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Generalizing Surrogate-assisted Evolutionary
Computation

Dudy Lim, Yaochu Jin, Yew-Soon Ong, and Bernhard Sendhoff

Abstract— Using surrogate models in evolutionary search pro-
vides an efficient means of handling today’s complex applica-
tions plagued with increasing high computational needs. Recent
surrogate-assisted evolutionary frameworks have relied on the
use of a variety of different modeling approaches to approximate
the complex problem landscape. From these recent studies, one
main research issue is with the choice of modeling scheme used,
which has been found to affect the performance of evolutionary
search significantly. Given that theoretical knowledge available
for making a decision on an approximation modela priori is very
much limited, this paper describes a generalization of surrogate-
assisted evolutionary frameworks for optimization of problems
with objective(s) and constraint(s) that are computationally
expensive to evaluate. The generalized evolutionary framework
unifies diverse surrogate models synergistically in the evolution-
ary search. In particular, it focuses on attaining reliable search
performance in the surrogate-assisted evolutionary framework
by working on two major issues: 1) to mitigate the ‘curse
of uncertainty’ robustly and, 2) to benefit from the ‘bless of
uncertainty’. The backbone of the generalized framework is
a surrogate-assisted memetic algorithm that conducts simulta-
neous local searches usingensemble and smoothing surrogate
models, with the aims of generating reliable fitness prediction
and search improvements simultaneously. Empirical study on
commonly used optimization benchmark problems indicates that
the generalized framework is capable of attaining reliable, high
quality, and efficient performance under a limited computational
budget.

Index Terms— surrogate-assisted evolutionary algorithms, ap-
proximation models, metamodels, surrogate models, memetic
algorithms, computationally expensive problems.

I. I NTRODUCTION

OVER the years, evolutionary algorithms (EAs) have
become one of the well-established optimization tech-

niques, especially in the fields of art & design, business &
finance, science and engineering. Many successful applications
of EAs have been reported, ranging from music composi-
tion [1] to financial forecasting [2], transonic civil transport
aircraft wing design [3], rainfall prediction [4], and drug
design [5].

Although well established as credible and powerful opti-
mization tools, researchers in this area are now facing new
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challenges of increasing computational needs by today’s ap-
plications. For instance, a continuing trend in science and
engineering is the use of increasingly high-fidelity accurate
analysis codes in the design and simulation process. Modern
Computational Structural Mechanics (CSM), Computational
Electro-Magnetics (CEM), Computational Fluid Dynamics
(CFD) and first principle simulations have been shown to be
reasonably accurate. Such analysis codes play a central role
in the design process since they aid designers and scientists in
validating new designs and studying the effect of altering key
parameters on product and/or system performance. However,
such moves may prove to be cost prohibitive or impractical
in the evolutionary design optimization process, leading to
intractable design cycle times.

An intuitive way to reduce the search time of evolutionary
optimization algorithms when dealing with computationally
expensive solver, is the use of high performance comput-
ing technologies and/or computationally efficient surrogate
models. In recent years, there have been increasing research
activities in the design of surrogate-assisted evolutionary
frameworks for handling complex optimization problems with
computationally expensive objective functions and constraints.
In particular, since the modeling and design optimization
cycle time is roughly proportional to the number of calls
to the computationally expensive solver, many evolutionary
frameworks have turned to the deployment of computationally
cheap approximation models in the search to replace in part
the original solvers [6][7][8]. Using approximation models
also known as surrogates or meta-models, the computational
burden can be greatly reduced since the efforts required to
build the surrogates and to use them are much lower than
those in the standard approach that directly couples the EA
with the expensive solvers. Among the approximation models,
polynomial regression (PR), also known as response surface
methodology (RSM), support vector machine (SVM), artificial
neural networks (ANNs), radial basis function (RBF), and
Gaussian process (GP), also referred to as Kriging or design
and analysis of computer experiment (DACE) models, are the
most prominent and commonly used [9][10][11].

In the context of EA, various approaches for working with
computationally expensive problems using surrogate models
have since been reported. Early techniques include the use
of fitness inheritance or imitation [12][13], where the fit-
ness of an individual is defined by either the parents or
other individuals previously encountered along the search.
Another common approach is to pre-select a subset of indi-
viduals that would undergo exact function evaluations while
all others are predicted based on surrogate models. Some
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of the simple schemes introduced are based on random in-
dividual selection [14] or selecting the best/most promising
individuals based on the predictions made by the surrogate
models [7][11][15][16]. Other schemes include identifying
some cluster centers [17][18], or uncertain individuals that are
predicted to have poor estimates [19] as representatives that
will undergo exact function evaluations subsequently. Such
forms of model management schemes are termed as ‘evolution
control’ in [7][20]. An alternative approach adopted in [21]
involves the refinement of the surrogate used, from coarse to
fine grained models as the search evolves. Online localized
surrogate models are also deployed within the local search
phase of memetic algorithms (MAs) [8][22]. The synergy of
online global and local surrogate in the memetic search was
also investigated in [11]. To enhance the prediction accuracy
of fitness predictions based on surrogates, the inclusion of
gradient information in surrogate building was also studied
in [23] and [24], independently.

More recently, the idea of using surrogate to speed-up
evolutionary search process has found its way into the field
of evolutionary multi-objective optimization (MOO). Many
of the schemes introduced in the context of single-objective
optimization (SOO) have been extended to their corresponding
MOO variants. The Kriging surrogate-assisted evolutionary
multi-objective algorithm [25] represents an extension ofthe
efficient global optimization framework [26] introduced for
handling SOO problems, while [27] and [28] extended
the coarse-to-fine grained approximation and pre-selection
schemes to its MOO variants, respectively. The co-evolution
of genetic algorithms (GAs) for multiple objectives based on
online surrogates was introduced in [29]. After some fixed
search intervals, the surrogates produced that represent the
different objectives are then exchanged and shared among mul-
tiple GAs. In [30], a multi-objective EA is run for a number
of iterations on a surrogate model before the model is updated
using exact evaluation from some selected points. For greater
details on surrogate-assisted EAs for handling optimization
problems with computationally expensive objective/constraint
functions, the readers are referred to [9] and [31].

In spite of the extensive research efforts on this topic, exist-
ing surrogate-assisted evolutionary frameworks remains open
for further improvement. Jinet al. in [14] have shown that ex-
isting surrogate-assisted evolutionary frameworks proposed are
often flawed by introduction of false optima since the paramet-
ric approximation technique used may not be capable of mod-
eling the problem landscapes accurately, thus producing unre-
liable search. Generally, the‘curse of dimensionality’creates
significant difficulties in the construction of accurate surrogate
models for fitness prediction. Further, recent studies have
shown that the choice of approximation technique used affects
the performance of evolutionary searches [32]. On the other
hand, it is worth keeping in mind that approximation error in
the surrogate model does not always harm. A surrogate model
capable of smoothing the multi-modal or noisy landscape
of the complex problem may contribute more beneficially
to the evolutionary search than one that models the original
fitness function accurately. For instance, the study in [43]has
emphasized the importance of predicting search improvement

as opposed to the usual practice of improving only the quality
of the surrogate in the context of evolutionary optimization.
Based on these recent works, it is worth highlighting the in-
fluence of the approximation method used on the performance
of any surrogate-assisted evolutionary search. The greatest
barrier to further progress is that, with so many approximation
techniques available in the literature, it is almost impossible
to know which is most relevant for modeling the problem
landscape or generating reliable fitness predictions when one
has only limited knowledge of its fitness space before the
search starts. Moreover, approximation techniques by them-
selves may model differently on different problem landscapes.
Depending on the complexity of a design problem, a single
approximation model that may have proven to be successful
in an instance might not work so well, or at all, on others. In
the field of multidisciplinary optimization, such observations
have also been reported [33][34][35][36][37][38][39][40]. In
those works, this issue is commonly handled by performing
multiple optimization runs, each on different surrogate model
or ensemble model. In [33][34][38], a set of surrogate models
consisting Kriging, PR, RBF, and weighted average ensemble
is used to demonstrate that multiple surrogates can improve
robustness of optimization at minimal cost. Similarly, [35]
uses PR and RBF surrogate models in the context of multi-
objective optimization and shows that each of the models
performs better at different region of the Pareto front. Others
in [36][37][39][40] resolve this issue by introducing various
ensemble model building techniques. It is shown from these
works that ensemble models generally outperform most of the
individual surrogates.

The present paper introduces a generalized framework for
unifying diverse surrogate models synergistically in the evo-
lutionary search. In contrast to existing efforts, we focuson
predicting search improvement in the context of optimization
as opposed to solely on improving the prediction quality of
the approximation. In particular, we generalize the problem
to attain reliable search improvement in surrogate-assisted
evolutionary framework as two major goals:1) to mitigate
the ‘curse of uncertainty’and, 2) to benefit from the‘bless
of uncertainty’. The ‘curse of uncertainty’1 refers to the
negative consequences introduced by the approximation error
of the surrogate models used. On the other hand,‘bless of
uncertainty’ refers to the benefits attained by the use of
surrogate models. Particularly, we seek for surrogate models
that are capable of generating reliable fitness predictions
on diverse problems of different landscapes to mitigate the
‘curse of uncertainty’on one hand, and on the other hand
surrogate models that are capable of smoothing rugged fitness
landscapes to prevent the search from getting stuck in local
optima [43]. Previous works by Yaoet al. [41][42] have also
confirmed that smoothed landscape of rugged fitness landscape
can lead the search to optimum solutions easier than using the
exact fitness landscape.

The rest of this paper is organized as follows. Section II
discusses the impacts of uncertainty due to approximation

1In the present context, the definition of ’uncertainty’ refers to the approxi-
mation errors in the fitness function due to the use of surrogate models based
on the definitions given in [44].
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errors in evolutionary frameworks that employ surrogates.
Based on the discussion, Section III provides a generalization
of surrogate-assisted evolutionary search for both SOO and
MOO subsequently. We summarize the empirical studies on
some popular SOO and MOO benchmark problems in Section
IV. Finally, Section V concludes this paper.

II. I MPACTS OFAPPROXIMATION ERRORS IN

SURROGATE-ASSISTEDEVOLUTIONARY ALGORITHMS

In this section, we briefly discuss the effects of uncer-
tainty introduced by inaccurate approximation models on
Surrogate-Assisted Evolutionary Algorithms (SAEA) search
performance. Without loss of generality, here we consider
computationally expensive minimization problems under lim-
ited computational budget with bound constraints of the fol-
lowing form:

minimize: f1(x), f2(x), . . . , fr(x)

subject to: xl
i ≤ xi ≤ xu

i , (1)

where i = 1, 2, . . . , d, d is the dimensionality of the search
problem,r is the number of objective functions, andxl

i, xu
i

are the lower and upper bounds of theith dimension of vector
x, respectively.

Note that when more than one objective is involved for
approximation, there are two commonly adopted strategies,i.e.
1) one approximation model per objective function, and2) one
approximation model for an aggregated (linear or nonlinear
combination) objective function,faggr(x). In this paper, we
consider the second strategy. Since in single-objective context,
faggr(x) = f(x) = f1(x), the termf(x) might be used
interchangeably tofaggr(x) for brevity purpose when only
single-objective context is considered.

If faggr(x) denotes the original fitness function and the
approximated function iŝfaggr(x), the approximation errors at
any solution vectorx is e(x) , i.e., the uncertainty introduced
by the surrogate atx, may then be defined as:

e(x) = |faggr(x) − f̂aggr(x)| (2)

Here, we highlight the negative and positive impacts in-
troduced by the approximation inaccuracies of the surrogates
on SAEA search [43]. The negative impact or otherwise
known as the ‘curse of uncertainty’ on SAEA search can be
briefly defined as the phenomenon where the inaccuracies of
the surrogates used results in the SAEA search to stall or
converge to false optimum. To illustrate the ‘curse’ effect, we
refer to Fig. 1(a) where the SAEA is likely to converge to
the false optimum of the spline interpolation model due to
inaccuracy. On the other hand, the positive impact, i.e., the
‘bless of uncertainty’ in SAEA materializes when the use of
surrogate(s) brings about greater search improvements over the
use of original exact objective/fitness function. For instance,
the surrogate can help to traverse the search across valleys
and hills of local optima by smoothing the ruggedness/multi-
modality of the problem landscape. To illustrate the blessing
effect, we refer to the example in Fig. 1(b), where a low
order polynomial regression scheme is used to approximate
the exact objective function. Due to the smoothing effect of

the polynomial surrogate, the search leads to an improved
solution that is unlikely to be attained even if the exact
objective function is used. Hence, the ‘bless of uncertainty’
brings about possible acceleration in the search. Besides a
faster convergence, recent study in [31] revealed that the ‘bless
of uncertainty’ in SAEA also exists in the form of improving
evolutionary search diversity through the use of surrogate
model.

Next, to illustrate ‘curse and bless of uncertainty’ in the
context of multi-objective optimization, we refer to the ex-
amples in Figs. 2(a) and 2(b). Fig. 2(a) depicts the effect of
‘curse of uncertainty’ in MOEA search due to the presence
of inaccurate surrogate models. In Fig. 2(a), the surrogate-
assisted MOEA search is observed to be evolving towards
poor non-dominated solutions in comparison to that based
on exact fitness functions. Moreover, those labeled asx1 and
x2 in Fig. 2(a) suggest that some solutions might stall, while
others fail to converge optimally. On the other hand, Fig. 2(b)
illustrates the presence of ‘bless of uncertainty’ where the
errors in the surrogate used is observed to improve the MO
evolutionary search in both convergence and diversity mea-
sures. Particularly, some improved solutions of the surrogate-
assisted search is shown to dominate at least one of its initial
solutions, while others such asx3 and x4 are newly found
non-dominated solutions.

III. G ENERALIZING SURROGATE-ASSISTED

EVOLUTIONARY SEARCH

In this section, we present a generalization of surrogate-
assisted evolutionary frameworks for optimization of problems
with objective(s) and constraint(s) that are computationally ex-
pensive to evaluate. The generalized framework illustrated here
for unifying diverse approximation concept synergistically is
a surrogate-assisted memetic algorithm that conducts simul-
taneous local searches on separateensembleand smoothing
surrogate models. MAs are population-based meta-heuristic
search methods that are inspired by Darwinian principles of
natural evolution and Dawkins notion of a meme defined as a
unit of cultural evolution capable of local refinements [45]2.
For example, the brief outline of a traditional MA is provided
in Algorithm 1.

In the generalized framework, we introduce first the idea of
employing online local ensemble surrogate models constructed
from diverse approximation concepts using data points thatlie
in the vicinity of an initial guess. The surrogate or approxi-
mation models are then used to replace the expensive function
evaluations performed in the local search phase. The improved
solution generated by the local search procedure then replaces
the genotype and/or fitness of the original individual3.

2Note that the rationale behind using a memetic framework over a tradi-
tional evolutionary framework is multi-fold [45][49]. First, we aim to exploit
MAs’ capability of locating the local and global optima efficiently. Second,
a memetic model of adaptation exhibits the plasticity of individuals that a
pure genetic model fails to capture. Further, by limiting the use of surrogate
models within the local search procedures, the global convergence property
of EAs can be ensured. For a greater exposition of local meta-heuristics in
optimization, the reader is referred to [46][47][48].

3There are two basic replacement strategies in MAs [49]:
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(a) ‘Curse of uncertainty’ in single-objective EA using surrogates. Ap-
proximated function in the figure is obtained using spline interpolation
technique.
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(b) ‘Bless of uncertainty’ in single-objective EA using surrogates.
Approximated function in the figure is obtained using a low order
Polynomial Regression.

Fig. 1. Curse and Bless of Uncertainty in Single-Objective EA using Surrogates.
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(a) ‘Curse of uncertainty’ in multi ob-
jective EA using surrogates.
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(b) ‘Bless of uncertainty’ in multi objec-
tive EA using surrogates.
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Fig. 2. Curse and Bless of Uncertainty in Multi-Objective EAusing Surrogates.

A. Ensemble Model

To mitigate the‘curse of uncertainty’due to the effect of
using imperfect surrogate models, we seek for surrogate mod-
els that are capable of generating reliable fitness predictions on
diverse problems. In particular, since it is almost impossible
to know in advance which approximation technique best suits
the optimization problem at hand, we consider a synergy of
diverse approximation methods through the use of ensemble

• Lamarckian learningforces the genotype to reflect the result of im-
provement in local search by placing the locally improved individual
back into the population to compete for reproductive opportunities.

• Baldwinian learningonly alters the fitness of the individuals and the
improved genotype is not encoded back into the population.

For the sake of brevity, we consider Lamarckian learning in this paper.

models to generate reliable accurate predictions across prob-
lems of differing problem landscapes [18][50][36], as opposed
to single surrogate models created by specific approximation
scheme that may not be appropriate for the problem at hand.
In what follows, we consider online local weighted average
ensembles. For instance, in the single-objective context,the
predicted ensemble output off(x) is formulated as:

f̂ens(x) =

n
∑

i=1

cif̂i(x),

n
∑

i=1

ci = 1, (3)
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Algorithm 1 Memetic Algorithm (for SOO)
1: Initialization : Generate and evaluate a population of design

vectors.
2: while computational budget is not exhausteddo
3: Apply evolutionary operators (selection, crossover, mutation)

to create a new population.
4:
5: / ∗ ∗ ∗ ∗ Local Search Phase∗ ∗ ∗ ∗ /
6:
7: for each individualx in current populationdo
8: • Apply local search to find an improved solution,xopt.
9: • Perform replacement using Lamarckian learning, i.e.

10: if f(xopt) < f(x) then
11: x = xopt

12: end if
13: end for
14:
15: / ∗ ∗ End of Local Search Phase∗ ∗ /
16:
17: end while

where f̂ens(x) and f̂i(x) are the fitness prediction made
by the ensemble andith surrogate model, respectively. The
same formulation applies in the multi-objective context where
faggr(x) is considered.ci is the weight coefficient associated
with theith surrogate model. A model can be assigned a larger
weight if it is found or deemed to be more accurate. Hence,
the weighting function becomes:

ci =

∑n
j=1,j 6=i εj

(n − 1)
∑n

j=1 εj
, (4)

whereεj is the error measurement for thejth surrogate model.
Here, the root mean square error (rmse) is used as the error
measurement. Thermse of each surrogate model is then of
the form:

rmse =

√

∑m
i=1 e2(xi)

m
, (5)

wherem is the number of data samples compared,e(xi) is
the error of prediction for data pointxi, as shown in Equation
(2). For greater details on other ensemble model building tech-
niques, interested readers are referred to [36][37][39][40][50].

B. Landscape Smoothing Model

Meanwhile, to benefit from the‘bless of uncertainty’,
smoothing techniques including global convex underestima-
tion, tunneling and filling methods are some appropriate alter-
natives [51] that may be used. Given a problem landscape,
smoothing methods transform the function into one with
noticeably fewer minima, thus speeding up the evolutionary
search. In the generalized framework, global convex under-
estimation is used for successive smoothing of the problem
landscape within the local search phase which is realized
through low-order polynomial regression (PR). Besides the
generalization property of PR models on rugged landscape, the
low computational costs incurred makes them very efficient as
online surrogate models. Note that the PR model may be used
in both ensemble and the smoothing models, hence only a
one-time model building cost is involved.

C. GSM Framework for Single-Objective Optimization

In this subsection, we describe the generalized surrogate
memetic framework for single-objective optimization. A brief
outline of the generalized surrogate single-objective memetic
algorithm (GS-SOMA) is presented in Algorithm 2. Note that
the difference between the GS-SOMA and a traditional MA
lies in the local search phase of the algorithms.

Algorithm 2 Generalized Surrogate Single-Objective Memetic
Algorithm (GS-SOMA)

1: initialization : Generate and evaluate a database containing a
population of designs, archive all exact evaluations into the
database.

2: while computational budget is not exhausteddo
3: if generation count< database building phase (Gdb) then
4: Evolve the population using exact fitness function evalua-

tions, archive all exact evaluations into the database.
5: else
6: Apply evolutionary operators (selection, crossover, muta-

tion) to create a new population.
7:
8: / ∗ ∗ ∗ ∗ Local Search Phase∗ ∗ ∗ ∗ /
9:

10: for each individualx in the populationdo
11: • Find m nearest points tox in database as training

points for surrogate models.
12: • Build model-1: M1, as an ensemble of allM ′

j for
j = 1, . . . , n wheren is the number of surrogate models
used.

13: • Build model-2:M2, which is a low-order PR model.
14: • Apply local search inM1 to arrive atx1

opt, andM2 to
arrive atx2

opt.
15: • Replacex with the locally improved solution, i.e.
16: if f(x1

opt) < f(x2

opt) then
17: x = x

1

opt

18: else
19: x = x

2

opt

20: end if
21: • Archive all new exact function evaluations into the

database.
22: end for
23:
24: / ∗ ∗ End of Local Search Phase∗ ∗ /
25:
26: end if
27: end while

GS-SOMA begins with the initialization of a population
of design points. During the database building phase, the
search operates like a traditional evolutionary algorithmbased
on the original exact fitness function for some initialGdb

generations. Up to this stage, no form of surrogates are used,
and all exact fitness function evaluations made are archived
in a central database. Subsequently, the algorithm proceeds
into the local search phase. For each individualx, n online
surrogates that model the fitness function are created dynam-
ically using m training data points, which lie in the vicinity
of x, extracted from the archived database of previously
evaluated design points. From then surrogates, an ensemble
model is built. From here, two separate local searches are
conducted on1) M1, the ensemble ofn surrogate models,
and2) M2, a low-order PR model. If improved solutions are
achieved, GS-SOMA proceeds with the individual replacement
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scheme. Since we adopt the Lamarckian scheme here, the
genotype/phenotype of the initial individual is then replaced
by the higher quality solutions among the two that are locally
improved based onM1 and M2, i.e., x

1
opt or x

2
opt. The

search cycle is then repeated until the allowed maximum
computational budget is exhausted.

D. GSM Framework for Multi-Objective Optimization

Next, we describe the Generalized Surrogate Memetic
framework in the context of multi-objective optimization
(MOO). In MOO, a solutionx(1) is said to dominate solution
x

(2) in the objective space, i.e.,x(1) � x
(2) if the following

two conditions hold:

• x
(1) is no worse thanx(2) on all objectives orfj(x

(1)) ≤
fj(x

(2)) for all j = 1, 2, . . . , r.
• x

(1) is strictly better thanx(2) on at least one objective,
or fj(x

(1)) < fj(x
(2)) for at least onej ∈ 1, 2, . . . , r

If set P is the entire feasible search space, the non-dominated
setP ∗ is labeled as thePareto-optimal set. Any two solutions
in P ∗ must non-dominate each other, i.e.x

(1) ∼ x
(2). On

the other hand, Pareto front (PF ∗) is the image of the
Pareto-optimal set in objective space. The brief outline ofa
typical Multi-Objective Memetic Algorithm (MOMA) using
weighting (scalarization) technique [57][58][59] is illustrated
in Algorithm 3. In contrast, the studied GSM framework for
multi-objective optimization (GS-MOMA) is outlined in Al-
gorithm 4. Note that the key differences of the two algorithms
lie in the local search phase and selection pool forming phase.

Algorithm 3 Multi-Objective Memetic Algorithm
1: initialization : Generate and evaluate a population of design

vectors.
2: while computational budget is not exhausteddo
3: Apply MO evolutionary operators (selection, crossover, muta-

tion) to create a new population.
4:
5: / ∗ ∗ ∗ ∗ Local Search Phase∗ ∗ ∗ ∗ /
6:
7: for each individualx in the populationdo
8: • Generate a random weight vectorw = (w1, w2, . . . , wr),

Pr

i=1
wi = 1 wherer is the number of objectives.

9: • Apply local search infaggr =
Pr

i=1
wifi(x) to find an

improved solution,xopt.
10: • Perform Lamarckian learning, i.e.
11: if faggr(xopt) < faggr(x) then
12: x = xopt

13: end if
14: end for
15:
16: / ∗ ∗ End of Local Search Phase∗ ∗ /
17:
18: end while

GS-MOMA begins with the population initialization phase
and evolutionary search based on exact fitness function for a
number of early generations,Gdb, before entering the local
search phase. In the local search phase, independent local
searches are conducted on1) M1, the ensemble ofn surrogate
models, and2) M2, the smoothing low-order PR model on
each individual of the generated offspring population. Forthe

Algorithm 4 Generalized Surrogate Multi-objective Memetic
Algorithm (GS-MOMA)

1: initialization : Generate and evaluate an initial population with
Npop individuals, archive all exact evaluations into a database.

2: while computational budget is not exhausteddo
3: if generation count< database building phase (Gdb) then
4: Evolve the population using exact fitness function evalua-

tions, archive all exact evaluations into the database.
5: else
6: Generate the offspring population ,Po using MO evolu-

tionary operators (selection, crossover, mutation) on the
selection pool.

7:
8: / ∗ ∗ ∗ ∗ Local Search Phase∗ ∗ ∗ ∗ /
9:

10: Initialize the learning archive,Al to empty state.
11: for each individualx in the offspring populationdo
12: • Generate a random weight vectorw =

(w1, w2, . . . , wr),
Pr

i=1
wi = 1 where r is the

number of objectives.
13: • Find m nearest points tox in database as training

points for surrogate models.
14: • Build model-1: M1, as an ensemble of allM ′

j for
j = 1, . . . , n wheren is the number of surrogate models
used, offaggr =

Pr

i=1
wifi(x)

15: • Build model-2:M2, which is a low-order PR model,
of faggr =

Pr

i=1
wifi(x)

16: • Apply local search inM1 to arrive atx1

opt, andM2 to
arrive atx2

opt

17: • Replace&Archive( x, x
1

opt, x
2

opt, Al )
18: end for
19:
20: / ∗ ∗ End of Local Search Phase∗ ∗ /
21:
22:
23: / ∗ ∗ ∗ ∗ Selection pool forming∗ ∗ ∗ ∗ /
24:
25: Form selection pool,Ps = Pc

S

Po

S

Al.
26:
27: / ∗ ∗ End of selection pool forming∗ ∗ /
28:
29: end if
30: end while

sake of brevity, the core distinguishing feature of GS-MOMA
can be noted in line 17 of Algorithm 4, i.e. the existence of
the Replace&Archive procedure.

The Replace&Archive procedure performs replacements
based on domination between the original offspring and the
two local optima found. The original offspring will only be
replaced by one dominating optimum found. Any other local
optima are then saved into the learning archive,Al. Note that
the result of GS-MOMA’s local searches is eitherxopt � x or
xopt ∼ x. Otherwise, there is no improvement to the original
offspring, and hence we getxopt == x.

Based on the procedure in Algorithm 5, the possible local
search outcomes and corresponding actions taken by the
scheme are summarized in Table I. Note that there exist
6 possible actions to be taken by GS-MOMA which are
summarized as follows:

• Replacement is performed once (e.g. Fig. 3a).
• Two subsequent replacements are performed (e.g. Fig.

3b).
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Algorithm 5 ProcedureReplace&Archive(x, x1
opt, x

2
opt, Al)

1: if x
1

opt � x then
2: x = x

1

opt

3: if x
2

opt � x
1

opt then
4: x = x

2

opt

5: else if x2

opt ∼ x
1

opt then
6: Archive x

2

opt in Al

7: end if
8: else if x2

opt � x then
9: x = x

2

opt

10: if x
2

opt ∼ x
1

opt then
11: Archive x

1

opt in Al

12: end if
13: else if (x1

opt ∼ x) ∧ (x2

opt == x) then
14: Archive x

1

opt in Al

15: else if (x2

opt ∼ x) ∧ (x1

opt == x) then
16: Archive x

2

opt in Al

17: else if (x1

opt ∼ x) ∧ (x2

opt ∼ x) then
18: if (x1

opt � x
2

opt) ‖ (x1

opt == x
2

opt) then
19: Archive x

1

opt in Al

20: else if x2

opt � x
1

opt then
21: Archive x

2

opt in Al

22: else
23: Archive x

1

opt andx
2

opt in Al

24: end if
25: end if

• Both replacement and archiving are performed (e.g. Fig.
3c).

• Archiving is performed once (e.g. Fig. 3d).
• Archiving is performed twice (e.g. Fig. 3e).
• Neither replacement nor archiving is performed (e.g. Fig.

3f).

At the end of each GS-MOMA generation,Al is combined
with the current parent population,Pc, and the offspring
population, Po to form the entire pool of individuals,Ps

that will then undergo the MOEA selection mechanism, i.e.,
Ps = Pc

⋃

Po

⋃

Al. From here, the process described repeats
until the maximum computational budget of the GS-MOMA
is exhausted.

E. Local Search Scheme

In the GSM framework for SO/MOO, a trust-region-
regulated search strategy is utilized to ensure convergence
to some local optimum or the global optimum of the exact
computationally expensive fitness function [60][8][52], even
though surrogate models are deployed in the local search.
For each individual in the GS-SO/MOMA population, the
local search (refer to line 14 of Algorithm 2 and line 16
of Algorithm 4) proceeds with a sequence of trust-region
subproblems of the form

minimize : f̂k(xk
c + s),

subject to: ‖s‖ ≤ Ωk, (6)

wherek = 0, 1, 2, . . . , kmax, f̂(x) is the approximation func-
tion corresponding to the objective functionf(x). Meanwhile,
x

k
c , s, andΩk represent the initial guess (current best solution)

at iterationk, an arbitrary step, and the trust-region radius at
iteration k, respectively. In our experiments, the Sequential

Quadratic Programming (SQP) [53] is used to minimize the
sequence of subproblems on the approximated landscape.

During the local search, the initial trust-region radiusΩ is
initialized based on the minimum and maximum values of the
m design points used to construct the surrogate model (refer
to line 11 of Algorithm 2 and line 13 of Algorithm 4). The
trust-region radius for iterationk, i.e. Ωk is updated based
on a measure which indicates the accuracy of the surrogate
model at thekth local optimum,xk

opt. This measure,ρk,
provides a measure of the actual versus predicted change in
the exact fitness function values at thekth local optimum and
is calculated as:

ρk =
f(xk

c ) − f(xk
opt)

f̂(xk
c ) − f̂(xk

opt)
. (7)

The value ofρk is then used to update the trust-region radius
as follows [60]:

Ωk+1 = C1Ω
k, if ρk ≤ C2,

= Ωk, if C2 < ρk ≤ C3, (8)

= C4Ω
k, if ρk > C3,

where C1, C2, C3, and C4 are constants. Typically,C1 ∈
(0, 1) and C4 ≥ 1 for the scheme to work efficiently. From
experience, we setC1 = 0.25, C2 = 0.25, C3 = 0.75, and
C4 = 2, if ||xk

opt−x
k
c ||∞ = Ωk or C4 = 1, if ||xk

opt−x
k
c ||∞ <

Ωk.
The trust-region radius for the next iteration,Ωk+1, is

reduced if the accuracy of the surrogate, measured byρk is
low. On the other hand,Ωk is doubled if the surrogate is found
to be accurate and thekth local optimum,xk

opt, lies on the
trust-region bounds. Otherwise the trust-region radius remains
unchanged.

The initial guess of the optimum at iterationk+1 becomes

x
k+1
c = x

k
opt, if ρk > 0,

= x
k
c , if ρk ≤ 0. (9)

The trust-region process for an individual terminates whenthe
termination condition is satisfied. For instance, this termination
condition could be when the trust-region radiusΩ approaches
ε, whereε represents some small trust-region radius, or when
a maximum number of iterationkterm is reached.

IV. EMPIRICAL STUDY

In this section, we present an empirical study on the GSM
framework for solving single and multi-objective optimization
problems. In the present study, we considered a diverse set of
exact interpolating and generalizing approximation techniques
for constructing the local surrogate models, i.e.,M1 and
M2. These include the interpolating Kriging/Gaussian process
(GP), interpolating linear spline radial basis function (RBF)
and2nd order polynomial regression (PR). For greater details
on GP, PR, and RBF, the reader is referred to [54][55][56] and
Appendix I.
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TABLE I

ACTIONS TAKEN BY THE Replace&Archive SCHEME IN GS-MOMA FOR CORRESPONDING RESULTS OF LOCAL SEARCHES. NOTE THAT IRRELEVANT

CASES HAVE BEEN EXCLUDED FOR BREVITY.

x
1

opt vs x x
2

opt vs x x
1

opt vs x
2

opt Actions taken by GS-MOMA
� � � x = x

1

opt

� � ≻ x = x
2

opt

� � ∼ x = x
1

opt, archivex2

opt

� � == x = x
1

opt

� == � x = x
1

opt

� ∼ � x = x
1

opt

� ∼ ∼ x = x
1

opt, archivex2

opt

== � ≻ x = x
2

opt

== == == No changes
== ∼ ∼ Archive x

2

opt

∼ � ≻ x = x
2

opt

∼ � ∼ x = x
2

opt, archivex1

opt

∼ == ∼ Archive x
1

opt

∼ ∼ � Archive x
1

opt

∼ ∼ ≻ Archive x
2

opt

∼ ∼ ∼ Archive x
1

opt andx
2

opt

∼ ∼ == Archive x
1

opt

f1

f2

Pareto

Front

2
x
opt

1
x
opt

x

(a) An example of the case
where only replacement is
performed only once by GS-
MOMA. (x1

opt � x)∧ (x1
opt �

x
2

opt) ∧ (x ∼ x
2

opt). x
1

opt
replacesx.

f1

f2

Pareto

Front

1
x
opt

2
x
opt

x

(b) An example of the case
where two subsequent replace-
ments are performed by GS-
MOMA. (x1

opt � x)∧ (x2
opt �

x
1

opt). x
1

opt replacesx, followed
by x

2

opt replacesx.

f1

f2

Pareto

Front

2
x
opt

1
x
opt

x

(c) An example of the case where
both replacement and archiving
are performed by GS-MOMA.
(x1

opt � x) ∧ (x2
opt � x) ∧

(x1

opt ∼ x
2

opt). x
1

opt replaces
x, x

2

opt is archived inAl.

f1

f2

Pareto

Front

2
x
opt

1
x
opt

x

(d) An example of the case where
archiving is performed only once
by GS-MOMA. (x ∼ x

1
opt) ∧

(x ∼ x
2

opt) ∧ (x1

opt � x
2

opt).
x

1

opt is archived inAl.

f1

f2

Pareto

Front

2
x
opt

1
x
opt

x

(e) An example of the case where
archiving is performed twice by GS-
MOMA. (x ∼ x

1
opt) ∧ (x ∼

x
2

opt) ∧ (x1

opt ∼ x
2

opt). Both x
1

opt

andx
2

opt are archived inAl.

f1

f2

Pareto

Front

1 2

opt opt
x x x== ==

(f) An example of the case where
neither replacement nor archiving
is performed. No new optimum is
found.

Fig. 3. Examples of the six different actions taken by theReplace&Archive scheme in GS-MOMA for corresponding results of local searches.
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A. Parameters of GSM Framework

In this subsection, we discuss on the user-specified parame-
ters of the GSM framework. Apart from the parameters of the
underlying SO/MOEA, the generalized framework has three
additional user-specified parameters:m, Gdb andkterm.

Since model accuracy is highly dependent on the sufficiency
of the m data points used for model building, the size of
nearest neighboring points used (based on Euclidean distance)
is defined byd+(d+1)(d+2)/2, whered is the dimensionality
of the optimization problem. It is worth noting that the com-
plexity for identifying thesem points is negligible compared
to the cost of surrogate model building. Moreover, since our
emphasis here is with regard to a framework that is tailored
for solving computationally expensive problems, i.e., problems
that may cost from minutes to hours of computational time per
evaluation, such overheads are considered to be insignificant.
From thesem data points, as many as(d+1)(d+2)/2 among
them 4 are chosen uniformly as the training data for building
the surrogates, the remaining data points then form the set for
validating the prediction quality of the surrogate.

ParameterGdb, on the other hand, defines the period of the
database building phase (refer to lines 3-5 in Algorithms 2
and 4) before the core operation of the GSM framework
begins to take effect. HenceGdb can be adapted for different
optimization problems according to the fulfillment on the
requirement of parameterm. The lower bound ofGdb is
defined by the period to acquire a minimum ofm data points
for construction of reliable surrogate models.

Theoretically, the trust-region local search scheme generally
terminates when the trust-region radius,Ω approachesε, where
ε represents some very small value for termination condition
(refer to Section III-E). Nevertheless, for practical reason,
under limited computational budget, it is more appropriate
to derive an appropriate value forkterm as the termination
condition in the trust-region local search. In what follows, we
present a theoretical bound forkterm:

Ω1
min (C1)

kmin ≤ ε (10)

⇒ (C1)
kmin ≤ ε

Ω1

min

(11)

⇒ kmin log C1 ≤ log ε
Ω1

min

(12)

SinceC1 ∈ (0, 1) → log C1 < 0, we arrive at:

⇒ kmin ≥
(

log
(

ε
Ω1

min

))

/ (log C1) (13)

⇒ kmin ≥ logC1

(

ε
Ω1

min

)

. (14)

Similarly, the maximum number of trust-region iterations in
the local search, i.e.,kmax, is estimated by:

kmax < Nmax
succ + Nmax

succ logC1

(

ε
Ω1

max

)

(15)

⇒ kmax < Nmax
succ

(

1 + logC1

(

ε
Ω1

max

))

. (16)

Note thatNmax
succ is the maximum number of successful itera-

tions, whileΩ1
min andΩ1

max are the lower and upper bounds

4This amount corresponds to the minimum number of data pointsrequired
for building quadratic regression models.

of the initial trust-region radius. In effect, the bounds for kterm

as the termination condition can be derived as:

logC1

(

ε

Ω1
min

)

≤ kterm < Nmax
succ

(

1 + logC1

(

ε

Ω1
max

))

.

(17)
In the trust-region-regulated local search,Ω1 depends on the

local region of interest where the initialm nearest neighbors
are located. Hence it is not possible to define this term
precisely for any new optimization problem. For instance, if
Ω1

min ≈ 10ε andC1 = 0.25, we arrive at:

kterm ≥ log 0.1
log 0.25 ,

kterm ≥ 1.66. (18)

As opposed to usingkterm = 1 which translates to a single
iteration local search, a minimum value ofkterm ≥ 2 is more
practical to allow the mechanisms of the trust-region-regulated
local search to take effect.

B. Single-Objective Optimization

Empirical study on the GS-SOMA is performed using
ten benchmark problems (F1-F10) reported in [61][62] and
summarized here in Table II. More detailed description of
the problems are also provided in Appendix II. They consist
of problems with diverse properties in terms of separability,
multi-modality, and continuity.

TABLE II

THE BENCHMARK PROBLEMS USED(F1-F10)FOR THE EMPIRICAL STUDY

OF SINGLE-OBJECTIVE OPTIMIZATION.

Benchmark Description Global
Problem Optimum

f(x∗)
F1 Ackley 0.0
F2 Griewank 0.0
F3 Rosenbrock 0.0
F4 Shifted Rotated Rastrigin (F10 in [62]) -330.0
F5 Shifted Rotated Weierstrass (F11 in [62]) 90.0
F6 Shifted Expanded Griewank -130.0

plus Rosenbrock (F13 in [62])
F7 Hybrid Composition Function (F15 in [62]) 120.0
F8 Rotated Hybrid Composition Function (F16 in [62]) 120.0
F9 Rotated Hybrid Composition Function 10.0

with Narrow Basin Global Optimum (F19 in [62])
F10 Non-continuous Rotated Hybrid 360.0

Composition Function (F23 in [62])

TABLE III

DEFINITION OF THE SINGLE-OBJECTIVEMA S (SOMAS) COMPARED.

Algorithms Definition
GA No surrogate is used
SS-SOMA-GP Single surrogate SOMA withM1: GP
SS-SOMA-PR Single surrogate SOMA withM1: PR
SS-SOMA-RBF Single surrogate SOMA withM1: RBF
SS-SOMA-Perfect Single surrogate SOMA withM1: Perfect model
GS-SOMA Generalized surrogate SOMA with

M1: weighted-averageensemble of GP, PR, and RBF
M2: PR

In this paper, all the benchmark problems are configured
with a dimensionality ofd = 30 for SOO. Performance
comparisons are then made between the GA, SS-SOMA-GP,
SS-SOMA-PR, SS-SOMA-RBF, SS-SOMA-Perfect, and GS-
SOMA (refer to Table III for the definition of the algorithms
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TABLE IV

SETTING OF EXPERIMENTS FORGA, SS-SOMA, SS-SOMA-PERFECT,

AND GS-SOMA.

Parameters Setting
Population size (Npop) 100
Crossover probability (Pcross) 0.9
Mutation probability (Pmut) 0.1
Maximum number of exact evaluations 8000
Evolutionary operators uniform crossover & mutation,

elitism and ranking selection
Number of trust region iteration(kterm)
for SS-SOMA and GS-SOMA 3
Database building phase (Gdb)
for SS-SOMA and GS-SOMA 20
(in number of generations)
Number of independent runs 20

investigated here). Note that to facilitate a fair comparison,
the surrogate memetic variants are built on top of the same
GA used in the study, which ensures that any improvements
observed is a direct contribution of the surrogate framework
considered. SS-SOMA-XXX refers to the different surrogate-
assisted single-objective MA variants, each with a unique
approximation method used to generate the surrogate model.
For instance,XXX in SS-SOMA-XXX refers to GP, PR, or
RBF. On the other hand, SS-SOMA-Perfect refers to an SS-
SOMA that employs an imaginary approximation technique
that generates error-free surrogates5, i.e.,RMSE = 0. Hence
the notion of curse or bless of uncertainty does not exist in the
SS-SOMA-Perfect search. As such, any SS-SOMA-XXX that
under/out-perform SS-SOMA-Perfect is clearly attributedto
the effects of curse and bless of uncertainty, respectively. Last
but not least, GS-SOMA refers to the Generalized Surrogate
framework for single-objective optimization. The common
parameter settings of the algorithms used in the present
experimental study are summarized in Table IV.

1) Experimental Results: In Tables V-XIV, the detailed
statistical results of 20 independent runs for SS-SOMAs, GS-
SOMA, and GA are presented. The GS-SOMA and best
performing SS-SOMA are highlighted in the tables. Note that
none of the SS-SOMAs always dominates in performance on
all ten benchmark problems. This makes good sense since
the performance of any surrogate-assisted evolutionary search
would depend on the match between the characteristics of
the problem landscape and approximation scheme used. For
instance, in the tables, it is shown that SS-SOMA-PR serves
to be best suited for F1, F5, and F9 since it outperforms all
other algorithms on these problems. Similarly, this also applies
to SS-SOMA-GP which excels on F3. On the other hand,
SS-SOMA-RBF, though not superior, performs relatively well
on F3, F4, F7, and F8. Moreover, it is worth noting that the
SS-SOMAs are observed to have performed much poorly on
several occasions. For instance, SS-SOMA-PR fares badly on
F3, F4, F7, and F8. The same is true for SS-SOMA-GP on
F1, F4-F8, and F10, and SS-SOMA-RBF on F1, F2, F5, F6,

5An error-free surrogate model can be realized by using exactfitness
function in the portion of SS-SOMA where a surrogate model should be used,
but the incurred fitness evaluation is counted only as many asin SS-SOMA.

F9, and F10.
On the other hand, the results in Tables V-XIV, indicate that

GS-SOMA consistently performs well on all the benchmark
problems. Thet-test results, i.e., at 95% confidence level, for
the different algorithms as reported in Table XV confirms that
GS-SOMA outperforms or is competitive to the SS-SOMAs
on 43/50 cases. On the remaining 7 cases, GS-SOMA also
displays solution qualities close to that of the superior SS-
SOMA, see the highlighted results in Tables V-XIV. Note
that this is a significant achievement considering that noa
priori knowledge is available to select an appropriate surrogate
modeling scheme for the problems considered. This highlights
the reliability of the generalized framework.

The search convergence trends of GS-SOMA, SS-SOMA-
AV, and SS-SOMA-Perfect are also plotted in Fig. 4. Note
that SS-SOMA-AV represents the estimated performance one
might expect to get when an approximation technique is
randomly chosen for use. Hence, SS-SOMA-AV is generated
from the average of the results obtained by all 3 SS-SOMAs,
i.e. SS-SOMA-GP, SS-SOMA-PR, and SS-SOMA-RBF. It is
evident from the search convergence trends that GS-SOMA is
superior over SS-SOMA-AV on the 10 benchmark problems.
This indicates that the generalized framework is more reliable
when one has no knowledge about the suitability of the
approximation scheme for the problem at hand.

2) Analyzing the Generalized Evolutionary Framework in
Single-Objective Optimization: To gain a better understanding
of the generalized framework, we further analyze the reliability
and effectiveness of the ensemble (M1) and smoothing (M2)
surrogate models in contributing to the evolutionary search.

To facilitate the analysis, the normalized root mean square
errors (N-RMSE) of fitness predictions based on the ensemble
surrogate model, i.e.,M1 in GS-SOMA search, for the bench-
mark problems are presented in Fig. 5. The normalized RMSE
of model i is determined as follows:

NormalizedRMSEi =
RMSEi

∑s
j=1 RMSEj

, (19)

wheres is the total approximation methods used in shaping the
ensemble. From these figures, the consistently low N-RMSE of
the ensemble model generated in the GS-SOMA search across
all benchmark problems, demonstrates the high reliabilityof
the fitness prediction generated byM1 across the different
optimization problems over any single surrogates.

Further, it is worth noting that the use ofM2 contributes
to the fitness improvement in GS-SOMA, which confirms the
possible benefits of bless of uncertainty in surrogate model.
The normalized average fitness improvement of the local
searches contributed via the use ofM1 (ImpM1) and M2

(ImpM2) during the GS-SOMA searches are summarized in
Fig. 6 and is defined by:

NormalizedImpM1 = ImpM1

ImpM1+ImpM2

,

NormalizedImpM2 = ImpM2

ImpM1+ImpM2

. (20)

ImpM1 is the total fitness improvements attained by local re-
finements, i.e., through Lamarckian learning, whenf(x1

opt) <
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TABLE V

STATISTICS OF THE FINAL SOLUTION QUALITY AT THE END OF8000EXACT FUNCTION EVALUATIONS FORF1 USING GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF,AND GS-SOMA.

Optimization
Algorithm

Statistical Values
Mean Std. Dev. Median Best Worst

GA 1.24e+01 9.50e-01 1.23e+01 1.12e+01 1.42e+01
SS-SOMA-GP 6.43e+00 9.73e-01 3.98e+00 2.87e+00 1.56e+01
SS-SOMA-PR 1.39e+00 1.93e-01 1.36e+00 1.14e+00 1.75e+00
SS-SOMA-RBF 4.91e+00 7.57e-01 4.86e+00 3.78e+00 6.09e+00
GS-SOMA 3.58e+00 5.09e-01 3.67e+00 2.87e+00 4.28e+00

TABLE VI

STATISTICS OF THE FINAL SOLUTION QUALITY AT THE END OF8000EXACT FUNCTION EVALUATIONS FORF2 USING GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF,AND GS-SOMA.

Optimization
Algorithm

Statistical Values
Mean Std. Dev. Median Best Worst

GA 4.58e+01 8.61e+00 4.67e+01 2.15e+01 6.19e+01
SS-SOMA-GP 1.79e+01 8.58e+00 1.07e+01 5.15e-09 3.00e+01
SS-SOMA-PR 1.18e-02 2.78e-02 4.29e-08 7.48E-10 1.19e-01
SS-SOMA-RBF 7.49e-01 8.98e-02 7.51e-01 6.02e-01 8.72e-01
GS-SOMA 2.2e-03 4.60e-03 8.95e-09 1.40E-10 1.54e-02

TABLE VII

STATISTICS OF THE FINAL SOLUTION QUALITY AT THE END OF8000EXACT FUNCTION EVALUATIONS FORF3 USING GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF,AND GS-SOMA.

Optimization
Algorithm

Statistical Values
Mean Std. Dev. Median Best Worst

GA 4.10e+02 1.01e+02 3.85e+02 2.33e+02 5.73e+02
SS-SOMA-GP 2.99e+01 7.73e-01 3.00e+01 2.87e+01 3.11e+01
SS-SOMA-PR 6.73e+01 2.55e+01 5.62e+01 3.72e+01 1.04e+02
SS-SOMA-RBF 4.90e+01 2.92e+01 3.97e+01 2.92e+01 1.57e+02
GS-SOMA 4.63e+01 2.92e+01 3.02e+01 2.83e+01 1.26e+02

TABLE VIII

STATISTICS OF THE FINAL SOLUTION QUALITY AT THE END OF8000EXACT FUNCTION EVALUATIONS FORF4 USING GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF,AND GS-SOMA.

Optimization
Algorithm

Statistical Values
Mean Std. Dev. Median Best Worst

GA -5.46e+01 3.01e+01 -5.48e+01 -1.11e+02 5.19e-01
SS-SOMA-GP -1.19e+02 1.87e+01 -1.17e+02 -1.50e+02 -8.71e+01
SS-SOMA-PR -1.19e+02 1.23e+01 -1.21e+02 -1.43e+02 -9.01e+01
SS-SOMA-RBF -1.65e+02 1.86e+01 -1.66e+02 -1.91e+02 -1.36e+02
GS-SOMA -1.26e+02 1.60e+01 -1.23e+02 -1.64e+02 -9.97e+01

TABLE IX

STATISTICS OF THE FINAL SOLUTION QUALITY AT THE END OF8000EXACT FUNCTION EVALUATIONS FORF5 USING GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF,AND GS-SOMA.

Optimization
Algorithm

Statistical Values
Mean Std. Dev. Median Best Worst

GA 1.26e+02 2.85e+00 1.26e+02 1.20e+02 1.32e+02
SS-SOMA-GP 1.19e+02 4.29e+00 1.20e+02 1.12e+02 1.25e+02
SS-SOMA-PR 5.67e+01 3.79e+00 1.16e+02 1.13e+02 1.25e+02
SS-SOMA-RBF 1.21e+02 2.61e+00 1.21e+02 1.18e+02 1.24e+02
GS-SOMA 1.19e+02 3.05e+00 1.19e+02 1.14e+02 1.24e+02

TABLE X

STATISTICS OF THE FINAL SOLUTION QUALITY AT THE END OF8000EXACT FUNCTION EVALUATIONS FORF6 USING GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF,AND GS-SOMA.

Optimization
Algorithm

Statistical Values
Mean Std. Dev. Median Best Worst

GA -9.57e+01 9.43e+00 -9.79e+01 -1.06e+02 -7.28e+01
SS-SOMA-GP -1.02e+02 2.99e+00 -1.03e+02 -1.05e+02 -9.74e+02
SS-SOMA-PR -1.06e+02 2.45e+00 -1.07e+02 -1.09e+02 -1.02e+02
SS-SOMA-RBF -1.03e+02 2.43e+00 -1.03e+02 -1.07e+02 -9.96e+01
GS-SOMA -1.12e+02 1.05e+00 -1.23e+02 -1.13e+02 -1.11e+02
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TABLE XI

STATISTICS OF THE FINAL SOLUTION QUALITY AT THE END OF8000EXACT FUNCTION EVALUATIONS FORF7 USING GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF,AND GS-SOMA.

Optimization
Algorithm

Statistical Values
Mean Std. Dev. Median Best Worst

GA 7.29e+02 5.92e+01 7.27e+02 6.43e+02 8.21e+02
SS-SOMA-GP 6.81e+02 7.23e+01 6.95e+02 6.02e+02 8.23e+02
SS-SOMA-PR 6.42e+02 5.80e+01 6.34e+02 5.73e+02 7.09e+02
SS-SOMA-RBF 6.27e+02 7.93e+01 5.99e+02 5.95e+02 8.49e+02
GS-SOMA 6.07e+02 3.06e+01 6.00e+02 5.79e+02 6.59e+02

TABLE XII

STATISTICS OF THE FINAL SOLUTION QUALITY AT THE END OF8000EXACT FUNCTION EVALUATIONS FORF8 USING GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF,AND GS-SOMA.

Optimization
Algorithm

Statistical Values
Mean Std. Dev. Median Best Worst

GA 4.83e+02 6.3e+01 4.62e+02 4.19e+02 6.06e+02
SS-SOMA-GP 4.52e+02 9.66e+01 4.35e+02 3.40e+02 5.63e+02
SS-SOMA-PR 3.94e+02 4.41e+01 3.75e+02 3.43e+02 4.52e+02
SS-SOMA-RBF 3.79e+02 3.3e+01 3.69e+02 3.51e+02 4.41e+02
GS-SOMA 3.25e+02 1.17e+02 2.86e+02 2.32e+02 5.54e+02

TABLE XIII

STATISTICS OF THE FINAL SOLUTION QUALITY AT THE END OF8000EXACT FUNCTION EVALUATIONS FORF9 USING GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF,AND GS-SOMA.

Optimization
Algorithm

Statistical Values
Mean Std. Dev. Median Best Worst

GA 1.02e+03 2.35e+01 1.02e+03 9.86e+02 1.08e+03
SS-SOMA-GP 9.42e+02 1.71e+01 9.37e+02 9.25e+02 9.81e+02
SS-SOMA-PR 9.32e+02 8.26e+00 9.31e+02 9.22e+02 9.48e+02
SS-SOMA-RBF 9.81e+02 1.43e+01 9.80e+02 9.67e+02 1.00e+03
GS-SOMA 9.42e+02 1.75e+01 9.37e+02 9.30e+02 9.86e+02

TABLE XIV

STATISTICS OF THE FINAL SOLUTION QUALITY AT THE END OF8000EXACT FUNCTION EVALUATIONS FORF10USING GA, SS-SOMA-GP,

SS-SOMA-PR, SS-SOMA-RBF,AND GS-SOMA.

Optimization
Algorithm

Statistical Values
Mean Std. Dev. Median Best Worst

GA 1.51e+03 5.52e+01 1.52e+03 1.40e+03 1.58e+03
SS-SOMA-GP 1.26e+03 1.88e+02 1.22e+03 1.03e+03 1.54e+03
SS-SOMA-PR 1.07e+03 1.07e+02 1.04e+03 9.42e+02 1.29e+03
SS-SOMA-RBF 1.12e+03 1.16e+02 1.15e+03 9.59e+02 1.28e+03
GS-SOMA 1.01e+03 7.85e+01 9.53e+02 9.09e+02 1.51e+03

TABLE XV

RESULT OF T-TEST WITH 95% CONFIDENCE LEVEL COMPARING STATISTICAL VALUES FORGS-SOMAAND THOSE OFSS-SOMA-GP, SS-SOMA-PR,

SS-SOMA-RBF, SS-SOMA-PERFECT ONF1-F10 (s+, s−, AND ≈ INDICATES THAT GS-SOMAIS SIGNIFICANTLY BETTER, SIGNIFICANTLY WORSE,

AND INDIFFERENT, RESPECTIVELY).

GA SS-SOMA-GP SS-SOMA-PR SS-SOMA-RBF SS-SOMA-Perfect
F1 s+ s+ s− s+ s+
F2 s+ s+ ≈ s+ s−
F3 s+ s− s+ ≈ s−
F4 s+ ≈ ≈ s− s+
F5 s+ ≈ s− s+ s+
F6 s+ s+ s+ s+ s+
F7 s+ s+ s+ ≈ s+
F8 s+ s+ s+ ≈ s+
F9 s+ ≈ s− s+ s+
F10 s+ s+ ≈ s+ s+
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Fig. 4. Convergence trends for F1-F10 obtained from GS-SOMA, SS-SOMA-Perfect, and SS-SOMA-AV.
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Fig. 6. The normalized fitness improvement during the runs ofGS-SOMA
contributed byM1 (ImpM1) andM2 (ImpM2).

f(x2
opt), while ImpM2 is the total fitness improvements when

f(x2
opt) < f(x1

opt).
From the statistical results given in Fig. 6, it is notable

thatM1 andM2 surrogates have contributed to the surrogate-
assisted memetic search in their unique ways. This provides
a means for explaining the results that were obtained in
Fig. 4 and Tables V-XIV. In particular, the reason for that
all surrogate-assisted SOMAs outperform SS-SOMA-Perfect
on F1 (Ackley) suggests the presence of‘bless of uncertainty’
through the use of surrogate(s), since the notion of curse or
bless of uncertainty cannot exist in the latter. Further, SS-
SOMA-PR is shown to be most superior on F1 (Ackley)
highlights the strength of the PR model in contributing to
the search via smoothing the rugged landscape of the Ackley
function. This hypothesis is clearly supported by the large
portion of fitness improvements that are contributed byM2
(i.e., the PR model) on F1, see Fig. 6. On the other hand,
neither SS-SOMAs nor GS-SOMA manage to outperform
the SS-SOMA-Perfect on F3(Rosenbrock), suggesting the

presence of‘curse of uncertainty’due to the surrogate(s).
Further, the results in F3 of Fig. 6 also indicate thatM2

(i.e., the smoothing PR model) did not contribute significantly
to the search since the problem landscape of this function
is originally smooth. Rather, the use of ensemble model in
GS-SOMA had contributed to reliable fitness improvement on
F3(Rosenbrock) by generating reliable prediction accuracy. On
the other test problems, bothM1 and M2 surrogates were
shown to contribute significantly to GS-SOMA in their own
unique ways.

C. Multi-Objective Optimization

In this subsection, we present the empirical study of the GS-
MOMA on six moderate to high dimensional MO benchmark
problems, labeled here as MF1-MF6 [63]. The MO bench-
mark problems used in the study are summarized in Table XVI.

TABLE XVII

DEFINITION OF THE MULTI -OBJECTIVEMA S (MOMA S) COMPARED

Algorithms Definition
NSGA-II No surrogate is used
GS-MOMA Generalized surrogate MOMA with

M1: weighted-averageensemble of GP, PR, and RBF
M2: PR

SS-MOMA-I Single surrogate MOMA with
M1: Ensemble of GP, PR, and RBF

SS-MOMA-II Single surrogate MOMA with
M1: PR

SS-MOMA-Perfect Single surrogate MOMA with
M1: Perfect model

Performance comparisons are then made between the stan-
dard non-dominated sorting genetic algorithm-II (NSGA-
II) [64] and variants of MOMA. For fair comparison, we com-
pare GS-MOMA with several SS-MOMAs and the NSGA-
II since the formers are demonstrated with NSGA-II as the
baseline by building on top of it. Hence, all algorithms com-
pared inherit the same evolutionary operators as the NSGA-
II used in our experiment. In SS-MOMAs, an offspring will
be replaced in the spirit of Lamarckian learning during local
search if its aggregated fitness function is found to be better
than the original offspring. Similarly, SS-MOMA-Perfect is
introduced here to assess the effects of approximation error
on surrogate-assisted evolutionary search performance. For
the sake of brevity, the notations and definitions of the MO
algorithms studied are tabulated in Table XVII while the
common parameter settings of the MO algorithms used in the
experimental study are defined in Table XVIII6.

Many performance indicators exists for assessing the per-
formance of MOEAs, such as those summarized in [65][66].
Here, the following three performance indicators are used,i.e.,
• Generational Distance (GD) [67][68]: This measure-

ment indicates the gap between the true Pareto front
(PF ∗) and the evolved Pareto front (PF ). Mathemati-
cally, it can be formulated as:

GD =
1

nPF

√

√

√

√

nP F
∑

i=1

di
2, (21)

6Since MF3 and MF4 have higher dimensionality, i.e.d = 50, greater
initial database size is required. For these cases,Gdb is set to 20.
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TABLE XVI

MULTI -OBJECTIVE BENCHMARK PROBLEMS(MF1-MF6). PARAMETRIC DOMAIN USED IS [0, 1]d , WHEREd IS THE PROBLEM DIMENSIONALITY

CONSIDERED IN THE PRESENT STUDY.

Benchmark Formulation Characteristics
Function
MF1 (d = 30) f1(x) = x1 Convex, 2-objective Pareto front

f2(x) = g(x)[1 −
p

f1(x)/g(x)]

g(x) = 1 + 9(
P

d
i=2

xi)/(d − 1)
MF2 (d = 30) f1(x) = x1 Non-convex, 2-objective Pareto front

f2(x) = g(x)[1 − f1(x)/g(x)2]

g(x) = 1 + 9(
Pd

i=2
xi)/(d − 1)

MF3 (d = 50) f1(x) = x1 Convex, disconnected, 2-objective Pareto front
f2(x) = g(x)[1 −

p

f1/g − (f1/g)sin(10πf1)]

g(x) = 1 + 9(
Pd

i=2
xi)/(d − 1)

MF4 (d = 50) f1(x) = 1 − exp(−4x1)sin6(6πx1) Non-convex, 2-objective Pareto front
f2(x) = g(x)[1 − (f1(x)/g(x))2]

g(x) = 1 + 9[
P

d
i=2

xi/(d − 1)]0.25

MF5 (d = 20) f1(x) = cos( π
2

x1)cos( π
2

x2)(1 + g(x)) Non-convex, 3-objective, Pareto front
f2(x) = cos( π

2
x1)sin( π

2
x2)(1 + g(x))

f3(x) = cos( π
2

x1)(1 + g(x))

g(x) =
Pd

i=3
(xi − x1)2

MF6 (d = 10) f1(x) = x1 Convex, 2-objective, multiple local Pareto front
f2(x) = g(x)[1 −

p

f1(x)/g(x)]

g(x) = 1 + 10(d − 1) +
Pd

i=2
(x2

i − 10 cos(4πxi))

TABLE XVIII

SETTING OF EXPERIMENTS FORNSGA-II, GS-MOMA,AND SS-MOMA.

Parameters Setting
Population size (Npop) 100
Crossover probability (Pcross) 0.9
Mutation probability (Pmut) 0.1
Maximum number of exact evaluations MF1-MF2: 8000

MF3-MF4: 16000
MF5: 30000
MF6: 20000

Evolutionary operators simulated binary crossover,
polynomial mutation,
binary tournament selection,
elitism, non-domination rank,
and crowded distance

Number of trust region iteration(kterm) 2
for SS-MOMA and GS-MOMA
Database building phase (Gdb) MF1-MF2, MF5-MF6: 10
for SS-MOMA and GS-MOMA MF3-MF4: 20
(in number of generations)
Number of independent runs 20

wherenPF is the number of members inPF , di is the
Euclidean distance (in objective space) between member
i of PF and its nearest member inPF ∗. A low value of
GD is more desirable since it reflects a good convergence
to the true Pareto fronts.

• Maximum Spread (MS) [69]: It is used to measure how
well the true Pareto front (PF ∗) is covered by the evolved
Pareto front (PF ). The MS measurement used in this
paper is formulated as:

MS =

v

u

u

t

1

r

r
X

i=1

»

min(fmax
i , F max

i ) − max(fmin
i , F min

i )

F max
i − F min

i

–2

,

(22)
wherefmax

i andfmin
i are the maximum and minimum of

the ith objective in the evolved PF, respectively.Fmax
i

and Fmin
i are the maximum and minimum of theith

objective in PF ∗, respectively. Higher value of MS
reflects a larger area ofPF ∗ covered byPF , which is
desirable.

• Hypervolume Ratio (HR) [68]: This indicates the ratio
between the hyperarea/hypervolume (H) [70] dominated
by the evolvedPF andPF ∗, where HR is defined as:

HR = H(PF )
H(PF∗) ,

H = volume (
⋃nP F

i=1 vi) . (23)

Here,vi denotes the hypercube constructed from member
i of a particular Pareto front and the reference point. A
HR value close to 1 indicates that the evolved Pareto front
is quite close to the true Pareto front, in both convergence
and spread of solutions.

1) Experimental Results: The obtained Pareto fronts of the
benchmark problems for 20 independent runs are combined
and depicted in Figs. 9-14. The respective performance metrics
are then summarized in Figs. 15-20. From these results, all
surrogate-assisted multi-objective evolutionary algorithms, i.e.,
SS-MOMAs and GS-MOMA, are shown to outperform the
standard NSGA-II on MF1, MF2, MF5, and MF6. MF6
(ZDT4) is generally regarded as a challenging problem and
hence commonly used by many in the literature. Here, we
validate our results on ZDT4 against those obtained by Deb
et al. in [27]. While [27] reported to solve ZDT4 with from
21781 to 22730 exact function evaluations with an achieved
spread measure7 of 0.332 to 0.422, GS-MOMA requires only
20000 exact evaluations at a competitive spread measure of
0.410±0.046. On MF3 and MF4, some SS-MOMAs perform
competitively or slightly poorer than NSGA-II (see Figs. 11(d)
and 12(d)). On the other hand, GS-MOMA searches more
efficiently than all the SS-MOMA variants and NSGA-II on
the 6 benchmark problems considered. Note that GS-MOMA
also outperforms the SS-MOMA-Perfect on a majority of
the MOO benchmarks with respect to all three performance

7The spread metric [71] considers the distance between two extreme ends
of Pareto front as well as the uniformity of distribution forsolutions between
the two extremes. This metric may be used for measuring the diversity of
converged Pareto fronts. Note that a lower spread metric is desirable.
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metrics, thus suggesting the positive synergy of the ensemble
and smoothing surrogate models in the GSM framework.

2) Analyzing the Generalized Evolutionary Framework
in Multi-Objective Optimization: To arrive at better un-
derstanding of the generalized framework in the context of
multi-objective optimization, we analyze next the reliability
and effectiveness of the ensemble (M1) and smoothing (M2)
surrogate models in contributing to evolutionary search.

The N-RMSE, i..e, see Equation (19), of fitness predic-
tions based on GP, PR, RBF, or ensemble in GS-MOMA
is summarized in Fig. 7. From the results, the ensemble
model, M1, is shown to arrive at low N-RMSE on all the
multi-objective test problems considered, which is consistent
with observations obtained in the single-objective context. M1

generates high reliability predictions in comparison to the
other single surrogate model counterparts, i.e., GP, PR or RBF.

Besides N-RMSE, thesolution archiving to replacement
ratio, labelled here asΓ, of the GS-MOMA search is also
reported in Figure 8.Γ indicates the degree of solution
diversity (through archival of new non-dominating solutions)
against search convergence (through the process of Lamarck-
ian learning replacement) in the GS-MOMA search. While
Lamarckian learning helps to speedup convergence towards
the desired Pareto front, the largeΓ ratio observed on all
benchmark problems implies frequent discovery of potential
non-dominating solutions when using bothM1 andM2 with
local refinements. This suggests‘bless of uncertainty’may
take the form of faster search convergence and better solution
diversity in the context of multi-objective evolutionary search.
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Fig. 7. The normalized RMSE by GP, PR, RBF, and weighted average
ensemble on MF1-MF6.

D. Computational Complexity of GSM Framework

In this subsection, we present an analytical study on the
computational complexity of the GSM framework. The com-
putational effort, referred here byTcomp, of GS-SOMA or
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Fig. 8. Archiving to Replacement Ratio of GS-MOMA on MF1-MF6.

GS-MOMA is formulated as follows:

Tcomp = GdbNpop

∑r
i=1 Fi + (Gmax − Gdb)[Npop

(Tens + TPR + 2kterm

∑r
i=1 Fi + Toverhead)], (24)

where:

• Gdb : number of standard SO/MOEA search generations
configured for building the database of training data
points at the initial search phase of the GSM framework,

• Gmax : maximum number of search generations,
• Npop : population size,
• r : number of objectives to optimize,
• kterm : number of iterations made in the trust-region-

regulated local searches,
• F : original/exact function evaluation cost,
• Tens : time to buildM1 i,e. the ensemble model,
• TPR : time to build M2, i.e. the polynomial regression

model, which is not applicable if PR is already built when
constructingM1,

• Toverhead : other additional costs such as for fitness
predictions and finding nearest points, which are often
negligible.

On the other hand, the computational cost for SS-SOMA or
SS-MOMA variants is:

Tcomp = GdbNpop

∑r
i=1 Fi + (Gmax − Gdb)[Npop

(Tm + kterm

∑r
i=1 Fi + Toverhead)], (25)

whereTm is the time taken to build the particular surrogate
model used.

Although there are several elements in Equations (24) and
(25), it is worth noting that when working with computation-
ally expensive problems, the most significant part contributing
to the total computational effort incurred isF . Hence, when
F is significantly large, which is assumed to be fulfilled in
any surrogate-assisted optimization framework,Tens, TPR,
Toverhead and Tm are generally considered to be negligible,
otherwise such frameworks should never be used.
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(e) SS-MOMA-Perfect

Fig. 9. Pareto Front evolved for benchmark problem MF1 in NSGA-II, GS-MOMA, SS-MOMA-I, SS-MOMA-II, and SS-MOMA-Perfect.
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Fig. 10. Pareto Front evolved for benchmark problem MF2 in NSGA-II, GS-MOMA, SS-MOMA-I, SS-MOMA-II, and SS-MOMA-Perfect.
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Fig. 11. Pareto Front evolved for benchmark problem MF3 in NSGA-II, GS-MOMA, SS-MOMA-I, SS-MOMA-II, and SS-MOMA-Perfect.
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Fig. 12. Pareto Front evolved for benchmark problem MF4 in NSGA-II, GS-MOMA, SS-MOMA-I, SS-MOMA-II, and SS-MOMA-Perfect.
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Fig. 13. Pareto Front evolved for benchmark problem MF5 in NSGA-II, GS-MOMA, SS-MOMA-I, SS-MOMA-II, and SS-MOMA-Perfect.
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Fig. 14. Pareto Front evolved for benchmark problem MF6 in NSGA-II, GS-MOMA, SS-MOMA-I, SS-MOMA-II, and SS-MOMA-Perfect.
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Fig. 15. Generational Distance(GD), Maximum Spread(MS), and Hypervolume Ratio(HR) performance metrics for benchmark problem MF1. (A:NSGA-II,
B:GS-MOMA, C:SS-MOMA-I, D:SS-MOMA-II, E:SS-MOMA-Perfect)
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Fig. 16. Generational Distance(GD), Maximum Spread(MS), and Hypervolume Ratio(HR) performance metrics for benchmark problem MF2. (A:NSGA-II,
B:GS-MOMA, C:SS-MOMA-I, D:SS-MOMA-II, E:SS-MOMA-Perfect)
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Fig. 17. Generational Distance(GD), Maximum Spread(MS), and Hypervolume Ratio(HR) performance metrics for benchmark problem MF3. (A:NSGA-II,
B:GS-MOMA, C:SS-MOMA-I, D:SS-MOMA-II, E:SS-MOMA-Perfect)
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Fig. 18. Generational Distance(GD), Maximum Spread(MS), and Hypervolume Ratio(HR) performance metrics for benchmark problem MF4. (A:NSGA-II,
B:GS-MOMA, C:SS-MOMA-I, D:SS-MOMA-II, E:SS-MOMA-Perfect)
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Fig. 19. Generational Distance(GD), Maximum Spread(MS), and Hypervolume Ratio(HR) performance metrics for benchmark problem MF5. (A:NSGA-II,
B:GS-MOMA, C:SS-MOMA-I, D:SS-MOMA-II, E:SS-MOMA-Perfect)
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Fig. 20. Generational Distance(GD), Maximum Spread(MS), and Hypervolume Ratio(HR) performance metrics for benchmark problem MF6. (A:NSGA-II,
B:GS-MOMA, C:SS-MOMA-I, D:SS-MOMA-II, E:SS-MOMA-Perfect)
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V. CONCLUSION

With a plethora of approximation/surrogate modeling ap-
proaches available in the literature, the choice of technique
to use greatly affects the performance of surrogate-assisted
evolutionary searches. It is argued that every approximation
technique introduces some unique characteristics suitable for
modeling some classes of problems accurately but not for
others. Given thata priori knowledge about the problem
landscape is often scarce, the ability to tackle new problems in
a reliable way is of significant value. This paper investigates
on a generalized framework that unifies diverse surrogate
models synergistically in the memetic evolutionary search. In
contrast to existing works, the studied memetic framework
emphasizes not only on1) mitigating the impact of‘curse
of uncertainty’robustly, but also2) benefitting from the‘bless
of uncertainty’, through the use of ensemble and landscape
smoothing surrogate models, respectively.

The core purpose of proposing any new search strate-
gies, including the GSM framework, is to solve real-world
optimization problems more robustly, effectively and/or ef-
ficiently. Hence, to facilitate possible systematic study and
gain deeper understanding of the proposed methods for solv-
ing complex real-world problems plagued with computa-
tionally expensive functions, benchmark problems of diverse
known properties have been employed. In this paper, we
have presented extensive numerical studies on commonly
used single/multi-objective optimization benchmark problems
which have demonstrated the competitiveness of the general-
ized framework. Overall, the ensemble model is shown to be
capable of attaining reliable, accurate surrogate models,while
smoothing model speeds up evolutionary search performance
by traversing through the multi- modal landscape of complex
problems. Statistically, the generalized framework achieved
significantly better performance on SOO/MOO when com-
pared to SS-SOMA/MOMA and their underlying SO/MOEA.

Presently, the GSM framework is used for solving real-
world problems plagued with computationally expensive func-
tions, particularly in the field of aerodynamic and molecular
structural designs. Based on our experiences with both bench-
mark and real-world problems that range from turbine blade
[7][20] to airfoil designs [8][11][22][31], the observations
obtained from the use of benchmark problems do not deviate
significantly from those in the real-world problems we have
experimented. Some of the observations and problems we have
noted when dealing with real-world problems are listed as
follows:

• In contrast to benchmark problems, the time taken to
collect adequate amount of database points when dealing
with real-world problems can be relatively significant if
unsupported by sufficient machines capability. A possible
solution is to directly utilize an external database of
previously evaluated design points, if available, instead
of building the database from scratch in the initialGdb

generations of evolutionary optimization. When existing
database are unavailable, or the design points available
are insufficient for building reliable surrogates, a smaller
Gdb can be used to obtain the initial design points

necessary for the reliable surrogate building to facilitate
time saving.

• When parallel machines capability is available, multi-
level parallelization can be leveraged through the GSM
framework, namely,1) generation level, i.e., individuals
at the same generation are sent to multiple computing
nodes for evaluation, and2) individual level, independent
local searches utilizingM1 and M2 respectively, are
executed in parallel. Hence, further acceleration can be
expected.
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APPENDIX I
APPROXIMATION/SURROGATE MODELING TECHNIQUES

Here, we provide a brief review on three different surro-
gate modeling techniques used in this paper, namely: Krig-
ing/Gaussian Process (GP), Polynomial Regression (PR), and
Radial Basis Function (RBF). Throughout this section, let
D = {xi, ti}, i = 1 . . .m denote the training dataset, where
xi ∈ R

d is an input design vector andti ∈ R is the
corresponding target value.

A. Kriging/Gaussian Process (GP)

The GP surrogate model [54] assumes the presence of an
unknown true modeling functionf(x) and an additive noise
term v to account for anomalies in the observed data. Thus:

t = f(x) + v (26)

The standard analysis requires the specification of prior
probabilities on the modeling function and the noise model.
From a stochastic process viewpoint, the collectiont =
{t1, t2, ..., tm} is called a Gaussian process if every subset
of t has a joint Gaussian distribution. More specifically,

P (t|C, {xm}) =
1

Z
exp

(

−1

2
(t− µ)T

C
−1(t − µ)

)

(27)

where C is a covariance matrix parameterized in terms of
hyperparametersθ, i.e., Cij = k(xi,xj ; θ) and µ is the
process mean. The Gaussian process is characterized by this
covariance structure since it incorporates prior beliefs both
about the true underlying function as well as the noise model.
In the present study, we use the following exponential covari-
ance model

k(xi,xj) = e−(xi−xj)
T Θ(xi−xj) + θd+1 (28)

whereΘ = diag{θ1, θ2, ..., θd} ∈ R
d×d is a diagonal matrix of

undetermined hyperparameters, andθd+1 ∈ R is an additional
hyperparameter arising from the assumption that noise in the
dataset is Gaussian (and output dependent). We shall hence-
forth use the symbolθ to denote the vector of undetermined
hyperparameters, i.e.,θ = {θ1, θ2, ..., θd+1}. In practice, the

undetermined hyperparameters are tuned to the data using the
evidence maximization framework. Once the hyperparameters
have been estimated from the data, predictions can be readily
made for a new testing point.

B. Polynomial Regression (PR)

In PR metamodeling technique [55], we define an exponent
vectorε containing positive integers(π1, π2, . . . , πd) and de-
fine x

ε
i as an exponent input vector(xi1

π1 , xi2
π2 , . . . , xid

πd).
Given a set of exponent vectorsε1, ε2, . . . , εo and the set

of data(xi, ti), wherei = 1, 2, . . . , m, the polynomial model
of (o − 1)th order has the form:

t̂i = C1x
ε1

i + C2x
ε2

i + . . . + Cmx
εo

i (29)

where C1, C2, . . . , Co are the coefficient vectors to be esti-
mated, andCj = (cj1 , cj2 , . . . , cjd

), j = 1, 2, . . . , o.
The least square method is then used to estimate the

coefficients of the polynomial model. By definition, the least
square errorE to be minimized is:

E =

m
∑

i=1

[ti − t̂i]
2 (30)

It may be easily shown thatti = f(xi), and by multiplying
both sides of Equation (29) withxεj

i and taking the sum of
m pairs of input-output data, we arrive at

C1

∑

i

x
ε1+εj

i + . . . + Co

∑

i

x
εo+εj

i =
∑

i

tix
εj

i (31)

For j = 1, 2, . . . , o, the polynomial model for the training
dataset can be represented in the matrix notation as follows

AγT = bT (32)

where

A =







∑

i x
ε1+ε1

i . . .
∑

i x
ε1+εo

i
...

...
∑

i x
εo+ε1

i . . .
∑

i x
εo+εo

i






(33)

b = (
∑

tix
ε1

i , . . . ,
∑

tix
εo

i ) (34)

γ = (C1, C2, . . . , Co) (35)

Then the coefficient matrix of the polynomial is:

γ = (A−1bT )T (36)

Let Bi = (xε1

i , . . . ,xεo

i ), the following equations may be
derived:

• A =
∑

i BT
i Bi

• b =
∑

i tiBi

• t̂i = γ.BT
i

The predicted output for a new input pattern is then given
by t̂i = γ.BT

i .
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C. Radial Basis Function

The surrogate models of RBF used in this paper are inter-
polating radial basis function networks of the form

t̂ = f̂(x) =

m
∑

i=1

αiK(||x− xi||) (37)

where K(||x − xi||) : R
d → R is a RBF andα =

{α1, α2, . . . , αm} ∈ R
m denotes the vector of weights. Hence,

the number of hidden nodes in the RBF here is as many as
the number of training points.

Typical choices for the kernel include linear splines, cu-
bic splines, multiquadrics, thin-plate splines, and Gaussian
functions [56]. Recent studies in [72][73], indicate that the
linear, cubic, and thin plate spline RBFs have better theoretical
properties than the multiquadric and Gaussian RBFs. Hence,
in this paper, we opt to use linear spline kernel function.
The structure of some commonly used radial basis kernels
and their parameterization are shown in Table XIX Given a
suitable kernel, the weight vector can be computed by solving
the linear algebraic system of equationsKα = t, where
t = {t1, t2, . . . , tm} ∈ R

m denotes the vector of outputs
and K ∈ R

m×m denotes the Gram matrix formed using the
training inputs (i.e., theijth element ofK is computed as
K(||xi − xj ||)).

TABLE XIX

RADIAL BASIS KERNELS

Linear Splines ||x− ci||
Thin Plate Splines ||x− ci||kln||x− ci||

Cubic Splines ||x− ci||
3

Gaussian e
−

||x−ci||
2

βi

Multiquadrics

r

1 + ||x−ci||
2

βi

Inverse Multiquadrics (1 + ||x−ci||
2

βi
)−

1

2

APPENDIX II
SINGLE-OBJECTIVE BENCHMARK FUNCTIONS

Single-objective benchmark functions used in this paper are
presented in this section. The shifted and/or rotated functions
are taken from [61] and [62]. From F4-F10, the following
nomenclature applies:

o = [o1, o2, . . . , od]: the shifted global optimum
M: linear transformation matrix, obtained from [62].

F1: Ackley

F (x) = 20 + e − 20e
−0.2

s

1

d

d
P

i=1

x2

i − e
1

d

d
P

i=1

cos(2πxi)
(38)

−32.768 ≤ xi ≤ 32.768, i = 1, 2, . . . , d.

Global optimumx∗
i = 0.0 for i = 1, . . . , d, F (x∗) = 0.0
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Fig. 21. Ackley Function

F2: Griewank

F (x) = 1 +
∑d

i=1 x2
i /4000−

∏d
i=1 cos(xi/

√
i) (39)

−600 ≤ xi ≤ 600, i = 1, 2, . . . , d.

Global optimumx∗
i = 0.0 for i = 1, . . . , d, F (x∗) = 0.0

Fig. 22. Griewank Function

F3: Rosenbrock

F (x) =
∑d−1

i=1 (100 × (xi+1 − x2
i )

2 + (1 − xi)
2) (40)

−2.048 ≤ xi ≤ 2.048, i = 1, 2, . . . , d.

Global optimumx∗
i = 1.0 for i = 1, . . . , d, F (x∗) = 0.0
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Fig. 23. Rosenbrock Function
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F4: Shifted Rotated Rastrigin

F (x) =
∑d

i=1(z
2
i − 10cos(2πzi) + 10) − 330 (41)

z = (x − o) ∗ M,

−5 ≤ xi ≤ 5, i = 1, 2, . . . , d.

Global optimumx
∗ = o, F (x∗) = fbias = −330.

Fig. 24. Shifted Rotated Rastrigin Function

F5: Shifted Rotated Weierstrass

F (x) =
∑d

i=1(
∑kmax

k=0 [akcos(2πbk(zi + 0.5))]) (42)

−d
∑kmax

k=0 [akcos(2πbk.0.5)] + 90

z = (x − o) ∗ M,

−0.5 ≤ xi ≤ 0.5, i = 1, 2, . . . , d.

Global optimumx
∗ = o, F (x∗) = fbias = 90. a = 0.5,

b = 3, kmax=20.

Fig. 25. Shifted Rotated Weierstrass Function

F6: Shifted Expanded Griewank plus Rosenbrock

F (x) = F2(F3(z1, z2)) + F2(F3(z2, z3)) + . . . (43)

+F2(Fros(zd−1, zd)) + F2(F3(zd, z1)) − 130

z = x − o + 1,

−3 ≤ xi ≤ 1, i = 1, 2, . . . , d.

Global optimumx
∗ = o, F (x∗) = fbias = −130

Fig. 26. Shifted Expanded Griewank plus Rosenbrock Function

F7: Hybrid Composition Function

for i = 1 : 10 do
wi = exp

(

−
P

d
k=1

(xk−Oik)2

2dσ2

)

fiti = fi(((x − oi)/λi) ∗ Mi)
fmaxi = fi((y/λi) ∗ Mi)
fiti = C ∗ fiti/fmaxi

end for
SW =

∑10
i=1 wi

MaxW = max(wi)
for i = 1 : 10 do

wi = {wi if wi = MaxW
wi = wi ∗ (1 − MaxW 10) if wi 6= MaxW
wi = wi/SW

end for

F (x) =
∑10

i=1{wi ∗ [fiti + biasi]} (44)

F (x) = F (x) + fbias

f1−2(x): Rastrigin Function
f3−4(x): Weierstrass Function
f5−6(x): Griewank Function
f7−8(x): Ackley Function
f9−10(x):Sphere Function
Fsphere =

∑d
i=1 x2

i

σi = 1 for i = 1, 2, . . . , d
λ = [1, 1, 10, 10, 5/60, 5/60, 5/32, 5/32, 5/100, 5/100]
bias=[0, 100, 200, 300, 400, 500, 600, 700, 800, 900]
Mi are all identity matrices
C = 2000
Global optimumx

∗ = o1, F (x∗) = fbias = 120
−5 ≤ xi ≤ 5, i = 1, 2, . . . , d.
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Fig. 27. Hybrid Composition Function

F8: Rotated Hybrid Composition Function of F7
Same as F7, exceptMi are different linear transformation
matrices with condition number of 2.

Fig. 28. Rotated Hybrid Composition function of F7

F9: Rotated Hybrid Composition Function with Narrow
Basin Global Optimum

f1−2(x): Ackley Function
f3−4(x): Rastrigin Function
f5−6(x): Sphere Function
f7−8(x): Weierstrass Function
f9−10(x):Griewank Function
σi = [0.1, 2, 1.5, 1.5, 1, 1, 1.5, 1.5, 2, 2]
λ = [0.1 ∗ 5/32, 5/32, 5/32, 2 ∗ 1, 1, 2 ∗ 5/100, 5/100, 2 ∗
10, 10, 2 ∗ 5/60, 5/60]
Mi are all rotation matrices. Condition numbers are
[ 2 3 2 3 2 3 20 30 200 300 ]
Global optimumx

∗ = o1, F (x∗) = fbias = 10
−5 ≤ xi ≤ 5, i = 1, 2, . . . , d.

Fig. 29. Rotated Hybrid Composition Function with narrow basin global
optimum

F10: Non-continuous Rotated Hybrid Composition
Function

f1−2(x): Rotated Expanded Schaffer Function

f(x, y) = 0.5 +
(sin2(

√
(x2+y2))−0.5)

(1+0.001(x2+y2))2

Fschaffer(x) = f(x1, x2)+f(x2, x3)+. . .+f(xd−1, xd)+
f(xd, x1)
f3−4(x): Rastrigin Function
f5−6(x): F6 Function
f7−8(x): Weierstrass Function
f9−10(x):Griewank Function
σi = [1, 1, 1, 1, 1, 2, 2, 2, 2, 2]
λ = [5 ∗ 5/100, 5/100, 5 ∗ 1, 1, 5 ∗ 1, 5 ∗ 10, 10, 5 ∗
5/200, 5/200]
Mi are all orthogonal matrix. Condition numbers are
[ 2 3 2 3 2 3 20 30 200 300 ]
Global optimumx

∗ = o1, F (x∗) = fbias = 360
−5 ≤ xi ≤ 5, i = 1, 2, . . . , d.

xj =

{

xj if |xj − o1j | < 0.5

round(2xj)/2 if |xj − o1j | ≥ 0.5

round(x) =











a − 1 if x ≤ 0 andb ≥ 0.5

a if b < 0.5

a + 1 if x > 0 andb ≥ 0.5

wherea andb arex’s integral and decimal parts, respectively.
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Fig. 30. Rotated Hybrid Composition Function with global optimum on the
bounds


