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This simulation study explores how structural processes and synaptic consolidation during
hippocampal memory replay can improve the performance of neocortical neural networks
by emulating high effective connectivity in networks that have only low anatomical connec-
tivity. We model ongoing structural plasticity such that, in each time step, a certain fraction
of the unconsolidated synapses are eliminated and replacedby new synapses generated at
random locations. Simultaneous replay of novel memories consolidates some of the corti-
cal synapses according to Hebbian learning. By this procedure sparsely connected networks
can become functionally equivalent to densely connected networks, thereby storing a large
amount of information with a tiny number of synapses. In particular, it is possible to store
up toCS ≤ log2 n bits of information per synapse in simple networks ofn neurons. This
is much more than the well-known boundC ≤ 0.72 bits per synapse for static networks.
It turns out that sufficiently fast learning requires a significant number of silent unconsol-
idated synapses. Thus, with lifetime and stored memories, the number of unconsolidated
synapses and thus the ability to learn will decrease gradually. This leads to the discussion
of various memory-related effects such as catastrophic forgetting and Ribot gradients in
retrograde amnesia.

Keywords: Synaptic plasticity; Associative memory; Willshaw model; Catastrophic forget-
ting; Ribot gradients.

1. Introduction

Traditionally, learning and memory are attributed to synaptic plasticity, typi-
cally by modification of synaptic strength or weight according to variants of
the Hebb rule.1–4 Similarly, artificial neural networks rely almost exclusively on
synaptic plasticity in fully connected neural networks.5 In contrast, connectiv-
ity of real neural networks is low even on a local scale. For example, pyrami-
dal cells make synapses to only 10 percent of the neighboringcells within a cu-
bic millimeter of cortical tissue.6,7 Moreover, plasticity in the brain includes also
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structural processes on larger time scales such as elimination and generation of
synapses, growth and retraction of spines, and remodeling of dendritic and axonal
branches.8–11There is increasing evidence that structural plasticity occurs not only
during development but is also a regular feature of the adultbrain.12,13

Here we explore functional implications of structural plasticity14,15and synap-
tic consolidation16 induced by hippocampal replay17–19 for storing memories in
neural networks of the cerebral cortex. To this end we develop a simple model
of structural plasticity and synaptic consolidation and apply it to simple asso-
ciative networks of the Willshaw-type employing binary synapses.20–22 It is well
known that such network models, in their basic form, can store at most 0.69 bits
per synapse, and even more sophisticated models employing real-valued synapses
cannot store more than 0.72 bits per synapse.23–29

However, our work suggests that, by employing structural plasticity, the stor-
age capacity of these networks could increase to values up tolog2 n bits per
synapse for networks ofn neurons.30–33 This becomes possible because in our
model structural plasticity and synaptic consolidation induced by Hebbian learn-
ing work together in order to eliminate and replace “useless” synapses by new
synapses at possibly more “useful” locations. By this selection procedure a
sparsely connected neural network can “place” the rare synapses at the most ef-
fective locations and thereby becomes equivalent to a static network with much
higher anatomical connectivity. It turns out that sufficiently fast learning consis-
tent with memory transfer from the hippocampus to cortex18,19,34–37requires a
significant number of silent or unconsolidated synapses which can be re-“placed”
by structural plasticity. Thus, with lifetime and stored memories, the number of
unconsolidated synapses and, consequently, also the ability to learn will decrease
gradually. This leads us finally to the discussion of variousmemory-related ef-
fects such as catastrophic forgetting38,39and Ribot gradients in retrograde amne-
sia.17–19,34

2. A simple model of structural plasticity, synaptic consolidation, and
cortico-hippocampal interplay

In the following we propose two simple models of structural plasticity that ab-
stract from biological details described in the introduction. For this we apply the
concept of apotential synapse15 defined as a cortical location where a presynaptic
axon and postsynaptic dendrite are close enough such that a connection could po-
tentially be formed by spine growth and synaptogenesis. We consider the synaptic
connections from a neuron populationu of sizem to another populationv of size
n that can be described by a synaptic (weight) matrixW of sizem × n. We fur-
ther assume that there arePmn real synapses andPpotmn potential synapses.
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HereP is theanatomical connectivityandPpot thepotential connectivity, where
0 < P < Ppot. Further we assume that each real synapse is either silent (weight
0) or consolidated (weight 1).

For our first model variant (see Fig. 1) we assume that there isat most one
potential synapseij that may connect neuronui to neuronvj . Thus, the network
can be described by statesWij ∈ {ν, π, 0, 1}. Here stateWij = ν means that
synapseij does not exist and cannot be realized,Wij = π means thatij is a
potential synapse not yet realized,Wij = 0 means thatij is already realized but
still silent, andWij = 1 means thatij is realized and consolidated. States are
updated in discrete time steps. Letpg := pr[Wij(t + 1) = 0|Wij(t) = ν] be the
generation probabilitythat synapseij changes from a potential synapse at time
t to a real silent synapse at timet + 1. Similarly, theelimination probabilityis
pe := pr[Wij(t + 1) = ν|Wij(t) = 0], theconsolidation probabilityis pc :=

pr[Wij(t + 1) = 1|Wij(t) = 0], and thedeconsolidation probabilityis pd :=

pr[Wij(t + 1) = 0|Wij(t) = 1]. In order to keep the total numberPmn of real
synapses constant, we have to balance generation and elimination of synapses, for
example by choosingpg = peP0/(Ppot − P ), whereP0mn is the number of real
silent synapses.

pe pd

pcpgπ 0 1
Fig. 1. State diagram illustrating our model of structural plasticity. A synapse can be either potential
but not yet realized (stateπ), realized but still silent (state0), or realized and consolidated (state1).
Transitions between the states occur with probabilitiespg , pe, pc, andpd as explained in the text.

During the process ofsynaptic consolidationwe assume that each synapse re-
ceives a binaryconsolidation signalCij ∈ {0, 1}. For a synapseij we generally
assumepc = 1 if Cij = 1 andpc = 0 otherwise. Thus,Cij can be interpreted as
the “desired” weight matrix for storing a new set of memoriesin the synaptic con-
nections between neuron populationsu andv. Very similar to Hebbian-type learn-
ing, the consolidation signalCij could be provided by coincident presynaptic and
postsynaptic neuron activity. The degree to which the actual synaptic connections
resemble the “desired” connections can be assessed by theeffective connectivity
Peff := (

∑
i,j CijWij)/

∑
i,j Cij denoting the fraction of “desired” synapses that

are actually realized and consolidated. Here the first sum assumes weight zero for
statesWij ∈ {ν, π}.
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To achieve significantmemory consolidation, Cij must be provided over
longer time intervals matching the time scales of structural plasticity. This may
be no problem in the case where the new memories correspond tofrequently re-
curring stimuli. However,episodic memoriestypically have only a single training
event and thus require a hippocampus-like memory buffer andrepetition system
that is able to store and replay new memories for some limitedtime.34,36 In fact,
experiments support the idea that such episodic memories are first buffered by
one-shot learning in the hippocampus, and later replayed tobecome permanently
consolidated in the neocortex.17–19,34–37

Figure 2 shows a highly simplified model ofcortico-hippocampal interplay
whereu andv are interpreted as two cortical neuron populations, and thehip-
pocampus is modeled by an additional neuron population HC. The basic idea is
that incoming novel activity patterns are temporarily stored in the connections be-
tween neocortex and HC associating each memoryuµ (andvµ) with an arbitrary
index pattern HCµ. This must happen by one-shot learning such that structural
plasticity will be of little use here. However, HC can replayall buffered memo-
ries and thereby provide the consolidation signalCij necessary for final storage
of memories in the high capacity cortico-cortical connections fromu to v. For this
we can assume that the hippocampal indices HCµ are organized into a sequence,
for example, in the local HC connections such that ordered replay is possible.40

We can further assume small deconsolidation probability for synaptic connections
within neocortex, for examplepd = 0, but a much larger deconsolidation proba-
bility for connections from, to, and within HC. By this choice, memory lifetime is
limited in HC, but virtually unlimited in cortex.

We have also investigated a second model variant of structural plasticity as-
suming that a newly generated synapse is placed randomly at one of the potential
locations. In contrast to the first model, this variant allows multiple realizations
of synapses connecting neuroni to neuronj.41 In fact, if a consolidation signal
corresponding to a given set of memories is replayed for too long a time, this
will have the effect that all remaining unconsolidated synapses will clutter the few
potential locationsij with Cij = 1. We have the idea that the first model vari-
ant is better suited for spine plasticity where realizationof potential synapses is
strongly limited by axonal and dendritic geometry (and thusavoids the described
cluttering), while the second model variant may be better suited for axonal and
dendritic remodeling on a large time scale. In any case, our simulations show that
both model variants lead qualitatively to very similar results.31
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Fig. 2. Model of cortico-hippocampal interplay for memory consolidation. Storing memories means
establishing associations between neural activity patterns in cortical areasu andv. These associations
are first buffered in the connections from and to the hippocampus (HC) capable of one-shot learning.
During the process of consolidation HC can reactivate memories in cortex. By ongoing structural
plasticity and synaptic consolidation memories get finallystored in the cortico-cortical connection
from u to v. See text for more details.

3. On the function and benefits of structural plasticity for memory
storage

We hypothesize that an important function of structural plasticity is to compen-
sate for sparse anatomical connectivity. According to our model, neural networks
endowed with structural plasticity are able to increase effective connectivityPeff

from the level of anatomical connectivityP towards the level of potential connec-
tivity Ppot. Thus, such networks may finally become equivalent to staticnetworks
with high anatomical connectivityP ≈ Ppot which would be much more expen-
sive to maintain for the brain in terms of space and energy requirements.42–44

Figure 3 illustrates simulations of our first model variant showing that this
idea actually works if the number of “required” synapses,Ppot

∑
i,j Cij , does not

exceed the number of available synapses,Pmn, or, equivalently, if theconsolida-
tion load p1C := (mn)−1

∑
i,j Cij does not exceed the boundp1C ≤ P/Ppot.

The simulations also show that emulating high effective connectivity comes at the
price of long replay periods ifp1C is close toP/Ppot. Thus, in order to achieve
sufficiently fast consolidation the number of synapses required to be consolidated
should be sufficiently smaller (for example factor1/2) than the number of avail-
able synapses. For more details see31 where I have given a quantitative analysis of
consolidation time required to achieve a desired effectiveconnectivity.

What then are the concrete benefits of structural plasticityand increasing ef-
fective connectivity? To answer this question let us consider neural associative
networks commonly used as cortical models for storing memories. In our scenario
the task is to store a set ofM memory associationsuµ → vµ (µ = 1, . . . , M ),
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Fig. 3. Results from simulations of the model of structural plasticity for population sizesm = n =
1000, anatomical connectivityP = 0.1, and full potential connectivityPpot = 1. The plots show
effective connectivityPeff(t) over replay stepst for different consolidation loadsp1C (left panel) and
different numbersP1mn of initially consolidated synapses (right panel). During each replay time step
a fractionpe = 0.1 of the silent synapses was replaced.

whereuµ are address vectors corresponding to activity patterns in the neuron pop-
ulation u havingk out of m active units, and, similarly,vµ are content vectors
having l out of n active units. A particularly simple network model is the so-
called Willshaw network.20,21,33,45In the fully connected static Willshaw network
the memories are stored in a binarym × n weight matrixW by Hebbian learn-
ing whereWij = min(1,

∑M
µ=1 uµ

i vµ
j ). This means, a synapseij has weight 1

iff there is at least oneµ with coincident pre- and postsynaptic activity,uµ
i = 1

andvµ
j = 1. It turns out that this simple model can store a quite large number of

memories,M ∼ mn/ log2 n, and that it is possible to store aboutC ≤ 0.7 bits per
binary synapse which is quite close to the information theoretical optimum.20–22,33

Some theory (e.g., see22 for a concise description) shows that the storage capacity
C ≈ ldp1W ln(1 − p1W ) (in bits per synapse) writes as a function of the memory
load p1W := (mn)−1

∑
ij Wij = 1 − (1 − kl/(mn))M . Here for static net-

works maximalC is achieved forp1W = 0.5, while C → 0 for low memory load
p1W → 0 or large memory loadp1W → 1.

However, now consider the Willshaw network endowed with structural plastic-
ity and a consolidation signal identical to the weight matrix of the static network,
C = W andp1C = p1W . Further we assume, without loss of generality, that the
anatomical connectivity is low and equal to the memory load,P = p1W ≪ 1,
and that the potential connectivity is maximal,Peff = 1. Because the condition
p1C ≤ P/Peff is fulfilled the network can emulate full connectivity,Peff → 1,
for sufficiently long a consolidation time. This means that the sparsely connected
Willshaw network with structural plasticity becomes functionally equivalent to
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the fully connected static Willshaw network. Thus, it is possible to store the same
number of pattern associations as in the fully connected network, but employing
only a small number of synapses. Thus, the storage capacity per synapse is much
larger for the network with structural plasticity,CS = C/p1. It is easy to see that
CS → ∞ for p1W → 0. Thus, in large networks withn → ∞, a single synapse
can store an arbitrarily large amount of information. A closer analysis reveals that
indeedCS ∼ log n → ∞ (see30,31,33). In contrast, it is well known that any static
network model of distributed storage cannot exceed the bound C ≤ 0.72 bits per
synapse, even if endowed with real-valued synaptic weights.23–29,46

Thus, structural plasticity allows us to store large amounts of information
with a tiny number of synapses. The intuition is that structural plasticity with
hippocampus-like replay and consolidation can “place” therare synapses at the
most useful locations. By this procedure a sparsely connected network can be-
come functionally equivalent to a fully connected network with pruning of irrel-
evant (i.e., weak or silent) synapses. For that reason, such“zipped” networks can
achieve a much higher storage capacity per synapse than static networks.

4. Structural plasticity and catastrophic forgetting

Artificial neural networks are well known for suffering fromcatastrophic forget-
ting (CF) also known as the stability-plasticity dilemma.38 CF means that opti-
mizing synaptic weights for storing a set of new memories will deteriorate or even
destroy previous memories. On the other hand, freezing synaptic weights prevents
the ability to learn new memories.

In contrast, the learning methods described here for associative networks do
not suffer so seriously from CF because the learning contribution for a new mem-
ory is independent of other memories. From a functional perspective, associative
networks are closely related to look-up tables, where adding a new memory does
not affect previous memories.22 However, associative networks store memories in
a distributed way and therefore still may suffer from a weak form of CF, the so-
calledHopfield catastrophe:39 This means that a static neural network can store
many memories without any problems until the capacity limitis reached. Then
storing a single or few further memories can destroy all previously learned mem-
ories. This effect is a problem for technical applications but also for modeling
memory processes since CF does not normally occur in our brains.

We argue that sparsely connected networks employing structural plasticity do
not suffer from CF. Figure 4 (left panel) shows a simulation where we store a
larger number of memories exceeding the capacity of the network. Memories are
ordered within blocks and each memory block is replayed and consolidated for
some time one after the other. The simulations show that approaching the capacity
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limit implies that storing new memories becomes more and more difficult, while
older memories remain intact even if the capacity limit is exceeded. Thus, in con-
trast to static networks, there is no CF. The reason is essentially that with storing
more and more memories the remaining silent synapses (necessary for storing new
memories) become rare and, eventually, are used up right before CF can occur.
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Fig. 4. Results from simulating the model of structural plasticity and cortico-hippocampal interplay
for memory consolidation in neocortex. We stored 25 memory blocks (b1,b2,...) each consisting of
4 memories. Each block was replayed by HC for 5 time steps (e.g., block 10 betweent = 45 and
t = 50). During each replay step all silent synapses were replaced. The plots show normalized output
noiseǫ for each memory block in populationv with inactivated HC. Left panel: When storing more
and more memories approaching the capacity limit of the network there is a gradual increase of output
noise only for new memory blocks while old memories maintainhigh retrieval quality. Thus, there is
no catastrophic forgetting. Right panel: Similar simulation as before, but at timet = 20 the cortical
network was lesioned by deactivating half of the neurons in populationu. This leads to Ribot-like
gradients in output noise, i.e., retrieval impairment is more severe for recent memories than remote
memories.

5. Retrograde amnesia and Ribot gradients

The same mechanism that prevents CF may be responsible for another salient
effect of memory: Patients with lesions of the hippocampus or neighboring neo-
cortex often suffer from graded retrograde amnesia.34,47–49This means that lesions
impair recent memories more severely than remote memories.These so-called Ri-
bot gradients can also be seen in our model (Fig. 4, right panel). When consolidat-
ing more and more memories the number of consolidated synapses (P1) increases
and, correspondingly, the number of unconsolidated silentsynapses decreases.
Thus, assuming constant replay time per memory block, the effective connectivity
that can be achieved for recent memories is smaller than for remote memories (see
also Fig. 3, right panel). And this is actually the reason whyin our simulations,
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after lesions, remote memories are better preserved than recent memories.
In previous theoretical models Ribot gradients have typically been gener-

ated by gradients in consolidation time,17,19 where theM th memory obtains a
1/M share of consolidation time, for example assuming a random walk over
the attractor-landscape in Hopfield-type networks withM attractors. Then Ri-
bot gradients occur because early memories can accumulate amuch larger total
consolidation time (and thus resulting memory trace strength) than recent mem-
ories. However, these models implicitly assume that memories are maintained in
and consolidated by the hippocampus forever. This contradicts evidence that new
memories are buffered by the hippocampus for a limited time only and that replay
of novel memories is controlled by the hippocampus.36,37

6. Discussion

In this paper we have proposed a simple model of structural plasticity and its re-
lation to synaptic consolidation and cortico-hippocampalinterplay. We abstracted
from many biological details such as different time scales and geometrical con-
straints of spine plasticity and remodeling of axons and dendrites. The essence of
our model is that structural plasticity can eliminate “useless” synapses (those with
low synaptic weights) and regenerate new synapses blindly at potentially more
“useful” locations. If a synapse turns out to be actually “useful” it gets consol-
idated and escapes the process of elimination and regeneration. Since structural
plasticity is slow this requires replay of the memories to beconsolidated, presum-
ably controlled by the hippocampus.18,34,35,37

In contrast to previous approaches14,15we apply these ideas to well known as-
sociative network models as often used for modeling cortex and memory.20,21,50,51

By introducing the concept of effective connectivity we have shown that sparsely
connected networks with structural plasticity are functionally equivalent to more
densely connected static networks. Thus, under some conditions, networks en-
dowed with structural plasticity can store the same large amount of information
as fully connected networks, but require only a relatively small number of func-
tional synapses. A closer theoretical analysis reveals that the bits of information
stored per synapse can reach the theoretic boundlog2 n wheren is the network
size.30,31,33Further analyses indicate that these results apply also to biologically
more realistic networks based on synapses with gradual weights.52 In contrast,
static neural networks can store at most 0.72 bits per synapse even if endowed with
real-valued synapses.23–29,46 Thus, we propose that the main function of struc-
tural plasticity is to emulate higher effective connectivity in networks with sparse
anatomical connectivity in order to minimize space and energy requirements.42–44

Besides these functional considerations, our model avoidscommon problems
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of static neural networks and can reproduce memory effects found in psycholog-
ical and neurophysiological experiments. For example, networks endowed with
structural plasticity inherently avoid catastrophic forgetting of repeatedly pre-
sented memories.38 Instead, they gradually reduce the capability to acquire new
memories, but leave previously stored memories intact. Thereason for this behav-
ior is that the number of consolidated synapses will increase with the number of
stored memories, and, correspondingly, the number of remaining unconsolidated
synapses diminishes. Since silent unconsolidated synapses are necessary for learn-
ing new information this process prevents exceeding the storage capacity of the
network and thus catastrophic forgetting.

The same mechanism leads to gradients in effective connectivity and thus
memory trace strength. Recent memories achieve a lower effective connectivity
than remote memories. By this our model can reproduce Ribot gradients as found
in patients suffering from retrograde amnesia after cortical lesions.34,47–49In pre-
vious models17–19 Ribot gradients have been reproduced by a gradient in total
consolidation time. These approaches assume ongoing replay and consolidation
of any memory such that theM th memory gets a time share of only1/M . In con-
trast, our model can reproduce Ribot gradients even for constant replay time per
memory. This seems more consistent with common ideas and physiological evi-
dence that new memories get consolidated only for a limited time by hippocampal
replay.18,34–37
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