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NEURAL ASSOCIATIVE MEMORY AND THE WILLSHAW-PALM

PROBABILITY DISTRIBUTION ∗

ANDREAS KNOBLAUCH†

Abstract. Previous asymptotic analyses of binary neural associative networks of the Willshaw
or Steinbuch type relied on a binomial approximation of the neurons’ dendritic potentials. This
approximation has been proven to be good only if the stored patterns are extremely sparse, for
example, when the mean number of active units k per pattern vector scales with the logarithm of
the vector size n. Recent promising results concerning storage capacity and retrieval efficiency for
larger pattern activities k > log n have been doubted because here the binomial approximation can
lead to a massive overestimation of performance. In this work I compute and characterize the exact
Willshaw-Palm distribution of the dendritic potentials for hetero-association, auto-association, and
fixed and random pattern activity. Comparing the raw and central moments of the Willshaw-Palm
distribution to the moments of the corresponding binomial probability reveals that, asymptotically,
the binomial approximation becomes exact for almost any sublinear pattern activity, including k =
O(n/ log2 n). This verifies, for large networks, the existence of a wide high-performance parameter
range as predicted by the approximative theory.

Key words. neural network, Willshaw model, information retrieval, storage capacity, fault
tolerance
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1. Introduction. Associative memories are systems that contain information
about a finite set of associations between pattern vector pairs {(uµ 7→ vµ) : µ =
1, ..., M}, where uµ and vµ are called address and content patterns, respectively [28].
Given a possibly noisy address pattern ũ the problem is to find a content pattern vµ

for which the corresponding address pattern uµ is most similar to ũ. This is a variant
of the Best Match Problem in [31] and efficient solutions have widespread applications
including object recognition and information retrieval [28, 36, 40, 3, 13, 20, 32, 42].

In neural network implementations the information about the associations is
stored in the synaptic connectivity of one or more neuron populations [46, 16, 17, 37].
Besides the potential for technical applications, neural associative memories also play
an important role in many brain theories (e.g., [14, 30, 5, 35, 16, 17, 11, 12, 27, 10, 15]),
where the patterns correspond to attractors in the brain’s neuronal state space.

One of the most efficient networks is the so-called Willshaw or Steinbuch model
with binary neurons and synapses [44, 46, 34, 33, 8, 43]. In particular, it has been
shown that the Willshaw model has a very high asymptotic storage capacity of C =
0.7 bits per synapse which exceeds the capacity of most alternative models. For
example, the original Hopfield model achieves only C = 0.14 bps [16, 1, 2]. In general
the classical work points out that high capacities can be obtained only if the stored
patterns are extremely sparse, for example, when the mean number of active units k
per pattern vector scales logarithmic with the vector size n.

For a number of reasons, a regime of larger pattern activity with k/ log n →
∞ has recently gained increased attention: First, logarithmic k = log n is simply
too sparse for many applications of distributed representations [41, 45, 42]. Second,
activity patterns with extremely sparse activity k ∼ log n appear inconsistent with
neurophysiology because they are difficult to stabilize in a noisy regime where neurons
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2 A. KNOBLAUCH

have high rates of spontaneous activity [29]. Third, it has been argued that k/ logn →
∞ can actually lead to a massive increase in storage capacity and retrieval efficiency if
the network structures are adequately compressed ([22]; see also [18, 19, 20]). Fourth,
k/ logn → ∞ allows an efficient inhibitory implementation of the Willshaw model
which implies new interpretations for inhibitory circuits in the brain [22, 24].

However, the viability of this regime with moderately sparse patterns, k/ logn →
∞, has been doubted. On the one hand, here the established theories on Willshaw
or Steinbuch type networks with fixed connectivity structure predict only a very low
performance, for example zero storage capacity per synapse, such that both tech-
nical applicability and biological relevance seem unlikely . On the other hand, the
extended theory considering structural changes and inhibitory implementations pre-
dicts high performance, but relied, similar to the established theories, on a binomial
approximation of the neurons’ dendritic potentials (e.g., [46, 34, 37, 33, 4, 43, 20]).
This approximation may be inaccurate for large pattern activities k ≫ log n and thus
the corresponding high-performance regime illusory. Indeed, the convergence of the
binomial approximation to the true potential distribution and thus the asymptotic
correctness of the theory has been demonstrated only for some special cases involving
very sparse activity patterns, where a binary pattern vector of n neurons contains
only k = log n or k ≤ n1/3 active units [34, 38]. Another analysis showed that the
binomial approximation becomes very inaccurate for linear k ∼ n [19, 21]. However,
it remained unclear for precisely which k(n) the binomial approximation converges to
the true potential distribution.

In this work I have solved this problem. Section 2 gives an overview of the Will-
shaw model and the analysis employing the binomial approximation of the dendritic
potentials. Section 3 then defines and computes the exact Willshaw-Palm distribu-
tion of the dendritic potentials which can be used to determine exact retrieval error
probabilities and storage capacity. Section 4 characterizes the Willshaw-Palm prob-
ability by computing the raw and central moments. Finally, section 5 compares the
Willshaw-Palm probability to the binomial probability and determines asymptotic
conditions when the two probability distributions become identical.

2. Binary associative networks.

2.1. Learning and retrieving patterns. An attractive model of neural asso-
ciative memory both for biological modeling and applications is the so-called Willshaw
or Steinbuch model with binary neurons and synapses [46, 44, 34, 33, 37, 7, 4, 43, 20]
illustrated in Fig. 2.1. Each address pattern uµ is a binary vector of length m con-
taining k one-entries and m − k zero-entries. Similarly, each content pattern vµ is a
binary vector of length n containing l one-entries and n − l zero-entries. Typically,
the patterns are sparse, i.e., k ≪ m and l ≪ n. For our analysis of storage capacity
we will further assume that each pattern is randomly drawn from the sets of the

(

m
k

)

potential address patterns and the
(

n
l

)

potential content patterns.
The M pattern pairs are stored hetero-associatively in a binary memory matrix

A ∈ {0, 1}m×n with

Aij = min

(

1, Ãij +

M
∑

µ=1

uµ
i · vµ

j

)

∈ {0, 1} , (2.1)

where Ã is a binary noise matrix with each component being active independently
with probability p̃1.
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Fig. 2.1. Example of the binary Willshaw associative memory for hetero-association. Left:

During learning M associations between address patterns uµ and content patterns vµ are stored in
the binary memory matrix A representing binary synaptic weights of the connection from neuron
population u to v. Initially all synapses are inactive (p̃1 = 0). During learning of pattern asso-
ciations, the synapses are activated according to Hebbian coincidence learning (eq. 2.1). Right:

For retrieval an address pattern ũ is propagated through the network. Vector-matrix-multiplication
yields the dendritic potentials x = ũA. To obtain the retrieval result v̂ (here equal to v1) a threshold
Θ is applied. For pattern part retrieval with ũ ⊆ uµ we can simply choose the Willshaw threshold
Θ = |ũ|. Then the retrieval output is a superset of the original pattern, v̂ ⊇ vµ, that means v̂

contains no miss-errors.

The neural interpretation is that of two neuron populations, an address population
u consisting of m neurons and a content population v consisting of n neurons. The
patterns uµ and vµ describe the activity states of the two populations at time µ,
and Aij is the strength of the Hebbian learned synaptic connection from neuron ui

to neuron vj . Positive p̃1 can be used to model noisy synaptic potentiation (e.g., the
synapses that are already active before learning starts), noisy synaptic transmission,
or incomplete connectivity [22, 23, 24].

Besides the feed-forward interpretation, the Willshaw model can also be used
to model auto-association or pattern completion where address population content
population are identical, u = v, and consequently also uµ = vµ. Here the memory
matrix A describes the recurrent synaptic connectivity within the neuron population.

For independently generated random patterns, there is a simple relation between
the number M of stored associations and the so-called memory load p1 defined as the
fraction of one-entries in the memory matrix. The probability that a synapse is not
activated by the association of one pattern pair is 1− kl/mn, therefore after learning
M pattern associations,

p1 = 1 − (1 − p̃1)

(

1 −
kl

mn

)M

≥ p̃1, (2.2)

M =
ln 1−p1

1−p̃1

ln(1 − kl/mn)
≈ −

mn

kl
ln

1 − p1

1 − p̃1
, (2.3)

where the approximation is valid for kl ≪ mn. As we will see, the memory load p1



4 A. KNOBLAUCH

will play an important role both for the exact analysis of the Willshaw model and for
the binomial approximative analysis.

After learning, the stored information can be retrieved applying an address pat-
tern ũ. Vector-matrix-multiplication yields the dendritic potentials x = ũA of the
content neurons, and imposing a threshold Θ gives the (one-step) retrieval result v̂,

v̂j =

{

1 , xj = (
∑m

i=1 ũiAij) ≥ Θ
0 , otherwise

. (2.4)

Choosing Θ = z :=
∑m

i=1 ũi will be referred to as the Willshaw threshold and plays
an important role both for more realistic spiking neuron networks [26, 19] and also
for pattern part retrieval with ũ ⊆ uµ as analyzed in section 2.3.

2.2. Retrieval errors and storage capacity. We have retrieval errors if the
retrieval result v̂µ is not identical to the originally learned pattern vµ. For a closer
analysis we can divide the neurons of the content population into two groups: The
lo-units which correspond to the n − l zero-entries of vµ, and the hi-units which
correspond to the l one-entries of vµ. For an error-free retrieval result v̂µ the potentials
x of lo- and hi-units must be separable, i.e., the largest potential of a lo-unit must be
smaller than the smallest potential of a hi-unit. If the two potential distributions have
overlap two kinds of retrieval errors can occur. An add-error occurs if the potential
of a lo-unit is above threshold Θ, and a miss-error occurs if the potential of a hi-
unit is below threshold. If the probability distribution of a lo-unit i is known we can
compute the probability p01 of an add-error. Similarly, for a hi-unit j we can compute
the probability p10 of a miss-error. With z = |ũ| being the activity of the address
pattern, we have

p01 = pr(v̂i = 1|vµ
i = 0) =

z
∑

x=Θ

pr[xi = x] (2.5)

p10 = pr(v̂j = 0|vµ
j = 1) =

Θ−1
∑

x=0

pr[xj = x] . (2.6)

Thus, the expected Hamming distance h(vµ, v̂µ) :=
∑n

j=1 |v
µ
j − v̂µ

j | between learned
and retrieved pattern is

Eh(vµ, v̂µ) = (n − l)p01 + lp10 (2.7)

To enforce retrieval quality we bound the expected Hamming distance to be no more
than a fraction ǫ of the content pattern activity l. Thus, we require

(n − l)p01 + lp10 ≤ ǫl (2.8)

where retrieval quality parameter ǫ is typically a small positive constant (e.g., ǫ =
0.01). Because the minimal Hamming distance (optimizing Θ) is obviously increasing
with M , we can finally define the pattern capacity Mǫ

Mǫ := max{M : (n − l)p01 + lp10 ≤ ǫl} (2.9)

being the maximal number of storable pattern associations fulfilling the retrieval qual-
ity requirement eq. 2.8. Considering the Shannon information of individual content
patterns, we get the normalized network storage capacity in bits per synapse,

Cǫ :=
MǫT (vµ; v̂µ)

mn
(2.10)
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where T (vµ; v̂µ) is the transinformation (or mutual information) between learned
and retrieved content pattern [9]. From the network capacity we can derive further
performance measures such as information capacity CI and synaptic capacity CS

making use of the compressibility of the memory matrix for a memory load p1 6= 0.5
(see section 2.4; for more details see [18, 19, 20, 22]).

2.3. Sketch of the binomial approximative analysis for random pat-

terns. The approximative analysis of the Willshaw model relies on the assumption
that the one-entries in the memory matrix are generated independently of each other.
Although obviously not true for distributed patterns, this assumptions leads to semi-
nal insights into the Willshaw model and, at least for certain parameter ranges, quite
good approximations of the actual storage capacity (see section 3; see [22]).

Let us again assume that the retrieval address pattern ũ contains c = λk correct
and f = κk false one-entries of address pattern uµ previously used for learning (0 <
λ ≤ 1, κ ≥ 0). Assuming pr[Aij = 1] = p1 independently of i, j, the dendritic
potentials xlo of a lo-unit and xhi of a hi-unit are binomially distributed (eq. A.2),

pr[xlo = x] = pB(x; c + f, p1), x = 0, 1, . . . , c + f (2.11)

pr[xhi = x] = pB(x − c; f, p1), x = c, c + 1, . . . , c + f . (2.12)

For purposes of clarity, in the following we restrict the analysis to the case of pattern
part retrieval where the address pattern contains no add noise, that is, f = 0. For
the general analysis see [43]. Here one can apply the Willshaw threshold Θ = c which
will limit the retrieval errors to add noise. Thus, the retrieval error probabilities are

p01 = p(v̂i = 1|vµ
i = 0) ≈ p1

λk. (2.13)

and p10 = 0. To enforce retrieval quality as described above (see eq. 2.8) we have to
bound the error probability p01 by p01ǫ,

p01 ≤ p01ǫ :=
ǫl

n − l
. (2.14)

The number of patterns that can be stored is limited to the point where p01 = p01ǫ

or, equivalently, where the memory load reaches

p1ǫ ≈

(

ǫl

n − l

)
1

λ·k

(

⇔ k ≈
ld ǫl

n−l

λldp1ǫ

)

. (2.15)

From eq. 2.3 we obtain the maximal number of stored patterns or pattern capacity

Mǫ ≈ −λ2 · (ldp1ǫ)
2 · ln

1 − p1ǫ

1 − p̃1
·
k

l
·

mn

(ldn−l
ǫ·l )2

. (2.16)

With this result we can also estimate the network capacity (eq. 2.10)

Cǫ =
MǫT (l/n, p01ǫ, 0)

m
≈ λ · ldp1ǫ · ln

1 − p1ǫ

1 − p̃1
· η (2.17)

where T (p, p01, p10) is the transinformation (or mutual information) of a binary chan-
nel (see eq. A.1, [9]) and

η :=
T
(

l
n , ǫl

n−l , 0
)

− l
n ld ǫl

n−l

≈
1

1 + ln ǫ
ln(l/n)

. (2.18)
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The approximation is valid for small ǫ, l/n ≪ 1 when T ≈ −(l/n)ld(l/n): In that
case η → 1 for large n → ∞. For p1ǫ = 0.5 and p̃1 = 0 we have therefore Cǫ →
ln 2 ≈ 0.69 bits per synapse, the asymptotic storage capacity of the Willshaw model
[46, 34, 43, 22]. Note that Cǫ increases by factor 1/(1 − p̃1) if 1 − p̃1 is interpreted
as network connectivity (i.e., the chance that a potential synapse is actually realized;
see [22, 8, 4]).

2.4. The asymptotic regimes of sparse and dense potentiation. The main
conclusions from the binomial approximative analysis are that a very high storage
capacity of almost 0.7 bits per synapse can be achieved for sparse patterns with k ∼
log n and memory load p1 = 0.5. Then we can store on the order of M ∼ mn/(log n)2

pattern associations with high retrieval quality. From eqs. 2.15,2.17 it is easy to see
that asymptotically

Cǫ > 0 ⇔ k ∼ log n ⇔ 0 < p1ǫ < 1. (2.19)

Thus, the analysis suggests that neural associative memory is efficient (Cǫ > 0)
only for logarithmically sparse patterns. For sub-logarithmic sparse patterns with
k/ logn → 0 we have p1ǫ → 0 and for supra-logarithmic sparseness with k/ logn → ∞
we have p1ǫ → 1, both cases implying vanishing network storage capacity Cǫ → 0.
These results bear importance for both technical applications and biology, in partic-
ular with respect to the sparseness of postulated Hebbian cell assemblies in the real
brain [14, 5, 35]. In the following we will refer to the three cases p1ǫ → 0/c/1 as
sparse, balanced, and dense synaptic potentiation, respectively.

I have argued elsewhere that these conclusion may be biased by the definition of
network storage capacity, and that alternative definitions of storage capacity consid-
ering the compressibility of the network lead to different conclusions [18, 19, 20, 22].
For example, in technical implementations of the Willshaw model the memory ma-
trix can be compressed for p1 → 0/1 and the storage capacity improves by factor
I(p1) := −p1ldp1 − (1− p1)ld(1− p1). Similar arguments hold for biological networks
where “compression” could be realized by synaptic pruning and structural plasticity
(see [22] for more details). This has led to the definition of information capacity
CI

ǫ := Cǫ/I(p1ǫ) and synaptic capacity CS
ǫ := Cǫ/ min(p1ǫ, 1 − p1ǫ). Interestingly,

and in contrast to network capacity Cǫ, optimizing CI
ǫ and CS

ǫ reveals highest capac-
ities for p1ǫ → 0 and p1ǫ → 1. Here, presuming the validity of the binomial theory,
technical implementations could fully exploit the physical memory by storing CI

ǫ → 1
bit information per memory bit. Similarly, biological networks could improve storage
capacity to arbitrary large values CS

ǫ ∼ log n → ∞ bit per synapse. By these results,
the regimes with ultra-sparse and moderately sparse patterns (or cell assemblies) have
gained increased attention. However, the convergence of the binomial approximations
towards the exact values is questionable since this has been strictly proven only for
some special conditions including k ∼ log n [34, 38]. In particular, for dense potenti-
ation with p0ǫ = 1 − p1ǫ → 0, supra-logarithmic sparseness, k/ logn → ∞, and

p1ǫ = (
ǫl

n − l
)1/λk = e

ln(ǫl/(n−l))
λk ≈ 1 −

ln n−l
ǫl

λk
, (2.20)

numerical simulations of the Willshaw model reveal that the real capacities can be
massively overestimated by the binomial approximative analysis [22]. Therefore, in
the following we conduct an exact analysis of the Willshaw model based on the ex-
act potential distributions, and investigate conditions when the binomial probability
distribution becomes a good approximation of the Willshaw-Palm distribution.
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3. The Willshaw-Palm distribution of the dendritic potentials. For an
exact analysis of the Willshaw model we have to compute the distribution of the
neurons’ dendritic potentials, i.e., the probability pr[X = x] that the potential X
of a given hi- or lo-unit equals a certain value x (see eqs. 2.5,2.6). This probability
distribution is also called Willshaw-Palm distribution for random pattern associations
and random retrieval address pattern. In the following more formal definition we take
into account different ways to generate random patterns.

Definition 3.1. (Willshaw-Palm probability) Let A be the memory matrix of a
Willshaw associative memory after learning M random pattern associations and with
synaptic noise p̃1 as described in section 2.1. The associations are between address
patterns uµ with size m and mean activity k, and content patterns vµ with size n and
mean activity l (µ = 1, 2, . . . , M). Further let ũ be a binary random address pattern
with activity z = |ũ|. Then we define the Willshaw-Palm probability as the probability
pr[(ũA)j = x] that a given content neuron vj has potential x when retrieving with
ũ. We distinguish between four relevant versions of the Willshaw-Palm probability
depending on the generation of the random patterns:

1. pPh(x; k, l, m, n, M, p̃1, z) for fixed address activity and hetero-association.
2. pPa(x; k, n, M, p̃1, z, σ) for fixed address activity and auto-association.
3. pWh(x; k, l, m, n, M, p̃1, z) for random address activity and hetero-association.
4. pWa(x; k, n, M, p̃1, z, σ) for random address activity and auto-association.

Auto-association means that address patterns and content patterns are identical, uµ =
vµ. Fixed address activity means that each address pattern has exactly k active units.
Random address activity means that a component of an address pattern is active, uµ

i =
1, with probability k/m independently of other components. For the hetero-associative
cases, the content patterns can have either fixed activity l or random activity with
mean l. The auto-associative cases require an additional parameter σ := pr[j ∈ ũ]
denoting the probability that neuron j is among the z active address units.

We sometimes denote pW briefly as the Willshaw probability since pWh has first
been determined by Buckingham and Willshaw [7, 6]. Similarly, we denote pP briefly
as the Palm probability since some special cases of pPh have first been determined by
Palm [34]. Note that the difference between the two variants is that the Palm model
has address patterns with fixed activity and the Willshaw model has address patterns
with fixed mean.

Theorem 3.2. The four Willshaw-Palm probabilities pPh, pPa, pWh, pWa are
given by eqs. 3.22,3.34,3.39,3.41, respectively.

The proof of the theorem follows in the next four subsections each determining
one version of the Willshaw-Palm probability and the corresponding retrieval error
probabilities.

3.1. Fixed pattern activity and hetero-association. Here we will deter-
mine the Willshaw-Palm probability pPh(x; k, l, m, n, M, z) of Def. 3.1. For brevity
we identify patterns with sets of one-entries, e.g., u = 011001 is identified with the
index set u = {2, 3, 6}. Generalizing Palm’s definition of a predicate or condition C
(see appendix 1 in [34]) for index sets Y, N (“yes!” and ”no!”) let

C(Y, N, j) := [∀i ∈ Y : Aij = 1] ∩ [∀i ∈ N : Aij = 0] (3.1)

i.e., condition C(Y, N, j) means that content neuron j receives inputs from the subset
Y of address pattern ũ, but no input from subset N . We further assume that Y and
N are disjunct random sets unrelated to the M stored pattern pairs. For Y equal to
a further M + 1-th address pattern, i.e., Y = uM+1, the condition C(Y, ∅, j) would
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coincide with the definition of C in the appendix of [34]. Then C would be equivalent
to the occurrence of an add-error at lo-unit j for retrieval with the noise-free address
pattern ũ = uM+1. We first compute the probability that C(Y, ∅, j) holds after
storing M pattern associations. Contrary to [34] we assume that Y ⊆ {1, . . . , m} is
an arbitrary subset of address units unrelated to the M stored pattern associations.

pr(C(Y, ∅, j)) = pr([∀i ∈ Y : Aij = 1]) = 1 − pr([∃i ∈ Y : Aij = 0]) (3.2)

= 1 − pr(
⋃

i∈Y

[Aij = 0]) = 1 − pr(

|Y |
⋃

i=1

[Aij = 0]) (3.3)

= 1 −

|Y |
∑

s=1

(−1)s+1
∑

1≤i1<...<is≤|Y |

pr(

s
⋂

h=1

[Aihj = 0]) (3.4)

= 1 −

|Y |
∑

s=1

(−1)s+1

(

|Y |

s

)

pr(

s
⋂

i=1

[Aij = 0]) (3.5)

For eq. 3.4 we used the formula of Sylvester-Poincaré eq. A.6. Note that for random
patterns the probabilities that a given subcolumn of A has at least one zero-entry
(eq. 3.3) or only zero-entries (see eq. 3.5) depend only on the subcolumn’s size, but
not on the specific indices. The latter probability writes

pr(

s
⋂

i=1

[Aij = 0]) = pr(

s
⋂

i=1

[Ãij = 0] ∩
M
⋂

µ=1

[1, . . . , s 6∈ uµ ∨ j 6∈ vµ]) (3.6)

= (1 − p̃1)
s(pr[1, . . . , s 6∈ u1 ∨ j 6∈ v1])M (3.7)

where we used the facts that the entries of the noise matrix Ã and the address patterns
are generated independently of each other and the probability that all entries of a
subcolumn remain zero during learning of the µ-th pattern pair is independent of µ.
The latter probability writes

pr[1, . . . , s 6∈ u1 ∨ j 6∈ v1] (3.8)

= pr([1, . . . , s 6∈ u1]) + pr([j 6∈ v1]) − pr([1, . . . , s 6∈ u1 ∧ j 6∈ v1]) (3.9)

=

(

m−s
k

)

(

m
k

) +

(

n−1
l

)

(

n
l

) −

(

m−s
k

)(

n−1
l

)

(

m
k

)(

n
l

) (3.10)

= B(m, k, s) + B(n, l, 1) − B(m, k, s)B(n, l, 1) = 1 −
l(1 − B(m, k, s))

n
(3.11)

where B(a, b, c) :=
(

a−b
c

)

/
(

a
c

)

=
∏c−1

i=0 (a − b − i)/(a − i) = B(a, c, b), see [34] and
eq. A.8 in appendix A. Thus

pr(C(Y, ∅, j)) =

|Y |
∑

s=0

(p̃1 − 1)s

(

|Y |

s

)

(1 −
l

n
(1 − B(m, k, s)))M (3.12)
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With this result we can finally compute the general case with arbitrary, but disjunct
Y, N = {N1, N2, . . .} ⊆ {1, . . . , m}, Y ∩ N = ∅:

pr(C(Y, N, j)) = pr(C(Y, ∅, j)) − pr(

|N |
⋃

i=1

C(Y ∪ {Ni}, ∅, j)) (3.13)

= pr(C(Y, ∅, j)) −

|N |
∑

t=1

(−1)t+1
∑

1≤i1<...<it≤|N |

pr(

t
⋂

h=1

C(Y ∪ {Nih
}, ∅, j)) (3.14)

= pr(C(Y, ∅, j)) −

|N |
∑

t=1

(−1)t+1

(

|N |

t

)

pr(C(Y ∪ {N1, . . . , Nt}, ∅, j) (3.15)

=

|N |
∑

t=0

(−1)t

(

|N |

t

) |Y |+t
∑

s=0

(−1)s

(

|Y | + t

s

)

(1 − p̃1)
s(1 −

l

n
(1 − B(m, k, s)))M (3.16)

=

|Y |+|N |
∑

s=0

(1 − p̃1)
s(1 −

l(1 − B(m, k, s))

n
)M

|N |
∑

t=max(0,

s−|Y |)

(−1)s+t

(

|Y | + t

s

)(

|N |

t

)

(3.17)

=

|Y |+|N |
∑

s=|N |

(−1)s−|N |

(

|Y |

s − |N |

)

(1 − p̃1)
s(1 −

l

n
(1 − B(m, k, s)))M (3.18)

where for eq. 3.14 we used again eq. A.6 (Sylvester-Poincaré), and for the last equation
we used eq. A.7. Thus, the (Willshaw-)Palm probability for hetero-association is

pPh(x; k, l, m, n, M, z) = pr





⋃

Y ⊆ũ,|Y |=x,N=ũ−Y

C(Y, N, j)



 (3.19)

=

(

z

x

)

pr(C({1, . . . , x}, {x + 1, . . . z}, j)) (3.20)

=

(

z

x

) z
∑

s=z−x

(−1)s−z+x

(

x

s − z + x

)

(1 − p̃1)
s(1 −

l

n
(1 − B(m, k, s)))M (3.21)

=

(

z

x

) x
∑

s=0

(−1)s

(

x

s

)

(1 − p̃1)
s+z−x(1 −

l

n
(1 − B(m, k, s + z − x)))M (3.22)

for 0 ≤ x ≤ z and B as defined below eq. 3.11.
Now we are able to compute exact retrieval error probabilities when addressing

with noisy patterns. For example, when addressing with a single address pattern
containing c correct and f false one-entries and retrieving with threshold Θ, then
the exact retrieval error probabilities p01 of a false one-entry and p10 of a missing
one-entry are

p01(Θ) =

c+f
∑

x=Θ

pPh(x; k, l, m, n, M − 1, p̃1, c + f) (3.23)

p10(Θ) =

Θ−1
∑

x=c

pPh(x − c; k, l, m, n, M − 1, p̃1, f) . (3.24)
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Note that the situation is as if only M−1 patterns were stored since, as a precondition,
the pattern to be retrieved does affect neither any of the synapses of a 0-neuron nor
any of the synapses connecting add-noise to a 1-neuron.

3.2. Fixed pattern activity and auto-association. The analysis for hetero-
association in section 3.1 can be extended to auto-association where address and
content population are identical, i.e., m = n, k = l, and uµ = vµ (see also appendix
1 in [34]). Here the diagonal matrix elements Ajj have a much higher probability

p̄1 = 1 − (1 − p̃1)(1 − k/n)M (3.25)

of being activated than non-diagonal elements (cf. eq. 2.2). We use again C(Y, N, j) as
defined in eq. 3.1, but now we have to care whether j is contained in Y or N . We first
compute the special case N = ∅ and j 6∈ Y . The analysis for pr(C(Y, ∅, j 6∈ Y )) starts
the same way as for the hetero-associative case (see eqs. 3.2-3.7). Instead of eqs. 3.8-
3.11 we have to write pr([1, . . . , s 6∈ u1 ∨ j 6∈ u1]) = pr([1, . . . , s 6∈ u1])+ pr([j 6∈ u1])−
pr([1, . . . , s, j 6∈ u1]) = B(n, k, s)+B(n, k, 1)−B(n, k, s+1) = 1− k

n (1− n
n−sB(n, k, s))

and therefore

pr(C(Y, ∅, j 6∈ Y )) =

|Y |
∑

s=0

(p̃1 − 1)s

(

|Y |

s

)

(1 −
k

n
(1 −

n

n − s
B(n, k, s)))M . (3.26)

With this result we can again compute the general case with arbitrary, but disjunct
Y, N = {N1, N2, . . .} ⊆ {1, . . . , m}, Y ∩ N = ∅, but j 6∈ Y ∪ N (cf. eqs.3.13-3.18):

pr(C(Y, N, j 6∈ Y ∪ N))

=

|Y |+|N |
∑

s=|N |

(−1)s−|N |

(

|Y |

s − |N |

)

(1 − p̃1)
s(1 −

k

n
(1 −

nB(n, k, s)

n − s
))M (3.27)

If we presume N = ∅ and j ∈ Y then eq. 3.3 becomes pr(C(Y, ∅, j ∈ Y )) = 1 −

pr(
⋃|Y |−1

i=1 [Aij = 0]) − pr[Ajj = 0](1 − pr(
⋃|Y |−1

i=1 [Aij = 0]|[Ajj = 0])) . Here the first
probability on the right side evolves as before except for replacing |Y | by |Y | − 1.

The conditional probability is 1− pr(∩
|Y |−1
i=1 [Aij = 1]|[Ajj = 0]) = 1− p̃

|Y |−1
1 because

Ajj = 0 implies that the other synapses of neuron j can be activated only by noise.
Thus with pr[Ajj = 0] = 1 − p̄1 we obtain

pr(C(Y, ∅, j ∈ Y )) = pr(C(Y − {j}, ∅, j))− (1 − p̄1)p̃
|Y |−1
1 (3.28)

This can be generalized to N 6= ∅ analogously to eqs. 3.13-3.18. Eq. 3.15 becomes

pr(C(Y, N, j ∈ Y )) =

|N |
∑

t=0

(−1)t

(

|N |

t

)

pr(C(Y ∪ {N1, . . . , Nt}, ∅, j ∈ Y ) . (3.29)

Inserting eq. 3.28 yields two components. The first component equals eq. 3.27 ex-

cept for replacing |Y | by |Y | − 1. The second component is
∑|N |

t=0(−1)t
(

|N |
t

)

(1 −

p̄1)p̃
|Y |−1+t
1 = (1 − p̄1)p̃

|Y |−1
1 (1 − p̃1)

|N | and therefore

pr(C(Y, N, j ∈ Y )) = −(1 − p̄1)p̃
|Y |−1
1 (1 − p̃1)

|N |

+

|Y |+|N |−1
∑

s=|N |

(−1)s−|N |

(

|Y | − 1

s − |N |

)

(1 − p̃1)
s(1 −

k

n
(1 −

nB(n, k, s)

n − s
))M (3.30)
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We will also need the case j ∈ N . This case implies Ajj = 0 and therefore any other
synapse of neuron j can only be activated by noise. Thus simply

pr(C(Y, N, j ∈ N)) = (1 − p̄1)p̃
|Y |
1 (1 − p̃1)

|N |−1 (3.31)

With this we can finally determine the Palm probability for auto-association. If neuron
j does not belong to the z address units then we can proceed as in eqs. 3.19-3.22 and
obtain

pPa(x; k, n, M, z, 0) =
(

z

x

) x
∑

s=0

(−1)s

(

x

s

)

(1 − p̃1)
s+z−x(1 −

k

n
(1 −

nB(n, k, s + z − x)

n − z + x − s
))M (3.32)

If neuron j is among the z address units we have to split the union of eq. 3.19 into two
disjunct components,

⋃

Y ⊆ũ,|Y |=x,N=ũ−Y,j∈Y C and
⋃

Y ⊆ũ,|Y |=x,N=ũ−Y,j∈N C. Then
we can proceed again with transformations similar to eqs. 3.19-3.22. With eq. 3.30,
the first union corresponds to pPa(x−1; k, n, M, z−1, 0)−

(

z−1
x−1

)

(1−p̄1)p̃
x−1
1 (1−p̃1)

z−x

With eq. 3.31, the second union becomes
(

z−1
x

)

(1 − p̄1)p̃
x
1(1 − p̃1)

z−x−1. Adding the
two components yields

pPa(x; k, n, M, p̃1, z, 1) = pPa(x − 1; k, n, M, p̃1, z − 1, 0) +

(1 − p̄1) (pB(x; z − 1, p̃1) − pB(x − 1; z − 1, p̃1)) (3.33)

and thus the general Palm probability for auto-association is

pPa(x; k, n, M, p̃1, z, σ) =

(1 − σ)pPa(x; k, n, M, p̃1, z, 0) + σpPa(x; k, n, M, p̃1, z, 1) . (3.34)

When addressing with a single address pattern containing c correct and f false one-
entries then σ = f/(n − k) for a lo-unit, while σ = 0 for the f noisy inputs to the
hi-units. Thus, retrieving with threshold Θ, the exact retrieval error probabilities p01

of a false one-entry and p10 of a missing one-entry are

p01(Θ) =

c+f
∑

x=Θ

pPa(x; k, n, M − 1, p̃1, c + f, f/(n − k)) (3.35)

p10(Θ) =
Θ−1
∑

x=c

pPa(x − c; k, n, M − 1, p̃1, f, 0) (3.36)

3.3. Random pattern activity and hetero-association. For technical ap-
plications, the patterns to be stored have often fixed pattern activities k and l (e.g.,
see [34, 41, 17, 42]). However, for the biological interpretation we identify the pattern
activities with the size of cell assemblies [14, 5, 35], and it seems not very plausible
to assume that all cell assemblies had exactly the same size. Here it might be more
realistic to assume that an address pattern component is 1 with probability k/m inde-
pendently of each other (and similarly l/n for the content patterns). Then the mean
assembly sizes are still k and l but the size of a given cell assemblies is a binomially
distributed random variable.

The analysis can be conducted in analogy to section 3.1. Due to independently
generated pattern components eq. 3.8 simplifies to

pr[1, . . . , s 6∈ u1 ∨ j 6∈ v1] = 1 − l/n + (l/n)(1 − k/m)s (3.37)

= 1 −
l

n
(1 − (1 −

k

m
)s) (3.38)
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Thus in the further analysis of section 3.1 we can simply replace B(m, k, s) by (1 −
k/m)s. From eq. 3.22 we finally obtain the Willshaw probability for hetero-association

pWh(x; k, l, m, n, M, p̃1, z)

=

(

z

x

) x
∑

s=0

(−1)s

(

x

s

)

(1 − p̃1)
s+z−x(1 −

l

n
(1 − (1 −

k

m
)s+z−x))M (3.39)

=

M
∑

i=0

pB(i; M, l/n)pB(x; z, 1 − (1 − p̃1)(1 − k/m)i) (3.40)

for 0 ≤ x ≤ z. The retrieval error probabilities p01 and p10 are as in eqs. 3.23,3.24 re-
placing pPh by pWh. The second formula eq. 3.40 results from an alternative approach
to obtain the Willshaw probability for random pattern activities (see [7, 6]). Here the
first binomial is the probability that the considered content neuron has unit-usage
i, i.e. that it has been activated i times during the learning of the M associations.
Given unit usage i the term 1 − (1 − p̃1)(1 − k/m)i is the probability that a given
synapse on the content neuron has been potentiated or activated by noise. Thus,
the second binomial is the probability that a content neuron receives x out of the z
random inputs given a unit usage of i.

Eq. 3.40 for p̃1 = 0 has been found in 1991 by Buckingham and Willshaw [7, 6],
while eq. 3.39 for p̃1 = 0 has been derived from eq. 3.40 in 1999 by Sommer and
Palm [43]. For numerical evaluations eq. 3.39 is particularly useful if z is small and
M is large, while evaluating eq. 3.40 is more efficient for small M and large z. In
cases where both M and z are large, evaluating the Willshaw probability can be
computationally very expensive [22, 23].

Unfortunately, we do not know a formula for the exact Palm probability eq. 3.22
that is analogous to eq. 3.40. Thus, evaluating the exact error probabilities for the
model variant with fixed assembly size is computationally cheap only for cases with
small z. However, numerical investigations suggest that pW quickly converges to pP for
large m, n and z and that the resulting retrieval error probabilities for fixed assembly
sizes are smaller than for random assembly size [22].

3.4. Random pattern activity and auto-association. In analogy to the
previous sections we can also investigate the auto-associative case with binomially
distributed pattern activities where each pattern component is active with probabil-
ity k/n independently of other components. Here pr(C(Y, N, j 6∈ Y ∪ N)) can be
obtained in the same way as done in section 3.3 for hetero-association with k = l
and m = n. This corresponds to σ = 0 and leads to pWa(x; k, n, M, p̃1, z, 0) =
pWh(x; k, n, k, n, M, p̃1, z). The remaining subtleties concerning autapses having a
much higher activation probability p̄1 than other synapses (see eq. 3.25) can be han-
dled in the same way as done in section 3.2 for fixed pattern activity. Thus, simply
replacing pPa(x; k, n, M, p̃1, z, 0) by pWh(x; k, n, k, n, M, p̃1, z) we obtain from eq. 3.34

pWa(x; k, n, M, p̃1, z, σ) = (1 − σ)pWh(x; k, n, k, n, M, p̃1, z)

+σpWh(x − 1; k, n, k, n, M, p̃1, z − 1)

+σ(1 − p̄1) (pB(x; z − 1, p̃1) − pB(x − 1; z − 1, p̃1)) (3.41)

When addressing with a single address pattern containing c correct and f false one-
entries then the error probabilities for threshold Θ can be computed similarly as in
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section 3.2,

p01(Θ) =

c+f
∑

x=Θ

pWa(x; k, n, M − 1, p̃1, c + f, σ̄) (3.42)

p10(Θ) =
Θ−1
∑

x=c

pWa(x − c; k, n, M − 1, p̃1, f, 0) (3.43)

for 0 ≤ x ≤ z. For the lo-units σ has to be averaged over the constrained range of pos-
sible pattern activities k′ with c ≤ k′ ≤ n−f , thus, σ̄ := (

∑n−f
k′=c pB(k′; n, k/n)f/(n−

k′))/(
∑n−f

k′=c pB(k′; n, k/n)). Note that computing the expected Hamming distance
(see eq. 2.8) requires a similar adjustment. Note also that p10 is the same as for
hetero-association with the corresponding parameters (see section 3.3).

3.5. Probabilities of add-errors for pattern part retrieval. For the par-
ticular case of pattern part retrieval, c = λk and f = 0 with 0 < λ ≤ 1, we can use
the Willshaw threshold Θ = λk. Then the probability of miss-errors in the retrieval
outputs is generally p10 = 0. For fixed pattern activity the probability of an add-error
is

p01,Ph =

λk
∑

s=0

(p̃1 − 1)s

(

λk

s

)

[1 −
l

n
(1 − B(m, k, s))]M−1 (3.44)

p01,Pa =
λk
∑

s=0

(p̃1 − 1)s

(

λk

s

)

[1 −
k

n
(1 −

n

n − s
B(n, k, s))]M−1 (3.45)

(3.46)

for hetero-association and auto-association, respectively. For random pattern activity,
the corresponding error probabilities are

p01,Wh =

λk
∑

s=0

(p̃1 − 1)s

(

λk

s

)

[1 −
l

n
(1 − (1 − k/m)s)]M−1 (3.47)

=

M−1
∑

i=0

pB(i; M − 1, l/n)(1 − (1 − p̃1)(1 − k/m)i)λk (3.48)

≥ [1 − (1 − p̃1)(1 − kl/mn)M−1]λk = pλk
1 (3.49)

p01,Wa = p01,Wh|l=k,m=n, (3.50)

where pB is again the binomial probability (see below eq. 2.12). Here the error
probabilities are essentially the same for auto-association and hetero-association with
k = l, m = n. Eq. 3.49 corresponds to the binomial approximation eq. 2.13 as used
in section 2.3. The bound can be obtained from Jensen’s inequality Ef(y) ≥ f(Ey)
(e.g., [9]) for convex f(y) := (1 − y)λk with random variable y := (1 − p̃1)(1 − k/m)i.
Here the expectation Ey = 1 − p1 can be computed from eq. A.9 using J = 1.

Although I could not prove this strictly, numerical experiments suggest p01,Pa ≤
p01,Ph ≤ p01,Wh = p01,Wa [22]. The binomial approximation eq. 3.49 can strongly
underestimate p01. Palm and Sommer [34, 38] give some asymptotic conditions when
the true potential distribution converges to the corresponding binomial distribution,
however, only for relatively small k ∼ log n and k ≤ n1/3, respectively. In section 5
we will see that the parameter range of convergence is actually much larger.
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3.6. Numerical evaluations. Theorem 3.2 and the resulting retrieval error
probabilities have been verified by extensive numerical simulations of the Willshaw
model [22]. Some data is shown in Table 3.1.

Θ ǫ p01 mean s.e. p10 mean s.e.

S pPh 3 0.871142 0.200514 0.200473 0.000040 0.403276 0.403387 0.000049
pPa 3 0.824469 0.149855 0.149827 0.000036 0.474807 0.474726 0.000050

pWh 3 0.937330 0.223047 0.223043 0.000045 0.416887 0.416905 0.000054
pWa 4 0.974194 0.067171 0.067197 0.000027 0.817462 0.817423 0.000042

A pPh 3 1.023875 0.107831 0.107822 0.000031 0.538635 0.538590 0.000050
pWh 3 1.121372 0.127232 0.127211 0.000036 0.548828 0.548834 0.000057

Table 3.1

Results from numerical simulations of retrieval in the Willshaw model with m = 10, k = 3,
M = 5, p̃1 = 0.1 when addressing with patterns containing c = 2 correct and f = 2 false one-
entries. Upper rows (S) show results for “symmetric” networks with n = m and l = k (cf. Fig. 3.1,
left panel). Lower rows (A) show results for “asymmetric” networks with n = 11 and l = 2. The
columns show optimal retrieval threshold Θ, output noise ǫ, and the error probabilities p01 and
p10 for add-noise and miss-noise as well as the corresponding average values (mean) and standard
errors (s.e.) from the simulation experiments (evaluating N ≈ 108 retrievals in each case). The
experimental values closely match the theoretical values and thus verify Theorem 3.2.

Figure 3.1 gives examples for the Willshaw-Palm distribution illustrating the dif-
ferences between the four probability versions and the binomial approximation. For
small networks the difference between the four versions of the Willshaw-Palm distribu-
tion is significant. In comparison to the binomial approximation the Willshaw-Palm
probability can have a much larger variance and oscillatory modulations [19, 21].
The difference in variance is computed in section 5.2 (see eq. 5.5), and conditions
where the variances and higher-order moments become identical are computed in sec-
tion 5.4. The oscillatory modulations can be understood from eq. 3.40 writing pWh

as a superposition of M + 1 binomials. They occur if the binomials pB(x; z, 1 −
(1 − p̃1)(1 − k/m)i) around mean unit usage i ≈ Ml/n have a small standard devi-
ation

√

z(1 − p̃1)(1 − k/m)i(1 − (1 − p̃1)(1 − k/m)i) compared to the mean distance
z(1 − p̃1)((1 − k/m)i − (1 − k/m)i+1) between two neighboring binomials, i.e., if

(1 − p̃1)
zk2

m2
(1 −

k

m
)Ml/n ≫ 1 . (3.51)

4. Expectation, variance, and higher-order moments of the Willshaw-

Palm distribution. In this section we investigate the moments of the Willshaw-Palm
probability distribution. Here we will focus on the more simple case of random pat-
tern activity, i.e., on the Willshaw probabilities pWh and pWa (see definition 3.1 and
theorem 3.2). The analysis for fixed pattern activity is more difficult, but it is plausi-
ble to assume that the basic (asymptotic) properties for the Palm probabilities pPh,
pPa are similar to pWh, pWa. At least the expectation values of Willshaw and Palm
probabilities are the same: Because the dendritic potential is xj =

∑

i∈ũ Aij , the ex-
pectation for hetero-association is identical to the corresponding binomial expectation
(see section 2.3),

EpWh
(xj) = EpPh

(xj) = EpB (xj) = zp1 (4.1)

EpWa(xj) = EpPa(xj) = zp1 + σ(p̄1 − p1) (4.2)

where p1 is the memory load eq. 2.2. The expectation for auto-association follows
similarly from EpWa(xj) = (z−1)p1 +σp̄1 +(1−σ)p1, where σ is the probability that
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Fig. 3.1. Examples of the Willshaw-Palm distributions (see Theorem 3.2) and the corresponding
binomial approximation (eq. 2.11) for a small network (left panel) and a larger network (right panel).
The plots show the distribution of the lo-units when addressing with c correct and f false units in
symmetric networks (m = n and k = l). The plots indicate that the binomial approximation can be
very inaccurate.

j is among the z active units of address pattern ũ, and p̄1 is the probability that Ajj

is active (see eq. 3.25).
In the following text we will sometimes write p0 := 1 − p1, p̄0 := 1 − p̄1, and

p̃0 := 1 − p̃1 for the sake of brevity.

4.1. Moment generating functions. The moment generating function of a
random variable X with probability function p is defined by Gp(t) := Ep(e

tX) (e.g.,
see [39]). The following theorem shows that the moment generating functions of the
Willshaw-Palm probabilities for random pattern activity k can be obtained from the
generating function of the binomial probability (eq. A.3).

Theorem 4.1. The moment generating functions GpWh
(t; k, l, m, n, M, p̃1, z)

and GpWa(t; k, n, M, p̃1, z, σ) of the Willshaw probability functions pWh for hetero-
association (eq. 3.39) and pWa for auto-association (eq. 3.41) are

GpWh
(t) =

M
∑

i=0

pB(i; M, l/n)GpB(t; z, 1 − p̃0(1 − k/m)i) (4.3)

GpWa(t; . . . , z, σ) = (1 − σ)GpWh
(t; . . . , z) + σetGpWh

(t; . . . , z − 1)

+σp̄0(1 − et)GpB (t; z − 1, p̃1) (4.4)

Proof. By definition it is GpWh
(t) := EpWh

etX =
∑z

x=0 etx
∑M

i=0 pB(i; M, l/n) ·

pB(x; z, 1 − p̃0(1 − k/m)i) =
∑M

i=0 pB(i; M, l/n)
∑z

x=0 etxpB(x; z, 1 − p̃0(1 − k/m)i).
Here the second sum is the moment generating function of a binomial eq. A.3 with
N = z and P = 1 − (1 − k/m)i. This shows eq. 4.3. Similarly, the auto-associative
moment generating function GpWa(t) follows with eq. 3.41 because moment generating
functions Gp(x)(t) are linear in p(x) and have the shifting property Gp(x−1)(t) =
∑

x p(x − 1)etx =
∑

x p(x)et(x+1) = etGp(x)(t).

4.2. Higher order moments. The d-th raw moment of a random variable X
with probability function p is defined by the expectation EpX

d and can be computed
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from the moment generating function Gp(t) := Ep(e
tX), where the d-th derivative

G
(d)
p (t) at t = 0 yields the d-th moment (e.g., [39]). Then the d-th central moment (or

moment about the mean) is defined by the expectation Ep(X − µ)d where µ := EpX
is the mean value. The following theorem computes the moments of the Willshaw
probabilities from the moments of the binomial probability.

Theorem 4.2. Let pWh(x; k, l, m, n, M, p̃1, z) be the Willshaw probability for
hetero-association (eq. 3.39) and pB(x; z, 1− p0) the corresponding binomial approxi-
mation with p0 := 1−p1 (see eqs. A.2,2.2). Then the raw and central moments of the
Willshaw probability can be computed from the binomial moments (see eqs. A.4-A.5)

by formally substituting powers pj
0 by numbers p

(j)
0 defined as

p
(j)
0 := p̃j

0(1 −
l

n
(1 − (1 −

k

m
)j))M . (4.5)

where p̃0 := 1 − p̃1. For example, the raw and central Willshaw moments for hetero-
association, mr,pWh

(d; k, l, m, n, M, p̃1, z) and mc,pWh
(d; k, l, m, n, M, p̃1, z), can be ob-

tained from

EpWh
(X − µ)d =

d
∑

j=0

p
(j)
0 (−1)j

(

z

j

) j
∑

i=0

(−1)i

(

j

i

)

(z − µ − i)d (4.6)

which is true for an arbitrary offset µ. The raw and central moments follow with
µ = 0 and µ = zp1, respectively.

Similarly, the raw and central Willshaw moments for the auto-associative prob-
ability pWa (see eq. 3.41), mr,pWa(d; k, n, M, p̃1, z, σ) and mc,pWa(d; k, n, M, p̃1, z, σ),
follow from

EpWa(X − µ)d =

d
∑

j=0

p
(j)
0 (−1)j

(

z

j

)

(1 −
σj

z
)

j
∑

i=0

(−1)i

(

j

i

)

(z − µ − i)d +

σp̄0

d
∑

j=0

p̃j
0(−1)j

(

z − 1

j

) j
∑

i=0

(−1)i

(

j

i

)

((z − µ − i − 1)d − (z − µ − i)d)) (4.7)

using µ = 0 and µ = zp1 − σ(p̄1 − p1), respectively.

Proof. The d-th raw moment EpWh
Xd equals the d-th derivative G

(d)
pWh(t) at t = 0.

From eq. 4.3 we obtain

G(d)
pWh

(0) =

M
∑

i=0

pB(i; M, l/n)G(d)
pB

(0; z, 1 − p̃0(1 − k/m)i)

where G
(d)
pB (0; N, 1 − Q) = mr,pB (d, N, 1 − Q) =

∑d
j=0 c

(d)
j (N)Qj is the d-th raw mo-

ment of the binomial probability (see eq. A.5). For brevity we have defined coefficients

c
(d)
j (N) := (−1)j

(

N
j

)
∑j

k=0(−1)k
(

j
k

)

(N − k)d. Applying eq. A.9 we obtain

EpWaX
d =

M
∑

i=0

pB(i; M, l/n)

d
∑

j=0

c
(d)
j (z)p̃j

0(1 − k/m)ij

=

d
∑

j=0

c
(d)
j (z)p̃j

0

M
∑

i=0

pB(i; M, l/n)(1 − k/m)ij =

d
∑

j=0

c
(d)
j (z)p

(j)
0 .
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This proves the formulae for the raw moments mr,pWh
, for example eq. 4.6 for µ = 0.

The general moment eq. 4.6 with arbitrary offset µ follows then from inserting the
raw moments into E(X − µ)d =

∑d
i=0

(

d
i

)

(−µ)d−iEX i, where we used the binomial
sum (see below eq. A.9) and the linearity of the expectation operator. Inserting µ =
zp1 (see eq. 4.1) finally yields the central moments mc,pWh

for the hetero-associative
Willshaw probability (see also eq. A.5; cf. [25]).

Similarly, the general moment eq. 4.7 for auto-association follows with eq. 3.41
because moments Ep(x)(X − µ)d are linear in p(x) and have the shifting property

Ep(x−1)(X − µ)d =
∑

x p(x − 1)(x − µ)d =
∑

x p(x)(x − µ + 1)d = Ep(x)(X − (µ −

1))d. In particular, summing the two Willshaw terms in eq. 3.41 leads to the factor
(1 − σ)

(

z
j

)

+ σ
(

z−1
j

)

=
(

z
j

)

(1 − σj
z ) in eq. 4.7. The raw and central moments mr,pWa

and mc,pWa then follow from inserting µ = 0 and µ = EpWaX (see eq. 4.2).

The following lemma gives a more detailed characterization of the numbers p
(j)
0

that have been used to compute the moments of the Willshaw probability.

Lemma 4.3. Let p
(j)
0 as defined in theorem 4.2. For 0 < P < 1 we have

Rj(P ) :=
1

P

j
∑

i=2

(

j

i

)

(−P )i =
(1 − P )j − 1 + Pj

P
≥ 0 (4.8)

p0 := 1 − p1 = p̃0(1 −
kl

mn
)M (4.9)

p
(j)
0 := p̃j

0(1 −
l

n
(1 − (1 −

k

m
)j))M = p̃j

0(1 −
kl

mn
(j − Rj(

k

m
)))M ≈ pj

0 (4.10)

For j = 0, 1 we have Rj(P ) = 0 and p
(j)
0 = pj

0. For j ≥ 2 we have Rj(P ) > 0. For
sufficiently small P → 0 the bound Rj(P ) <

(

j
2

)

P becomes true. Furthermore, for
j ≥ 2 we have the bounds

pj
0 < p

(j)
0 < p

j−Rj(k/m)
0 (4.11)

0 <
p
(j)
0 − pj

0

pj
0

< p
−Rj(k/m)
0 − 1 < −(e − 1)Rj(k/m) ln p0 (4.12)

where the latter bound in eq. 4.12 is true only for −Rj(k/m) ln p0 < 1. In particular,

the relative difference between p
(j)
0 and pj

0 vanishes for Rj(k/m) ln p0 → 0. Finally, let
p := k/m → 0, q := l/n, M = ln p0/ ln(1−pq) (see eq. 2.3). Then for j2p(1−ln p0) →
0, fixed p̃1, and using the asymptotic Θ notation as defined in appendix A we have

p
(j)
0 − pj

0 = −

(

j

2

)

p(1 − q)pj
0 ln p0 + Θ(j3p2pj

0(1 − j ln p0) ln p0) . (4.13)

Proof. Eq. 4.8 follows from the binomial sum (see below eq. A.9). Eq. 4.9 is simply
rewriting eq. 2.2 with p̃0 := 1− p̃1 for the sake of completeness. Eq. 4.10 follows from
simple transformations of the definitions eqs. 4.5,4.8. The claims for j = 0, 1 follow
trivially. Rj(P ) > 0 for j ≥ 2 follows from (1 − P )j > (1 − Pj) (see eq. A.11).
Rj(P ) <

(

j
2

)

P for P → 0 follows directly from the definition of Rj . The lower bound
in eq. 4.11 follows from (1 − kl/mn)j = 1 − (kl/mn)(j − Rj(kl/mn)) because Rj(P )
is monotonically increasing for 0 < P < 1. The upper bound in eq. 4.11 follows from
(1− pq(j −Rj)) < (1− pq)j−Rj (see eq. A.11 with j −Rj > j −Rj(1) = 1). Eq. 4.12
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follows from eq. 4.11 and eq. A.12. We finally prove the asymptotic approximation
eq. 4.13: For p → 0, M = ln p0/ ln(1 − pq) (see eq. 2.3) we have with eqs. A.13-A.14

M =
− ln p0

pq + Θ(p2q2)
=

− ln p0

pq

1

1 + Θ(pq)
=

− ln p0

pq
(1 + Θ(pq)) (4.14)

Mpq = − ln p0 + Θ(pq ln p0) (4.15)

Rj(p) =

(

j

2

)

p −

(

j

3

)

p2 + . . . =

(

j

2

)

p + Θ(j3p2) → 0 for j2p → 0 (4.16)

The final purpose of this is to find a close approximation for

p
(j)
0 − pj

0 = pj
0

(

p
(j)
0

pj
0

− 1

)

with
p
(j)
0

pj
0

= eM(ln(1−pq(j−Rj ))−j ln(1−pq)) . (4.17)

For Rj → 0 the term in the outer brackets of the exponential writes ln(1 − pq(j −

Rj))−j ln(1−pq)) = −pq(j−Rj)−
p2q2(j−Rj)2

2 +Θ(p3q3j3)−j(−pq− p2q2

2 +Θ(p3q3)) =

pqRj−
p2q2

2

(

(j − Rj)
2 − j

)

+Θ(p3q3j3). Here we have (j−Rj)
2−j = j2−j+Θ(jRj) =

j2 − j + Θ(j3p) and therefore

p
(j)
0

pj
0

= eM(pqRj−0.5p2q2(j2−j)+Θ(p3q2j3)) (4.18)

= eM(p2q(j
2)(1−q)+Θ(p3qj3)) = eMpq(p(j

2)(1−q)+Θ(p2j3)) (4.19)

= e(− ln p0+Θ(pq ln p0))(p(j
2)(1−q)+Θ(p2j3)) = e−(j

2)p(1−q) ln p0+Θ(j3p2 ln p0) (4.20)

= 1 −

(

j

2

)

p(1 − q) ln p0 + Θ(j4p2 ln2 p0 − j3p2 ln p0) (4.21)

= 1 −

(

j

2

)

p(1 − q) ln p0 + Θ(j3p2 ln p0(1 − j ln p0)) (4.22)

4.3. Variance. Applying theorem 4.2, we can easily compute the second raw and
central moments of the Willshaw probability from the well-known second moments of
the corresponding binomial probability pB(x; z, 1− p0) (see also eqs. A.4-A.5). Thus,

replacing pj
0 by p

(j)
0 in

EpB(x;z,1−p0)
X2 = zp0(1 − p0) + z2(1 − p0)

2 = z2 + p0(z − 2z2) + p2
0(z

2 − z)

gives us immediately the second moment and variance of the Willshaw probability
pWh for hetero-association,

EpWh
X2 = z2 + p0(z − 2z2) + p

(2)
0 (z2 − z) (4.23)

= z2(1 − 2p0 + p
(2)
0 ) + z(p0 − p

(2)
0 ) (4.24)

VarpWh
X = EpWh

X2 − E2
pWh

X = z2(p
(2)
0 − p2

0) + z(p0 − p
(2)
0 ) . (4.25)

where p
(2)
0 = p̃2

0(1−(kl/mn)(2−k/m))M . Note that in eqs. 4.24,4.25 all coefficients of

z are positive since with eq. 4.11 we have p0 > p
2−k/m
0 > p

(2)
0 > p2

0 and 1−2p0+p
(2)
0 >

(1−p0)
2 > 0 for 0 < k/m, l/n < 1. Thus, the variance increases monotonically with z.
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Indeed, the variance of the Willshaw probability scales with z2 while the corresponding
binomial variance scales only with z [21]. Applying eq. 4.7 with d = 2 we easily obtain
the second moments of the Willshaw probability pWa for auto-association,

EpWa(X − µ)2 = (z − µ)2 − (2(z − µ) − 1)(zp0 − σ(p0 − p̄0))

+(z − 1)((z − 2σ)p
(2)
0 + 2σp̄0p̃0) (4.26)

VarpWaX = z2(p
(2)
0 − p2

0) + z(p0 − p
(2)
0 − 2σ(p

(2)
0 − p2

0 − p̄0(p̃0 − p0)))

−σ(p0 − 2p
(2)
0 + σ(p0 − p̄0)

2 + p̄0(2p̃0 − 1)) (4.27)

= VarpWh
X − 2σz(p

(2)
0 − p2

0 − p̄0(p̃0 − p0))

−σ(p0 − 2p
(2)
0 + σ(p0 − p̄0)

2 + p̄0(2p̃0 − 1)) . (4.28)

Here eq. 4.26 is true for any offset µ. In particular, the second raw moment follows
with µ = 0, and the variance eq. 4.27 follows with µ = EpWaX = z − zp0 + σ(p0 − p̄0)
(see eq. 4.2).

4.4. Auto-association vs. hetero-association. As long as the dendritic po-
tential distributions has a Gaussian shape the variance determines retrieval quality,
i.e., the larger the variance the larger the error probabilities (e.g., see eq. 3.42). Thus,
in order to answer the question whether retrieval quality is better for auto-association
or hetero-association (with k = l and m = n), the following lemma investigates the
asymptotic behavior of the variances difference δVarWaWh

:= VarpWaX −VarpWh
X . To

obtain general results, we fix the memory load p1 = p1ǫ to its maximum under quality
constraint ǫ, as discussed in section 2.3 (see eq. 2.15).

Lemma 4.4. For p = k/n → 0, σ/p ∼ 1, z ∼ k, p ln p lnk → 0, z ∼ k, fixed p̃1,
and “hifi” memory load 1 − p0 = p1ǫ = (ǫp)1/z as in eq. 2.15 we have

δVarWaWh
≈ 2σzpp2

0 ln p0 − σ(p0 − 2p2
0) (4.29)

≈

{

+σ , p0 → 1
−σp0 , p0 → 0 .

. (4.30)

Proof. We can apply eq. 4.13 because p ln p ln k → 0 implies p ln p0 → 0 even
for p0 → 0 with p0 ≈ − ln(ǫp)/z (see eq. 2.20). Thus, eq. 4.29 follows from eq. 4.28

because p0−2p
(2)
0 ∼ −pp2

0 ln p0 dominates over p̄0 ∼ e−Mp = e(ln p0)/p = p
n/k
0 even for

sparse potentiation with p0 → 1 and p̄0 ∼ (1−(ǫk/n)1/z)n/k ∼ exp(−(ǫk/n)1/z(n/k)),

and similarly, p0 − 2p
(2)
0 ≈ p0 − 2p2

0 dominates over σ(p0 − p̄0)
2 + p̄0(2p̃0 − 1).

Eq. 4.30 follows because for sparse potentiation with p0 → 1 we have p2
0 ln p0 → 0

and zp ∼ k2/n → 0 (see eq. 2.19). Similarly, for dense potentiation with p0 → 0
we have −σ(p0 − 2p2

0) ≈ −σp0 and for p0 ≈ − ln(ǫp)/z (see eq. 2.20) we have 0 >
2σzpp2

0 ln p0 ≈ 2σp0(−p ln(ǫp) ln z).
Thus, the autoassociative variance VarpWaX becomes larger than VarpWh

X for
sparse potentiation with p1 → 0, but smaller for dense potentiation with p1 → 1.
However, remember from sections 3.4,3.2 that pattern part retrieval with f = 0 (i.e.,
no add errors in the address pattern) implies σ = 0 and thus identical distributions
for auto-association and hetero-association. Also, the following lemma shows that
in general the differences between hetero-associative and auto-associative moments
vanish asymptotically.

Lemma 4.5. For fixed d, p = k/n → 0, σ/p ∼ 1, z ∼ k, zp1 ≤ µ ≤ z, p ln p0 → 0,
and “hifi” memory load 1 − p0 = p1ǫ = (ǫp)1/z as in eq. 2.15 we have

EpWh
(X − µ)d − EpWa(X − µ)d → 0 (4.31)
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Proof. The difference is identical to eq. 4.7 (cf., eq. 4.6) except that the factor
(1 − σj

z ) in the first double sum becomes simply σj
z ∼ j

n . Thus, with eq. A.10 the
absolute value of the first double sum becomes zero because

|
d
∑

j=0

p
(j)
0 (−1)j σj

z
zj

d
∑

i=j

(

i

j

)

bdi(z − µ − j)i−j |

≤
d
∑

j=0

p
(j)
0

σj

z
zj

d
∑

i=j

(

i

j

)

Sdi(zp0)
i−j ∼

(zp0)
d

n
→ 0 .

The inequality is true for large enough z with d < z − µ ≤ z − zp1 = zp0. The
asymptotic approximations remain true even for small constant z where we used

p
(j)
0 ∼ pj

0 (see eq. 4.12). Note here that z = O(log n) implies sparse or balanced
potentiation with 1 ≥ p0 6→ 0, while larger z implies dense potentiation with p0 → 0
and zp0 = O(log n) (see eqs. 2.19,2.20). We still have to show that also the second
double sum in eq. 4.7 becomes zero:

|σp̄0

d
∑

j=0

p̃j
0(−1)j

(

z − 1

j

) j
∑

i=0

(−1)i

(

j

i

)

((z − µ − i − 1)d − (z − µ − i)d))|

∼ O(
p̄0z

2d+1

n
) → 0 .

This is obvious for sparse and balanced potentiation when z ∼ k ∼ O(log n) (see
eq. 2.19), but follows also for dense potentiation (p0 = O((log n)/z) → 0; see eq. 2.20)

since here p̄0 ∼ e−Mp = e(ln p0)/p = p
n/k
0 quickly approaches zero.

5. Comparison of Willshaw-Palm to binomial distribution. In this sec-
tion we compare the Willshaw-Palm probability distribution of the dendritic potentials
(see Def. 3.1) to the corresponding binomial approximation pB(x; z, p1) which assumes
independently generated memory matrix entries (see section 2.3). In particular, we
are interested in asymptotic conditions when the two probability distributions, as
judged by their moments, become identical for maximal memory load (i.e., p1 = p1ǫ

and M = Mǫ as estimated by eqs. 2.15,2.16). This corresponds to correctness con-
ditions for many previous results that rely on the binomial approximation eq. 2.13
(e.g.,[46, 34, 33, 37, 7, 38, 4, 43, 20]).

5.1. Difference in moments. For the difference ∆
(d)
Wh between the d-th mo-

ments of the hetero-associative Willshaw probability pWh and the corresponding bi-
nomial probability pB(x; z, 1− p0) (see section 2.3), we obtain from eqs. 4.6,A.5,A.10

∆
(d)
Wh(µ) := EpWh

(X − µ)d − EpB(x;z,1−p0)(X − µ)d (5.1)

=

d
∑

j=2

(p
(j)
0 − pj

0)(−1)j

(

z

j

) j
∑

i=0

(−1)i

(

j

i

)

(z − µ − i)d (5.2)

=

d
∑

j=2

(p
(j)
0 − pj

0)(−1)jzj
d
∑

i=j

(

i

j

)

Sdi(z − µ − j)i−j (5.3)

where µ is again an arbitrary offset (e.g., µ = 0 for the raw moments and µ = zp1 for

the central moments). Thus, ∆
(d)
Wh has the same form as the d-th binomial moment,
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written as a polynomial in p0, but where powers pj
0 have been replaced by p

(j)
0 − pj

0

(see Theorem 4.2). Also note that p
(j)
0 = pj

0 for j = 0, 1 (see Lemma 4.3). The

corresponding difference ∆
(d)
Wa(µ) := EpWa(X − µ)d − EpB(x;z,1−p0)(X − µ)d for the

auto-associative Willshaw probability pWa can be obtained in a similar way from
eq. 4.7.

5.2. Difference in variance. A particularly interesting case is variance (d = 2):
As long as the overall distribution of dendritic potentials resembles a Gaussian (which
is often true, but see [19, 21, 23]), the retrieval error probabilities are essentially de-
termined by the first two moments, i.e., expectation (d = 1) and variance (d = 2).
Thus, it seems plausible to assume that a necessary condition for convergence of the
Willshaw-Palm distribution towards a binomial is that expectation and variance be-
come identical. For hetero-association, the expectations are already identical (eq. 4.1).
Thus, it is sufficient to investigate conditions when the difference δWhB between the
two variances vanishes. From eqs. 4.25,4.23 we obtain for hetero-association

δWhB := VarpWh
X − VarpB X = z2(p

(2)
0 − p2

0) + z(p0 − p
(2)
0 ) − zp0(1 − p0) (5.4)

= (z2 − z)(p
(2)
0 − p2

0) > 0 (5.5)

Note that δWhB is always positive (see eq. 4.11). Thus, the binomial approxima-
tion always underestimates the variance of the dendritic potentials. Therefore the
binomial approximation generally underestimates the probabilities of retrieval errors
and overestimates storage capacity, at least if the Willshaw distribution comes close
to a Gaussian which is often true (cf., eq. 3.49 for pattern part retrieval; but see
[19, 21, 23]). With eqs. 4.12,4.13 we obtain

δWhB ≤ (z2 − z)p2
0(p

−k/m
0 − 1) ≈ −(z2 − z)

k

m
(1 −

l

n
)p2

0 ln p0, (5.6)

where the approximation is true for (k/m)(1 − ln p0) → 0 (see also eq. 2.20). Note
that eq. 5.6 can become zero for a very large parameter range under maximal memory
load (see eqs. 2.19,2.20).

The analysis for auto-association is similar. The difference δWaB := VarpWa(X)−
VarpB (X) can be obtained from eqs. 5.5 and eq. 4.28. It is easy to see from eq. 4.31
that in general δWaB vanishes asymptotically with δWhB. In the following two sections
we generalize our asymptotic considerations to higher-order moments.

5.3. Convergence of the raw moments. The following lemma determines
asymptotic conditions when the d-th raw moment of the Willshaw-Palm probability
pWh becomes identical to the d-th raw moment of the corresponding binomial prob-

ability pB(x; z, 1 − p0), i.e., conditions when the difference ∆
(d)
Wh(0) := EpWh

Xd −
EpB(x;z,1−p0)X

d becomes zero.
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Lemma 5.1. For fixed d and (k/m) ln p0 → 0 the following bounds become asymp-
totically true,

|∆
(d)
Wh(0)| ≤

d
∑

j=2

(p
(j)
0 − pj

0)z
j

d
∑

i=j

(

i

j

)

Sdi(z − j)i−j (5.7)

≤ −(e − 1)
k

m

d
∑

j=2

(

j

2

)

zjpj
0 ln p0

d
∑

i=j

(

i

j

)

Sdi(z − j)i−j (5.8)

≤ −d2 k

m
zdp2

0 ln p0

d
∑

j=2

d
∑

i=j

(

i

j

)

Sdi ∼
k

m
zdp2

0 ln p0 ≤
kzd

m
(5.9)

Proof. The lemma follows from eqs. 5.3,4.12 and Rj(k/m) <
(

j
2

)

(k/m) (see
Lemma 4.3).

Thus, the raw moments of the Willshaw-Palm probability pWh and the corre-
sponding binomial probability pB(x; z, 1− p0) become identical if the address pattern
activities k := |uµ| and z := |ũ| grow at most polynomial in the logarithm log m of
the address population size m.

In the following section we will see that even for larger k(m) the two probability
distributions can still become essentially identical as judged by the difference of the
central moments. The reason for this effect can be easily explained: Consider two
probability distributions pA and pB with zero mean values and δ(x) := pA(x) −
pB(x) → 0 and also δ(x)/pA(x) → 0 and δ(x)/pA(x) → 0 for any x. Then assume
that the d-th (central) moments converge, i.e.,

∑

xdǫ(x) → 0. Then it is still possible
that the corresponding distributions p′A and p′B with mean µ > 0 have diverging
moments because

∑

(x + µ)dǫ(x) can grow arbitrarily with µ. This is the motivation
to have a closer look at the convergence of the central moments in the following
section.

5.4. Convergence of the central moments. Here we determine asymptotic
conditions when the d-th central moments of the Willshaw-Palm probabilities pWh

and pWa become identical to the d-th central moment of the corresponding binomial

probability pB(x; z, 1 − p0), i.e., conditions when ∆
(d)
Wh(µ) and ∆

(d)
Wa(µ) become zero

(see section 5.1).
Lemma 5.2. For fixed d, (k/m) ln p0 → 0, and d < z − µ ≤ z − zp1 = zp0 the

following bounds become asymptotically true,

|∆
(d)
Wh(µ)| ≤

d
∑

j=2

(p
(j)
0 − pj

0)z
j

d
∑

i=j

(

i

j

)

Sdi(z − µ − j)i−j (5.10)

≤ −(e − 1)
k

m

d
∑

j=2

(

j

2

)

zjpj
0 ln p0

d
∑

i=j

(

i

j

)

Sdi(zp0)
i−j (5.11)

≤ −(e − 1)
k

m

d
∑

j=2

(

j

2

)

ln p0

d
∑

i=j

(

i

j

)

Sdi(zp0)
i (5.12)

≤ −d2 k

m
(zp0)

d ln p0

d
∑

j=2

d
∑

i=j

(

i

j

)

Sdi ∼
−k(zp0)

d ln p0

m
(5.13)
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Proof. The lemma follows from eqs. 5.3,4.12 and Rj(k/m) <
(

j
2

)

(k/m) (see
Lemma 4.3).

With this we can easily find asymptotic convergence conditions for maximal mem-
ory load as approximately analyzed in section 2.3.

Theorem 5.3. For maximal memory load as estimated by the binomial approxi-
mation 2.13, i.e., for p1 = p1ǫ and M = Mǫ as estimated by eqs. 2.15,2.16, the d-th
central moment of the Willshaw-Palm probability pWh becomes identical to the d-th
central moment of the corresponding binomial probability pB(x; z, p1ǫ), i.e.,

∆
(d)
Wh(zp1ǫ) → 0, if

k(ln n
ǫl )

d ln z

m
→ 0 . (5.14)

Thus, for n polynomial in m the d-th central moments converge at least for k =
O(m/ logd+2 m). In particular, the variances converge at least for k = O(m/ log4 m).
Moreover, all central moments converge, and therefore the Willshaw probability pWh

becomes identical to the binomial approximation, at least for k = O(mP ) with fixed
P < 1.

Proof. For zp0ǫ → ∞ with p0ǫ := 1−p1ǫ, the theorem follows from Lemma 5.2 by
using zp0ǫ ∼ log(n/(ǫl)) (see eq. 2.20). For smaller (e.g., constant) z the convergence
of the central moments follows already from the convergence of the raw moments (see
Lemma 5.1).

A particular case are “symmetric” networks with m = n and k = l, for example
for auto-association. It turns out that for such networks the range of convergence
is even larger: Assume k = n/ lnP n. Then the convergence condition in eq. 5.14
becomes (k/n)(ln((lnP n)/ǫ))d lnn → 0. Thus, here the central moments converge
at least for k = O(n/ log2 n). Note that the results for hetero-association apply
also to auto-association due to Lemma 4.5. Together these considerations suggest
that the theoretical results on neural associative networks apply to a much larger
range than assumed previously [34, 38, 19]. This includes large portions of the dense
potentiation regime with k/ logn → ∞ (see section 2.4). Here previous analyses
relying on the binomial approximation have suggested the potential for very efficient
computer implementations and new biological hypotheses about the roles of structural
plasticity and inhibitory neurons [22, 24].

5.5. Numerical evaluations. The results of this section are verified by Fig-
ure 5.1 showing data from numerical experiments testing how well the binomial the-
ory approximates exact values. In fact, the reliability of the binomial approximation
depends both on the network size (n) and the pattern activity (k). In general, the
binomial theory becomes better for larger n and smaller k. The approximations of
pattern capacity Mǫ (eq. 2.16) and network capacity Cǫ (eq. 2.17) are comparably
reliable and, even for linear k = n/2 and small n, overestimate the true values by less
than factor two (Fig. 5.1a).

However, the derived “compression capacities” CI and CS depend on the maximal
memory load p1ǫ (or 1−p1ǫ; see sections 2.2,2.4) which can be strongly overestimated
by the binomial theory (Fig. 5.1b). For linear k ∼ n the relative error seems to grow
without bound implying CI → 0 and possibly CS → 0. Nevertheless, for smaller k
the binomial approximation is much better already for realistic network sizes. For
example, for n = 105 the information capacity CI is about 100% of the binomial
estimate for constant k = 4, 95% for k = n1/2, 70% for k = n2/3, and still 40%
for k = n3/4 (similar values for CS ; data not shown). Interestingly, the binomial
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Fig. 5.1. Numerical experiments comparing the binomial approximative analysis to the exact
theory for m = n, k = l, p̃1 = 0, ǫ = 0.01, and pattern part retrieval with half addresses (λ = 0.5).
a: Relative approximation error for network storage capacity, Cǫ/Capprox

ǫ (see eqs. 2.10,2.17). Each
curve corresponds to a particular pattern activity function k(n) growing with the neuron number n
(log-scale) as indicated in the plots. Relative errors for pattern capacity Mǫ are virtually identical. b:

Relative approximation error for the memory load p1ǫ at maximal pattern load Mǫ (see eqs. 2.9,2.2),
similar to panel a. More exactly, the plots show min(p1ǫ, 1 − p1ǫ)/ min(papprox

1ǫ , 1 − papprox
1ǫ ) where

papprox
1ǫ is the approximation eq. 2.15. The corresponding approximation errors for the related com-

pression capacities CI
ǫ and CS

ǫ (see section 2.4) look qualitatively very similar (cf., [23]). c: Relative
approximation error (log-scale) for the retrieval error probability p01 (see eqs. 2.13,3.48) when stor-
ing Mǫ patterns approximated by eq. 2.16. Each curve corresponds to a particular function k(n)
with k(105) = 50000. Each case was evaluated for increasing n until a maximal computation time
was reached (about 50h per data point on a 2.4GHz AMD Opteron processor evaluating relevant
summands of eq. 3.48 with computing precision 1000bit (see [23] for further details). The plots in-
dicate convergence pλk

1 /p01 → 1 for k = O(n/ log2 n), but divergence for k ∼ n/ log n, thus verifying
the theoretical results of section 5.4. d: Actual pattern activities k/n (log-scale) corresponding to
panel c.

approximations first become worse with growing n until a turning point is reached
(e.g., n = 104 for k = n3/4), and only then approach finally the exact values.

Figure 5.1cd shows results for very large network size n and comparably large
pattern activities k(n). For near linear k(n) the turning points are reached only for n
too large to be useful for applications or relevant for biology. Nevertheless, for smaller
pattern activities, for example k = O(n0.8), the convergence is much faster. Turning
points as described above are still visible for k = O(n/ log2 n), but seem absent for
k ∼ n/ log n. Thus, the numerical experiments are consistent with the theoretical
bound derived at the end of section 5.4.
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6. Conclusions. Theories on neural associative networks with binary synapses
often use a binomial approximation of the dendritic potential distribution to esti-
mate retrieval error probabilities and performance measures such as storage capacity
or retrieval speed [46, 34, 37, 33, 4, 43, 20]. However, for finite network size n or
patterns with a relatively large number of active units k this approximation can be
very inaccurate. So far, the convergence of the binomial approximation to the true
potential distribution and thus the asymptotic correctness of the classical theory has
been demonstrated only for some special cases involving very sparse activity pat-
terns, where a binary pattern vector of n neurons contains on average only k = log n
or k ≤ n1/3 active units [34, 38]. This appeared sufficient because it was believed
that neural associative networks would be efficient only for extreme sparseness any-
way [34, 43]. In contrast, recent applications of the theory to problems requiring less
sparse patterns has gained increased attention for a number of reasons described in
the introduction. For example, theoretical analyses based on the binomial approxi-
mation suggest that associative networks can operate very efficiently for large pattern
activities with k/ logn → ∞ (or equivalently “dense potentiation” with memory load
p1 → 1) if the synaptic matrix is adequately compressed [18, 19, 20, 22]. However, the
correctness of these results have been doubted because it remained unclear whether
the binomial approximation is sufficiently good for large pattern activity k(n).

Here I have solved this problem. For this it was necessary to compute general
expressions for the true potential distribution by defining different versions of the
Willshaw-Palm probability including hetero-association, auto-association, fixed and
random pattern activities (see section 3). I then focused on the characterization of
the probability distributions for random pattern activities. This involved computation
of the raw and central moments of the Willshaw-Palm probability (section 4) from the
corresponding moments of the binomial probability [25]. Finally, I have investigated
the convergence of the two probabilities by determining conditions when the moments
become identical. The analysis reveals that the moments become identical for almost
any sublinear sparseness, for example k = O(n/(log n)2) (see section 5.4), and thus
verifies the theory on associative networks for large pattern activities.

Appendix A. Lemmas.

The following lemmas are required to prove the claims in this work. Proofs of
the lemmas can be found in a technical report [23, 25] or in the standard literature
of information theory, combinatorics, analysis, and probability theory (e.g., [9, 39]).

Let X ∈ {0, 1} be a binary random variable with p := pr[X = 1] and information
I(p) := −pldp− (1− p)ld(1− p). Further let Y be the result of transmitting X over a
binary memoryless channel with transmission error probabilities p01 := pr[Y = 1|X =
0] and p10 := pr[Y = 0|X = 1]. Then the transinformation between X and Y is

T (X ; Y ) = T (p, p01, p10) := IY (p, p01, p10) − IY |X(p, p01, p10) (A.1)

where IY (p, p01, p10) := I (p (1 − p10) + (1 − p) p01) is the information (or entropy) of
Y and IY |X(p, p01, p10) := p · I(p10) + (1− p) · I(p01) is the information of Y given X .

Now let X ∈ {0, 1, . . . , N} be a binomially distributed random variable with
parameters N and P . Then X has expectation EpB X = NP , and the probability and
moment generating functions are

pr[X = x] = pB(x; N, P ) :=

(

N

x

)

P x(1 − P )N−x (A.2)

GpB (t; N, P ) := EpB etX = (Pet + (1 − P ))N . (A.3)
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Furthermore, substituting Q := 1 − P , it has been proven in [25] that the d-th raw
and central moments of X can be written as polynomials in Q,

mr,pB (d, N, P ) := EpBXd =

d
∑

j=0

(−Q)j
d
∑

i=j

(

i

j

)

SdiN
i with (A.4)

EpB (X − µ)d =
d
∑

j=0

(−Q)j

(

N

j

) j
∑

k=0

(−1)k

(

j

k

)

(N − µ − k)d (A.5)

where N i := N(N − 1) · · · (N − i + 1) denotes a falling factorial, Sdi ≥ 0 are Stirling
numbers of the second kind, and µ is an arbitrary offset. For µ = NP eq. A.5 yields
the d-th central moment mc,pB(d, N, P ) of the binomial probability. For µ = 0 eq. A.5
becomes identical to the raw moment eq. A.4 [25]. The following lemma is the sieve
formula of Sylvester-Poincaré,

pr

(

n
⋃

k=1

Ai

)

=

n
∑

k=1

(−1)k+1
∑

1≤i1<...<ik≤n

pr

(

k
⋂

h=1

Aih

)

(A.6)

The following combinatorial equations are true:

(

Y

s − N

)

=

N
∑

t=0

(−1)N+t

(

Y + t

s

)(

N

t

)

(A.7)

(

n

m

)(

m

p

)

=

(

n

p

)(

n − p

m − p

)

=

(

n

m − p

)(

n − m + p

p

)

(A.8)

M
∑

i=0

pB(i; M, Q) · (1 − P )Ji = (1 − Q(1 − (1 − P )J))M . (A.9)

(

N

j

) j
∑

i=0

(−1)i

(

j

i

)

(n − µ − i)d = N j
d
∑

i=j

(

i

j

)

Sdi(N − µ − j)i−j . (A.10)

Eq. A.8 implies B(a, b, c) = B(a, c, b) or
(

a
b

)(

a−b
c

)

=
(

a
c

)(

a−c
b

)

. Eq. A.9 is a variant of

the binomial sum (A + B)M =
∑M

i=0

(

M
i

)

AiBM−i. For a proof of eq. A.10 see lemma
3.1. in [25]. Here N i denotes again a falling factorial, and Sdi ≥ 0 Stirling numbers
of the second kind.

Then we have used the following bounds,

(1 − pq) >
< (1 − p)q for p ∈ (0; 1) and q ∈

6∈ (0; 1) (A.11)

1 + x ≤ ex ≤ 1 + (e − 1)x for 0 ≤ x ≤ 1 (A.12)

where the first bound in Lemma A.12 is true for any x. Finally, the following asymp-
totic equations are true for n → ∞ with |x(n)|, |y(n)| → 0,

ex = 1 + x + Θ(x2), ln(1 + x) = x + Θ(x2) , (A.13)

ex+Θ(y) = 1 + x + Θ(x2) + Θ(y),
1

1 + x
= 1 − x + Θ(x2) , (A.14)

where for a function f(n) we write f(n) = Θ(g(n)) iff there are constants c1, c2, n0

such that for any n > n0 we have c1g(n) < f(n) < c2g(n).
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