distance and relative
velocity of vehicles in front to assess the risk of a rear-end o an adequate organization of perception using a generic
collision in a clearly defined following situation. In order to vision system,

go beyond such elementary analysis tasks, today's research « a behavior planning system capable of predicting the
focusing more and more on powerful perception systems for

driver assistance. We believe computer vision will play a ggral driving situation and generating safe trajectories.

role for achieving a full understanding of generic traffic situa- We focus in this paper on the first challenge. One possible

tions. Besides individual processing algorithms, generalision : . -
architectures enabling integrated and more flexible procesing way to solve this challenge is to realize a task-dependent

are needed. Here we present the first instantiation of a visio ~ P€rception using top-down links. In this paradigm, the same
architecture for driver assistance systems inspired by thuman  scene can be decomposed in different ways depending on
visual system that is based on task-dependent perception. the current task. A promising approach is to use an attention
Core element of O‘i)r system is g state(aj of the arlt attlc_ention system that can be modulated in a task-oriented way, i.e.,
system integrating bottom-up and top-down visual saliency ; o
Combining this task-dependent tunable visual saliency wit bf':lsed on the current Cont.ext. For exar_‘nple, while driving at
object recognition and tracking enables for instance warmigs ~ Nigh speed, the central field of the visual scene becomes
according to the context of the scene. We demonstrate the more important than the surrounding. Furthermore only if
performance of our approach in a construction site setup, were  the vision system attends fast enough to the relevant phrts o

a traffic jam ending within the site is a dangerous situation hat  the syrrounding traffic and obstacles, it will be able tostssi
the system has to identify in order to warn the driver. the driver in all dangerous situations.

Keywords: System Architecture; Driver Assistance Sys- . . . .
y y y Aiming towards such a task-dependent vision system, this

tems; Vision System; Top-down / Bottom-up Saliency paper describes a vision architecture that is being deeelop
I. INTRODUCTION as perceptual front-end of an ADAS. The proposed system

Today's Advanced Driver Assistance Systems (ADASprovides a framework that enables task-dependent tuning
support effectively the driver in clearly defined trafficusit of visual processes via object-specific weighting of input
tions like keeping the distance to the forward vehicle. Rgg t features of the attention system. The system generates an
purpose RADAR sensors, LIDAR sensors, and cameras adgpropriate reaction in dangerous situations (autonomous
used to extract parameters of the scene, like, e.g., headwa@king). Its architecture is inspired by findings of human
distances, relative velocities, and relative position afid Visual system research and organizes the different fumaitio
markers ahead. This approach resulted in specialized cofties in a similar way. For a first proof of concept, we focus on
mercial products improving driving safety (e.g., the "Hand assisting the driver during a critical situation in a constion
Collision Mitigation Brake System” [1], [2] to help the dev ~ site. The system has been implemented using a software
to avoid rear end collisions in case the forward vehicle ésak framework for component integration and is evaluated on
unexpectedly). Although traffic rules and road infrastset a number of test streams. It achieves real-time performance
like, e.g., lane markings restrict the complexity of what t®n a prototype car which has been demonstrated live on a
sense while driving, perception systems of today’s ADAgesting range.
are capable of recognizing simple traffic situations only. The paper is organized as follows: We start in Section |l
Furthermore driving in normal traffic scenes can be donky relating our work to research on visual attention systems
mainly in a rather reactive way by staying in the middle ofind existing vision architectures for ADAS applications.
the lane and keeping an appropriate distance. Subsequently, Section Il provides an overview of the syste

For assisting the driver over the full range of driving taskarchitecture and the individual components. For the analy-
in all kinds of challenging situations and going beyond simsis of the attention system, we evaluated the construction



site scenario to illustrate the performance of the top-dowior the current task. This tracking is performed by the human
approach in a complex environment. The obtained resultssual system without focusing the eye gaze on individual
demonstrating the feasibility and benefits of top-down atebjects to be tracked [13], i.e., tracking does not require
tention in a complex ADAS are described in Section IVhigh resolution. In contrast, the ‘what’ pathway considers
The paper concludes with a summary and an outlook ithe detailed analysis of a single spot in the image. In the
Section V. human visual system this is intimately bound to the current
eye gaze, as the human eye possesses a high resolution in
Il. RELATED WORK the central 2-3 (foveal retina area) of the visual field only.

In recent years several prototype vehicles being able In our vision system the eye gaze is performed virtually as
to perform several driving tasks autonomously have bedhe camera mounted in the car has a constant resolution in the
presented. Just recently this topic is gaining public egeas complete field of view. Changing the eye gaze is therefore
documented by the DARPA Urban Challenge [3] and the Ewequivalent to shifting the processing to another spot of the
ropean Information Society 2016telligent Car Initiative[4]  input image. This spot is analyzed in the ‘what’ pathway
as well as several European Projects like, e.g., Safespot B full resolution while the whole image is analyzed in the
or PReVENT [6]. ‘where’ path in lower resolution. Processing in these two

In terms of complete vision systems, one of the mogtathways is believed to occur in parallel in the human brain,
prominent examples is a system developed in the group béit their intertwinings are as yet not known in too much
E. Dickmanns [7]. It uses several active cameras mimickindetail. We here adopt the idea of continuously tracking a
the active nature of gaze control in the human visual systersmall number of objects in each image of the incoming visual
However, the processing framework is not closely relatestream to coarsely represent the current scene and at tlee sam
to the human visual system. Without a tunable bottom-ufime acquiring more detailed information on one additional
attention system and with top-down aspects that are limitezbject. We therefore have two analysis processes running in
to a number of object-specific features for classificatiam, nparallel in our system, indicated by the two circular arrows
dynamic preselection of image regions is performed. Furthén Fig. 1.
research on complete architectures for intelligent vekicl

has been presented by Franke [8] and Broggi [9] but these éiévczfr{;ég%i?%?dzgg) gy
approaches focus mainly on a computational framework or ' ' leve
the combination of several reactive systems. They lead to CSTM lqe oo —STM
impressive results in specific scenarios and offer a godd sca H@@@L jegO(Cd‘?&tﬂ'l%)me
ability in terms of computational aspects, but the chaléeoly POS| o ochimade coarse | o ROS _
functional integration and interaction is not yet fully wedl. D | Aoty e dist
With regard to vision systems developed for ADAS, ther
have been few attempts to incorporate aspects of the h t
man visual system into complete systems. With respect 16—~y 5 0t menegement
attention processing, a saliency-based traffic sign detect
and recognition system was proposed by Ouerhani [10]. :
A more biologically inspired approach has been presenteqd TherS o \ T T T
by Farber [11]. This publication as well as the recently
started German Transregional Collaborative Researchr€ent
‘Cognitive Automobiles’ [12] address mainly human insplire

SM,M
"TD&BU .
visual attentio ﬁ
using weights i .
. . Image pyrami vision data CAN dat
behavior planning whereas our work currently focuses more

on the task-dependent perception aspects. Fig. 1. Architecture concept ofision-based driver assistance system.

. SYSTEM The detailed organization of the two processing streams
In the following, a rough overview of the implementedin our architecture concept is as follows: The input image
vision system structure for driver assistance is givens8ub is analyzed in the ‘what’ path (depicted left in Fig. 1) for
guently, crucial system parts are described in more detail.salient locations using a variety of visual features intigd
orientation, intensity, color, and motion. This visuakation
combines Bottom-Up (BU) and Top-Down (TD) pathways
The overall architecture concept to realize task-baseahd is described in more detail in Section IlI-B. The resgjti
visual processing is depicted in Fig. 1. It contains a dissaliency mapS™®@ is modulated by suppressing image re-
tinction between a ‘what’ and a ‘where’ processing pathgions that contain known objects, i.e., that have been titec
somewhat similar to the human visual system where thearlier. The system stores all detected objects in a seetall
ventral and dorsal pathway are typically associated witséh Short Term Memory (STM) that provides the position infor-
two functions. Among other things, the ‘where’ pathway inmation of known objects as top-down link. The suppression
the human brain is believed to perform the localization andf saliency areas is also known as Inhibition of Return (IoR)
coarse tracking of a small number of objects that are retevaim the human visual system [14]. The performance gain of

"What" | ID "Where"

- fusi f
object track e

distance dat

coarse trackin

of relevant object \('bird's eye|[ radar
objects knowledg view data
¢ !nhibition of

known objects

A. Overview



using this IoR approach and the influence on the STM will battention system is a key aspect of our ADAS, since such
shown in Section IV. A simple maximum search is used opreprocessing leads to a considerable reduction of scene
the resulting saliency map to find the currently most salierdomplexity by restricting further processing steps to imag
point in the scene, the Focus of Attention (FoA). At thisregions that are interesting according to the current syste
position the Region of Interest (Rol) is determined by ragiotask. This saves not only computational resources but we
growing on the overall saliency map using the FOA as seetnplicitly reduce the number of false positives as, e.ge, th
In the final step of the ‘what’ cycle, the resulting Rol as wellobject recognition only gets Rols that are likely to be a car
as its position (pos) are fed to the fast feedforward objedtased on their current saliency profile.
recognition system (see Section IlI-C).

After object recognition, the image region, its positionB: Attention Sub-System
and the object label (pos, Rol, ID) are stored in the STM in A rough sketch of the visual attention sub-system is
order to be tracked coarsely in subsequent images in thepicted in Fig. 2, for a more detailed description please
‘where’ path. Before insertion, it is checked whether thgee [17]. Our attention sub-system consists of a number of
new object can be associated to a known object based features that are extracted from the image on 5 scales derive
its position, size, and label; if a matching object is foundfrom a Gaussian image pyramid starting from 2256
the object already stored in the STM is updated. One itaratigixels. The pyramid was calculated by low pass filtering and
is concluded by calculating for all objects in the STM theirdyadic downsampling. On the left of Fig. 2 the different
distance (dist) based on fusing measurements from rad&ature modalities calculated on the image pyramid are
depth from familiar object size (i.e., object knowledges])l depicted. The lower right half of Fig. 2 shows the bottom-
and from bird’s eye view [16] using an Extended Kalmarup processing of the different features to obtain conspicui
Filter (see Section I1I-D). The distance information isreb mapsC®Y that are combined to form the bottom-up saliency
in a separate egocentric representation that is direciigida  SBY. In the upper right half the top-down processing is
for calculating the current danger level and generating shown where for each feature an object-specific excitation
warning message if necessary. (E) and inhibition (I) map is calculated and combined inte th

All objects contained in the STM are constantly tracke@onspicuity mapC>. All conspicuity maps are combined
in the ‘where’ path based on an appearance-based trackgo the object- speC|f|c top-down saliency ma@D and a
that uses a second order motion model for prediction angbnlinear operator is applied to cut off negatlve values.
a local correlation step for the refinement of the new objedthe overall saliency map™® is calculated by Ilnearly
positions. In each iteration the position is updated in th®1S  combining the normalized bottom-u§F¥ and top-dowrns/P
and a new template Rol is stored. In case the prediction dogsliency maps depending on the current task of the ADAS
not match (no good correlation found) the object is deletedsing parametek. With increasing)\, the top-down saliency
from the STM and therefore its position will not be inhibitedcontributes more to the final saliency map, leading to a focus
in the ‘what’ pathway anymore. Consequently, the attentiosf attention on specific objects. The overall saliency map is
will be focused on the missing object in one of the nexpassed on to the FOA generation.
images if the object is still present and salient. This way,
all objects being recognized and behaving as predicted are feature WID, {op-cdowen weighs

. . ; calculation E; Gabor

coarsely tracked while the ‘what’ attention is always faedis

on new objects and objects behaving unexpectedly.
However, it should be avoided that objects that can be B
DoG :::
bottom-up
m whorou Wil weights
RGBY oBU
Color L Gabor

tracked are stored in the STM forever, as this would mean
. WCGapor j
poslpmr ..... :

TD
50,
top-down
saliency

that the system cannot correct a wrong object label. Th
is achieved by deleting an object from the STM after N::f::(
frames, i.e., objects have a lifetime of N frames. This is
equivalent to limiting the capacity of the STM to N objects

in scenes with more than N objects. Note that the rather
simple tracking method is sufficient for many applications

in the automotive domain where most objects are rigid (e.g.,

a car) and therefore the main appearance changes are caused

TD
wg;
A

Gtotal

overall
saliency

bottom-up
saliency

by small translations and scalings. One notable except®n a Motlon o - 58U
pedestrians, for which a specialized detection and trackin
will be needed. Fig. 2. Simplified sketch of our visual attention sub-syst@mowing for

The novelty of our architecture lies in the introduction ofeach feature only one output).
top-down aspects (like, e.g., task-dependent tunabletete
generation via sets of weights and, in parallel, inhibiting As feature modalities we currently ussdd and even
known object positions predicted by tracking) resulting inGabor filters[18] in 4 orientations andifference of Gaus-
the ability to cope with highly dynamic traffic scenes ussians filters(DoG), both with additional on-center/off-center
ing limited computational resources. The top-down tunablseparation. For example, bright lane markings on a dark road



would trigger an on-center response, while a dark car aon-off/off-on, odd Gabor on-off/off-on, DoG on-off/offrmp
a bright background would trigger an off-center respons®GBY color opponent, RGBY double color opponent):
The separation of a filter in on-center (called on-off in the
following) and off-center selectivity (off-on) as empteesil 8 N
in [19] is realized by separating the filter response into ¢To _ TD ; ™ _ ™

its positive and negative part, which is equivalent to the %, chkcoj"k With €0, ;w”’kﬂ"j’k ®)
computationally more demanding usage of two differentrfilte N ] )
kernels. Additional features are the biologically motacit [N @ddition, we also calculate a biased bottom-up saliency
RGBY color space as color opponent and double colof’@P by combining all feature maps weighted with their
opponent [19] andnotion from differential images. specific bottom-up weights2Y resulting in the weighted

The feature map responses are passed through a poitM Of 8 modalities (Gabor ar.1d DoG as for TD, RGBY
processing step that consists of normalizing, squaring, aifouble color opponent, motion):

nonlinear noise suppression by a sigmoidal function. In

addition to combining these features to obtain a bottom- 8 Ny,

up saliency map as it is done typically [20], [21], we SBY = chk(}}?“ with CBY = szpouth%FM (6)
also compute top-down saliency maps using object-specific k=1 i=1

feature map weights. The object-specific weights are iedpir As wBY we choose a set of weights that shows good

by [22], [23] in the way the weights are obtained: During erformance for most situations in the car environment.

a supervised training stage, the feature map activations ??1 the object-unspecific bottom-up path no inhibition takes

an object are compared to the feature map activations in it . . .
) : . S ace (i.e., feature maps are only added up), since its garpo
surrounding. From this comparison, the relative imporgan o .
. . ) . . Is to evaluate the general unspecific saliency of a scene. The
of a feature (its signal-to-noise ratio) can be determined. . . "
: ) individual bottom-up feature maps are additionally prepro
For each trained objeaD; and feature channek;; we 2
L TD . " cessed by a pop-out operator that globally amplifies maps
therefore get a top-down weight; >, that is proportional . : X
J:b, with a small number of maxima and attenuates maps with

to how well the feature channelof feature modalityk is . -
N o . . many maxima [20]. The pop-out operator multiplies the
able to discriminate the objegtfrom its surrounding. More . ! PopOut
feature maps with a dynamic factas,,,  computed at

specifically, the average activation in the object region is ntime (see Eq. (7)). The factor is inversely proporticial

related to the average activation in the surround on ea{ﬁ k )
: e number of pixels that are near the maximum of the feature
feature maprF;; taken only Ny jjs.- Pixels above the PopOut

7 _ _ . T : map. Additionally,w, ;" is decreased by a factor of 2 for
thresholds = Keonj Maz(Fi k) With Keonj = (0,1] into each higher (i.e., smaller) scale leweh the image pyramid.

k=1

account: As higher levels tend to contain more pixels fulfilling the
S (Fii>k) threshold¢ = 0.9- M ax(F; 1) in the denominator of Eq. (7),
Tyeobi this weight increase maintains the comparability of scales
wP —  Noi (1)
3tk > (Fik>k)
T, yEsurr
Nowrr 28
- i wp = for s = [0, 4]
In order to emphasize matching features and suppressirrel- > Fik(z,y)

evant features, separate mapsédgcitation £ andinhibition Yo,y with Fix(2,y)>¢

I are constructed. Their combination leads to object-specifi
conspicuity maps’y

()
By applying this operator, the bottom-up path is designed
to amplify feature maps that show few maxima, i.e., that
are sparse. In consequence, feature maps containing image
EP, = sz’vzkl w'®, Fy . Vwl?, >1.0 (2) regions that pop out are boosted. It is of crucial importance
s 752, ) 752 . .

o N. 1 o that the top-down feature maps do not pass a similar pop-
16k = 2t WFM Vwiier <10 (3) oyt step, since by tuning the top-down weights, we aim at
CL']? L= EIP, 1P, (4) finding objects based on feature conjunctions.. The inqwlidu

' » » feature map responses for the searched objects might only

It is important to note that the performance gain of thiseach medium values, whereas the combination of all retevan
approach compared to standard attention systems lies in tim&aps leads to a strong response in the resulting saliency map
explicit inhibition of non-target regions. The conspiguit Through this explicit differentiation we achieve an insed
maps C}B‘J{k are combined to an object-specific top-dowrperformance compared to other top-down attention systems.
saliency mapSP by modality specific weightsoc, (con- For weighting the feature maps we currently use TD
spicuity weights) that are proportional to the confidence orweight sets for signal boards and Caﬂﬁ;-[@board,i,k and
can assign to the modality in the current scene. This wzt?m,k) that were calculated in a supervised training step
can be done dynamically depending on, e.g., the currensing Eq. (1). It is envisioned in later versions of our ADAS
weather or lighting conditions. The TD saliency resultsiiro to calculate these weights dynamically at runtime to track

a weighted sum of 8 different conspicuity maps (even Gab@nd even learn new objects.



C. Object recognition Depth from radar is obtained from a commercial stan-
For object recognition we use a view-based approacﬂard vehicle equipment sensor, which delivers sparse point

where we perform classification only on the image patcglse measurements with high confidence (for an example see

provided by the FOA segmentation. Note that object reco 9. 3a). . N . N

nition operates on the original image resolution of 8600 Depth _from bird’s €ye VIew IS r_eahzed using inverse

pixels, i.e., the Rol position and size provided by the salje pergpectwe world to image mapping (see [1.6]) based on

system are transformed appropriately. a pin hole camera mod_el under the flat plain assumption
The object recognition module is based on a biologicall |£.,hgll Ir?\?é?;t-:‘s grsth:ctlil\?eagr%r?a ar;en a‘z'isgm;i ?svgfweazero

motivated processing architecture proposed in [24]. IEwse of ?he '3D-worldp ositionX ?,p gZ ' 'éo iy -im?e

strategy similar to the hierarchical processing in the ‘tvha P w Y, Zw 10 (uv)-imag

pathway of the human visual system by creating a cladl@Ppinglu, v] = f(Xw, Yw, Zw = 0, camera parametg)s

e . . 2 is used to assure a dense bird’'s eye view image along with
sification hierarchy. Unsupervised learning is used for th ; 4 : .
. . ow computational demands. A vertical grow algorithm with
lower levels of the hierarchy to determine general feature :
i X . . ynamic thresholds searches for lanes and obstacles based o
that are suitable for representing arbitrary objects ripus

with regard to local invariance transformations like logtaifft discontinuities in the bird's eye view and assigns a distanc

and small rotations. Only at the highest level of the hidrgrc value to found ob_stacles (see Fig. 3b). .
) " S . . . Depth from object knowledge calculates the distance
object-specific learning is carried out, i.e., only thisdahas

to be trained for different objects. This architecture can bOf an objectZ; (see Eq. (8)) using knowledge about the

. - ; . "Rol area the object covers on the camera’s image chip
applied to the difficult case of segmentation-free recagmit width W,...; and height F,,...), the width and height
that we have to deal with as the saliency segmentation ong)\f the olgjéeclt in the real \Z/)\;(I)erlld’ drawn from experience
ggj);ncotl_essp22”?522;):::22:;5)2I with rectangular shape and 'Zﬂvml and H,.,;) as well as the intrinsic parameters of the

L i camera sensorof, = focal length'pixel width andc, =

Training is done by presenting several thousand color R? cal length/pixel height):
images with changing backgrounds for back views of cars '
and signal boards (see also [25]). The learning algorithm au T Wieal and  Z g~ Hyear @)
tomatically extracts the relevant object structure andeutg bW Whizel obsH Hpizel
the clutter in the surround. The output of the classifier ishe intrinsic camera parameters were calculated in a camera
the identity of the recognized object and a confidence valygjipration procedure. A prerequisite for depth from objec
where a threshold is used to reject object hypotheses wighowledge is a reliable segmentation algorithm. Currewtly
low confidence. The threshold is chosen so that only a smgjkg histogram based segmentation on an image region that

numbgr of false positives can occur for cars, as awrong Cf pre-segmented by our region growing algorithm working
detection could lead to a false emergency braking. If a cg, the saliency (see Fig. 3¢).

is not recognized due to the high threshold, it is stored in
the STM as unknown and tracked for N frames before it ig

Wey

correct recognition.
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D. Depth cues

The current ADAS uses three independent depth sourcg)s
(see Fig. 3) that are combined using weak fusion (sel

reliability of the specific cues. It is realized here using a
Extended Kalman Filter (EKF) that combines at each tim
step the cues via dynamic weights depending on the stag

step. The EKF uses a second order process model for
prediction step that models the relevant kinematics in t 5
car domain (velocity and acceleration). The resulting kdept
values are assigned to detected objects in the image. Thg 3. Used depth cues: Depth from (a) radar, (b) bird's epavy(c)
following depth sources are currently used for fusion in thebject knowledge.

EKF:



IV. EXPERIMENTS AND RESULTS
A. Evaluation of depth fusion
Figure 4 shows the EKF-based fusion of depth measur

ments for a car that drives in front of our prototype vehicle ? EEE.
through an inner city (see Fig. 3a). For the EKF we use E Stadpnary car :
the sensor variances,qqsr = 0.3, opiras = 2.8, and # ol boards ot 4
. distance of 48 m
oop; = 2.7 as well as the process varian€g-ocess = 0.023 @
for the prediction step. Note that the usage of two additiona
monocular depth cues of high variance fused with the lowig. 5. Scenario: (a) Schematic sketch of the constructitenseenario.
variance radar cue ensures the availability of depth valug&tionary car is visible from 48 meters on. (b) Real scenari
even if the interesting objects are outside of the radar beam

middleware [27] on top of Linux. The individual RTBOS

Stationary

8 \ \ : ; = components are implemented in C using an optimized image
x h fi bird" i . .
26/ Depth from obiect knowiedge| | Processing library based on the Intel IPP [28].
& e rusen Test data for training and evaluation: In order to gain
241 .

sufficient training data and for evaluating the actual syste
performance, we set up an exemplary construction site on a
private driving range where we recorded data and performed
the actual online tests.

n
o
x

=
o

C. Influence of Parameters on Detection Performance

Distance to preceding car [m]
=
=)

-
N

All results described in the following are obtained by aver-
aging over 10 recorded streams in order to lessen statistica
outliers. As performance metric we will use the detection
performance as this is a good indicator for the efficiency of

i i i i i i i i
100 200 300 400 500 600 700 800

Samples [0.15] the saliency system in analyzing complex visual scenesrunde
time constraints. As in each time step of the system runnin

Fig. 4. Depth from bird’s eye view, object knowledge, radad dusion . . P . , y 9
with EKE. at 10 Hz one FoA is analyzed in the ‘what’ pathway and

potentially added to the STM, we will use frames (equivalent
. ] to 55 second) as time unit.
B. Experimental Setup for System Evaluation In the first step the object detection distance is evaluated
Scenario: In order to evaluate the proposed system in @epending on STM size N and the TD parametesetting
challenging situation, we concentrate on typical congioac the amount of TD influence) while using a TD weight set
sites on highways. This situation is quite frequent and #ained on cars. Figure 6 shows the distance to the stagionar
traffic jam ending exactly within a construction site is acar when the first FOA hits the car, which is defined by
highly dangerous situation: due to the S-curve in mangand-labeled groundtruth on the recorded streams. It can be
construction sites, the driver will notice a braking or §ibyg  seen that the larger the TD influence (search task: find cars)
car quite late as the signal boards limit the field of view
(see Fig. 5a). Our ADAS implementation uses a 3-phase
danger handling scheme depending on the distance and 50
relative speed of a recognized obstacle. For example, when
the vehicle drives around 40 km/h and a static obstacle is asf i
detected in front at less than 33 meters, in the first warning ///
phase a visual and acoustic warning is issued and the brakes 40, ;
are prepared. If the dangerous situation is not resolvetidy t '
human driver, the second phase triggers the belt pretarson vy
and the brakes are engaged with a deceleration of 0.25 g ——N=2
followed by hard braking of 0.6 g in the third phase. e
Technical setup For the experiments we used a Honda N=7

Legend prototype car equipped with a mvBlueFox CCD o Max. distance
color camera from Matrix Vision delivering images of
800x 600 pixels at 10 Hz. The image data as well as the radar
and vehicle state data from the CAN bus can be recorded.
The recorded data is used during offline evaluation. Fq!g 6. Stationary car detection distance depending=®, 0.25, 0.5, 0.75,
online prcessing all data is transmitted via Ethernet to twgnd 1 as well as the STM size N=1,2,3,5, and 7 when using gtahd
laptops (2 GHz Core Duo) running our RTBOS integratiorfor detecting a hit

w
=]
T

Car detection distance in m
(mean of 10 recorded streams)
w
al

25}

0.25 0.5 0.75
TD combination weight A (using a car tuned TD weight set)



expressed by, the earlier the car is detected. Similarly, 50
the more objects are stored in the STM (object number N),
the earlier the car is detected as a large part of the visual
scene is already contained as (unknown) objects in the STM
and therefore inhibited in the saliency map. It can also be
deduced that with growing N the influence of TD is reduced

since the scene coverage increases.

Including the task of object recognition in the evaluation,
Fig. 7 shows the distance to the stationary car when the first
FoA hits the target and this Rol is recognized as car by
the object classifier. Since the used classification thidsho
was set high to obtain a low false-positive error rate at the o5 o5 o
cost of a high false-negative error rate, the distance when TD combination weight A (using a car tuned TD weight set)
the car is detected is smaller than in the evaluation with
groundtruth. Differing from Fig. 6, at large values of N (seeF'g 8.  Detection distance depending ar0, 0.25, 0.5, 0.75, and 1.

Fia. 7 for N=7) the detection distance worsens adain. T Average detection distance of signal boards and the statiarar using the

g. ) g nﬁ)]ect classifier for an STM size of N=1,2, and 5.
reason for this effect is that our system is not using object
segmentation algorithms but performs segmentation direct
on the saliency image which can lead to enlarged patchggiependent of, e.g., whether it is was correctly recoghize
suppressing the surround of the found objects as well. .1 thive now introduce an object specific Time To Live (TTL)
way, the borders of the car might be suppressed by adjacefdfining for how many frames an object is stored in the
signal board patches leading to incomplete car FoAs th&TM before it is removed. In this way, unknown objects can
are not sufficient for correct classification by the used cibje be tracked for only a short time before a new recognition
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classificator. attempt is carried out if the image region is still salient.
Figure 9 shows how the choice of the TTL influences the
50 : : : : system performance. For an object unspecific TTL of 5

frames the curve is identical to Fig. 8 for N=5. For the
object-specific case we chose T}z = 6 frames for signal
boards, TTL,,s = 20 frames, and TTL,,known = 3 frames,
leading for the construction site streams on average to N=5
objects in the STM. Note that the low value of T lknown

and the high value of TTL,,s are linked to setting the object
recognition threshold high, i.e., it is very likely to get an
unknown which is a false negative car but rather unlikely to
get a car that is a false positive.
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-~ Max. distance ] A clear gain in detection performance can be seen when
" ‘ ‘ using object dependent TTL values which is due to the fact
° L Cogb%namn We,g"hg (using & o uned To vewntsey that FoAs which hit the car very early are often too small

Fig. 7. Stationary car detection distance depending=®, 0.25, 0.5, 0.75,
and 1 as well as the STM size N=1,2,3,5, and 7 when using ttesifitx
for detecting a hit.
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Based on Fig. 7 the best choice &ffor detecting cars ™ | S
would be 1, which equals pure TD search mode. However,
such a parameterization is not appropriate because this lea
to a reduced capability of detecting other objects that are
only prominent in the BU saliency (see Fig. 8). Here we
see that with growing\ the average detection distance of
signal boards (the only other object class besides carsrin ou I
evaluation) drops. Stated differently, the system ignaies /
other objects while searching for cars in pure TD mode (

= 1), which might lead to dangerous situations. The default 30!

. 0 0.25 0.5 0.75 1
)\ was hence set to 05 fOI’ the 0n||ne tests. TD combination weight A (using a car tuned TD weight set)

In the previous evaluations we assumed that the scene
contains more than N objects and used a fixed STM sizgy. 9. Stationary car detection distance depending=e®, 0.25, 0.5, 0.75,
which is equivalent to storing any object for N framesand 1 while using object unspecific and object specific TTlesl

IS
N
T

I
)
T

w
®
T

Car detection distance in m
(mean of 10 recorded streams)
N
o

w w
S 2]

w
N




for a reliable classification. These unknown scene parts arg]
suppressed only for 3 frames before the classifier gets a]
second chance to detect the car. This object-specific TTL
parameterization was used during the online tests desktribe
below. [5]

D. Evaluation of System Performance [6]

We evaluated the warning generation offline in detail on[7]
10 recorded construction site streams used also for ew@tuat
in the previous Section IV-C. In all streams, the ADAS was g
able to recognize and track the car from a distance between
42 and 32 meters, while the car was fully visible at a distance
of about 48 meters.

During documented online system tests in the setting9]
depicted in Fig. 5 with our prototype vehicle driving 40
km/h our system detected in 57 of 60 cases the stationq%
car in time and issued the 3 warning phases as expected]
including autonomous braking. In the remaining caseseeith

. " . 11
the object recognition detected a signal board as car and llhe]
braking was performed too early or the FOA generation did
not deliver a good car Rol position so that the fusion oft2]
the car Rol with radar data failed and no warning/brakin?l?,]
was performed at all. Note that in our vision-based proof-
of-concept system we rely completely on vision and do nd#4l
make use of an additional radar-based emergency brakiﬂg]
that would be needed in real traffic as backup for situations
in which our vision system fails. (16]

V. SUMMARY
[17]

In this contribution we have presented our approach to
an Advanced Driver Assistance System where we maieg]
use of a human-like attention system for controlling th
processing focus. Through tuning the attention system to
interesting objects the system analyzes only relevans judrt (1]
the scene. By performing an EKF-based fusion of different
depth sources, good depth estimates are obtained for gl
objects on the street. The overall architecture is orgahize
a brain-like fashion by separating the identification of new,,
objects from the continuous tracking of previously detécte
objects. In experiments we have shown how the overal
detection performance is affected by different strengthsil
TD-weighting as well as the Time To Live of an object.
By applying object specific Time To Live values our system?3l
is capable of detecting cars in cluttered scenes even from
a great distance. For a live demonstration we chose [&4]
construction site setup where the system has successfully
performed braking online, providing a proof-of-concept-O [25]
going efforts aim at incorporating information about thado
into the overall architecture concept in order to provide th
basis for more context-dependent processing stratedsies li 26]
e.g., focusing attention on objects on or near the road.
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