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Generalizing Surrogate-assisted Evolutionary
Computation

Dudy Lim, Yaochu Jin, Yew-Soon Ong, and Bernhard Sendhoff

Abstract— Using surrogate models in evolutionary search pro-
vides an efficient means of handling today’s complex applica
tions plagued with increasing high computational needs. Rent
surrogate-assisted evolutionary frameworks have relied o the
use of a variety of different modeling approaches to approxnate
the complex problem landscape. From these recent studiesne
main research issue is with the choice of modeling scheme uke
which has been found to affect the performance of evolutiony
search significantly. Given that theoretical knowledge avitable
for making a decision on an approximation modela priori is very
much limited, this paper describes a generalization of sumwgate-
assisted evolutionary frameworks for optimization of prodems
with objective(s) and constraint(s) that are computationdly
expensive to evaluate. The generalized evolutionary frameork
unifies diverse surrogate models synergistically in the eWwation-
ary search. In particular, it focuses on attaining reliable search
performance in the surrogate-assisted evolutionary frameork
by working on two major issues: 1) to mitigate the ‘curse
of uncertainty’ robustly and, 2) to benefit from the ‘bless of
uncertainty’. The backbone of the generalized framework is
a surrogate-assisted memetic algorithm that conducts sinita-
neous local searches usingnsemble and smoothing surrogate
models, with the aims of generating reliable fithess prediobn
and search improvements simultaneously. Empirical study o
commonly used optimization benchmark problems indicateshat
the generalized framework is capable of attaining reliable high
quality, and efficient performance under a limited computatonal
budget.

Index Terms— surrogate-assisted evolutionary algorithms, ap-
proximation models, metamodels, surrogate models, memeti
algorithms, computationally expensive problems.

I. INTRODUCTION

challenges of increasing computational needs by today's ap
plications. For instance, a continuing trend in science and
engineering is the use of increasingly high-fidelity acteira
analysis codes in the design and simulation process. Modern
Computational Structural Mechanics (CSM), Computational
Electro-Magnetics (CEM), Computational Fluid Dynamics
(CFD) and first principle simulations have been shown to be
reasonably accurate. Such analysis codes play a centeal rol
in the design process since they aid designers and sceeimtist
validating new designs and studying the effect of alteriag k
parameters on product and/or system performance. However,
such moves may prove to be cost prohibitive or impractical
in the evolutionary design optimization process, leadiog t
intractable design cycle times.

An intuitive way to reduce the search time of evolutionary
optimization algorithms when dealing with computatiopall
expensive solver, is the use of high performance comput-
ing technologies and/or computationally efficient surtega
models. In recent years, there have been increasing résearc
activities in the design of surrogate-assisted evolutipna
frameworks for handling complex optimization problemshwit
computationally expensive objective functions and caists.

In particular, since the modeling and design optimization
cycle time is roughly proportional to the number of calls
to the computationally expensive solver, many evolutignar
frameworks have turned to the deployment of computatignall
cheap approximation models in the search to replace in part
the original solvers [6][7][8]. Using approximation model
also known as surrogates or meta-models, the computational
burden can be greatly reduced since the efforts required to

VER the years, evolutionary algorithms (EAs) havéuild the surrogates and to use them are much lower than

become one of the well-established optimization teclthose in the standard approach that directly couples the EA
niques, especially in the fields of art & design, business &ith the expensive solvers. Among the approximation mqdels
finance, science and engineering. Many successful applsat polynomial regression (PR), also known as response surface
of EAs have been reported, ranging from music composnethodology (RSM), support vector machine (SVM), artificia

tion [1] to financial forecasting [2], transonic civil trgmert

neural networks (ANNSs), radial basis function (RBF), and

aircraft wing design [3], rainfall prediction [4], and drugGaussian process (GP), also referred to as Kriging or design

design [5].

and analysis of computer experiment (DACE) models, are the

Although well established as credible and powerful optmost prominent and commonly used [9][10][11].
mization tools, researchers in this area are now facing newin the context of EA, various approaches for working with

D. Lim is with the Emerging Research Lab, School of Computegikeer-
ing, Nanyang Technological University, Blk N4, B3b-06, yang Avenue,
Singapore 639798 (e-mail: dudy0001@ntu.edu.sg).

Y. S. Ong is with the Division of Information System, Scho6lGomputer
Engineering, Nanyang Technological University, Blk N4,be9, Nanyang
Avenue, Singapore 639798.(e-mail: asysong@ntu.edu.sg).

Y. Jin and B. Sendhoff are with the Honda Research Instituteojie
GmbH, Carl-Legien-Strasse 30, 63073 Offenbach/Main, @esm(email:
{yaochu.jin,bernhard.sendhp@honda-ri.de).

computationally expensive problems using surrogate nsodel
have since been reported. Early techniques include the use
of fitness inheritance or imitation [12][13], where the fit-
ness of an individual is defined by either the parents or
other individuals previously encountered along the search
Another common approach is to pre-select a subset of indi-
viduals that would undergo exact function evaluations ghil

all others are predicted based on surrogate models. Some
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of the simple schemes introduced are based on random as-opposed to the usual practice of improving only the gualit
dividual selection [14] or selecting the best/most prongsi of the surrogate in the context of evolutionary optimizatio
individuals based on the predictions made by the surrog&8ased on these recent works, it is worth highlighting the in-
models [7][11][15][16]. Other schemes include identifyin fluence of the approximation method used on the performance
some cluster centers [17][18], or uncertain individuakt twe of any surrogate-assisted evolutionary search. The gteate
predicted to have poor estimates [19] as representatias tharrier to further progress is that, with so many approxiomat
will undergo exact function evaluations subsequently. h'Sutechniques available in the literature, it is almost imjiuss
forms of model management schemes are termeewvadution to know which is most relevant for modeling the problem
control in [7][20]. An alternative approach adopted in [21]landscape or generating reliable fithess predictions wimen o
involves the refinement of the surrogate used, from coarsehas only limited knowledge of its fitness space before the
fine grained models as the search evolves. Online localizeehrch starts. Moreover, approximation techniques by them
surrogate models are also deployed within the local seam#lves may model differently on different problem landssap
phase of memetic algorithms (MASs) [8][22]. The synergy obDepending on the complexity of a design problem, a single
online global and local surrogate in the memetic search wagproximation model that may have proven to be successful
also investigated in [11]. To enhance the prediction aagurain an instance might not work so well, or at all, on others. In
of fitness predictions based on surrogates, the inclusion thé field of multidisciplinary optimization, such obseiais
gradient information in surrogate building was also stddiehave also been reported [33][34][35][36][37][38][39][40n
in [23] and [24], independently. those works, this issue is commonly handled by performing

More recently, the idea of using surrogate to speed-umpultiple optimization runs, each on different surrogatedelo
evolutionary search process has found its way into the fiadd ensemble model. In [33][34][38], a set of surrogate medel
of evolutionary multi-objective optimization (MOO). Manyconsisting Kriging, PR, RBF, and weighted average ensemble
of the schemes introduced in the context of single-objectiis used to demonstrate that multiple surrogates can improve
optimization (SOO) have been extended to their correspandirobustness of optimization at minimal cost. Similarly, 35
MOO variants. The Kriging surrogate-assisted evolutipgnauses PR and RBF surrogate models in the context of multi-
multi-objective algorithm [25] represents an extensiortha@d objective optimization and shows that each of the models
efficient global optimization framework [26] introducedrfo performs better at different region of the Pareto front.&dsh
handling SOO problems, while [27] and [28] extendeth [36][37][39][40] resolve this issue by introducing vaus
the coarse-to-fine grained approximation and pre-selectiensemble model building techniques. It is shown from these
schemes to its MOO variants, respectively. The co-evalutiovorks that ensemble models generally outperform most of the
of genetic algorithms (GAs) for multiple objectives based oindividual surrogates.
online surrogates was introduced in [29]. After some fixed The present paper introduces a generalized framework for
search intervals, the surrogates produced that reprekent unifying diverse surrogate models synergistically in tive-e
different objectives are then exchanged and shared amohg nfutionary search. In contrast to existing efforts, we focus
tiple GAs. In [30], a multi-objective EA is run for a numberpredicting search improvement in the context of optimizati
of iterations on a surrogate model before the model is upldai@s opposed to solely on improving the prediction quality of
using exact evaluation from some selected points. For gredhe approximation. In particular, we generalize the proble
details on surrogate-assisted EAs for handling optinoratito attain reliable search improvement in surrogate-assist
problems with computationally expensive objective/coaist evolutionary framework as two major goal$) to mitigate
functions, the readers are referred to [9] and [31]. the ‘curse of uncertainty’and, 2) to benefit from thebless

In spite of the extensive research efforts on this topicstexi of uncertainty! The ‘curse of uncertainty refers to the
ing surrogate-assisted evolutionary frameworks remapeno negative consequences introduced by the approximation err
for further improvement. Jiet al. in [14] have shown that ex- of the surrogate models used. On the other hédbléss of
isting surrogate-assisted evolutionary frameworks psedare uncertainty’ refers to the benefits attained by the use of
often flawed by introduction of false optima since the pafamesurrogate models. Particularly, we seek for surrogate ilsode
ric approximation technique used may not be capable of mdtiat are capable of generating reliable fithess predictions
eling the problem landscapes accurately, thus producingrunon diverse problems of different landscapes to mitigate the
liable search. Generally, tHeurse of dimensionalitytreates ‘curse of uncertainty’on one hand, and on the other hand
significant difficulties in the construction of accuratersgiate surrogate models that are capable of smoothing ruggedditnes
models for fitness prediction. Further, recent studies halandscapes to prevent the search from getting stuck in local
shown that the choice of approximation technique used tsffeoptima [43]. Previous works by Yaet al. [41][42] have also
the performance of evolutionary searches [32]. On the oth&nfirmed that smoothed landscape of rugged fitness lanelscap
hand, it is worth keeping in mind that approximation error ican lead the search to optimum solutions easier than using th
the surrogate model does not always harm. A surrogate moeehct fithess landscape.
capable of smoothing the multi-modal or noisy landscape The rest of this paper is organized as follows. Section Il
of the complex problem may contribute more beneficialliscusses the impacts of uncertainty due to approximation
to the evolutionary search than one that models the original . , . ,

In the present context, the definition of 'uncertainty’ rsféo the approxi-

fitness fEmCtion a_ccurately. For instqnge, the StUd}/ in m mation errors in the fitness function due to the use of suteogedels based
emphasized the importance of predicting search improvemen the definitions given in [44].
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errors in evolutionary frameworks that employ surrogatethe polynomial surrogate, the search leads to an improved
Based on the discussion, Section Il provides a generalizatsolution that is unlikely to be attained even if the exact
of surrogate-assisted evolutionary search for both SOO amltiective function is used. Hence, theléss of uncertainty
MOO subsequently. We summarize the empirical studies bnings about possible acceleration in the search. Besides a
some popular SOO and MOO benchmark problems in Sectitaster convergence, recent study in [31] revealed thatitless

IV. Finally, Section V concludes this paper. of uncertaintyin SAEA also exists in the form of improving
evolutionary search diversity through the use of surrogate
Il. IMPACTS OFAPPROXIMATION ERRORS IN model.
SURROGATE-ASSISTEDEVOLUTIONARY ALGORITHMS Next, to illustrate curse and bless of uncertaintin the

In this section, we briefly discuss the effects of uncefontext of multi-objective optimization, we refer to the-ex

tainty introduced by inaccurate approximation models d}[nples In Figs. 2_(a) _and 2(b). Fig. 2(a) depicts the effect of
Surrogate-Assisted Evolutionary Algorithms (SAEA) sdéarc curse of uncertaintyin MOEA search_due to the presence

performance. Without loss of generality, here we considgf |_naccurate surrogate models. In Fig. 2(a), thg surregate
computationally expensive minimization problems under-1i @ssisted MOEA search is observed to be evolving towards

ited computational budget with bound constraints of the foP®r non-dominated solutions in comparison to that based
on exact fitness functions. Moreover, those labelestaand

lowing form: Al . . .
x9 In Fig. 2(a) suggest that some solutions might stall, while
minimize:  fi(x), fa(x), ..., fr(x) others fail to converge optimally. On the other hand, Fidp) 2(
subject to: o <y <z, (1) lllustrates the presence obless of uncertaintywhere the

errors in the surrogate used is observed to improve the MO
wherei = 1,2,....d, d is the dimensionality of the searcheyg|utionary search in both convergence and diversity mea-
problem, is the number of objective functions, angl, = syres. Particularly, some improved solutions of the swi®g
are the lower and upper bounds of t dimension of vector assisted search is shown to dominate at least one of italiniti

x, respectively. o solutions, while others such as; and x4 are newly found
Note that when more than one objective is involved fo§on-dominated solutions.

approximation, there are two commonly adopted strategees,
1) one approximation model per objective function, @)dne
approximation model for an aggregated (linear or nonlinear
combination) objective functionf,,,.(x). In this paper, we
consider the second strategy. Since in single-objectimées®, | this section, we present a generalization of surrogate-
faggr(x) = f(x) = fi(x), the term f(x) might be used assisted evolutionary frameworks for optimization of petis
interchangeably tof,4,.(x) for brevity purpose when only with objective(s) and constraint(s) that are computafigrex-
single-objective context is considered. pensive to evaluate. The generalized framework illustratee
If faggr(x) denotes the original fithess function and theor unifying diverse approximation concept synergisticas
approximated function ig. 4, (x), the approximation errors ata surrogate-assisted memetic algorithm that conductslsimu
any solution vectox is e(x) , i.e., the uncertainty introducedtaneous local searches on sepamsembleand smoothing
by the surrogate at, may then be defined as: surrogate models. MAs are population-based meta-heuristi
; search methods that are inspired by Darwinian principles of
e(x) = [ faggr (%) = fager(x)| 2) natural evolution and Dawking notior¥ of a meme zefin:d as a
Here, we highlight the negative and positive impacts irunit of cultural evolution capable of local refinements f45]
troduced by the approximation inaccuracies of the suremgator example, the brief outline of a traditional MA is provite
on SAEA search [43]. The negative impact or otherwisa Algorithm 1.
known as the curse of uncertaintyon SAEA search can be In the generalized framework, we introduce first the idea of
briefly defined as the phenomenon where the inaccuracieseaiploying online local ensemble surrogate models constriuc
the surrogates used results in the SAEA search to stall fowm diverse approximation concepts using data pointslibat
converge to false optimum. To illustrate theufse effect, we in the vicinity of an initial guess. The surrogate or appfoxi
refer to Fig. 1(a) where the SAEA is likely to converge tanation models are then used to replace the expensive fanctio
the false optimum of the spline interpolation model due tevaluations performed in the local search phase. The inggrov
inaccuracy. On the other hand, the positive impact, i.e, tBolution generated by the local search procedure thenaepla
‘bless of uncertaintyin SAEA materializes when the use ofthe genotype and/or fitness of the original individdal
surrogate(s) brings about greater search improvementstove
use of original exact objective/fitness function. For ins&, 2Note that the rationale behind using a memetic framework aviradi-

the surrogate can help to traverse the search across valfié! evolutionary framework is multi-fold [45][49). Fst, we aim to exploit
S’ capability of locating the local and global optima eféintly. Second,

and hills of local optima by smoothing the ruggedness/mulli memetic model of adaptation exhibits the plasticity ofivittials that a
modality of the problem landscape. To illustrate the blagsi pure genetic model fails to capture. Further, by limiting trse of surrogate

; ; odels within the local search procedures, the global cgeviee property
effect, we refer to the example in Fig. 1(b), where a IO\&; EAs can be ensured. For a greater exposition of local ietmistics in

order p0|yn0_mia.| regress_ion scheme is used to approximafimization, the reader is referred to [46][47][48)].
the exact objective function. Due to the smoothing effect of3There are two basic replacement strategies in MAs [49]:

IIl. GENERALIZING SURROGATE-ASSISTED
EVOLUTIONARY SEARCH
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(a) ‘Curse of uncertainty’ in single-objective EA using mgates. Ap-
proximated function in the figure is obtained using splinteripolation

technique.
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f

f

Pareto ..
Front

Polynomial Regression.

Curse and Bless of Uncertainty in Single-Objective USing Surrogates.

(a) ‘Curse of uncertainty’ in multi ob-
jective EA using surrogates.

(b) ‘Bless of uncertainty’ in multi objec-
tive EA using surrogates.

Fig. 2. Curse and Bless of Uncertainty in Multi-Objective E8ing Surrogates.

A. Ensemble Model

To mitigate the'curse of uncertainty’due to the effect o

[ ] Initial solutions

Pareto solutions for MOEA
without using surrogates

x  Pareto solutions for MOEA
using surrogates

(b) ‘Bless of uncertainty’ in single-objective EA using sagates.
Approximated function in the figure is obtained using a lovdesr

models to generate reliable accurate predictions acrass pr

f lems of differing problem landscapes [18][50][36], as opgpd

using imperfect surrogate models, we seek for surrogate mdQ Single surrogate models created by specific approximatio

els that are capable of generating reliable fitness prediston
diverse problems. In particular, since it is almost implolgsi )
to know in advance which approximation technique best suf§Sembles. For instance, _
the optimization problem at hand, we consider a synergy Bfédicted ensemble output ¢fx) is formulated as:

diverse approximation methods through the use of ensemble

« Lamarckian learningforces the genotype to reflect the result of im-
provement in local search by placing the locally improvedivitual

back into the population to compete for reproductive opputies.
o Baldwinian learningonly alters the fitness of the individuals and the
improved genotype is not encoded back into the population.

For the sake of brevity, we consider Lamarckian learninghie paper.

P
S

w

»
S~—
Il

n

Zcifi(X),

=1

ici = 1,

scheme that may not be appropriate for the problem at hand.
In what follows, we consider online local weighted average
in the single-objective contbxt,

®3)
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Algorithm 1 Memetic Algorithm (for SOO)

1: Initialization : Generate and evaluate a population of design
vectors.

2: while computational budget is not exhausteal

w

15:

Apply evolutionary operators (selection, crossover, ioité
to create a new population.

/ **+ x Local Search Phases * * x /

for each individuakx in current populatiordo
e Apply local search to find an improved solutiak,,:.
e Perform replacement using Lamarckian learning, i.e.
if f(xopt) < f(x) then
X = Xopt
end if
end for

/ = End of Local Search Phasex x /

17: end while

C. GSM Framework for Single-Objective Optimization

In this subsection, we describe the generalized surrogate
memetic framework for single-objective optimization. Aidjr
outline of the generalized surrogate single-objective et@nm
algorithm (GS-SOMA) is presented in Algorithm 2. Note that
the difference between the GS-SOMA and a traditional MA
lies in the local search phase of the algorithms.

Algorithm 2 Generalized Surrogate Single-Objective Memetic
Algorithm (GS-SOMA)

1: initialization : Generate and evaluate a database containing a
population of designs, archive all exact evaluations irtte t
database.

2: while computational budget is not exhausteal

3: if generation counk database building phasé&/{,) then

4: Evolve the population using exact fitness function evalua-

tions, archive all exact evaluations into the database.

5. else

6: Apply evolutionary operators (selection, crossover, muta

tion) to create a new population.

where fens(x) and ﬁ-(x) are the fitness prediction made 7:
by the ensemble and” surrogate model, respectively. The Bf
same formulation applies in the multi-objective contexenén .
faggr(x) is consideredc; is the weight coefficient associated ;-

with thei” surrogate model. A model can be assigned a larger

weight if it is found or deemed to be more accurate. Henc&:

the weighting function becomes:

n ) 13:

. Zj:l,j;éi €j 4) 14

1 T n 2 "
(n—1) Zj:l €j

15:

wheree; is the error measurement for thi# surrogate model. 16:
Here, the root mean square errorise) is used as the error 17:

/ * % x x Local Search Phasex x x x /

for each individuakk in the populationdo

e Find m nearest points tax in database as training
points for surrogate models.

e Build model-1: M;, as an ensemble of allf; for
j=1,...,nwheren is the number of surrogate models
used.

e Build model-2: M>, which is a low-order PR model.
e Apply local search inM/; to arrive atx},pt, and M to
arrive atx;,,.

e Replacex with the locally improved solution, i.e.

if f(le)ptz < f(x2p) then

opt

measurement. Themse of each surrogate model is then ofl8: else )
the form: ;g; o
mo2( : . . . .
_ Zz‘zl ¢ (Xl) 21: e Archive all new exact function evaluations into the
rmse = , (5)
m database.
22: end for

wherem is the number of data samples comparegk;) is 5.
the error of prediction for data poirt;, as shown in Equation 4.
(2). For greater details on other ensemble model buildiolg-te 25:

niques, interested readers are referred to [36][37][3Q[p0]. 26: end if
27: end while

/ +=* End of Local Search Phasex * /

B. Landscape Smoothing Model GS-SOMA begins with the initialization of a population

Meanwhile, to benefit from thebless of uncertainty’ of design points. During the database building phase, the
smoothing techniques including global convex underestimsearch operates like a traditional evolutionary algorithased
tion, tunneling and filling methods are some appropriateralt on the original exact fitness function for some initi@l
natives [51] that may be used. Given a problem landscaggnerations. Up to this stage, no form of surrogates are, used
smoothing methods transform the function into one withnd all exact fithess function evaluations made are archived
noticeably fewer minima, thus speeding up the evolutionainy a central database. Subsequently, the algorithm prsceed
search. In the generalized framework, global convex undémto the local search phase. For each individual online
estimation is used for successive smoothing of the problesurrogates that model the fitness function are created dynam
landscape within the local search phase which is realizexlly usingm training data points, which lie in the vicinity
through low-order polynomial regression (PR). Besides tlig x, extracted from the archived database of previously
generalization property of PR models on rugged landschpe, evaluated design points. From thesurrogates, an ensemble
low computational costs incurred makes them very efficisnt enodel is built. From here, two separate local searches are
online surrogate models. Note that the PR model may be usmohducted onl) M;, the ensemble ofi surrogate models,
in both ensemble and the smoothing models, hence onlyaiad 2) M-, a low-order PR model. If improved solutions are
one-time model building cost is involved. achieved, GS-SOMA proceeds with the individual replacemen
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scheme. Since we adopt the Lamarckian scheme here, ,ﬁ{@OI’Ithm 4 Generalized Surrogate MUIti-ObjeCtive Memetic
genotype/phenotype of the initial individual is then reld Algorithm (GS-MOMA)
by the higher quality solutions among the two that are lgcall 1: initialization : Generate and evaluate an initial population with

improved based om\f; and M, i.e., x(l)pt or x2 .. The Npop individuals, archive all exact evaluations into a database

) . ot . . while computational budget is not exhaustgal
search cycle is then repeated until the allowed maximur ™ genergtion count dgtabase building phasé's) then

computational budget is exhausted. 4: Evolve the population using exact fitness function evalua-
tions, archive all exact evaluations into the database.
. L S 5  else
D. GSM Framework for Multi-Objective Optimization 6 Generate the offspring populationF, using MO evolu-

Next, we describe the Generalized Surrogate Memetic
framework in the context of multi-objective optimization _.
(MOO). In MOO, a solutionx!) is said to dominate solution g
x(?) in the objective space, i.ex(!) < x(?) if the following o
two conditions hold: 10:

o x( is no worse thax( on all objectives orf;(x1) < 1T

12:
fi(x@) forallj=1,2,...,7.
e x(1 is strictly better tharx(?) on at least one objective,
or f;(x) < f;(x?) for at least ong € 1,2,...,r 13:

If set P is the entire feasible search space, the non-dominaﬁd

set P* is labeled as th@areto-optimal setAny two solutions

in P* must non-dominate each other, i=") ~ x(?). On

the other hand, Pareto frontP¢*) is the image of the 15
Pareto-optimal set in objective space. The brief outlinea of
typical Multi-Objective Memetic Algorithm (MOMA) using 16:
weighting (scalarization) technique [57][58][59] is irated

in Algorithm 3. In contrast, the studied GSM framework forg.
multi-objective optimization (GS-MOMA) is outlined in Al- 19:
gorithm 4. Note that the key differences of the two algorighn?0:

tionary operators (selection, crossover, mutation) on the
selection pool.

/ * % x x Local Search Phasex x x x /

Initialize the learning archived; to empty state.

for each individuakx in the offspring populatiordo
e Generate a random weight vectow =
(wi,wa,...,wy), >i_,w; = 1 wherer is the
number of objectives.
e Find m nearest points tax in database as training
points for surrogate models.
e Build model-1: M;, as an ensemble of allf; for
j=1,...,nwheren is the number of surrogate models
used, Of faggr = Y i, wifi(X)
e Build model-2: M-, which is a low-order PR model,
Of faggr = 31y wifi(x)
e Apply local search inM/; to arrive atx})pt, and M, to
arrive atxz,,
e Replace& Archive( x, xipt, xipt, Ar)

end for

/ ** End of Local Search Phasex x /

lie in the local search phase and selection pool forming qnha%;f

_ _ I _ i 23: / * % x x Selection pool formingx x % x /
Algorithm 3 Multi-Objective Memetic Algorithm 24:
1: initialization : Generate and evaluate a population of desigb: Form selection poolPs = P.|J P, | Ai.
vectors. 26:
2: while computational budget is not exhaustaal 27 /** End of selection pool formingx * /
3:  Apply MO evolutionary operators (selection, crossoverfanu 28: _
tion) to create a new population. 29:  end if
4: 30: end while
5. /*xxx Local Search Phasex * x x /
6:
7. for each individuakx in the populationdo . e L
a: e Generate a random weight vecwr= (w1, ws, ..., w,), Sake of brevity, the core distinguishing feature of GS-MOMA
>.i_,w; = 1 wherer is the number of objectives. can be noted in line 17 of Algorithm 4, i.e. the existence of
o: e Apply local search infage, = >-;_, wifi(x) to find an  the Replace& Archive procedure.
improved solutionx°?t, .
) o The Replace& Archive procedure performs replacements
10: e Perform Lamarckian learning, i.e. L - .
11 if fanor (Xopt) < fager(x) then based on domination between the original offspring and the
12: X = Xopt two local optima found. The original offspring will only be
13: end if replaced by one dominating optimum found. Any other local
14:  end for optima are then saved into the learning archidg, Note that
15: ) . .
- =<
16: /+ End of Local Search Phase « / the result of GS MOMAS Iopal se_arches is eithey,, < x or
17- Xopt ~ X. Otherwise, there is no improvement to the original
18: end while offspring, and hence we ge&t,,; == x.

Based on the procedure in Algorithm 5, the possible local

GS-MOMA begins with the population initialization phasé€arch outcomes and corresponding actions taken by the
and evolutionary search based on exact fitness function fop@'€me are summarized in Table I. Note that there exist
number of early generation&;,;, before entering the local ® POssible actions to be taken by GS-MOMA which are
search phase. In the local search phase, independent IG¢aMarized as follows:
searches are conducted bn)M, the ensemble of surrogate e Replacement is performed once (e.g. Fig. 3a).
models, and?) M, the smoothing low-order PR model on e Two subsequent replacements are performed (e.g. Fig.
each individual of the generated offspring population. fhar 3b).
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Algorithm 5 ProcedureReplace& Archive(x, X}, X2,:, A1) Quadratic Programming (SQP) [53] is used to minimize the

1 if x5, < x then sequence of subproblems on the approximated landscape.
2 X=Xy During the local search, the initial trust-region radiags
3 if x2,, §2x},pt then initialized based on the minimum and maximum values of the
4 X=Xopt m design points used to construct the surrogate model (refer
5 else ifxg,, ~ Xop then to line 11 of Algorithm 2 and line 13 of Algorithm 4). The
6: Archive x5,,; in A4, ; - . . ) P
7. end if trust-region radius for iteratiort, i.e. Q* is updated based
8 else ifx%ﬁ < x then on a measure which indicqtes the accuracy of the surrogate
9 X=Xy model at thek™ local optimum,x},. This measurep”,
10 if x2, ~ x},]it then provides a measure of the actual versus predicted change in
Ei g\r_c]:‘hwe Xopt IN Ay the exact fitness function values at thé local optimum and
: end | H .
13: else if (x},, ~ x) A (x2,, == x) then is calculated as:
14:  Archive x,,, in A4, k) — F(xk
15: else if (x2,1 ~ x) A (x5, == x) then pF = JL:(C—Ji(Zpt) (7)
16:  Archive x2,, in A, J(xk) - F(xept)
17: else if (xp,r ~ X) A (x2,; ~ x) then
18:if (Xopr = Xopt) || (Xope == x2p¢) then The value ofp” is then used to update the trust-region radius
19: Archive x},,, in A as follows [60]:
20:  else ifx2,, < x,,; then
21: Archive x2,, in A; k1 ke k
22:  else ! Q =G, if p7 < Gy,
23: Archive x/,; andx2,; in A; =QF, if Cy < pF < Cs, (8)
24:  end if _ k ek
25: end if = Cul¥, it o7 > G,

where Cy, Cy, C3, and Cy are constants. Typically(;, €
Both repl d archivi f d Ei 0,1) andCy > 1 for the scheme to work efficiently. From
e Both replacement and archiving are performed (e.g. Fi perience, we sefy — 0.25, Cy — 0.25, Cy — 0.75, and

30). ; k k k i k k
L : Cy = 2,if —X) o = Q¥ 0rCy = 1, if ||x7, —x¢|o0 <
e Archiving is performed once (e.g. Fig. 3d). Qi o =l 4 [opn =]l
° Arc_hlvmg is performed twice _(e_.g. _F|g. 3e). . The trust-region radius for the next iteratiof*t!, is
e Neither replacement nor archiving is performed (e.g. F'?éduced if the accuracy of the surrogate, measuregibis

31). low. On the other hand}* is doubled if the surrogate is found

At the end of each GS-MOMA generatiod; is combined to be accurate and thet" local optimum,x’gpt, lies on the

with the current parent populatior?., and the offspring st region bounds. Otherwise the trust-region radiusaias
population, P, to form the entire pool of individualsp; unchanged.

that will then undergo the MOEA selection mechanism, i.e. o : : :

. ’ ' The initial guess of the optimum at iteratién+ 1 becomes
P, = P.|JP,|J A;. From here, the process described repeats g P
until the maximum computational budget of the GS-MOMA k1 k

=xp., if )
is exhausted. :t , pk
=xg, if p¥ <0. (9)

E. Local Search Scheme The trust-region process for an individual terminates wifnen

In the GSM framework for SO/MOO, a trust-regiontermination condition is satisfied. For instance, this feation
regulated search strategy is utilized to ensure conveggegondition could be when the trust-region radidsipproaches
to some local optimum or the global optimum of the exaet, wheree represents some small trust-region radius, or when
computationally expensive fitness function [60][8][52],ea a maximum number of iteratioky.,., is reached.
though surrogate models are deployed in the local search.
For each individual in the GS-SO/MOMA population, the
local search (refer to line 14 of Algorithm 2 and line 16 IV. EMPIRICAL STUDY

of Algorithm 4) proceeds with a sequence of trust-region |, yhis section, we present an empirical study on the GSM

subproblems of the form framework for solving single and multi-objective optimiira
minimize: fk (xF +s), problems. In the present study, we considered a diversef set o

©) exact interpolating and generalizing approximation téghes

for constructing the local surrogate models, i.8/; and
wherek =0,1,2,..., kmaz, f(x) is the approximation func- M. These include the interpolating Kriging/Gaussian preces
tion corresponding to the objective functigiix). Meanwhile, (GP), interpolating linear spline radial basis functiorB{
x¥, s, andQ* represent the initial guess (current best solutio@nd 2"¢ order polynomial regression (PR). For greater details
at iterationk, an arbitrary step, and the trust-region radius an GP, PR, and RBF, the reader is referred to [54][55][56] and
iteration k, respectively. In our experiments, the Sequentidlppendix I.

subject to:  |[[s|| < QF,
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TABLE |
ACTIONS TAKEN BY THE Replace& Archive SCHEME INGS-MOMA FOR CORRESPONDING RESULTS OF LOCAL SEARCHEBIOTE THAT IRRELEVANT
CASES HAVE BEEN EXCLUDED FOR BREVITY

T 2
xop xop

=
<
@
»

=
<
7]
%

Actions taken by GS-MOMA

— 1

X = Xopt

2

opt

— o1 . )

X = Xy archlvexopt
T

X

T 2
Xopt VS X0y

X =X

2| Y [IA

:xopt
X =X

opt
T

X =X
T

opt ~
opts archivexg
— 2
X = Xopt
No changes
R 2
Archive x_,,
2
opt
— 2 . T
X = X, archivex,,,
R T
Archive x,,,
o T
Archive x opt
Archllve Xopt ,
Archive x,,, andxg

P T
Archive x,,,

X =X

TATA A A A A TA

Y] 2 |AfA

X =X

YA 22|y

R EA N1 PNDARA KR R2 KA YIN[FA)N

f f f

(@) An example of the case
where

(b) An example of the case (c) An example of the case where

f

only
performed only once by GS-
MOMA. (x! . <x)A (x} , <

5 opt — 5 optl—
Xo t) A (X ~ Xopt)' Xopt
replacesx.

replacement is

f

where two subsequent replace-
ments are performed by GS-
MOMA. (x},, < x)A(x2,, <
Xp,1)- Xop Eplacesk, followed

2
by x5, replacesx.

both replacement and archiving
are performed by GS-MOMA.
(Xclapt 2 x) A (XE ¢ 3 %) A
(x3, ~ x2,.). %5, replaces
x, x2,,, is archived inA;.

(d) An example of the case where

(e) An example of the case where

(f) An example of the case where

archiving is performed only once

archiving is performed twice by GS-

neither replacement nor archiving

by GS-MOMA. (x ~ x},,) A MOMA. (x ~ xp,) A (x ~ is performed. No new optimum is
(x ~ xgpt) A (X(l)pt = Xgpt)' xgpt) A (X(l)pt ~ X?)pt)' Both le)pt found.

1 L 2 opt
Xopt IS a@rchived in4,;. andxg , are archived in4,.

Fig. 3. Examples of the six different actions taken by feplace& Archive scheme in GS-MOMA for corresponding results of local seesch
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A. Parameters of GSM Framework of the initial trust-region radius. In effect, the bounds fg...,,,
In this subsection, we discuss on the user-specified pararfié-the termination condition can be derived as:

ters of the GSM framework. Apart from the parameters of th A € <k < Nmee (1410 3

underlying SO/MOEA, the generalized framework has three”®¢: \ Q1 — | = Fterm = Hsuce sol\ar,))

additional user-specified parameters; Gg, and ke, . (17)

Since model accuracy is highly dependent on the sufficiency!n the trust-region-regulated local sear€H,depends on the
of the m data points used for model building, the size oPcal region of interest where the initial nearest neighbors
nearest neighboring points used (based on Euclidean déejtarre located. Hence it is not possible to define this term
is defined byi+(d+1)(d+2)/2, whered is the dimensionality Precisely for any new optimization problem. For instande, i
of the optimization problem. It is worth noting that the comQs,i, ~ 10 andC; = 0.25, we arrive at:
plexity for identifying thesem point; i_s negligible com_pared Ferorm > 11og;o.21 7
to the cost of surrogate model building. Moreover, since our ) ©g 025 18
emphasis here is with regard to a framework that is tailored term = 1.66. (18)

for solving computationally expensive problems, i.e. f[pems As opposed to usingy.,, = 1 which translates to a single

that may cost from minutes to hours of computational time pgeration local search, a minimum value lf.,..,, > 2 is more

evaluation, such overheads are considered to be insigmtificgractical to allow the mechanisms of the trust-region-raiga

From thesen data points, as many &8+ 1)(d+2)/2 among |ocal search to take effect.

them# are chosen uniformly as the training data for building

the surrogates, the remaining data points then form theoset § Single-Objective Optimization

validating the prediction quality of the surrogate.
Parameter=;,, on the other hand, defines the period of the

database building phase (refer to lines 3-5 in Algorithmstf . . . -

and 4) before the core operation of the GSM framewo mmarized here in Tablelll. More detall_ed description pf

begins to take effect. Henda&,, can be adapted for dif'ferentt e problems are a_Iso provided n Appendlx Il. They con_s_|st

optimization problems according to the fulfilment on th(?f problems with diverse properties in terms of separabilit

requirement of parametem. The lower bound ofGgy, is multi-modality, and continuity.

Empirical study on the GS-SOMA is performed using
n benchmark problems (F1-F10) reported in [61][62] and

defined by the period to acquire a minimumrafdata points TABLE Il
for construction of reliable surrogate models. THE BENCHMARK PROBLEMS USED(F1-F10)FOR THE EMPIRICAL STUDY
Theoretically, the trust-region local search scheme geiyer OF SINGLEOBJECTIVE OPTIMIZATION.
terminates when the trust-region radiQsapproaches, where
i : g enchmark | Description Global
€ represents some very small value for termmau_on conditi )rﬁroblem Optimum
(refer to Section IlI-E). Nevertheless, for practical @as f(z*)
under limited computational budget, it is more appropriate; podey o
to derive an appropriate value fds.,.,, as the termination [F3 Rosenbrock 0.0
condition in the trust-region local search. In what followe | F4 Shifted Rotated Rastrigin (F10 in [62]) -330.0
. . F5 Shifted Rotated Weierstrass (F11 in [62]) 90.0
present a theoretical bound fb{erm- F6 Shifted Expanded Griewank -130.0
plus Rosenbrock (F13 in [62])
F7 Hybrid Composition Function (F15 in [62]) 120.0
1 kmin F8 Rotated Hybrid Composition Function (F16 in [62]) 120.0
Qmm (gl) =€ (10) F9 Rotated Hybrid Composition Function 10.0
min o~ __€ with Narrow Basin Global Optimum (F19 in [62])
= (Cl) =Ql (11) F10 Non-continuous Rotated Hybrid 360.0
= kmm 10g Cl < log Q]L (12) Composition Function (F23 in [62])
SinceC; € (0,1) — log C; < 0, we arrive at:
TABLE Il
= kmin > (lOg (QIL)) / (log Cl) (13) DEFINITION OF THE SINGLE-OBJECTIVEMA S (SOMAS) COMPARED.
=k . >1lo ( € ) . 14 Algorithms Definition
min = 1080, Qi ( ) GA No surrogate is used
L. . . . . . SS-SOMA-GP Single surrogate SOMA with\/;: GP
Similarly, the maximum number of trust-region iteratioms i | —sssowAPR smg|e Surrogate SOMA WITiT, - PR
the local search, i.ek,, .., IS estimated by; SS-SOMA-RBF Single surrogate SOMA withVf;: RBF
SS-SOMA-Perfect| Single surrogate SOMA with/; : Perfect model
e GS-SOMA Generalized surrogate SOMA with
kmam < N;ﬁ‘ég + N;ng logcl (m) (15) M, : weighted-averagensemble of GP, PR, and RBF
Msy: PR
= bnas < N2 (14 10gc, (=) (26)

Note thatN™%* is the maximum number of successful itera- In this paper, all the benchmark problems are configured

tions whileséic andQl  are the lower and upper boundsWith a dimensionality ofd = 30 for SOO. Performance
' min max PP comparisons are then made between the GA, SS-SOMA-GP,
4This amount corresponds to the minimum number of data poénsired SS-SOMA-PR, SS-SOMA-RBF, SS-SOMA-Perfect, and GS-

for building quadratic regression models. SOMA (refer to Table Il for the definition of the algorithms
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TABLE IV
SETTING OF EXPERIMENTS FORGA, SS-SOMA, SS-SOMA-PRFECT,
AND GS-SOMA.

F9, and F10.
On the other hand, the results in Tables V-XIV, indicate that
GS-SOMA consistently performs well on all the benchmark

Parameters Setting problems. Thd-testresults, i.e., at 95% confidence level, for
Population size pop) 100 the different algorithms as reported in Table XV confirmg tha
ﬁﬁsazgﬁe:)grg:;wwéui)) 8:2 GS-SOMA outperforms or is competitive to the SS-SOMAs
Maximum number of exact evaluations| 8000 on 43/50 cases. On the remaining 7 cases, GS-SOMA also
Evolutionary operators uniform crossover & mutation,| displays solution qualities close to that of the superior SS
e g ety elitism and ranking selection SOMA, see the highlighted results in Tables V-XIV. Note
for SS-SOMA and GS-SOMA 3 that this is a significant achievement considering thatano
Database building phasé&/(;) priori knowledge is available to select an appropriate surrogate
E?nr r?fr;]sbgr""(;‘ agge%ifng)'\’m 20 modeling scheme for the problems considered. This higtdigh
NUMDber of indgpendem RS 50 the reliability of the generalized framework.

The search convergence trends of GS-SOMA, SS-SOMA-
AV, and SS-SOMA-Perfect are also plotted in Fig. 4. Note
investigated here). Note that to facilitate a fair compatis that SS-SOMA-AV represents the estimated performance one

the surrogate memetic variants are built on top of the safflight expect to get when an approximation technique is

GA used in the study, which ensures that any improvemefjg§'domly chosen for use. Hence, SS-SOMA-AV is generated

observed is a direct contribution of the surrogate framéwoffom the average of the results obtained by all 3 SS-SOMAs,

considered. SS-SOMAXX refers to the different surrogate--€: SS-SOMA-GP, SS-SOMA-PR, and SS-SOMA-RBF. It is
assisted single-objective MA variants, each with a uniqu'é/'de”t from the search convergence trends that GS-SOMA is

approximation method used to generate the surrogate mo@sPerior over SS-SOMA-AV on the 10 benchmark problems.
For instance XXX in SS-SOMAXXX refers to GP, PR, or This indicates that the generalized framework is more loidia
RBF. On the other hand, SS-SOMA-Perfect refers to an S%Men one has no knowledge about the suitability of the
SOMA that employs an imaginary approximation techniquPProximation scheme for the problem at hand.
that generates error-free surrogatese., RM SE = 0. Hence
the notion of curse or bless of uncertainty does not exigtén t 2) Analyzing the Generalized Evolutionary Framework in
SS-SOMA-Perfect search. As such, any SS-SOXMX that Single-Objective Optimization: To gain a better understanding
under/out-perform SS-SOMA-Perfect is clearly attributed of the generalized framework, we further analyze the réditgb
the effects of curse and bless of uncertainty, respectitalgt and effectiveness of the ensemblé;() and smoothing A/>)
but not least, GS-SOMA refers to the Generalized Surrogatérrogate models in contributing to the evolutionary searc
framework for single-objective optimization. The common To facilitate the analysis, the normalized root mean square
parameter settings of the algorithms used in the preseaitors (N-RMSE) of fitness predictions based on the ensemble
experimental study are summarized in Table IV. surrogate model, i.eM; in GS-SOMA search, for the bench-
mark problems are presented in Fig. 5. The normalized RMSE

1) Experimental Results In Tables V-XIV, the detailed ©f modeli is determined as follows:

statistical results of 20 independent runs for SS-SOMAs, GS . _ RMSE;

SOMA, and GA are presented. The GS-SOMA and best Normalized RMSE; = > -1 RMSE;’ (19)
performing SS-SOMA are highlighted in the tables. Note that _ L . .

none of the SS-SOMAs always dominates in performance gﬁ]eres is the total apprQX|mat|on metho_ds used in shaping the
all ten benchmark problems. This makes good sense sir?&semble' From these figures, the consistently low N-RMSE of
the performance of any surrogate-assisted evolutionamcke the ensemble model generated in the GS-SOMA sea}rch across
would depend on the match between the c:haracteristicsaélfb(,enChmark pfob'ems' demonstrates the high repabdfty
the problem landscape and approximation scheme used. 5 fitness prediction generated By, across the different
instance, in the tables, it is shown that SS-SOMA-PR serv%gt'm'zat'of1 problems over any single surrogates. )

to be best suited for F1, F5, and F9 since it outperforms a"Furth_er, It IS worth ”0“”9 that the use M? contnl_outes
other algorithms on these problems. Similarly, this algoliap to the fitness improvement in GS-SOMA, which confirms the

to SS-SOMA-GP which excels on F3. On the other hanBossible benefits of bless of uncertainty in surrogate model

SS-SOMA-RBF, though not superior, performs reIativerIweirhe normalized average fithess improvement of the local

on F3, F4, F7, and F8. Moreover, it is worth noting that theearches contributed via the use &fi (Impyni) and M? _
SS-SOMAs are observed to have performed much poorly Hﬁ"pMQ) dl_mng f[he GS'.SOMA searches are summarized in
several occasions. For instance, SS-SOMA-PR fares badly%g' 6 and is defined by:

F3, F4, F7, and F8. The same is true for SS-SOMA-GP on Normalized Imp; = Impary
F1, F4-F8, and F10, and SS-SOMA-RBF on F1, F2, F5, F6, . Immjl“mpm’
NormalizedImpys = ———PM2 (20)

Impyi+Impae”

5An error-free surrogate model can be realized by using efitmss I is th | fi . ined bv | |
function in the portion of SS-SOMA where a surrogate modeLshbe used, 7?1 1S the total fitness improvements attained by local re-

but the incurred fitness evaluation is counted only as marip &-SOMA. finements, i.e., through Lamarckian learning, W}’ﬁﬁla})pt) <
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TABLE V
STATISTICS OF THE FINAL SOLUTION QUALITY AT THE END OF8000EXACT FUNCTION EVALUATIONS FORF1USING GA, SS-SOMA-GP,
SS-SOMA-PR, SS-SOMA-RBRBAND GS-SOMA.

Optimization Statistical Values

Algorithm Mean Std. Dev. Median Best Worst
GA 1.24e+01 9.50e-01 1.23e+01 1.12e+01 1.42e+01
SS-SOMA-GP 6.43e+00 9.73e-01  3.98e+00 2.87e+00 1.56e+01
SS-SOMA-PR 1.39e+00 1.93e-01 1.36e+00 1.14e+00 1.75e+00
SS-SOMA-RBF 4.91e+00 7.57e-01  4.86e+00 3.78e+00  6.09e+00
GS-SOMA 3.58e+00 5.09e-01 3.67e+00 2.87e+00 4.28e+00

TABLE VI

STATISTICS OF THE FINAL SOLUTION QUALITY AT THE END OF8000EXACT FUNCTION EVALUATIONS FORF2USING GA, SS-SOMA-GP,
SS-SOMA-PR, SS-SOMA-RBRBAND GS-SOMA.

Optimization Statistical Values

Algorithm Mean Std. Dev. Median Best Worst
GA 458e+01 8.61e+00 4.67e+01 2.15e+01 6.19e+01
SS-SOMA-GP 1.79e+01 8.58e+00 1.07e+01 5.15e-09  3.00e+01
SS-SOMA-PR 1.18e-02 2.78e-02 4.29e-08 7.48E-10 1.19e-01
SS-SOMA-RBF 7.49e-01 8.98e-02  7.51e-01 6.02e-01  8.72e-01
GS-SOMA 2.2e-03 4.60e-03 8.95e-09 1.40E-10 1.54e-02

TABLE VII

STATISTICS OF THE FINAL SOLUTION QUALITY AT THE END OF8000EXACT FUNCTION EVALUATIONS FORF3USING GA, SS-SOMA-GP,
SS-SOMA-PR, SS-SOMA-RBREAND GS-SOMA.

Optimization Statistical Values

Algorithm Mean Std. Dev. Median Best Worst
GA 4.10e+02 1.0le+02 3.85e+02 2.33e+02 5.73e+02
SS-SOMA-GP 2.99e+01 7.73e-01 3.00e+01 2.87e+01 3.11le+01
SS-SOMA-PR 6.73e+01  2.55e+01 5.62e+01 3.72e+01  1.04e+02
SS-SOMA-RBF 4.90e+01 2.92e+01 3.97e+01 2.92e+01 1.57e+02
GS-SOMA 4.63e+01 2.92e+01 3.02e+01 2.83e+01 1.26e+02

TABLE VIII

STATISTICS OF THE FINAL SOLUTION QUALITY AT THE END OF8B000EXACT FUNCTION EVALUATIONS FORF4 USING GA, SS-SOMA-GP,
SS-SOMA-PR, SS-SOMA-RBREAND GS-SOMA.

Optimization Statistical Values

Algorithm Mean Std. Dev. Median Best Worst
GA -5.46e+01 3.01e+01 -5.48e+01 -1.11e+02  5.19e-01
SS-SOMA-GP -1.19e+02 1.87e+01 -1.17e+02 -1.50e+02 -80lle
SS-SOMA-PR -1.19e+02 1.23e+01 -1.21e+02 -1.43e+02 -9Qlle
SS-SOMA-RBF -1.65e+02 1.86e+01 -1.66e+02 -1.91e+02 -1.36e+02
GS-SOMA -1.26e+02 1.60e+01 -1.23e+02 -1.64e+02 -9.97e+01

TABLE IX

STATISTICS OF THE FINAL SOLUTION QUALITY AT THE END OF8000EXACT FUNCTION EVALUATIONS FORF5USING GA, SS-SOMA-GP,
SS-SOMA-PR, SS-SOMA-RBRBND GS-SOMA.

Optimization Statistical Values

Algorithm Mean Std. Dev. Median Best Worst
GA 1.26e+02 2.85e+00 1.26e+02 1.20e+02 1.32e+02
SS-SOMA-GP 1.19e+02 4.29e+00 1.20e+02 1.12e+02 1.25e+02
SS-SOMA-PR 5.67e+01 3.79e+00 1.16e+02 1.13e+02 1.25e+02
SS-SOMA-RBF 1.21e+02 2.61e+00 1.21e+02 1.18e+02 1.24e+02
GS-SOMA 1.19e+02 3.05e+00 1.19e+02 1.14e+02 1.24e+02

TABLE X

STATISTICS OF THE FINAL SOLUTION QUALITY AT THE END OF8000EXACT FUNCTION EVALUATIONS FORF6 USING GA, SS-SOMA-GP,
SS-SOMA-PR, SS-SOMA-RBRBAND GS-SOMA.

Optimization Statistical Values

Algorithm Mean Std. Dev. Median Best Worst
GA -9.57e+01 9.43e+00 -9.79e+01 -1.06e+02 -7.28e+01
SS-SOMA-GP -1.02e+02 2.99e+00 -1.03e+02 -1.05e+02 -90Ze
SS-SOMA-PR -1.06e+02 2.45e+00 -1.07e+02 -1.09e+02 -1.02e+02
SS-SOMA-RBF -1.03e+02  2.43e+00 -1.03e+02 -1.07e+02 €3:06

GS-SOMA -1.12e+02 1.05e+00 -1.23e+02 -1.13e+02 -1.11e+02

11
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TABLE XI
STATISTICS OF THE FINAL SOLUTION QUALITY AT THE END OF8B000EXACT FUNCTION EVALUATIONS FORF7 USING GA, SS-SOMA-GP,
SS-SOMA-PR, SS-SOMA-RBEAND GS-SOMA.

Optimization Statistical Values

Algorithm Mean Std. Dev. Median Best Worst
GA 7.29e+02 5.92e+01 7.27e+02 6.43e+02 8.21e+02
SS-SOMA-GP 6.81e+02 7.23e+01 6.95e+02 6.02e+02 8.23e+02
SS-SOMA-PR 6.42e+02 5.80e+01 6.34e+02 5.73e+02 7.09e+02
SS-SOMA-RBF 6.27e+02 7.93e+01 5.99e+02 5.95e+02 8.49e+02
GS-SOMA 6.07e+02 3.06e+01 6.00e+02 5.79e+02 6.59e+02

TABLE Xl

STATISTICS OF THE FINAL SOLUTION QUALITY AT THE END OF8000EXACT FUNCTION EVALUATIONS FORF8USING GA, SS-SOMA-GP,
SS-SOMA-PR, SS-SOMA-RBREAND GS-SOMA.

Optimization Statistical Values

Algorithm Mean Std. Dev. Median Best Worst
GA 4.83e+02  6.3e+01  4.62e+02 4.19e+02  6.06e+02
SS-SOMA-GP 4.52e+02 9.66e+01  4.35e+02  3.40e+02 5.63e+02
SS-SOMA-PR 3.94e+02 4.41e+01 3.75e+02 3.43e+02 4.52e+02
SS-SOMA-RBF 3.79e+02 3.3e+01 3.69e+02 3.51e+02 4.41e+02
GS-SOMA 3.25e+02 1.17e+02 2.86e+02 2.32e+02 5.54e+02

TABLE XIII

STATISTICS OF THE FINAL SOLUTION QUALITY AT THE END OF8000EXACT FUNCTION EVALUATIONS FORFOUSING GA, SS-SOMA-GP,
SS-SOMA-PR, SS-SOMA-RBRBAND GS-SOMA.

Optimization Statistical Values

Algorithm Mean Std. Dev. Median Best Worst
GA 1.02e+03 2.35e+01 1.02e+03 9.86e+02  1.08e+03
SS-SOMA-GP 9.42e+02 1.71e+01 9.37e+02 9.25e+02 9.81e+02
SS-SOMA-PR 9.32e+02 8.26e+00 9.31e+02 9.22e+02 9.48e+02
SS-SOMA-RBF 9.81e+02 1.43e+01 9.80e+02 9.67e+02 1.00e+03
GS-SOMA 9.42e+02 1.75e+01 9.37e+02 9.30e+02 9.86e+02

TABLE XIV

STATISTICS OF THE FINAL SOLUTION QUALITY AT THE END OF8000EXACT FUNCTION EVALUATIONS FORF10USING GA, SS-SOMA-GP,
SS-SOMA-PR, SS-SOMA-RBRBND GS-SOMA.

Optimization Statistical Values

Algorithm Mean Std. Dev. Median Best Worst
GA 151e+03 5.52e+01 1.52e+03 1.40e+03 1.58e+03
SS-SOMA-GP 1.26e+03  1.88e+02 1.22e+03 1.03e+03  1.54e+03
SS-SOMA-PR 1.07e+03 1.07e+02 1.04e+03 9.42e+02 1.29e+03
SS-SOMA-RBF 1.12e+03 1.16e+02 1.15e+03 9.59e+02 1.28e+03
GS-SOMA 1.01e+03 7.85e+01 9.53e+02 9.09e+02 1.51e+03

TABLE XV

RESULT OF FTEST WITH95% CONFIDENCE LEVEL COMPARING STATISTICAL VALUES FORGS-SOMAAND THOSE OFSS-SOMA-GP, SS-SOMA-PR,
SS-SOMA-RBF, SS-SOMA-BERFECT ONF1-F10 5+, s—, AND = INDICATES THAT GS-SOMAIS SIGNIFICANTLY BETTER, SIGNIFICANTLY WORSE,
AND INDIFFERENT, RESPECTIVELY).

GA SS-SOMA-GP  SS-SOMA-PR  SS-SOMA-RBF  SS-SOMA-Perfect

F1 s+ s+ S— s+ s+
F2 s+ s+ =~ s+ s—
F3 s+ s— s+ =~ s—
F4 s+ = =~ s— s+
F5 s+ = s— s+ s+
F6 s+ s+ s+ s+ s+
F7 s+ s+ s+ = s+
F8 s+ s+ s+ =~ s+
F9 s+ = s+ s+

o
F10 s+ s+ ~ s+ s+
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! B Gassan Process OF) presence ofcurse of uncertainty’due to the surrogate(s).

09l [EE21 Polynomial Regression (PR) |- Further, the results in F3 of Fig. 6 also indicate thd

ool e s ®9 | (i.e., the smoothing PR model) did not contribute signifttan
to the search since the problem landscape of this function

07 1 is originally smooth. Rather, the use of ensemble model in

GS-SOMA had contributed to reliable fitness improvement on
F3(Rosenbrock) by generating reliable prediction acoui@n

the other test problems, both/; and M, surrogates were

{1 shown to contribute significantly to GS-SOMA in their own
unigue ways.

Normalized RMSE

1 C. Multi-Objective Optimization

: In this subsection, we present the empirical study of the GS-

il MOMA on six moderate to high dimensional MO benchmark

FLoR R R S R e B e RO problems, labeled here as MF1-MF6 [63]. The MO bench-
mark problems used in the study are summarized in Table XVI.

Fig. 5. The normalized RMSE by GP, PR, RBF, and weighted geera

ensemble. TABLE XVII

DEFINITION OF THEMULTI-OBJECTIVEMA S (MOMA S) COMPARED
1

Algorithms Definition
0.9 NSGA-II No surrogate is used
=08 GS-MOMA Generalized surrogate MOMA with
é ’ M, : weighted-averagensemble of GP, PR, and RBF
g 07 Mos: PR
g SS-MOMA-I Single surrogate MOMA with
£ 06 M : Ensemble of GP, PR, and RBF
2 SS-MOMA-II Single surrogate MOMA with
205 M;: PR
L o04 SS-MOMA-Perfect | Single surrogate MOMA with
g M, : Perfect model
g 0.3
2 02 Performance comparisons are then made between the stan-
o1 dard non-dominated sorting genetic algorithm-Il (NSGA-
[I) [64] and variants of MOMA. For fair comparison, we com-

0

FL F2 F3 F4 F5 F6 F7 F8 F9 F10 pare GS-MOMA with several SS-MOMAs and the NSGA-
Benchmark Problem . .
— T— PR Il since the formers are demonstrated with NSGA-II as the
itn improvement contributt . g . .
[ Fitness improvement contributed by M2 baseline by building on top of it. Hence, all algorithms com-

pared inherit the same evolutionary operators as the NSGA-
Fig. 6. The normalized fitness improvement during the run&8tSOMA Il'used in our experiment. In SS-MOMAs, an offspring will
contributed byMy (Impps) and My (Impaya). be replaced in the spirit of Lamarckian learning during loca
search if its aggregated fitness function is found to be bette
than the original offspring. Similarly, SS-MOMA-Perfec i
f(x2,;,), while Imp,» is the total fitness improvements wherintroduced here to assess the effects of approximation erro
F(x2,0) < f(xd0) on surrogate-assisted evolutionary search performance. F
From the statistical results given in Fig. 6, it is notabléhe sake of brevity, the notations and definitions of the MO
that M, and M, surrogates have contributed to the surrogatetgorithms studied are tabulated in Table XVII while the
assisted memetic search in their unique ways. This providgsmmon parameter settings of the MO algorithms used in the
a means for explaining the results that were obtained #xperimental study are defined in Table XV#lI
Fig. 4 and Tables V-XIV. In particular, the reason for that Many performance indicators exists for assessing the per-
all surrogate-assisted SOMAs outperform SS-SOMA-Perfegrmance of MOEASs, such as those summarized in [65][66].
on F1 (Ackley) suggests the presenceldéss of uncertainty’ Here, the following three performance indicators are used,
through the use of surrogate(s), since the notion of curse o Generational Distance (GD)[67][68]: This measure-
bless of uncertainty cannot exist in the latter. Further; SS  ment indicates the gap between the true Pareto front

SOMA-PR is shown to be most superior on F1 (Ackley) (pfr+) and the evolved Pareto fronP¢). Mathemati-
highlights the strength of the PR model in contributing to  cally, it can be formulated as:

the search via smoothing the rugged landscape of the Ackley

function. This hypothesis is clearly supported by the large 1
portion of fitness improvements that are contributed gy GD = npr
(i.e., the PR model) on F1, see Fig. 6. On the other hand,

neither SS-SOMAs nor GS-SOMA manage to outperformsgiyce MF3 and MF4 have higher dimensionality, ie— 50, greater
the SS-SOMA-Perfect on F3(Rosenbrock), suggesting thgial database size is required. For these cagkg, is set to 20.

(21)
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TABLE XVI
MULTI-OBJECTIVE BENCHMARK PROBLEMYMF1-MF6). PARAMETRIC DOMAIN USED IS [07 l]d, WHEREJ IS THE PROBLEM DIMENSIONALITY
CONSIDERED IN THE PRESENT STUDY

Benchmark Formulation Characteristics
Function
MF1 (d = 30) f1(x) = a1 Convex, 2-objective Pareto front

f2(x) = g(x)[1 = V/f1(x)/g(x)]
9() =1+ 9L, 20)/(d—1)
MF2 (d = 30) f1(x) = a1 Non-convex, 2-objective Pareto front
fa(x) = g(x)[L — f1(x)/9(x)?]
9(x) =1+ 9L, 2:)/(d—1)
MF3 (d = 50) f1(x) =z Convex, disconnected, 2-objective Pareto froht
f2(x) = g(x)[1 =/ f1/g — (f1/g9)sin(107 f1)]
9(x) =14+ 9(3¢ ,@i)/(d—1)

MF4 (d = 50) fi(x) = 1 — exp(—4x1)sin® (6mxy) Non-convex, 2-objective Pareto front
F2(x) = g(3)[1 = (f1(x)/9(x))*]
9(x) = 1+ 9[> ,@i/(d — 1]**
MF5 (d = 20) fi1(x) = cos(Zx1)cos(Fx2)(1 + g(x)) Non-convex, 3-objective, Pareto front
fa(x) = cos(Fx1)sin(Fw2)(1+ g(x))
f3(x) = cos(Fx1)(1 + g(x))
9(x) = 37 s(wi —1)®
MF6 (d = 10) f1(x) = a1 Convex, 2-objective, multiple local Pareto frort
F2(x) = ()1 — /FI0/9(0)]

g(x) =1+10(d—1) + Zfzz(m? — 10 cos(4mz;))

TABLE XVIII

SETTING OF EXPERIMENTS FORNSGA-Il, GS-MOMA,AND SS-MOMA. * Hypervolume Ratio (HR) [68]: This indicates the ratio

between the hyperarea/hypervolume (H) [70] dominated

Parameters Setting by the evolvedPF and PF™*, where HR is defined as:
Population size Npop) 100 H(PF)
Crossover probability Peross) 0.9 HR = HPF)
Mutation probability @r,..t) 0.1 N npr
Maximum number of exact evaluations| MF1-MF2: 8000 H = volume( i=1 Ui) : (23)
MF3-MF4: 16000
ME5: 30000 Here,v; denotes the hypercube constructed from member
MF6: 20000 i of a particular Pareto front and the reference point. A
Evolutionary operators SiTU|ate¢ Ibi”a{)’t_cfossoverf HR value close to 1 indicates that the evolved Pareto front
polynomial mutation, . . .
binary tournament selection, is quite close to the Frue Pareto front, in both convergence
elitism, non-domination rank and spread of solutions.
and crowded distance
Number of trust region iteratiok{c,m) | 2 . .
for SS-MOMA and GS-MOMA 1) Experimental Results. The obtained Pareto fronts of the
Database building phasé?(;,) MF1-MF2, MF5-MF6: 10 benchmark problems for 20 independent runs are combined
for SS-MOMA and GS-MOMA MF3-MF4: 20 d depicted in Fias. 9-14. Th " ; cnet
(in number of generations) and depicted in Figs. 9-14. The respective performanceesetr
Number of independent runs 20 are then summarized in Figs. 15-20. From these results, all

surrogate-assisted multi-objective evolutionary aldponis, i.e.,
SS-MOMAs and GS-MOMA, are shown to outperform the
wherenpp is the number of members iRF, d; is the standard NSGA-Il on MF1, MF2, MF5, and MF6. MF6
Euclidean distance (in objective space) between memlgDT4) is generally regarded as a challenging problem and
i of PF and its nearest member iAF*. A low value of hence commonly used by many in the literature. Here, we
GD is more desirable since it reflects a good convergenealidate our results on ZDT4 against those obtained by Deb
to the true Pareto fronts. et al. in [27]. While [27] reported to solve ZDT4 with from
e Maximum Spread (MS) [69]: It is used to measure how 21781 to 22730 exact function evaluations with an achieved
well the true Pareto frontf{#*) is covered by the evolved spread measureof 0.332 to 0.422, GS-MOMA requires only
Pareto front PF). The MS measurement used in thi20000 exact evaluations at a competitive spread measure of

paper is formulated as: 0.410+0.046. On MF3 and MF4, some SS-MOMAs perform
- : : — competitively or slightly poorer than NSGA-II (see Figs(d}L
MS = 12 {mln(ﬁ"”’ﬂm“) — max(f"", F) and 12(d)). On the other hand, GS-MOMA searches more
T Fres — e " efficiently than all the SS-MOMA variants and NSGA-II on

‘ (22)  the 6 benchmark problems considered. Note that GS-MOMA
wheref"** and f/**" are the maximum and minimum ofalso outperforms the SS-MOMA-Perfect on a majority of
the i'" objective in the evolved PF, respectively/*** the MOO benchmarks with respect to all three performance
and F/™" are the maximum and minimum of thé"

Objective in PF*, respectively. Higher value of MS "The spread metric [71] considers the distance between tereg ends

fl | RE* d byPF. which i of Pareto front as well as the uniformity of distribution fwlutions between
reflects a larger area covered Dy. » WRICN IS the two extremes. This metric may be used for measuring thersiiy of

desirable. converged Pareto fronts. Note that a lower spread metriesgable.
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metrics, thus suggesting the positive synergy of the enkem
and smoothing surrogate models in the GSM framework.

2) Analyzing the Generalized Evolutionary Framework
in Multi-Objective Optimization: To arrive at better un-
derstanding of the generalized framework in the context
multi-objective optimization, we analyze next the relldbpi
and effectiveness of the ensembld;() and smoothing /3)
surrogate models in contributing to evolutionary search.

The N-RMSE, i..e, see Equation (19), of fithess predi
tions based on GP, PR, RBF, or ensemble in GS-MOM
is summarized in Fig. 7. From the results, the ensemt
model, M, is shown to arrive at low N-RMSE on all the
multi-objective test problems considered, which is cdesis
with observations obtained in the single-objective conték
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generates high reliability predictions in comparison te th

other single surrogate model counterparts, i.e., GP, PRB&t R
Besides N-RMSE, thesolution archiving to replacement
ratio, labelled here ag’, of the GS-MOMA search is also
reported in Figure 8I' indicates the degree of solution
diversity (through archival of new non-dominating solutsd

against search convergence (through the process of Lamarck

ian learning replacement) in the GS-MOMA search. Whil
Lamarckian learning helps to speedup convergence towa,
the desired Pareto front, the larde ratio observed on all
benchmark problems implies frequent discovery of poténti
non-dominating solutions when using batlf, and My with
local refinements. This suggestidess of uncertainty’may

take the form of faster search convergence and better soluti

diversity in the context of multi-objective evolutionargasch.
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Fig. 7. The normalized RMSE by GP, PR, RBF, and weighted geera

ensemble on MF1-MF6.

D. Computational Complexity of GSM Framework

In this subsection, we present an analytical study on t

Fig. 8. Archiving to Replacement Ratio of GS-MOMA on MF1-MF6

GS-MOMA is formulated as follows:

Tcomp = Gdepop Z::l Fz + (Gmaw - Gdb)[NPOP

(Tens + TPR + 2kte7’m 22’21 E + Toverhead)L (24)

e

Wﬁere:

a G g : number of standard SO/MOEA search generations

configured for building the database of training data
points at the initial search phase of the GSM framework,
e Goaee : Maximum number of search generations,
Nypop © population size,
r . number of objectives to optimize,
kierm : Nnumber of iterations made in the trust-region-
regulated local searches,
F : original/exact function evaluation cost,
Tens : time to build M, i,e. the ensemble model,
Tpgr : time to build Ms, i.e. the polynomial regression
model, which is not applicable if PR is already built when
constructingM,
Tovernead . Other additional costs such as for fitness
predictions and finding nearest points, which are often
negligible.
On the other hand, the computational cost for SS-SOMA or
SS-MOMA variants is:

Tcomp - Gdepop Z::1 Fz + (Gmaz - Gdb)[Npop
(Tm + kterm 2221 Fz + Toverhead)]a

whereT;,, is the time taken to build the particular surrogate
model used.

Although there are several elements in Equations (24) and
(25), it is worth noting that when working with computation-
ally expensive problems, the most significant part contirigu
to the total computational effort incurred 8. Hence, when
F is significantly large, which is assumed to be fulfilled in
ey surrogate-assisted optimization framewdrk,s, Tpg,

(25)

computational complexity of the GSM framework. The com¥,,..r.ca @nd T, are generally considered to be negligible,

putational effort, referred here b¥.,,,, of GS-SOMA or

otherwise such frameworks should never be used.
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V. CONCLUSION necessary for the reliable surrogate building to facditat
time saving.

When parallel machines capability is available, multi-
level parallelization can be leveraged through the GSM
framework, namelyl) generation level, i.e., individuals
at the same generation are sent to multiple computing
nodes for evaluation, ary) individual level, independent
local searches utilizingl/; and M, respectively, are
executed in parallel. Hence, further acceleration can be
expected.

With a plethora of approximation/surrogate modeling ap-
proaches available in the literature, the choice of teamiq :
to use greatly affects the performance of surrogate-assist
evolutionary searches. It is argued that every approxonati
technique introduces some unique characteristics saitiainl
modeling some classes of problems accurately but not for
others. Given thata priori knowledge about the problem
landscape is often scarce, the ability to tackle new probliem
a reliable way is of significant value. This paper investgat
on a generalized framework that unifies diverse surrogate
models synergistically in the memetic evolutionary seatoh
contrast to existing works, the studied memetic framework D- Lim and Y. S. Ong would like to thank Honda Research
emphasizes not only oft) mitigating the impact ofcurse Institute Europe GmbH for sponsoring this work and members
of uncertainty’robustly, but als®) benefitting from thebless Of Nanyang Technological University, Singapore for provgl
of uncertainty; through the use of ensemble and landscaf@e computing resources.
smoothing surrogate models, respectively.
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B. Polynomial Regression (PR)

t; = Cixit 4 Coxi® + ...+ Crx5° (29)

where C1,Cs, ..., C, are the coefficient vectors to be esti-
mated, and’; = (¢j,,¢jp,---565,), 7 =1,2,...,0.

The least square method is then used to estimate the
coefficients of the polynomial model. By definition, the leas
quare erroi to be minimized is:

APPENDIX I
APPROXIMATION/SURROGATE MODELING TECHNIQUES

Here, we provide a brief review on three different surro
gate modeling techniques used in this paper, namely: Krig-
ing/Gaussian Process (GP), Polynomial Regression (PH), an
Radial Basis Function (RBF). Throughout this section, let
D = {x;,t;},i = 1...m denote the training dataset, where
x; € R? is an input design vector anty € R is the
corresponding target value.

E =) [t;— ;]
1=1

(30)

It may be easily shown that = f(x;), and by multiplying
both sides of Equation (29) witk;’ and taking the sum of
m pairs of input-output data, we arrive at

A. Kriging/Gaussian Process (GP)
+ej
The GP surrogate model [54] assumes the presence of an Ch ZX? Tt

O Y T =N x (31

unknown true modeling functiorf(x) and an additive noise ¢
termv to account for anomalies in the observed data. Thus: For j = 1,2,..., 0, the polynomial model for the training
= f(x) 4o (26) dataset can be represented in the matrix notation as follows
T _ KWl

The standard analysis requires the specification of prior Ayt =b (32)
probabilities on the modeling function and the noise model. are
From a stochastic process viewpoint, the collection= e e
{t1,ts, ...t} is called a Gaussian process if every subset DX DIFS i
of t has a joint Gaussian distribution. More specifically, A= : : (33)

1 B Zl XZ§O+51 Zl XZ§O+EO

P(]C, (%)) = & exp <—§<t — e - m) (27)
where C is a covariance matrix parameterized in terms of b= (Z Lix;t, aZtﬂi“) (34)
hyperparameter®, i.e., C;; = k(x;,x;;0) and p is the
process mean. The Gaussian process is characterized by this (. C o 35
covariance structure since it incorporates prior belief¢hb 7=(C1, 0,0, C) (35)
about the true underlying function as well as the noise model Then the coefficient matrix of the polynomial is:
In the present study, we use the following exponential devar
ance model v = (A"tp")T (36)

k(xi,xj) = ¢ o) 00X g, (28)  Let B = (x

where© = diag{f, 02, ...,0,;} € R¥?is a diagonal matrix of derived:

undetermined hyperparameters, #hd; € R is an additional  ° A=3, BB

hyperparameter arising from the assumption that noiseén th ° l?: > i tiBi

dataset is Gaussian (and output dependent). We shall hence- ti = v.Bf

forth use the symbo# to denote the vector of undetermined The predicted output for a new input pattern is then given
hyperparameters, i.e6, = {01,602, ...,04+1}. In practice, the by ¢, = ~v.BI.

.,x5°), the following equations may be
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C. Radial Basis Function

The surrogate models of RBF used in this paper are inter-
polating radial basis function networks of the form

Q'O
W

t=f(x)=> aK(x—xl) (37)
i=1

where K(||x — x4||) : RY — R is a RBF anda =
{a1,as,...,a,} € R™ denotes the vector of weights. Hence,
the number of hidden nodes in the RBF here is as many as
the number of training points.

Typical choices for the kernel include linear splines, cu-
bic splines, multiquadrics, thin-plate splines, and Gramss F19- 21.  Ackley Function
functions [56]. Recent studies in [72][73], indicate thhet
linear, cubic, and thin plate spline RBFs have better thexale .
properties than the multiquadric and Gaussian RBFs. Hence',:2' Griewank
in this paper, we opt to use linear spline kernel function. F(x)=1 +Zf:1 a7 /4000 — H?:1COS(~’C1'/\/%) (39)
The structure of some commonly used radial basis kernels 600 < 25 < 600.7 = 1.2 d
and their parameterization are shown in Table XIX Given a - = T
suitable kernel, the weight vector can be computed by sglvin
the linear algebraic system of equatiohsx = t, where Global optimumz; = 0.0 fori=1,...,d, F(x*) =0.0
t = {t1,t2,...,tm} € R™ denotes the vector of outputs
andK € R™*™ denotes the Gram matrix formed using the : U\\
training inputs (i.e., thejth element ofK is computed as “ \W \N

| ;
“J

K(|[xi —x41]))-

RADIAL BASISKERNELS

TABLE XIX T UUW*
I

I il
Linear Splines [lx — ¢ T UJ\}W\M W\MU
Thin Plate Splines [Ix — ci\\fﬁln\\x —ci| o U\ T ,-"\Wuu
Cubic Splines llx — ci|? i i I

Gauseian lxea? i uJW\UWU\U/WU/\U/\UWUuu

200 150 100 50 o 50 100 150 200

Multiquadrics 1+ HX*B#HZ
Fig. 22. Griewank Function

2
Inverse Multiquadrics (1 + w)*%

F3: Rosenbrock
APPENDIX || F(x) = Y0 (100 x (i1 — 22)% + (1 - 2;)?)  (40)
SINGLE-OBJECTIVE BENCHMARK FUNCTIONS 2,048 < 2; < 2.048,i =1,2,....d.

Single-objective benchmark functions used in this paper ar
presented in this section. The shifted and/or rotated fonst ) ,
are taken from [61] and [62]. From F4-F10, the followind>0Pal optimumay = 1.0 fori=1,...,d, F(x*) = 0.0
nomenclature applies:

o = [01,09,...,04]: the shifted global optimum

M: linear transformation matrix, obtained from [62].

F1: Ackley
0.2 1 i 2 1 d
—0. q 2. Ty 5 2 cos(2mx;) X
— _ i= _ i= IR
F(x) =20+ e — 20e & (38) <R
—32.768 < x; < 32.768,1=1,2,...,d. ‘ R

Global optimumz} = 0.0 fori =1,...,d, F(x*) = 0.0

-2 -2

Fig. 23. Rosenbrock Function
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F4: Shifted Rotated Rastrigin
d

F(x) =5, (2? — 10cos(2mz;) + 10) — 330

z = (x—o0)xM,
5<a; <5,i=1,2...,d

Global optimumx* = o, F(x*) = fyias = —330.

00~

-100

-200

-300

400 e

Fig. 24. Shifted Rotated Rastrigin Function

F5: Shifted Rotated Weierstrass

F(x) = X0, (X3 [k cos(27mb¥ (2 + 0.5))])

—d Y Fmer [aFcos(2mbF.0.5)] + 90
z=(x—0)*M,
—05<2;<05,i=1,2,....,d.

(41)

(42)

Global optimumx* = o, F(x*) = fuias = 90. a = 0.5,

b =3, kmas=20.

Fig. 25. Shifted Rotated Weierstrass Function

F6: Shifted Expanded Griewank plus Rosenbrock

F(X) = FZ(F3(21722)) + FZ(FS(Z‘Z./ZS)) + e
+F2(F7'os(zd717 Zd)) + FQ(F3(Zd7 Zl)) — 130

z=x—0+1,
—3<z; <1,i=1,2,...,d.

Global optimumx* = o, F(x*) = fyias = —130

(43)

Fig. 26.
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F7: Hybrid Composition Function

for i=1:10do_, ,
w; = exp _Zk:éﬂ;l;;Om)
fiti = fi(((z — 0i) /Ai) * M)
fmaz; = fi((y/ ) = M;)
fit; = C = fit;/ fmax;

end for

SW = 21121 w;

MaxW = max(w;)

for i =1:10do
w; = {w; if w; = MaxW
w; = w; * (1 — MaxW10) if w; # MaxW
w; = w;/SW

end for

F(x) = 210 {w; + [fit; + biasi]}
F(x) = F(X) + fvias

f1-2(x): Rastrigin Function
f3—4(x): Weierstrass Function
J5—6(x): Griewank Function
f7—s(x): Ackley Function
fo—10(x):Sphere Function
Esphe'r‘e = Z;'izl If
op=1fori=1,2,...,d

A= [1,1,10,10,5/60,5/60,5/32,5/32,5/100,5/100]
bias=[0, 100, 200, 300, 400, 500, 600, 700, 800, 900]

M; are all identity matrices
C = 2000

Global optimumx* = o1, F(X*) = fuias = 120

—5<3;<5,i=1,2,....d

Shifted Expanded Griewank plus Rosenbrock Functio

26

(44)
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Fig. 27. Hybrid Composition Function

F8: Rotated Hybrid Composition Function of F7

27
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Fig. 29. Rotated Hybrid Composition Function with narrowsibaglobal
optimum
F10: Non-continuous Rotated Hybrid Composition

Same as F7, excep¥I; are different linear transformation Function

matrices with condition number of 2.
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Fig. 28.

Rotated Hybrid Composition function of F7

F9: Rotated Hybrid Composition Function with Narrow
Basin Global Optimum

Ackley Function

Rastrigin Function

Sphere Function

x): Weierstrass Function

(x):Griewank Function
=[0.1,2,1.5,1.5,1,1,1.5,1.5,2,2]

A = [0.1%5/32,5/32,5/32,2% 1,1,2 % 5/100,5/100, 2 *

10,10,2 % 5/60,5/60]

M, are all

[2 3 2 3 2 3 20 30 200 300 ]

Global optimumx* = 01, F(x*) = fpias = 10

—5<x; <b,i=1,2,...,d.

f1 2(x):
3—a(x):
f5 6(x):
fr-s(x):
fq 10

f1—2(x): Rotated Expanded Schaffer Function

(sin®(y/(&®+y%))—0.5
flz,y) =05+ (1+0\{):)1(x2y+21)2))2 )
Fychaffer(x) = f(z1,22)+ f(z2,23)+. ..+ f(xa—1,2q)+
f(xa, 21)

f3—4(x): Rastrigin Function

f5-6(x): F6 Function

f7—s(x): Weierstrass Function

fo—10(x):Griewank Function

=11,1,1,1,1,2,2,2,2, 2]

A = [5 % 5/100,5/100,5 % 1,1,5 % 1,5 % 10,10,5 *
5/200,5/200]

M, are all orthogonal matrix. Condition numbers are
[2323232030200300]

Global optimumx* = o1, F(z*) = fpias = 360

—5<x; <5,i=1,2,....d.

if |.TJ — 01j| < 0.5

Zj
rj = _
! {round(Q;L*]-)/2 if |x; —o1;]>0.5

a—1 ifz<0andb> 0.5
round(x) =< a if b<0.5
a+1 if z>0andb>0.5

wherea andb arex’s integral and decimal parts, respectively.

rotation matrices. Condition numbers are
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Fig. 30. Rotated Hybrid Composition Function with globatiopum on the
bounds
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