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Abstract— Several Advanced Driver Assistance Systems re-
alizing elementary perception and analysis tasks have been
introduced to market in recent years. For example, collision
mitigation brake systems detect the distance and relative
velocity of vehicles in front to assess the risk of a rear-end
collision in a clearly defined following situation. In order to
go beyond such elementary analysis tasks, today’s researchis
focusing more and more on powerful perception systems for
driver assistance. We believe computer vision will play a central
role for achieving a full understanding of generic traffic situa-
tions. Besides individual processing algorithms, generalvision
architectures enabling integrated and more flexible processing
are needed. Here we present the first instantiation of a vision
architecture for driver assistance systems inspired by thehuman
visual system that is based on task-dependent perception.
Core element of our system is a state of the art attention
system integrating bottom-up and top-down visual saliency.
Combining this task-dependent tunable visual saliency with
object recognition and tracking enables for instance warnings
according to the context of the scene. We demonstrate the
performance of our approach in a construction site setup, where
a traffic jam ending within the site is a dangerous situation that
the system has to identify in order to warn the driver.

Keywords: System Architecture; Driver Assistance Sys-
tems; Vision System; Top-down / Bottom-up Saliency

I. INTRODUCTION

Today’s Advanced Driver Assistance Systems (ADAS)
support effectively the driver in clearly defined traffic situa-
tions like keeping the distance to the forward vehicle. For this
purpose RADAR sensors, LIDAR sensors, and cameras are
used to extract parameters of the scene, like, e.g., headway
distances, relative velocities, and relative position of lane
markers ahead. This approach resulted in specialized com-
mercial products improving driving safety (e.g., the ”Honda
Collision Mitigation Brake System” [1], [2] to help the driver
to avoid rear end collisions in case the forward vehicle brakes
unexpectedly). Although traffic rules and road infrastructure
like, e.g., lane markings restrict the complexity of what to
sense while driving, perception systems of today’s ADAS
are capable of recognizing simple traffic situations only.
Furthermore driving in normal traffic scenes can be done
mainly in a rather reactive way by staying in the middle of
the lane and keeping an appropriate distance.

For assisting the driver over the full range of driving tasks
in all kinds of challenging situations and going beyond sim-

ple reactive behaviors, a more sophisticated task-dependent
processing strategy is required. We see two major challenges
for achieving this target:

• an adequate organization of perception using a generic
vision system,

• a behavior planning system capable of predicting the
driving situation and generating safe trajectories.

We focus in this paper on the first challenge. One possible
way to solve this challenge is to realize a task-dependent
perception using top-down links. In this paradigm, the same
scene can be decomposed in different ways depending on
the current task. A promising approach is to use an attention
system that can be modulated in a task-oriented way, i.e.,
based on the current context. For example, while driving at
high speed, the central field of the visual scene becomes
more important than the surrounding. Furthermore only if
the vision system attends fast enough to the relevant parts of
the surrounding traffic and obstacles, it will be able to assist
the driver in all dangerous situations.

Aiming towards such a task-dependent vision system, this
paper describes a vision architecture that is being developed
as perceptual front-end of an ADAS. The proposed system
provides a framework that enables task-dependent tuning
of visual processes via object-specific weighting of input
features of the attention system. The system generates an
appropriate reaction in dangerous situations (autonomous
braking). Its architecture is inspired by findings of human
visual system research and organizes the different functional-
ities in a similar way. For a first proof of concept, we focus on
assisting the driver during a critical situation in a construction
site. The system has been implemented using a software
framework for component integration and is evaluated on
a number of test streams. It achieves real-time performance
on a prototype car which has been demonstrated live on a
testing range.

The paper is organized as follows: We start in Section II
by relating our work to research on visual attention systems
and existing vision architectures for ADAS applications.
Subsequently, Section III provides an overview of the system
architecture and the individual components. For the analy-
sis of the attention system, we evaluated the construction



site scenario to illustrate the performance of the top-down
approach in a complex environment. The obtained results
demonstrating the feasibility and benefits of top-down at-
tention in a complex ADAS are described in Section IV.
The paper concludes with a summary and an outlook in
Section V.

II. RELATED WORK

In recent years several prototype vehicles being able
to perform several driving tasks autonomously have been
presented. Just recently this topic is gaining public interest as
documented by the DARPA Urban Challenge [3] and the Eu-
ropean Information Society 2010Intelligent Car Initiative[4]
as well as several European Projects like, e.g., Safespot [5]
or PReVENT [6].

In terms of complete vision systems, one of the most
prominent examples is a system developed in the group of
E. Dickmanns [7]. It uses several active cameras mimicking
the active nature of gaze control in the human visual system.
However, the processing framework is not closely related
to the human visual system. Without a tunable bottom-up
attention system and with top-down aspects that are limited
to a number of object-specific features for classification, no
dynamic preselection of image regions is performed. Further
research on complete architectures for intelligent vehicles
has been presented by Franke [8] and Broggi [9] but these
approaches focus mainly on a computational framework or
the combination of several reactive systems. They lead to
impressive results in specific scenarios and offer a good scal-
ability in terms of computational aspects, but the challenge of
functional integration and interaction is not yet fully solved.

With regard to vision systems developed for ADAS, there
have been few attempts to incorporate aspects of the hu-
man visual system into complete systems. With respect to
attention processing, a saliency-based traffic sign detection
and recognition system was proposed by Ouerhani [10].
A more biologically inspired approach has been presented
by Färber [11]. This publication as well as the recently
started German Transregional Collaborative Research Centre
‘Cognitive Automobiles’ [12] address mainly human inspired
behavior planning whereas our work currently focuses more
on the task-dependent perception aspects.

III. SYSTEM

In the following, a rough overview of the implemented
vision system structure for driver assistance is given. Subse-
quently, crucial system parts are described in more detail.

A. Overview

The overall architecture concept to realize task-based
visual processing is depicted in Fig. 1. It contains a dis-
tinction between a ‘what’ and a ‘where’ processing path,
somewhat similar to the human visual system where the
ventral and dorsal pathway are typically associated with these
two functions. Among other things, the ‘where’ pathway in
the human brain is believed to perform the localization and
coarse tracking of a small number of objects that are relevant

for the current task. This tracking is performed by the human
visual system without focusing the eye gaze on individual
objects to be tracked [13], i.e., tracking does not require
high resolution. In contrast, the ‘what’ pathway considers
the detailed analysis of a single spot in the image. In the
human visual system this is intimately bound to the current
eye gaze, as the human eye possesses a high resolution in
the central 2-3◦ (foveal retina area) of the visual field only.

In our vision system the eye gaze is performed virtually as
the camera mounted in the car has a constant resolution in the
complete field of view. Changing the eye gaze is therefore
equivalent to shifting the processing to another spot of the
input image. This spot is analyzed in the ‘what’ pathway
in full resolution while the whole image is analyzed in the
‘where’ path in lower resolution. Processing in these two
pathways is believed to occur in parallel in the human brain,
but their intertwinings are as yet not known in too much
detail. We here adopt the idea of continuously tracking a
small number of objects in each image of the incoming visual
stream to coarsely represent the current scene and at the same
time acquiring more detailed information on one additional
object. We therefore have two analysis processes running in
parallel in our system, indicated by the two circular arrows
in Fig. 1.

object memory
STM

(pos,RoI,ID)

new pos
new RoI

coarse tracking
of relevant

objects

track
management

1. warning step
2. soft braking (0.25g)
3. hard braking (0.6g) 

knowledge
object bird’s eye

view

fusion of
distance data

egocentric mem
STM

(dist,ID)

danger
level

object
recognition

Segmentation
around FoA

saliency map
Inhibition of

using weights
visual attention

TD & BU

pos
RoI
ID

"Where"

dist

kn
ow

n 
ob

je
ct

s

danger
computation

vision data CAN data

data
radar

pos,RoI

"What" ID

image pyramid

analyzed
one RoI is
each image

in

5−8 obj.

coarse
tracking of

S
total

Fig. 1. Architecture concept ofvision-based driver assistance system.

The detailed organization of the two processing streams
in our architecture concept is as follows: The input image
is analyzed in the ‘what’ path (depicted left in Fig. 1) for
salient locations using a variety of visual features including
orientation, intensity, color, and motion. This visual attention
combines Bottom-Up (BU) and Top-Down (TD) pathways
and is described in more detail in Section III-B. The resulting
saliency mapS total is modulated by suppressing image re-
gions that contain known objects, i.e., that have been detected
earlier. The system stores all detected objects in a so-called
Short Term Memory (STM) that provides the position infor-
mation of known objects as top-down link. The suppression
of saliency areas is also known as Inhibition of Return (IoR)
in the human visual system [14]. The performance gain of



using this IoR approach and the influence on the STM will be
shown in Section IV. A simple maximum search is used on
the resulting saliency map to find the currently most salient
point in the scene, the Focus of Attention (FoA). At this
position the Region of Interest (RoI) is determined by region
growing on the overall saliency map using the FoA as seed.
In the final step of the ‘what’ cycle, the resulting RoI as well
as its position (pos) are fed to the fast feedforward object
recognition system (see Section III-C).

After object recognition, the image region, its position,
and the object label (pos, RoI, ID) are stored in the STM in
order to be tracked coarsely in subsequent images in the
‘where’ path. Before insertion, it is checked whether the
new object can be associated to a known object based on
its position, size, and label; if a matching object is found,
the object already stored in the STM is updated. One iteration
is concluded by calculating for all objects in the STM their
distance (dist) based on fusing measurements from radar,
depth from familiar object size (i.e., object knowledge, [15])
and from bird’s eye view [16] using an Extended Kalman
Filter (see Section III-D). The distance information is stored
in a separate egocentric representation that is directly suitable
for calculating the current danger level and generating a
warning message if necessary.

All objects contained in the STM are constantly tracked
in the ‘where’ path based on an appearance-based tracker
that uses a second order motion model for prediction and
a local correlation step for the refinement of the new object
positions. In each iteration the position is updated in the STM
and a new template RoI is stored. In case the prediction does
not match (no good correlation found) the object is deleted
from the STM and therefore its position will not be inhibited
in the ‘what’ pathway anymore. Consequently, the attention
will be focused on the missing object in one of the next
images if the object is still present and salient. This way,
all objects being recognized and behaving as predicted are
coarsely tracked while the ‘what’ attention is always focused
on new objects and objects behaving unexpectedly.

However, it should be avoided that objects that can be
tracked are stored in the STM forever, as this would mean
that the system cannot correct a wrong object label. This
is achieved by deleting an object from the STM after N
frames, i.e., objects have a lifetime of N frames. This is
equivalent to limiting the capacity of the STM to N objects
in scenes with more than N objects. Note that the rather
simple tracking method is sufficient for many applications
in the automotive domain where most objects are rigid (e.g.,
a car) and therefore the main appearance changes are caused
by small translations and scalings. One notable exception are
pedestrians, for which a specialized detection and tracking
will be needed.

The novelty of our architecture lies in the introduction of
top-down aspects (like, e.g., task-dependent tunable attention
generation via sets of weights and, in parallel, inhibiting
known object positions predicted by tracking) resulting in
the ability to cope with highly dynamic traffic scenes us-
ing limited computational resources. The top-down tunable

attention system is a key aspect of our ADAS, since such
preprocessing leads to a considerable reduction of scene
complexity by restricting further processing steps to image
regions that are interesting according to the current system
task. This saves not only computational resources but we
implicitly reduce the number of false positives as, e.g., the
object recognition only gets RoIs that are likely to be a car
based on their current saliency profile.

B. Attention Sub-System

A rough sketch of the visual attention sub-system is
depicted in Fig. 2, for a more detailed description please
see [17]. Our attention sub-system consists of a number of
features that are extracted from the image on 5 scales derived
from a Gaussian image pyramid starting from 256×256
pixels. The pyramid was calculated by low pass filtering and
dyadic downsampling. On the left of Fig. 2 the different
feature modalities calculated on the image pyramid are
depicted. The lower right half of Fig. 2 shows the bottom-
up processing of the different features to obtain conspicuity
mapsCBU that are combined to form the bottom-up saliency
SBU. In the upper right half the top-down processing is
shown where for each feature an object-specific excitation
(E) and inhibition (I) map is calculated and combined into the
conspicuity mapCTD

Oj
. All conspicuity maps are combined

into the object-specific top-down saliency mapSTD
Oj

and a
nonlinear operator is applied to cut off negative values.
The overall saliency mapSTotal is calculated by linearly
combining the normalized bottom-upSBU and top-downSTD

Oj

saliency maps depending on the current task of the ADAS
using parameterλ. With increasingλ, the top-down saliency
contributes more to the final saliency map, leading to a focus
of attention on specific objects. The overall saliency map is
passed on to the FoA generation.
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Fig. 2. Simplified sketch of our visual attention sub-system(showing for
each feature only one output).

As feature modalities we currently useodd and even
Gabor filters[18] in 4 orientations andDifference of Gaus-
sians filters(DoG), both with additional on-center/off-center
separation. For example, bright lane markings on a dark road



would trigger an on-center response, while a dark car on
a bright background would trigger an off-center response.
The separation of a filter in on-center (called on-off in the
following) and off-center selectivity (off-on) as emphasized
in [19] is realized by separating the filter response into
its positive and negative part, which is equivalent to the
computationally more demanding usage of two different filter
kernels. Additional features are the biologically motivated
RGBY color space as color opponent and double color
opponent [19] andmotion from differential images.

The feature map responses are passed through a post-
processing step that consists of normalizing, squaring, and
nonlinear noise suppression by a sigmoidal function. In
addition to combining these features to obtain a bottom-
up saliency map as it is done typically [20], [21], we
also compute top-down saliency maps using object-specific
feature map weights. The object-specific weights are inspired
by [22], [23] in the way the weights are obtained: During
a supervised training stage, the feature map activations of
an object are compared to the feature map activations in its
surrounding. From this comparison, the relative importance
of a feature (its signal-to-noise ratio) can be determined.
For each trained objectOj and feature channelFi,k we
therefore get a top-down weightwTD

j,i,k that is proportional
to how well the feature channeli of feature modalityk is
able to discriminate the objectj from its surrounding. More
specifically, the average activation in the object region is
related to the average activation in the surround on each
feature mapFi,k taken only Nobj|surr pixels above the
thresholdκ = KconjMax(Fi,k) with Kconj = (0, 1] into
account:

wTD
j,i,k =

P

x,y∈obj

(Fi,k>κ)

Nobj
P

x,y∈surr

(Fi,k>κ)

Nsurr

(1)

In order to emphasize matching features and suppress irrel-
evant features, separate maps forexcitationE and inhibition
I are constructed. Their combination leads to object-specific
conspicuity mapsCTD

Oj ,k:

ETD
Oj ,k =

∑Nk

i=1 wTD
j,i,kFi,k ∀ wTD

j,i,k ≥ 1.0 (2)

ITD
Oj ,k =

∑Nk

i=1
1

wTD
j,i,k

Fi,k ∀ wTD
j,i,k < 1.0 (3)

CTD
Oj ,k = ETD

Oj ,k − ITD
Oj ,k (4)

It is important to note that the performance gain of this
approach compared to standard attention systems lies in the
explicit inhibition of non-target regions. The conspicuity
maps CTD

Oj ,k are combined to an object-specific top-down
saliency mapSTD

Oj
by modality specific weightswCk

(con-
spicuity weights) that are proportional to the confidence one
can assign to the modalityk in the current scene. This
can be done dynamically depending on, e.g., the current
weather or lighting conditions. The TD saliency results from
a weighted sum of 8 different conspicuity maps (even Gabor

on-off/off-on, odd Gabor on-off/off-on, DoG on-off/off-on,
RGBY color opponent, RGBY double color opponent):

STD
Oj

=
8

∑

k=1

wCk
CTD

Oj ,k with CTD
Oj ,k =

Nk
∑

i=1

wTD
i,j,kFi,j,k (5)

In addition, we also calculate a biased bottom-up saliency
map by combining all feature maps weighted with their
specific bottom-up weightswBU

i,k resulting in the weighted
sum of 8 modalities (Gabor and DoG as for TD, RGBY
double color opponent, motion):

SBU =

8
∑

k=1

wCk
CBU

k with CBU
k =

Nk
∑

i=1

wPopOut
i,k wBU

i,kFi,k (6)

As wBU
i,k we choose a set of weights that shows good

performance for most situations in the car environment.
In the object-unspecific bottom-up path no inhibition takes
place (i.e., feature maps are only added up), since its purpose
is to evaluate the general unspecific saliency of a scene. The
individual bottom-up feature maps are additionally prepro-
cessed by a pop-out operator that globally amplifies maps
with a small number of maxima and attenuates maps with
many maxima [20]. The pop-out operator multiplies the
feature maps with a dynamic factorwPopOut

i,k computed at
runtime (see Eq. (7)). The factor is inversely proportionalto
the number of pixels that are near the maximum of the feature
map. Additionally,wPopOut

i,k is decreased by a factor of 2 for
each higher (i.e., smaller) scale levels in the image pyramid.
As higher levels tend to contain more pixels fulfilling the
thresholdξ = 0.9 ·Max(Fi,k) in the denominator of Eq. (7),
this weight increase maintains the comparability of scales:

w
PopOut
i,k =

√

√

√

√

2s

∑

∀x,y with Fi,k(x,y)>ξ

Fi,k(x, y)
for s = [0, 4]

(7)
By applying this operator, the bottom-up path is designed

to amplify feature maps that show few maxima, i.e., that
are sparse. In consequence, feature maps containing image
regions that pop out are boosted. It is of crucial importance
that the top-down feature maps do not pass a similar pop-
out step, since by tuning the top-down weights, we aim at
finding objects based on feature conjunctions. The individual
feature map responses for the searched objects might only
reach medium values, whereas the combination of all relevant
maps leads to a strong response in the resulting saliency map.
Through this explicit differentiation we achieve an increased
performance compared to other top-down attention systems.

For weighting the feature maps we currently use TD
weight sets for signal boards and cars (wTD

sigboard,i,k and
wTD

car,i,k) that were calculated in a supervised training step
using Eq. (1). It is envisioned in later versions of our ADAS
to calculate these weights dynamically at runtime to track
and even learn new objects.



C. Object recognition

For object recognition we use a view-based approach,
where we perform classification only on the image patch
provided by the FoA segmentation. Note that object recog-
nition operates on the original image resolution of 800×600
pixels, i.e., the RoI position and size provided by the saliency
system are transformed appropriately.

The object recognition module is based on a biologically
motivated processing architecture proposed in [24]. It uses a
strategy similar to the hierarchical processing in the ‘what’
pathway of the human visual system by creating a clas-
sification hierarchy. Unsupervised learning is used for the
lower levels of the hierarchy to determine general features
that are suitable for representing arbitrary objects robustly
with regard to local invariance transformations like localshift
and small rotations. Only at the highest level of the hierarchy
object-specific learning is carried out, i.e., only this layer has
to be trained for different objects. This architecture can be
applied to the difficult case of segmentation-free recognition
that we have to deal with as the saliency segmentation only
provides an approximate RoI with rectangular shape and no
object-specific segmentation.

Training is done by presenting several thousand color RoI
images with changing backgrounds for back views of cars
and signal boards (see also [25]). The learning algorithm au-
tomatically extracts the relevant object structure and neglects
the clutter in the surround. The output of the classifier is
the identity of the recognized object and a confidence value
where a threshold is used to reject object hypotheses with
low confidence. The threshold is chosen so that only a small
number of false positives can occur for cars, as a wrong car
detection could lead to a false emergency braking. If a car
is not recognized due to the high threshold, it is stored in
the STM as unknown and tracked for N frames before it is
removed from the STM. Subsequently, if the car is still a
salient object, a new FoA will be generated and recognition
is performed again. As now the car may be closer due to the
ego-motion of our vehicle, the image patch may be larger
and therefore may have a higher confidence resulting in a
correct recognition.

D. Depth cues

The current ADAS uses three independent depth sources
(see Fig. 3) that are combined using weak fusion (see
[26]). Weak fusion combines the depth sources based on the
reliability of the specific cues. It is realized here using an
Extended Kalman Filter (EKF) that combines at each time
step the cues via dynamic weights depending on the static
sensor variances (calculated offline) and the available depth
sources. Note that not every cue is available in each time
step. The EKF uses a second order process model for its
prediction step that models the relevant kinematics in the
car domain (velocity and acceleration). The resulting depth
values are assigned to detected objects in the image. The
following depth sources are currently used for fusion in the
EKF:

Depth from radar is obtained from a commercial stan-
dard vehicle equipment sensor, which delivers sparse point-
wise measurements with high confidence (for an example see
Fig. 3a).

Depth from bird’s eye view is realized using inverse
perspective world to image mapping (see [16]) based on
a pin hole camera model under the flat plain assumption
(i.e., all objects in the image are assumed to have zero
height). Inverse perspective mapping (i.e., the inverse usage
of the 3D-world positionXW , YW , ZW to (u,v)-image
mapping[u, v] = f(XW , YW , ZW = 0, camera parameters))
is used to assure a dense bird’s eye view image along with
low computational demands. A vertical grow algorithm with
dynamic thresholds searches for lanes and obstacles based on
discontinuities in the bird’s eye view and assigns a distance
value to found obstacles (see Fig. 3b).

Depth from object knowledge calculates the distance
of an objectZobj (see Eq. (8)) using knowledge about the
RoI area the object covers on the camera’s image chip
(width Wpixel and heightHpixel), the width and height
of the object in the real world drawn from experience
(Wreal andHreal) as well as the intrinsic parameters of the
camera sensor (αu = focal length/pixel width andαv =
focal length/pixel height):

Zobj,W ≈
Wreal αu

Wpixel

and Zobj,H ≈
Hreal αv

Hpixel

(8)

The intrinsic camera parameters were calculated in a camera
calibration procedure. A prerequisite for depth from object
knowledge is a reliable segmentation algorithm. Currentlywe
use histogram based segmentation on an image region that
is pre-segmented by our region growing algorithm working
on the saliency (see Fig. 3c).
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IV. EXPERIMENTS AND RESULTS

A. Evaluation of depth fusion

Figure 4 shows the EKF-based fusion of depth measure-
ments for a car that drives in front of our prototype vehicle
through an inner city (see Fig. 3a). For the EKF we used
the sensor variancesσradar = 0.3, σbirds = 2.8, and
σobj = 2.7 as well as the process varianceσprocess = 0.023
for the prediction step. Note that the usage of two additional
monocular depth cues of high variance fused with the low
variance radar cue ensures the availability of depth values
even if the interesting objects are outside of the radar beam.
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B. Experimental Setup for System Evaluation

Scenario: In order to evaluate the proposed system in a
challenging situation, we concentrate on typical construction
sites on highways. This situation is quite frequent and a
traffic jam ending exactly within a construction site is a
highly dangerous situation: due to the S-curve in many
construction sites, the driver will notice a braking or stopping
car quite late as the signal boards limit the field of view
(see Fig. 5a). Our ADAS implementation uses a 3-phase
danger handling scheme depending on the distance and
relative speed of a recognized obstacle. For example, when
the vehicle drives around 40 km/h and a static obstacle is
detected in front at less than 33 meters, in the first warning
phase a visual and acoustic warning is issued and the brakes
are prepared. If the dangerous situation is not resolved by the
human driver, the second phase triggers the belt pretentioners
and the brakes are engaged with a deceleration of 0.25 g
followed by hard braking of 0.6 g in the third phase.

Technical setup: For the experiments we used a Honda
Legend prototype car equipped with a mvBlueFox CCD
color camera from Matrix Vision delivering images of
800×600 pixels at 10 Hz. The image data as well as the radar
and vehicle state data from the CAN bus can be recorded.
The recorded data is used during offline evaluation. For
online prcessing all data is transmitted via Ethernet to two
laptops (2 GHz Core Duo) running our RTBOS integration

(a) (b)

distance of 48 m
signal boards at a
emerges behind

Stationary car

car
Stationary

Fig. 5. Scenario: (a) Schematic sketch of the construction site scenario.
Stationary car is visible from 48 meters on. (b) Real scenario.

middleware [27] on top of Linux. The individual RTBOS
components are implemented in C using an optimized image
processing library based on the Intel IPP [28].

Test data for training and evaluation: In order to gain
sufficient training data and for evaluating the actual system
performance, we set up an exemplary construction site on a
private driving range where we recorded data and performed
the actual online tests.

C. Influence of Parameters on Detection Performance

All results described in the following are obtained by aver-
aging over 10 recorded streams in order to lessen statistical
outliers. As performance metric we will use the detection
performance as this is a good indicator for the efficiency of
the saliency system in analyzing complex visual scenes under
time constraints. As in each time step of the system running
at 10 Hz one FoA is analyzed in the ‘what’ pathway and
potentially added to the STM, we will use frames (equivalent
to 1

10 second) as time unit.
In the first step the object detection distance is evaluated

depending on STM size N and the TD parameterλ (setting
the amount of TD influence) while using a TD weight set
trained on cars. Figure 6 shows the distance to the stationary
car when the first FoA hits the car, which is defined by
hand-labeled groundtruth on the recorded streams. It can be
seen that the larger the TD influence (search task: find cars)
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Fig. 6. Stationary car detection distance depending onλ=0, 0.25, 0.5, 0.75,
and 1 as well as the STM size N=1,2,3,5, and 7 when using groundtruth
for detecting a hit



expressed byλ, the earlier the car is detected. Similarly,
the more objects are stored in the STM (object number N),
the earlier the car is detected as a large part of the visual
scene is already contained as (unknown) objects in the STM
and therefore inhibited in the saliency map. It can also be
deduced that with growing N the influence of TD is reduced
since the scene coverage increases.

Including the task of object recognition in the evaluation,
Fig. 7 shows the distance to the stationary car when the first
FoA hits the target and this RoI is recognized as car by
the object classifier. Since the used classification threshold
was set high to obtain a low false-positive error rate at the
cost of a high false-negative error rate, the distance when
the car is detected is smaller than in the evaluation with
groundtruth. Differing from Fig. 6, at large values of N (see
Fig. 7 for N=7) the detection distance worsens again. The
reason for this effect is that our system is not using object
segmentation algorithms but performs segmentation directly
on the saliency image which can lead to enlarged patches
suppressing the surround of the found objects as well. In this
way, the borders of the car might be suppressed by adjacent
signal board patches leading to incomplete car FoAs that
are not sufficient for correct classification by the used object
classificator.
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Fig. 7. Stationary car detection distance depending onλ=0, 0.25, 0.5, 0.75,
and 1 as well as the STM size N=1,2,3,5, and 7 when using the classifier
for detecting a hit.

Based on Fig. 7 the best choice ofλ for detecting cars
would be 1, which equals pure TD search mode. However,
such a parameterization is not appropriate because this leads
to a reduced capability of detecting other objects that are
only prominent in the BU saliency (see Fig. 8). Here we
see that with growingλ the average detection distance of
signal boards (the only other object class besides cars in our
evaluation) drops. Stated differently, the system ignoresall
other objects while searching for cars in pure TD mode (λ
= 1), which might lead to dangerous situations. The default
λ was hence set to 0.5 for the online tests.

In the previous evaluations we assumed that the scene
contains more than N objects and used a fixed STM size
which is equivalent to storing any object for N frames
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Fig. 8. Detection distance depending onλ=0, 0.25, 0.5, 0.75, and 1.
Average detection distance of signal boards and the stationary car using the
object classifier for an STM size of N=1,2, and 5.

independent of, e.g., whether it is was correctly recognized.
We now introduce an object specific Time To Live (TTL)
defining for how many frames an object is stored in the
STM before it is removed. In this way, unknown objects can
be tracked for only a short time before a new recognition
attempt is carried out if the image region is still salient.
Figure 9 shows how the choice of the TTL influences the
system performance. For an object unspecific TTL of 5
frames the curve is identical to Fig. 8 for N=5. For the
object-specific case we chose TTLsigB = 6 frames for signal
boards, TTLcars = 20 frames, and TTLunknown = 3 frames,
leading for the construction site streams on average to N=5
objects in the STM. Note that the low value of TTLunknown

and the high value of TTLcars are linked to setting the object
recognition threshold high, i.e., it is very likely to get an
unknown which is a false negative car but rather unlikely to
get a car that is a false positive.

A clear gain in detection performance can be seen when
using object dependent TTL values which is due to the fact
that FoAs which hit the car very early are often too small
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Fig. 9. Stationary car detection distance depending onλ=0, 0.25, 0.5, 0.75,
and 1 while using object unspecific and object specific TTL values.



for a reliable classification. These unknown scene parts are
suppressed only for 3 frames before the classifier gets a
second chance to detect the car. This object-specific TTL
parameterization was used during the online tests described
below.

D. Evaluation of System Performance

We evaluated the warning generation offline in detail on
10 recorded construction site streams used also for evaluation
in the previous Section IV-C. In all streams, the ADAS was
able to recognize and track the car from a distance between
42 and 32 meters, while the car was fully visible at a distance
of about 48 meters.

During documented online system tests in the setting
depicted in Fig. 5 with our prototype vehicle driving 40
km/h our system detected in 57 of 60 cases the stationary
car in time and issued the 3 warning phases as expected
including autonomous braking. In the remaining cases, either
the object recognition detected a signal board as car and the
braking was performed too early or the FoA generation did
not deliver a good car RoI position so that the fusion of
the car RoI with radar data failed and no warning/braking
was performed at all. Note that in our vision-based proof-
of-concept system we rely completely on vision and do not
make use of an additional radar-based emergency braking
that would be needed in real traffic as backup for situations
in which our vision system fails.

V. SUMMARY

In this contribution we have presented our approach to
an Advanced Driver Assistance System where we make
use of a human-like attention system for controlling the
processing focus. Through tuning the attention system to
interesting objects the system analyzes only relevant parts of
the scene. By performing an EKF-based fusion of different
depth sources, good depth estimates are obtained for all
objects on the street. The overall architecture is organized in
a brain-like fashion by separating the identification of new
objects from the continuous tracking of previously detected
objects. In experiments we have shown how the overall
detection performance is affected by different strengths of
TD-weighting as well as the Time To Live of an object.
By applying object specific Time To Live values our system
is capable of detecting cars in cluttered scenes even from
a great distance. For a live demonstration we chose a
construction site setup where the system has successfully
performed braking online, providing a proof-of-concept. On-
going efforts aim at incorporating information about the road
into the overall architecture concept in order to provide the
basis for more context-dependent processing strategies like,
e.g., focusing attention on objects on or near the road.
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Institute de Microtechnique, 2003.

[11] G. Färber, “Biological aspects in technical sensor systems,” inProc.
Advanced Microsystems for Automotive Applications, Berlin, Mar
2005, pp. 3–22.

[12] C. Stiller, G. Färber, and S. Kammel, “Cooperative cognitive automo-
biles,” in IEEE Intelligent Vehicles Symposium, 2007, pp. 215–220.

[13] P. Cavanagh and G. Alvarez, “Tracking multiple targetswith multifocal
attention,” Trends in Cognitive Sciences, vol. 9, pp. 350–355, 2005.

[14] R. M. Klein, “Inhibition of return,”Trends in Cognitive Science, vol. 4,
no. 4, pp. 138–145, April 2000.

[15] S. Palmer,Vision Science: Photons to Phenomenology. MIT Press,
1999.

[16] M. Bertozzi, A. Broggi, and A. Fascioli, “Stereo inverse perspective
mapping: Theory and applications,”Image and Vision Computing,
vol. 8, no. 16, pp. 585–590, 1998.

[17] T. Michalke, J. Fritsch, and C. Goerick, “Enhancing robustness of a
saliency-based attention system for driver assistance,” in The 6th Int.
Conf. on Computer Vision Systems (ICVS’08), Santorini, Greece, 2008.

[18] R. Trapp, “Stereoskopische korrespondenzbestimmungmit impliziter
detektion von okklusionen,” Ph.D. dissertation, University of Pader-
born Germany, 1998.

[19] S. Frintrop, “Vocus: A visual attention system for object detection and
goal-directed search,” Ph.D. dissertation, University ofBonn Germany,
2006.

[20] L. Itti, C. Koch, and E. Niebur, “A model of saliency-based visual
attention for rapid scene analysis,”IEEE Trans. Pattern Anal. Mach.
Intell., vol. 20, no. 11, pp. 1254–1259, 1998.

[21] C. Koch and S. Ullman, “Shifts in selective visual attention: towards
the underlying neural circuitry,”Human Neurobiology, vol. 4, no. 4,
pp. 219–227, 1985.

[22] S. Frintrop, G. Backer, and E. Rome, “Goal-directed search with a top-
down modulated computational attention system,” inLecture Notes in
Computer Science, 2005, pp. 117–124.

[23] V. Navalpakkam and L. Itti, “Optimal cue selection strategy,” in
Advances in Neural Information Processing Systems, Vol. 19. Cam-
bridge, MA: MIT Press, 2006, pp. 1–8.

[24] H. Wersing and E. Körner, “Learning optimized features for hierar-
chical models of invariant object recognition,”Neural Computation,
vol. 15, no. 2, pp. 1559–1588, 2003.

[25] A. Gepperth, B. Mersch, J. Fritsch, and C. Goerick, “Color object
recognition in real-world scenes,” inICANN 2007, part II, ser. Lecture
Notes in Computer Science, J. de Sa, Ed. Springer Verlag Berlin
Heidelberg New York, 2007, no. 4669.

[26] M. Landy, L. Maloney, E. Johnsten, and M. Young, “Measurement
and modeling of depth cue combinations: in defense of weak fusion,”
Vision Research, vol. 35, no. 3, pp. 389–412, 1995.

[27] A. Ceravola, F. Joublin, M. Dunn, J. Eggert, and C. Goerick, “Inte-
grated research and development environment for real-timedistributed
embodied intelligent systems,” inProc. Int. Conf. on Robots and
Intelligent Systems, 2006, pp. 1631–1637.

[28] Intel, “Integrated Performance Primitives,” 2006, http://www.intel.
com/cd/software/products/asmo-na/eng/perflib/ipp/302910.htm.


