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This simulation study explores how structural processessgnaptic consolidation during
hippocampal memory replay can improve the performance e¢artical neural networks
by emulating high effective connectivity in networks that/a only low anatomical connec-
tivity. We model ongoing structural plasticity such thatgiach time step, a certain fraction
of the unconsolidated synapses are eliminated and replacedw synapses generated at
random locations. Simultaneous replay of novel memoriesaidates some of the corti-
cal synapses according to Hebbian learning. By this praeesharsely connected networks
can become functionally equivalent to densely connectéaarnks, thereby storing a large
amount of information with a tiny number of synapses. Inipafr, it is possible to store
up to €S < log, n bits of information per synapse in simple networksaafieurons. This
is much more than the well-known boud< 0.72 bits per synapse for static networks.
It turns out that sufficiently fast learning requires a sfigaint number of silent unconsol-
idated synapses. Thus, with lifetime and stored memottiesntimber of unconsolidated
synapses and thus the ability to learn will decrease griddlis leads to the discussion
of various memory-related effects such as catastrophigefting and Ribot gradients in
retrograde amnesia.

Keywords Synaptic plasticity; Associative memory; Willshaw madehtastrophic forget-
ting; Ribot gradients.

1. Introduction

Traditionally, learning and memory are attributed to syitaplasticity, typi-
cally by modification of synaptic strength or weight accaglito variants of
the Hebb rulé* Similarly, artificial neural networks rely almost exclusly on
synaptic plasticity in fully connected neural netwoPkB1 contrast, connectiv-
ity of real neural networks is low even on a local scale. Fanegle, pyrami-
dal cells make synapses to only 10 percent of the neighbogtg within a cu-
bic millimeter of cortical tissu&.” Moreover, plasticity in the brain includes also
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structural processes on larger time scales such as elioninabd generation of
synapses, growth and retraction of spines, and remoddiidgrairitic and axonal
branche$ ' There is increasing evidence that structural plasticitues not only

during development but is also a regular feature of the dtalh 1213

Here we explore functional implications of structural picisy**°and synap-
tic consolidatiof® induced by hippocampal repl&y*® for storing memories in
neural networks of the cerebral cortex. To this end we dgvalsimple model
of structural plasticity and synaptic consolidation anglggt to simple asso-
ciative networks of the Willshaw-type employing binary apses®2?1t is well
known that such network models, in their basic form, canesearmost 0.69 bits
per synapse, and even more sophisticated models empl@ahgalued synapses
cannot store more than 0.72 bits per syn&3se.

However, our work suggests that, by employing structurastitity, the stor-
age capacity of these networks could increase to values upgto: bits per
synapse for networks af neurons’®-32 This becomes possible because in our
model structural plasticity and synaptic consolidatiosuced by Hebbian learn-
ing work together in order to eliminate and replace “usélegaapses by new
synapses at possibly more “useful” locations. By this d&lacprocedure a
sparsely connected neural network can “place” the rarepsgsaat the most ef-
fective locations and thereby becomes equivalent to ecstaetivork with much
higher anatomical connectivity. It turns out that suffitghgriast learning consis-
tent with memory transfer from the hippocampus to cdfé%3*=3"requires a
significant number of silent or unconsolidated synapseshvbéan be re-“placed”
by structural plasticity. Thus, with lifetime and stored maries, the number of
unconsolidated synapses and, consequently, also theyabilearn will decrease
gradually. This leads us finally to the discussion of varimemory-related ef-

fects such as catastrophic forgettihd® and Ribot gradients in retrograde amne-
sia.17‘19'34

2. A simple model of structural plasticity, synaptic consalation, and
cortico-hippocampal interplay

In the following we propose two simple models of structuristicity that ab-
stract from biological details described in the introdoctiFor this we apply the
concept of gotential synapsé defined as a cortical location where a presynaptic
axon and postsynaptic dendrite are close enough such tbhanaction could po-
tentially be formed by spine growth and synaptogenesis.alisider the synaptic
connections from a neuron populatiof sizem to another population of size

n that can be described by a synaptic (weight) mditrixof sizem x n. We fur-
ther assume that there afénn real synapses anfl,..mn potential synapses.
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Here P is theanatomical connectivitgnd P, the potential connectivitywhere
0 < P < P,ot. Further we assume that each real synapse is either sileig{iv
0) or consolidated (weight 1).

For our first model variant (see Fig. 1) we assume that thea¢ isost one
potential synapséj that may connect neuran to neuronv;. Thus, the network
can be described by statél§;; € {v,7,0,1}. Here statdV;; = v means that
synapse;j does not exist and cannot be realizéd,; = = means thaij is a
potential synapse not yet realizédf;; = 0 means thai; is already realized but
still silent, andW;; = 1 means thaij is realized and consolidated. States are
updated in discrete time steps. lgt:= pr[W;;(t + 1) = 0|W;;(¢t) = v] be the
generation probabilitythat synapseé; changes from a potential synapse at time
t to a real silent synapse at timet 1. Similarly, theelimination probabilityis
pe = pr[Wi;(t + 1) = v|W;;(t) = 0], the consolidation probabilityis p. :=
pr[W;;(t + 1) = 1|W;;(t) = 0], and thedeconsolidation probabilitys p; :=
pr[W;;(t + 1) = 0|W;;(¢) = 1]. In order to keep the total numb&mn of real
synapses constant, we have to balance generation andaiiomiof synapses, for
example by choosing, = p.Py/(Ppot — P), WwherePymn is the number of real
silent synapses.

Py Pe_
m_-0 .1
Pe Pd

Fig. 1. State diagram illustrating our model of structuralsficity. A synapse can be either potential
but not yet realized (state), realized but still silent (stat@), or realized and consolidated (stafe
Transitions between the states occur with probabilitigspe, p., andp, as explained in the text.

During the process afynaptic consolidatiowe assume that each synapse re-
ceives a binargonsolidation signal;; € {0, 1}. For a synapséj we generally
assumey, = 1if Cj; = 1 andp. = 0 otherwise. Thus(;; can be interpreted as
the “desired” weight matrix for storing a new set of memoinrethe synaptic con-
nections between neuron populatianandv. Very similar to Hebbian-type learn-
ing, the consolidation signal;; could be provided by coincident presynaptic and
postsynaptic neuron activity. The degree to which the dstreaptic connections
resemble the “desired” connections can be assessed lefféotive connectivity
P.g = (Zm CiiWij)/ Zm C;; denoting the fraction of “desired” synapses that
are actually realized and consolidated. Here the first siwomass weight zero for
statedV;; € {v, 7}.
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To achieve significantnemory consolidationC;; must be provided over
longer time intervals matching the time scales of strudtplasticity. This may
be no problem in the case where the new memories correspdreteently re-
curring stimuli. Howeverepisodic memorietypically have only a single training
event and thus require a hippocampus-like memory bufferapdtition system
that is able to store and replay new memories for some lintited 346 In fact,
experiments support the idea that such episodic memorgefirat buffered by
one-shot learning in the hippocampus, and later replaybé¢ome permanently
consolidated in the neocorté%:1934-37

Figure 2 shows a highly simplified model obrtico-hippocampal interplay
whereu andv are interpreted as two cortical neuron populations, anchihe
pocampus is modeled by an additional neuron population H@. Basic idea is
that incoming novel activity patterns are temporarily stbin the connections be-
tween neocortex and HC associating each memérgandv*) with an arbitrary
index pattern HE. This must happen by one-shot learning such that structural
plasticity will be of little use here. However, HC can repkay buffered memo-
ries and thereby provide the consolidation sigfigl necessary for final storage
of memories in the high capacity cortico-cortical connaesi fromu to v. For this
we can assume that the hippocampal indices ldf& organized into a sequence,
for example, in the local HC connections such that orderpthyeis possiblé?
We can further assume small deconsolidation probabilitgyoaptic connections
within neocortex, for examplg; = 0, but a much larger deconsolidation proba-
bility for connections from, to, and within HC. By this cheianemory lifetime is
limited in HC, but virtually unlimited in cortex.

We have also investigated a second model variant of stalgblasticity as-
suming that a newly generated synapse is placed randomheatfdhe potential
locations. In contrast to the first model, this variant akklowultiple realizations
of synapses connecting neurbto neuron;j.*! In fact, if a consolidation signal
corresponding to a given set of memories is replayed for ¢og la time, this
will have the effect that all remaining unconsolidated gs®s will clutter the few
potential locations; with C;; = 1. We have the idea that the first model vari-
ant is better suited for spine plasticity where realizatibipotential synapses is
strongly limited by axonal and dendritic geometry (and thusids the described
cluttering), while the second model variant may be bettéedufor axonal and
dendritic remodeling on a large time scale. In any case, iourlations show that
both model variants lead qualitatively to very similar et
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Fig. 2. Model of cortico-hippocampal interplay for memomgnsolidation. Storing memories means
establishing associations between neural activity pater cortical areas andv. These associations

are first buffered in the connections from and to the hippqeas(HC) capable of one-shot learning.
During the process of consolidation HC can reactivate masdn cortex. By ongoing structural

plasticity and synaptic consolidation memories get finaligred in the cortico-cortical connection
from u to v. See text for more details.

3. On the function and benefits of structural plasticity for memory
storage

We hypothesize that an important function of structurasfitéty is to compen-
sate for sparse anatomical connectivity. According to oodet, neural networks
endowed with structural plasticity are able to increaseatife connectivityPeg
from the level of anatomical connectivify towards the level of potential connec-
tivity P,ot. Thus, such networks may finally become equivalent to stetisorks
with high anatomical connectivity ~ P,.; which would be much more expen-
sive to maintain for the brain in terms of space and energyirements'?—44

Figure 3 illustrates simulations of our first model variahbwing that this
idea actually works if the number of “required” synapsks, Zi,j C;;, does not
exceed the number of available synapges,n, or, equivalently, if theeonsolida-
tion load pic := (mn)~* Zi,j C;; does not exceed the boupde < P/P.
The simulations also show that emulating high effectivenemtivity comes at the
price of long replay periods i§¢ is close toP/P,. Thus, in order to achieve
sufficiently fast consolidation the number of synapsesireduo be consolidated
should be sufficiently smaller (for example factg2) than the number of avail-
able synapses. For more details®eehere | have given a quantitative analysis of
consolidation time required to achieve a desired effectdrmectivity.

What then are the concrete benefits of structural plastity increasing ef-
fective connectivity? To answer this question let us cosrsiteural associative
networks commonly used as cortical models for storing mémsoln our scenario
the task is to store a set @f memory associationg” — v* (u = 1,..., M),
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Fig. 3. Results from simulations of the model of structudakficity for population sizes» = n =
1000, anatomical connectivity? = 0.1, and full potential connectivity’,ot = 1. The plots show
effective connectivityP.g (t) over replay stepsfor different consolidation loads;  (left panel) and
different numberg?; mn of initially consolidated synapses (right panel). Durirzgle replay time step
a fractionp. = 0.1 of the silent synapses was replaced.

whereu are address vectors corresponding to activity patterfsineuron pop-
ulation v having & out of m active units, and, similarlyy* are content vectors
having! out of n active units. A particularly simple network model is the so-
called Willshaw network®2:3349n the fully connected static Willshaw network
the memories are stored in a binaryx n weight matrix'¥ by Hebbian learn-
ing whereW;; = min(1, Y_,,_, u'v//). This means, a synapsg has weight 1
iff there is at least on@ with coincident pre- and postsynaptic activity, = 1
andv;.‘ = 1. It turns out that this simple model can store a quite largalmer of
memoriesM ~ mn/ log? n, and that it is possible to store abal& 0.7 bits per
binary synapse which is quite close to the information thtcal optimume®-22:33
Some theory (e.g., s&for a concise description) shows that the storage capacity
¢ =~ ldpiw In(1 — p1w) (in bits per synapse) writes as a function of the memory
load prw = (mn)~' 3. Wi; = 1 — (1 — kl/(mn))™. Here for static net-
works maximal is achieved fop;y = 0.5, while € — 0 for low memory load
piw — 0 or large memory loag,yy — 1.

However, now consider the Willshaw network endowed withattural plastic-
ity and a consolidation signal identical to the weight madfi the static network,
C = W andpi¢c = piw . Further we assume, without loss of generality, that the
anatomical connectivity is low and equal to the memory Idad+= 1w < 1,
and that the potential connectivity is maximé&lg = 1. Because the condition
pic < P/P.g is fulfilled the network can emulate full connectiviti,s — 1,
for sufficiently long a consolidation time. This means the §parsely connected
Willshaw network with structural plasticity becomes fuoaially equivalent to
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the fully connected static Willshaw network. Thus, it is pibte to store the same
number of pattern associations as in the fully connectedarét but employing
only a small number of synapses. Thus, the storage capagityypapse is much
larger for the network with structural plasticitgy = €/p;. It is easy to see that
¥ — oo for p1yy — 0. Thus, in large networks with — oo, a single synapse
can store an arbitrarily large amount of information. A eloanalysis reveals that
indeed¢® ~ logn — oo (se€%3133, In contrast, it is well known that any static
network model of distributed storage cannot exceed the daun 0.72 bits per
synapse, even if endowed with real-valued synaptic weitjht&46

Thus, structural plasticity allows us to store large amsusitinformation
with a tiny number of synapses. The intuition is that streatylasticity with
hippocampus-like replay and consolidation can “place”dre synapses at the
most useful locations. By this procedure a sparsely coedegetwork can be-
come functionally equivalent to a fully connected netwotkwpruning of irrel-
evant (i.e., weak or silent) synapses. For that reason,“gimbed” networks can
achieve a much higher storage capacity per synapse thanrstawvorks.

4. Structural plasticity and catastrophic forgetting

Artificial neural networks are well known for suffering frooatastrophic forget-
ting (CF) also known as the stability-plasticity dilemdfaCF means that opti-
mizing synaptic weights for storing a set of new memoriesadteriorate or even
destroy previous memories. On the other hand, freezingsignaeights prevents
the ability to learn new memories.

In contrast, the learning methods described here for aaboeinetworks do
not suffer so seriously from CF because the learning cauttab for a new mem-
ory is independent of other memories. From a functionalgesrtve, associative
networks are closely related to look-up tables, where agdinew memory does
not affect previous memorié$ However, associative networks store memories in
a distributed way and therefore still may suffer from a weaaf of CF, the so-
calledHopfield catastrophé® This means that a static neural network can store
many memories without any problems until the capacity limiteached. Then
storing a single or few further memories can destroy all joesly learned mem-
ories. This effect is a problem for technical applications &lso for modeling
memory processes since CF does not normally occur in ourdrai

We argue that sparsely connected networks employing stalgilasticity do
not suffer from CF. Figure 4 (left panel) shows a simulatiomeve we store a
larger number of memories exceeding the capacity of thear&tviviemories are
ordered within blocks and each memory block is replayed amsgalidated for
some time one after the other. The simulations show thabagping the capacity
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limit implies that storing new memories becomes more andenddfficult, while
older memories remain intact even if the capacity limit iseeded. Thus, in con-
trast to static networks, there is no CF. The reason is aafigrthat with storing
more and more memories the remaining silent synapses gagder storing new
memories) become rare and, eventually, are used up rigbteo€f can occur.

[

I

o
©

b2 b6
b3 b5
0.6- b4

© o
N ™

o o
5 o

output noise €

o
w

o
N

o
[
| —

o i

0 5 10 15 20 25 30
time t time t

Fig. 4. Results from simulating the model of structural figty and cortico-hippocampal interplay
for memory consolidation in neocortex. We stored 25 memdogks (b1,b2,...) each consisting of
4 memories. Each block was replayed by HC for 5 time steps, (elack 10 betweert = 45 and

t = 50). During each replay step all silent synapses were repladeelplots show normalized output
noisee for each memory block in population with inactivated HC. Left panel: When storing more
and more memories approaching the capacity limit of the odthere is a gradual increase of output
noise only for new memory blocks while old memories maintagh retrieval quality. Thus, there is
no catastrophic forgetting. Right panel: Similar simuatias before, but at time= 20 the cortical
network was lesioned by deactivating half of the neuronsaputation«. This leads to Ribot-like
gradients in output noise, i.e., retrieval impairment isrensevere for recent memories than remote
memories.

5. Retrograde amnesia and Ribot gradients

The same mechanism that prevents CF may be responsible dtrearsalient
effect of memory: Patients with lesions of the hippocampuseighboring neo-
cortex often suffer from graded retrograde amné&&f4-*°This means that lesions
impair recent memories more severely than remote memadiiese so-called Ri-
bot gradients can also be seen in our model (Fig. 4, rightlpaféen consolidat-
ing more and more memories the number of consolidated sgsdPg increases
and, correspondingly, the number of unconsolidated sBgnapses decreases.
Thus, assuming constant replay time per memory block, fleetafe connectivity
that can be achieved for recent memories is smaller thaefoote memories (see
also Fig. 3, right panel). And this is actually the reason whypur simulations,
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after lesions, remote memories are better preserved tkantrmemories.

In previous theoretical models Ribot gradients have tylyidaeen gener-
ated by gradients in consolidation tirhe!® where theMth memory obtains a
1/M share of consolidation time, for example assuming a randek wver
the attractor-landscape in Hopfield-type networks withattractors. Then Ri-
bot gradients occur because early memories can accumutatela larger total
consolidation time (and thus resulting memory trace stit®nifpan recent mem-
ories. However, these models implicitly assume that meesaie maintained in
and consolidated by the hippocampus forever. This cortttadvidence that new
memories are buffered by the hippocampus for a limited timlg and that replay
of novel memories is controlled by the hippocampt’

6. Discussion

In this paper we have proposed a simple model of structuaatigity and its re-
lation to synaptic consolidation and cortico-hippocanipt@rplay. We abstracted
from many biological details such as different time scaled geometrical con-
straints of spine plasticity and remodeling of axons andddés. The essence of
our model is that structural plasticity can eliminate “essl’ synapses (those with
low synaptic weights) and regenerate new synapses blirtdbptntially more
“useful” locations. If a synapse turns out to be actuallyefus’ it gets consol-
idated and escapes the process of elimination and regamerdince structural
plasticity is slow this requires replay of the memories t@basolidated, presum-
ably controlled by the hippocampdi$3+35:37

In contrast to previous approach&®we apply these ideas to well known as-
sociative network models as often used for modeling comexraemory??:21:50.51
By introducing the concept of effective connectivity we Bahown that sparsely
connected networks with structural plasticity are furnmdilty equivalent to more
densely connected static networks. Thus, under some domglithetworks en-
dowed with structural plasticity can store the same largewarhof information
as fully connected networks, but require only a relativeha number of func-
tional synapses. A closer theoretical analysis reveatsttigabits of information
stored per synapse can reach the theoretic bowgnd: wheren is the network
size30:3L.33Fyrther analyses indicate that these results apply alsatogically
more realistic networks based on synapses with gradualhtgsigyIn contrast,
static neural networks can store at most 0.72 bits per sgw@s if endowed with
real-valued synapsé&:2>46 Thus, we propose that the main function of struc-
tural plasticity is to emulate higher effective connedtivh networks with sparse
anatomical connectivity in order to minimize space and gnezquirement§?-44

Besides these functional considerations, our model avamidgmon problems
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of static neural networks and can reproduce memory effectsd in psycholog-
ical and neurophysiological experiments. For exampleyaets endowed with
structural plasticity inherently avoid catastrophic fetting of repeatedly pre-
sented memorie¥ Instead, they gradually reduce the capability to acquire ne
memories, but leave previously stored memories intactréason for this behav-
ior is that the number of consolidated synapses will inaegith the number of
stored memories, and, correspondingly, the number of m@ngunconsolidated
synapses diminishes. Since silent unconsolidated sysaps@ecessary for learn-
ing new information this process prevents exceeding thexgéocapacity of the
network and thus catastrophic forgetting.

The same mechanism leads to gradients in effective comitgctind thus
memory trace strength. Recent memories achieve a lowestieffeconnectivity
than remote memories. By this our model can reproduce Rifzalignts as found
in patients suffering from retrograde amnesia after cartsions3*4’~*°In pre-
vious model$’'° Ribot gradients have been reproduced by a gradient in total
consolidation time. These approaches assume ongoingyrapthconsolidation
of any memory such that the'th memory gets a time share of orilyM. In con-
trast, our model can reproduce Ribot gradients even fortaohseplay time per
memory. This seems more consistent with common ideas arglglbgical evi-
dence that new memories get consolidated only for a limitad by hippocampal
replayl8:34-87
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