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Abstract—For the interaction of a mobile robot with a dynamic5
environment, the estimation of object motion is desired while the6
robot is walking and/or turning its head. In this paper, we describe7
a system which manages this task by combining depth from a8
stereo camera and computation of the camera movement from9
robot kinematics in order to stabilize the camera images. Moving10
objects are detected by applying optical flow to the stabilized11
images followed by a filtering method, which incorporates both12
prior knowledge about the accuracy of the measurement and the13
uncertainties of the measurement process itself. The efficiency of14
this system is demonstrated in a dynamic real-world scenario with15
a walking humanoid robot.16

Index Terms—Disparity, egomotion (EM), kinematics, motion,17
optical flow (OF).18

I. INTRODUCTION19

THE ABILITY to visually perceive motion is believed to be20

highly beneficial for surviving in a dynamic environment.21

Therefore, it is not surprising to see that movement is one of the22

most important cues to attract visual attention [1]. Interestingly,23

most mammals are able to perceive it while they are moving24

themselves—either by rotating the head and the eyes, moving25

the whole body, or even while they are running. The gathered26

information is then used for controlling their own movement27

[2] or tracking moving objects by keeping them centered in the28

fovea [3].29

This motivates us to realize a neurobiologically inspired sys-30

tem for a humanoid robot, which is capable of measuring visual31

motion while the robot is moving itself. The effects of egomo-32

tion (EM) on the optical flow (OF), which is the so-called EM33

flow (EMF), produced by the robot makes this task quite chal-34

lenging. Primarily, this is caused by the large number of degrees35

of freedom and the complex influence of each robot segment36

on the position of the camera: For example, bending the knee37

may, in some situations, cause the robot, and hence the camera,38

to shift heavily to the side. In other situations, the robot might39

be standing on the other leg, and thus, knee bending does not40

affect the camera position at all. In general, the autonomous41

movement of a walking humanoid robot causes the camera42
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to undergo translatory and rotational movements in 3-D with 43

sudden velocity changes. 44

We propose a system for the computation of the OF induced 45

by independently moving objects, which we call object proper 46

motion (OPM). To achieve this goal under those demanding 47

conditions described earlier, we utilize a novel combination of 48

known algorithms to compute the OF, depth from binocular 49

disparity, and camera movement from kinematics. 50

An overview of the system is shown in Fig. 1. In the first step, 51

we use the forward kinematics to compute the movement of the 52

camera, occurring in the time interval from m to n = m + 1. 53

Combining this with depth information from binocular dis- 54

parity, we can estimate where a static point in the image at 55

time m moved due to EM and obtain the EMF. Hence, by 56

knowing where a point in the image at time n originated, we 57

can compensate the EM effect by moving the point back to its 58

original position in the second step, resulting in an image freed 59

from EM effects. Afterward, this image is used for a calculation 60

of the OF measured relative to the EMF. This step-by-step 61

movement estimation allows the reduction of the OF search 62

range, which does not only reduce computation time but also 63

decreases the possibility for ambiguities in the OF measurement 64

and thereby leads to qualitatively better results. Ideally, the 65

OF measured in this way should be zero for unmoving objects 66

and otherwise describe their proper motion. However, because 67

binocular disparity and OF are particularly noisy signals, we 68

finally incorporate the measurement errors into a filter mecha- 69

nism to reject invalid velocity estimations. 70

The details of this system are described in Section II. Prior 71

to this, we give a review of related work in Section I-A. In 72

Section I-B, we shortly summarize neurobiological evidence 73

to get an idea of the OPM estimation in the human brain. 74

Section III will demonstrate the feasibility of our approach 75

by showing the achieved results in a real-world scenario. In 76

addition, a detailed parameter discussion concerning the tuning 77

and the interrelations is given. 78

A. Related Work 79

The field, where the estimation of OPM during EM is 80

commonly addressed, is the car domain. Here, this estimation 81

is important to measure the speed of other cars relative to 82

the observing car, which allows to identify them as eventual 83

obstacles. Most approaches rely on the calculation of OF. This 84

flow is a superposition of the EMF and the OPM. A common 85

procedure to decompose the OF and extract the desired OPM 86

tries to estimate the movement of the camera from the visual 87
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Fig. 1. System overview. Used modules for the computation of OPM.

flow fields, where the underlying models for camera movement88

highly differ in complexity. An overview of the different ap-89

proaches and their characteristics is given in [4] and [5]. For90

proper extraction of the camera movement, it is hence crucial91

that the OF is primarily caused by EM effects and not by92

independently moving objects—which we cannot assume for93

a robot facing moving people.94

The effect of translatory EM on points in the image is highly95

influenced by their distances to the camera in a way that distant96

points induce smaller flow vectors than closer ones. Some of97

the approaches actually measure the distances of these points;98

however, the majority of methods assume that all points lie on a99

plane running through the position of the camera and the focus100

of expansion at the horizon. A more detailed explanation is101

given in [4].102

Whereas this procedure can be very suited for the car do-103

main, no such simplifying assumption about the environment is104

appropriate for autonomously acting robots in dynamic scenes.105

Thus, different ways to handle EM have to be found. The central106

idea of using existing knowledge about the movement of the107

camera was introduced by Lewis [6]. Letting a robot walk in a108

circle, he computes the OF resulting from the robot’s movement109

over a textured ground. In conjunction with the robot’s gait110

phase and joint angles, a neural network is trained to learn the111

EMF. Afterward, differences between this EMF and the mea-112

sured OF can be used to detect obstacles in the path of the robot.113

Whereas the movement of the robot in [6] was very con-114

stricted, Fidelman et al. proved that EMF can be learned even115

for more complex movements [7]. In their approach, the neural116

network is provided with the recent OF calculation in addition117

to the walk phase and joint angles of an AIBO robot. The neural118

net predicts the flow for the next time step, allowing to compare119

it with the actually measured OF in order to classify differences120

as OPM.121

Meanwhile, the idea of calculating the movement of the cam-122

era and using it to compute the EMF has also been described for123

the car. In [8], readings from gyroscopic sensors or GPS signals124

are applied to estimate the camera movement. Likewise to other125

approaches in cars, the depth is not measured but estimated126

from the plane assumption, as described earlier.127

Another approach using the AIBO platform actually com-128

putes the EMF, depending on the measured robot joints instead129

of using neural networks [9]. However, all the results of the130

provided approaches are not very promising, which might be131

due to a missing integration of depth information. In [7] and132

[10], depth information is implicitly included by providing the133

calculated OF field, which depends on the distances of points to134

the camera. Nevertheless, this approach cannot cope properly135

with the objects having a distance different from the objects in 136

the training phase: The difference in distances results in an OF 137

deviating from the learned one. Hence, even nonmoving points 138

can be classified as OPM. 139

The combination of knowledge about the robot movement 140

with distance information and OF measurements is described 141

in [11]. Having cameras fixed to the robot, Overett et al. try 142

to measure the odometry data and compute the resulting EMF, 143

considering the depth. This flow is afterward subtracted from 144

the estimated OF, and residual vectors are used to indicate the 145

OPM. Unfortunately, the noisy data from odometry force the 146

authors to manually measure the distance passed by the robot, 147

preventing the system from running in real time. 148

Aside from [12], none of the presented methods precomputes 149

the movement of the camera and searches for movement rela- 150

tive to it. In acquiring the effects of camera movement superim- 151

posed with those effects of independently moving objects, the 152

OF needs to analyze a higher range of movement. This does 153

not only increase the computation time but also corrupts OF 154

estimations by producing increased ambiguities. 155

Fardi et al. overcome this problem in their pedestrian detec- 156

tion approach by using a compensation similar to the one in our 157

system in order to cancel out the known EM of a car [12]. The 158

compensation and succeeding estimation of OF are computed 159

on a preselected region of interest, where the depth information 160

consists of a single measurement gained from a laser range 161

scanner. 162

Very recently, Rabe et al. proposed another solution by 163

computing flow and disparity from visual features tracked in the 164

image [13]. Fusing the results in a Kalman filter provides 6-D 165

information about location and motion for a set of points. To- 166

gether with the readings from inertial sensors, this information 167

is used to compensate the EM effects and obtain the actual 3-D 168

OPM. The results are very convincing, at least for the moderate 169

movement of a car. 170

However, to our knowledge, no procedure was presented 171

which is able to handle the noisy character of depth, OF, and the 172

fierce effects of camera movement induced by a legged robot, 173

combining them to make reliable estimations of OPM. 174

B. Neurobiological Evidence 175

From the previous section, we can conclude that the detection 176

of OPM during EM is a very challenging task. Thus, we have 177

to ask ourselves how humans and most mammals are able to 178

solve it with so much prosperity. For example, humans, running 179

at their top speed, still manage to perceive people standing in 180

some distance, waving their hands, despite the shaking of the 181
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whole body. In this section, we will summarize some evidence182

from neurobiological and behavioral studies, serving us as183

inspiration for our proposed method.184

An interesting review to the perception of motion is given by185

Albright [3], where some important stages of motion processing186

in the brain are explained. These stages seem to be covered to187

a great extent by the so-called “M pathway,” of which we are188

particularly interested in the processing of two areas in superior189

temporal sulcus: the middle temporal (MT) visual area and190

medial superior temporal (MST) area.191

There is some evidence that the directional selectivity of192

neurons in MT can be interpreted as serving the creation of a193

representation for the retinal flow [3], which is somehow similar194

to the technical OF. Maunsell and Van Essen found neurons in195

this area to be selective to binocular disparity [14].196

The created retinal flow is analyzed in area MST, where the197

dorsal subdivision of MST area (MSTd) seems to pay special198

respect to OF patterns occurring during EM [15]–[18]. For the199

estimation of EM effects, the distances of points to the observer200

are again crucial for correct motion estimation: While points201

further away than the point of fixation move in the same direc-202

tion as the moving observer, nearer points move in the opposite203

direction. Roy and Wurtz proofed that MST shows exactly this204

motion selectivity dependent on binocular depth [19].205

In addition, behavioral studies suggest that correct motion206

estimation also needs to include vestibular information, encod-207

ing changes in head direction [20]–[22]. On a neuronal level,208

this was confirmed by studies with MSTd cells that are reactive209

during EM in darkness, indicating usage of the vestibular210

system [23]–[25].211

Nevertheless, without one additional aspect, the perception212

of moving objects would be difficult. During fixation of a213

moving object, the object is kept in the center of the fovea,214

resulting in no displacement on the retina. Because objects are215

perceived as moving even during smooth eye pursuit, the per-216

ceived movement must be a superposition of the object’s motion217

on the retina and eye movement. MST neurons were found to218

perform this kind of summations during eye movement [26]219

and also for static eye positions [27].220

We do not try to model the neural activities in detail, but we221

would rather argue in favor of understanding and transferring222

the abstracted biological principals. We will show that follow-223

ing this paradigm leads to a system which is advantageous for224

dynamic behavior in dynamic scenes. For example, supposing225

the system would not incorporate the knowledge of the head226

movement, it would have to estimate it based on the flow and227

depth information—with the described drawbacks in dynamic228

scenes. Moreover, without the incorporation of depth, the re-229

sulting system could not perform better than the ones using230

model assumptions of the depth. Finally, without the separation231

of EM estimation, the system could not perceive movement at232

all while moving itself.233

II. APPROACH234

In the following, we will describe the details of our approach,235

starting with the computation of the EMF in Section II-A. The236

compensation of EM and the estimation of the relative OF are237

afterward explained in Section II-B. In Section II-C, we present 238

the filtering applied to the relative flow. 239

A. Computation of EMF 240

The computation of EMF results in a flow field Em = {em
i } 241

indexed by i, which describes where each point in image Im at 242

time m has shifted to in In at time n, caused by the movement 243

of the camera. For this computation, it is assumed that the 244

environment is static and the points did not move themselves. 245

To account for the fact that the absolute values of the vectors em
i 246

highly depend on the distances of the corresponding points to 247

the camera, the effect of camera movement is calculated in a 248

3-D camera-related space. Therefore, we first combine each 249

2-D point (xm
i , ym

i ) in the image with its binocular disparity 250

dm
i to define a 3-D point in homogenous image coordinates as 251

pm
I,i = (xm

i , ym
i , dm

i , 1)T . (1)

This point can then be reconstructed in camera coordinates 252

by computing the homogenous transformation matrix TC←I 253

from image to camera coordinates analogous to [28] and by 254

multiplying pm
I,i with it 255

pm
C,i = TC←Ipm

I,i. (2)

To compute the position of each point relative to the camera 256

at the next time step, we have to know how the camera 257

moved. This knowledge is obtained from the robot kinematics. 258

Therefore, we use the robot state vector sm which contains 259

the position of the upper body, as well as the angles of all 260

joints at time m [29]. With this vector, we can compute the 261

forward kinematics, as presented in [30], returning us the 262

transformations from the initial world-coordinate system to 263

each robot segment, including the transformation from world 264

to camera coordinates Tm
C←W . Inverting this transformation 265

results in Tm
W←C , which describes the transformation from 266

camera to world coordinates. In addition, we can compute 267

the current transformation Tn
C←W by applying sn. Because 268

this calculation is with respect to an initial world point, the 269

resulting transformations also encode camera displacements 270

caused by the movement of the robot base. 271

Assuming a static point pm
C,i, the new position pm

C,i can be 272

calculated from transferring the point to world coordinates by 273

multiplying the last transformation Tm
W←C and passing it back 274

to camera coordinates with the actual transformation Tn
C←W 275

pn
C,i = Tn

C←W Tm
W←Cpm

C,i. (3)

This process is shown in Fig. 2. 276

Because we are not interested in the new 3-D-position of 277

the points but rather in the 2-D-flow in the image, we have 278

to project each point back into the image plane In. We do 279

this by computing a homogenous projection matrix TI←C , as 280

described in [28], and multiply the new point Pn
C,i with it 281

pn
I,i = TI←Cpn

C,i. (4)

Note that the spatial constance of the matrices TC←I , Tm
W←C , 282

Tn
C←W , and TI←C allows us to precompute their product, 283
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Fig. 2. (a) Point pm
C,i in camera and world coordinates. (b) Description of the

static point at time n, using the camera transformations.

resulting in one single transformation matrix for each time step,284

which is multiplied with each point pm
I,i.285

Knowing pn
I,i and pm

I,i, the shift of a point in the image plane286

due to camera motion can now be expressed by287

em
i =

(
xn

i − xm
i

yn
i − ym

i

)
. (5)

The reliability of this shift vector depends on the quality of the288

depth component zm
i of pm

C,i and the kinematics accuracy for289

the robot’s movement estimation from time m to n.290

For the latter, we assume an increasing error with increasing291

movement amplitude. By expressing the camera translation in292

this time interval with tm
d and its rotation with tm

r , we can293

approximate the kinematics-based variance (σm
k )2 by294

(σm
k )2 = ‖tm

d ‖2 + ‖tm
r ‖2 . (6)

Note that this variance is spatially independent and only de-295

pends on the robot’s movement.296

The credibility of the depth measurement zm
i relates to the297

amount of correlation found by the disparity algorithm [31]298

between the left and the right camera image. This is expressed299

in terms of some confidence value cm
i ∈ [0, 1]. In addition, we300

have to account for the decreasing accuracy with increasing301

distance. In [32], it is shown that sensitivity for depth estimation302

z from disparity d decreases with the squared distance303

∂d

∂z
= − b · f

z2 · q (7)

where b denotes the baseline, f is the focal length, and q is the304

pixel size of the camera.305

Because we want to describe the likelihood for em
i in terms306

of some Gaussian probability distribution, we express a decay307

of reliability in terms of an increasing covariance Σm
e,i by308

subsuming the different aspects of credibility309

Σm
e,i = 1 · we

(
wk (σm

k )2 + wdσd (zm
i )2 + wcσc (cm

i )2
)

(8)

with310

σd(z)2 =
z2 · q
b · f (9)

σc(c)2 = (c + k1)2 + k2,

k1 =
1
2

(
σd(zmin)2 − σd(zmax)2 − 1

)
k2 =σd(zmax)2 − k2

1. (10)

Fig. 3. (a) Spectrum of the OF motion if EM effects are not canceled out in
advance. The solid line visualizes an assumed OPM of two-pixel displacement
magnitude in each direction, and the dashed line denotes an assumed EM effect
of three-pixel displacement. The interval which has to be acquired by the OF is
a superposition of the two. (b) Reduced spectrum for searching relative to EMF.

The identity matrix is denoted by 1, and zmin and zmax are 311

the minimum and maximum assumed distances, a behaviorally 312

relevant point might have from the camera. The constants k1 313

and k2 in (10) use these distances to ensure that the vari- 314

ance σc(c = 0)2 equals σd(z = zmax) and σc(c = 1)2 equals 315

σd(z = zmin), respectively. This is useful because it adjusts the 316

scales of both variables to each other. 317

The factors wc, wd, and wk are utilized to weigh the individ- 318

ual influence of ambiguities occurring during the measurement 319

of confidence, distance, or kinematics. They should be based on 320

the present scene, the used disparity algorithm, and kinematics 321

precision. Finally, the scalar we is used to adjust the range of 322

the whole covariance Σm
e,i to the covariance Σm

r,i computed for 323

the OF (see hereafter). 324

B. Computation of Flow Relative to EMF 325

Because we have computed the effects of EM on the image, 326

we are now able to compute the OF Rm = {rm
i } between Im 327

and In relative to this EMF. In comparison to other approaches 328

which cancel out the EM effects after the computation of the 329

OF, this reduces the spectrum of the motion to be acquired. 330

This effect, which is shown in Fig. 3, does not only reduce 331

computation time but also improves the OF estimations by 332

reducing ambiguities, a fact which is evaluated in Section III. 333

We can compensate the EM effects by warping the images. 334

The two possible approaches of forward and inverse mapping 335

are discussed in detail in [32]. 336

In our case, forward mapping can be written as 337

Ĩm
(
pm

I,i + em
i

)
= Im

(
pm

I,i

)
(11)

where Ĩm is equal to the old image Im but it is freed from 338

the measured EM effects. This kind of forward mapping has 339

two major drawbacks. Because em
i usually encodes real-valued 340

shifts, the data points pm
I,i + em

i may not lie inside the grid 341

and require complicated interpolations. In addition, it is not 342

guaranteed that each point in the warped image is targeted by 343

the sum of the original position and shift, leading to holes in the 344

image. 345
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Fig. 4. (a) Disrupted results of pixelwise warping under extreme body move-
ments. (b) Effect of filling-in holes in the EMF with the averaged flow.

The more convenient solution lies in the usage of backward346

mapping to warp the actual image In back to Ĩn347

Ĩn
(
pm

I,i

)
= In

(
pm

I,i + em
i

)
. (12)

Because the data points are passed as arguments for the result-348

ing image Ĩn, holes in the image cannot occur. The problem349

of real-valued shifts is tackled by using bilinear interpolation350

in the source image. Aside from the deviations caused by351

inaccurate depth measurements, Ĩn and Im should only differ352

in points with individual object motion.353

Nevertheless, in some situations with extreme body move-354

ment, holes in the depth image Dm with cm
i = 0 can cause355

artifacts in the pixelwise warped image, as shown in Fig. 4(a).356

These artifacts lead to errors in the computed OF, and hence,357

they can affect surrounding regions even if those regions have358

valid depth estimations. In a first step, these artifacts are359

reduced by filling invalid regions with suitable assumptions360

obtained from valid EMF estimations. We utilize a rather361

simple model by taking the average EMF v̂m
E gained from362

valid depth estimations to fill the gaps [see Fig. 4(b)]. To363

account for the decreased reliability of the warped image, and364

hence of the OF, we create a penalty map P , which is high365

for points near- and inside invalid depth regions and zero 366

otherwise 367

P
(
pm

I,i

)
=

{∞, if ∃j ∈ Ωi with cm
j = 0

0, otherwise.
(13)

Ωi denotes the indices of all points in an eight neighborhood 368

around pm
I,i. 369

By passing Im and Ĩn to the OF algorithm described in 370

[33], we get a velocity estimation rm
i for each point, which is 371

relative to the estimated EMF. The algorithm also computes a 372

covariance Σm
C,i, which gives a confidence measure for the OF 373

vectors, assuming pixelwise independent Gaussian noise. 374

For the inclusion of the warping-based penalty, we compute 375

the compound variance Σm
r,i at point pm

I,i as 376

Σm
r,i = 1 · P (

pm
I,i

)
+ Σm

C,i. (14)

For invalid points, the choice of 1 · P (pm
I,i) � Σm

C,i ensures a 377

negligible influence of the confidence-based variance. This is 378

necessary because the artifacts in the warped image can create 379

artificial edges and thereby decrease Σm
C,i locally. 380

The used OF algorithm [33] realizes probabilistic prediction 381

over time, considering spatial relations for the transition. This 382

enables the system to iteratively make reliable calculations of 383

motion in unstructured image regions by taking the previous 384

estimations into account. The ideal outcome of this algorithm 385

would be a vector field, which is zero for unmoving objects and 386

otherwise denotes their proper motion. 387

However, because the OF and the depth measurements from 388

disparity are very noisy signals, we need some more filtering 389

for the detection of OPM. This is described in the following 390

section. 391

C. Detecting OPM 392

In the recent sections, we introduced two approaches for the 393

calculation of image flow, which use very different methods and 394

hence show different characteristics. Because the computation 395

of the EMF is based on disparity and kinematics, it can acquire 396

the effects of EM on image points, as long as the points are 397

not moving. In contrast, the OF also works for moving points. 398

By adding the EMF to the relative OF, we get an overall flow, 399

which designates the compound retinal movement of OPM and 400

EM effects. For unmoving points, this flow should equal the 401

EMF, whereas it should be different for moving points. In this 402

section, a measurement for the significance of this distance is 403

introduced and used to extract OPM vectors from the OF. 404

This measurement is derived from a stochastic assumption 405

about the estimated flows, the depth, and the images. Therefore, 406

we have to define some stochastic variables for each point pI,i 407

in the image, describing a distribution of all measurements.1 408

Each vector of the overall flow mentioned earlier is represented 409

by the variable ϑi, whereas εi describes the EM vector for each 410

point pI,i. The random variables I = {Im, In} and D = Dm 411

specify the observed source and depth images. 412

1This procedure is identical for each time step; thus, we drop the time indices
for convenience.
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The principal idea for the approach is to estimate the prob-413

ability of measuring the same velocity νi from the EMF and414

the compound OF, assuming the corresponding point is static.415

That is, if some point did not move, the velocity described by εi416

should not differ too much from ϑi, and the likelihood to mea-417

sure some identical velocity νi from both methods should be418

high. In contrast, a moving point results in different outcomes419

for εi and ϑi, and the likelihood to measure the same velocity420

νi from the two methods is very low. Concluding a high joint421

probability ρ(ϑi = νi, εi = νi, I,D) indicates a static point,422

whereas a low probability marks a moving point.423

Reflecting our assumptions about the dependencies of εi,424

ϑi, D, and I , this joint distribution can be decomposed to the425

following:426

ρ(ϑi = νi, εi = νi, I,D) = ρ(ϑi = νi|εi, I)
ρ(εi = νi|D) ρ(I) ρ(D). (15)

Because we make no prior assumptions about the source im-427

ages and the depth, the corresponding variables are uniformly428

distributed, and hence, they have a negligible influence on the429

distribution. Using the precomputed results for the EMF and430

OF, we can approximate the conditional distributions with the431

following:432

ρ(ϑi =νi|εi, I) ∝ Nνi
(ri + ei,Σr,i) (16)

ρ(εi =νi|D) ∝ Nνi
(ei,Σe,i). (17)

Adding ei in (16) accounts for the warping of the image—433

whereas ri encodes a flow relative to the EMF, the sum of ei434

and ri makes it an absolute flow and allows the comparison435

with the EMF. With this approximation, the joint distribution is436

proportional to the product of two Gaussians, being defined as437

Nνi
(ri + ei,Σr,i)Nνi

(ei + Σe,i) = Li · Nνi
(ci,Ci) (18)

with438

ci =Σr,i(Σr,iΣe,i)−1ei + Σe,i(Σr,iΣe,i)−1(ri + ei)

Ci =Σr,i(Σr,iΣe,i)−1Σe,i

Li =Nei
(ri + ei,Σr,i + Σe,i).

A visualization of this product is shown in Fig. 5. The mean439

value ci of the resulting distribution can be interpreted as that440

identical velocity, which is most likely to be measured by441

both algorithms—the EMF and the OF, while finding a value,442

which fits the hypothesis of a common velocity best, is always443

possible, the factor Li is a measure to describe how well ci444

actually fits in the light of the calculated displacements and445

variances. For the evaluation of OPM, we are not interested446

in the value of the vector ci but whether such vector is likely447

to occur. Thus, the rejection of OF estimations is based on this448

value Li and can be further simplified by applying the logarithm449

to Li450

Li =Nei
(ri + ei,Σr,i + Σe,i)

= z · e− 1
2 (ei−(ri+ei))

T(Σr,i+Σe,i)
−1(ei−(ri+ei))

∝ − ri
T(Σr,i + Σe,i)−1ri. (19)

Fig. 5. One-dimensional plot of the resulting distribution Li · Nνi(ci, Ci)

from Nνi (ri + ei,
∑

r,i
) and Nνi(ei,

∑
e,i

), as well as the likelihood L.

That is, the decision whether some optically measured velocity 451

is classified as OPM is based on the absolute value of that 452

velocity scaled by the variances of the EMF and the OF. 453

Defining rT
i (Σr,i + Σe,i)−1ri as squared Mahalanobis norm 454

‖ri‖2
M , we can conclude that a big Mahalanobis norm indicates 455

a moving point; thus, we rely on the computation of the OF. 456

Formally, this can be expressed as 457

oi =
{

0, if ‖ri‖M < θM

ri, otherwise.
(20)

III. EXPERIMENTS AND EVALUATION 458

In this section, we would like to show the feasibility of our 459

approach by demonstrating its abilities in a scenario where 460

the combination of our cues is highly recommendable. This 461

scenario shows typical interaction with ASIMO and makes the 462

detection of OPM a difficult task. Nevertheless, we evaluate our 463

results quantitatively and qualitatively, showing robust OPM 464

measurements unseen for legged robots. 465

We will also evaluate the system design by analyzing the re- 466

sults of the different steps and their integration for the detection 467

of OPM. Further on, the benefits of our step-by-step movement 468

estimation will be demonstrated by comparing computation 469

time and results with the outcome of an overall estimated OF. 470

A. Experiment Description 471

The experiments are carried out with a Honda ASIMO robot, 472

as presented in [34]. The computation is performed on a Pen- 473

tium 4 single core with 3.4 GHz, and the images are captured 474

with a constant frame rate of 12 Hz. 475

In our scene, ASIMO is initially located in front of one 476

person P1 (black shirt), standing at a distance of approximately 477

2.8 m. A second person P2 (white shirt) is approaching the 478

robot from behind, and both people walk to the right, pass- 479

ing ASIMO’s view field (see Fig. 6). Meanwhile, ASIMO is 480

walking forward on a path that can roughly be described as an 481

inverted S-shape, which is superimposed with a rotation of the 482

body at about 45◦ in the second half. From the endpoint, he 483

walks backward toward its starting position, turning his body 484
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Fig. 6. Visualization of ASIMO’s walking path by the dashed line and those
of persons P1 and P2 by the solid lines. (a) Scenario during ASIMO’s forward
movement. (b) During its backward movement.

Fig. 7. Plot of velocities and acceleration for translatory (top row) x- and
(center row) y-movement, as well as rotation around the (bottom row) z-axis.
The movement in these plots depicts the movement of the left camera. The time
steps where the evaluation images were taken are highlighted by gray verti-
cal bars.

straightforward again while P2 is approaching and passing him485

to the right.486

To show the high dynamic movement occurring during the487

experiments, we plot the camera movement and acceleration488

over time in Fig. 7. The plot shows the translatory movement in489

the x- and y-direction, as well as the rotation around the z-axis490

of the left camera.2491

The important aspect in this scenario is that the view field is492

dominated by moving people or objects. This makes a modeling493

of depth or the environment, as described in Section I-A, inap-494

propriate because each person would violate the expectation.495

Due to the dominance of OPM in the view field, the estimation496

of camera movement from OF would also not be possible497

without segmentation information.498

For the evaluation, we extract four images from the captured499

stream, which are shown in column 1 in Fig. 11. They are500

2The movement of the remaining components is negligible and hence not
shown.

chosen to represent the different aspects of interaction sce- 501

narios. The first image (1, a) is used to evaluate the system’s 502

ability to detect movement at a high distance (about 2.8 m) 503

and taken while the robot is slowly moving forward. Image 504

(1, b) shows the two people walking from the left side of the 505

image to the right, with P2 walking closer to the robot than 506

P1. This scene is considered as key scene, because both people 507

are within the interaction range and separable based on their 508

different velocities. In addition, ASIMO is walking forward 509

with moderate speed. The pictures (1, c) and (1, d) are captured 510

while ASIMO is walking backward and stepping from one foot 511

to the other. Image (1, c) is chosen to examine the ability of 512

detecting motion for considerable small body parts. During 513

image (1, d), the robot abruptly performs an additional rotation 514

of the upper body. This scene will demonstrate the system’s 515

ability to handle jerky camera rotation (see Fig. 7), and it will 516

also be used to evaluate the benefits of a step-by-step movement 517

estimation. 518

B. Parameter Evaluation 519

The overall aim of the system is the detection and exact esti- 520

mation of OPM relative to the EM for all points in the image. To 521

evaluate the influence of different parameters on the system’s 522

performance, we did the following investigations. The choice 523

for the motion range to be captured by the system is based 524

on the magnitude of movement in our scene. To cope with 525

people passing very close to the robot, the acquired range of 526

displacements for the OF is chosen in a range from [−10, 10] 527

in the x-direction to [−2, 2] in the y-direction, using an image 528

resolution of 200 × 150 pixels. For the calculation of the overall 529

OF, i.e., the EM-uncompensated flow, the displacements are 530

chosen in the range from [−22, 22] in the x-direction to [−4, 4] 531

in the y-direction, accounting for the fact that this flow has 532

to acquire the maximum range of movement occurring in the 533

stream, which is composed of EM effects superimposed with 534

OPM. The classification of OPM as in (20) depends on the 535

relative flow ri, the variances Σr,i, and Σe,i, as well as the 536

threshold θM . Because ri and Σr,i are measured, and hence do 537

not depend on any parameter, we will focus on the evaluation 538

of Σe,i and θM . 539

Σe,i is based on the choice for we, wk, wd, and wc. Setting 540

we = 0.07 adjusts the scale of Σe,i to match the measured Σr,i. 541

In our evaluation, we neglected the influence of the kinematics- 542

based variance by assigning wk = 0. This accounts for the fact 543

that the worst case error from kinematics is lower than 2 mm, 544

owing to ASIMO’s high-precision encoders and its stiffness. In 545

comparison to this, the resolution in distance estimation from 546

disparity drops to 69 mm for a point that is 2.5 m away from 547

the camera,3 assuming that the disparity algorithm found the 548

right displacement. The error increases by 69 mm for each one 549

pixel of wrong displacement. 550

The remaining parameters wd, wc, and θM are chosen based 551

on the receiver operating characteristic (ROC) of the system in 552

order to find the optimal parameter settings for OPM detection. 553

3From (7): b = 74, q = 0.004, f = 4.902, and ∂d = 1 result in ∂z = 68.9
(neglecting dimensions).
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Fig. 8. (a) Systems SP and SE dependent on the weights wc and wd.
(b) Plot of SE and SP dependent on θM .

Therefore, we create some ground-truth data G(i) ∈ {0, 1}554

from the four images in Fig. 11, indicating for each pixel i555

whether it moved [G(i) = 1] or not [G(i) = 0]. We also define556

our system’s output as557

Φ(i) =
{

1, if oi = ri

0, otherwise.

Further on, the sensitivity SE and specificity SP are defined as558

SE =
TP

TP + FN
(21)

SP =
TN

TN + FP
(22)

with559

TP = |{i|G(i) = 1 ∩ Φ(i) = 1}| (true−positive)
FP = |{i|G(i) = 0 ∩ Φ(i) = 1}| (false−positive)
TN = |{i|G(i) = 0 ∩ Φ(i) = 0}| (true−negative)
FN = |{i|G(i) = 1 ∩ Φ(i) = 0}| (false−negative).

For the evaluation of wc, wd, and θM , we use an iterative560

procedure. Because the threshold θM depends on the choice561

of wc and wd, whereas these weights are determined based562

on the system’s output which depends again on θM , there is563

circular dependence between the three evaluated parameters.564

For this reason, we start with a fixed θM = 0.1, rejecting565

almost no velocities, and vary wc ∈ [0, 1] and wd accordingly566

by choosing wd = 1 − wc. The resulting SE and SP for these567

values, as shown in Fig. 8(a), show a rapid decline of SE with568

increasing wc and decreasing wd. Hence, σd(z)2 appears to be a569

more suitable approximation of the EMF variance than σc(c)2.570

Those wc and wd which elicit equal values for SE and SP571

are considered as optimum, because they represent a tradeoff572

between a high true-positive rate and a high true-negative rate.573

As shown by the intersection of SP and SE in the plot, this574

results in a choice of wc = 0.1 and wd = 0.9, respectively.575

For θM , we use these determined weights and vary576

θM ∈ [0, 5]. The resulting ROC curve in Fig. 8(b) shows a plot577

of 1 − SP against SE. Again, the best choice for θM is deter-578

mined from equal SE and SP values, resulting in θM = 0.5579

for our scenario. The described process is repeated iteratively580

until convergence, which is achieved after two iterations in our581

experiments. In addition, the obtained parameters have also582

Fig. 9. Classification border dependent on the relative velocities, accumulated
variances, and θM .

been validated on a large-range image sequence by means of 583

visual inspection. 584

The described evaluation shows that the choice for θM is cru- 585

cial for the system’s performance; thus, we also perform some 586

qualitative analysis of this threshold, which is useful for cases 587

in which no ground truth is available. Fig. 9 shows the relation 588

of the x-component4 of relative velocities rx
i , accumulated 589

variance σxx
e,i + σxx

r,i , and threshold θM . The surface labeled by 590

a white “2” shows the maximal θM value for each combination 591

of relative velocity and accumulated variance, which would 592

classify this specific combination as OPM. For example, the 593

point 1 with rx
i ≈ 3 and σxx

e,i + σxx
r,i ≈ 5.6 is rejected from 594

OPM with θM > 1.23. The points 1, 2, and 3 correspond to 595

those points shown in Fig. 10. 596

The plane labeled by the white “1” visualizes the choice 597

θM = 0.5: Those points on the mesh lying higher than this 598

plane are classified as OPM, those below are rejected. 599

In conclusion, the choice for θM can simply be done by 600

choosing one combination of relative flow and variance, which 601

should serve as a classification border. 602

C. Quantitative Results 603

We use the ROC of the θM evaluation as quantitative quality 604

measure for the system’s ability to detect OPM. The accuracy 605

of the OPM is not evaluated for two reasons. Assuming an 606

accurately estimated EMF, the accuracy of OPM is dependent 607

on the OF precision, which is investigated in [33]. In case of an 608

inaccurate EMF, the resulting OPM would not designate pure 609

object motion but a mixture with effects from EM. As can be 610

seen hereafter, this does not seem to be the case in our scenario, 611

otherwise the OF would contain systematic errors. 612

To summarize the overall system performance in one single 613

value, we compute the area below the ROC curve in Fig. 8(b). 614

Our system achieves a value of 0.92, where 1.0 would indicate 615

an optimal classifier. This value is quite high despite the fact 616

that the patchwise computation of disparity and flow cannot 617

determine exact object borders but always tends to surround 618

objects. 619

By setting θM = 0.5, an SE of 0.89 and an SP of 0.90 are 620

achieved, i.e., 89% of all moving pixels are detected, and 90% 621

of all rejected points are actually not moving. 622

4The results are analogous for the y-component.
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Fig. 10. This figure shows the computed EMF, relative OF, and OPM. The direction of movement is visualized by arrows, whereas arrow length and gray value
visualize the speed. Exemplarily, the velocities of three points are highlighted, and their representing normal distributions are shown. The Mahalanobis norm used
for filtering is visualized qualitatively as the distance between the normal distributions.

One iteration of the system lasts about 400 ms. The vast ma-623

jority is spend on the computation of the OF estimation, which624

takes in an average of 387 ms whereas the computation of EMF625

and warping and detection of OPM take less than 5 ms each.626

D. Qualitative Results627

Fig. 10 shows the computed velocities and the rejection628

mechanism exemplarily for the three points 1, 2, and 3 of our629

key scene. An overall inspection of the results and their quality630

is given later on.631

The EM vector for point 1 in the image reflects the forward632

movement of the robot by showing a displacement pointing633

away from the center of expansion located on person P2. Be-634

cause the point is relatively far away, the EM vector has a small635

absolute value and also shows a high variance in the plotted636

normal distribution. The corresponding OF vector represents a637

slow movement to the right and exhibits a small variance due638

to the high amount of image structure in the surroundings. This639

small variance leads to a high Mahalanobis norm in (20), so that640

the OF vector is maintained as OPM.641

The second point lies on the wall, which is more than 9 m642

away from the camera. Hence, ei is almost zero, and it is643

accompanied by a high variance. Because the lack of image644

structure in this region causes also a high variance of the OF,645

the Mahalanobis norm is small even so the Euclidean distance646

between ei and ri is similar to the one for point 1. Accordingly,647

this flow vector is rejected.648

Point 3 is clearly indicated as OPM, resulting from a large649

distance between ri and ei in combination with a very low650

variance Σe,i which accounts for the small distance to the651

camera.652

To visualize the results for the entire view field, Fig. 11 shows 653

the four left camera images taken from the described stream of 654

571 images. 655

The depth dependence of the EMF prevents the system from 656

operating on areas with a lack of depth information. At the left 657

side of the image, this originates from the displacement shift 658

used for disparity computation, whereas the right, top, and bot- 659

tom borders are the effect of image rectification. The remaining 660

area is marked by a white rectangle in the gray images. 661

Columns 2, 3, and 4 in Fig. 11 visualize the different flow 662

fields for these marked areas. The gray value in these images 663

represents the flow magnitude for each pixel, whereas the exact 664

flow vector is shown for every 17th pixel in the x- and y- 665

direction. 666

The radial expanding EMF typical for pure forward trans- 667

latory movement is clearly visible in image (2, b), whereas 668

the slow robot movement during scene A causes this flow to 669

be visible only for very close points at the bottom. The flow 670

field in (2, c) is characterized by the robot’s translation to the 671

right. The depth dependence of the EMF is visible by showing 672

larger velocities for points closer to the camera than for more 673

distant points. Despite the robot’s translation to the right during 674

image (1, d), the associated flow field in (2, d) is dominated 675

by the rotation of the robot’s upper body to the left. Because 676

the EMF for purely rotational movement does not depend on 677

depth, this flow contains almost equal velocity vectors to the 678

right. However, it is observable in all scenes that the EMF 679

caused by close objects occupies areas which are bigger than 680

the objects themselves. This is the already mentioned effect 681

of the patchwise disparity estimation. The holes in the EMF, 682

which are particularly visible in image (2, d), are the results of 683

insufficient texture. 684
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Fig. 11. Column 1 shows the different images captured from the stream. The EMF, OF, and OPM for the area surrounded by the white rectangle are presented in
columns 2, 3, and 4 at the right of their corresponding gray images.

The relative OF in column 3 clearly acquires the people’s685

movement to the right in images a, b, and d. It also captures the686

divergent movement of the arms of P1 and P2 in image c, which687

is caused by handing over the stamper from the left to the right688

person.689

All four flow fields include false-positive velocities. For690

fast movement as in scenes b and d, this originates from the691

flow spatiotemporal prediction which makes person P2 drag692

a “trail” of movement behind it (for further explanations of693

this effect, see [33]). The remaining errors can be classified694

as correspondence problems occurring at straight borders and695

textureless regions.696

The OPM shown in the last column contains almost none of697

these false positives, except for some small patches in image698

(4, d). In particular, the described “trail” of movement is re-699

moved. Moreover, the amount of false negatives is considerably700

low and only visible in image (4, b) for some areas on the arm701

of person P2.702

The qualitative effect of the preceding EM compensation 703

and subsequent OF estimation in contrast to the computation 704

of the absolute OF without EM compensation becomes visible 705

in a comparison of the overall flows shown in Fig. 12. They 706

should acquire a superposition of OPM and EMF. Whereas the 707

flow in Fig. 12(a) derives from a summation of the EMF (2, d) 708

and relative flow (3, d), the one in Fig. 12(b) is computed on 709

the uncompensated input images. Because the person P2 is 710

moving contrarily to the camera’s rotation, it should exhibit 711

large velocities to the right, which is actually the case in 712

Fig. 12(a). In contrast, the uncompensated flow captures neither 713

P2’s movement nor the movement of the camera. Evidently, the 714

abrupt change in camera rotation forces the OF algorithm to 715

cope with a measurement conflicting with the assumption from 716

temporal integration and hence results in an inhomogeneous 717

distorted flow field. 718

The influence of a displacement vector set that is more than 719

four times as large as the one of the relative flow is also reflected 720
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Fig. 12. This figure shows a comparison between the overall flow (a) with
preceding EM compensation and (b) without.

by the computation time. Whereas the estimation of the relative721

flow takes nearly 400 ms, the computation of the overall flow722

lasts almost 3000 ms.723

E. Discussion724

The evaluation shows that the presented integration of EMF725

and OF is suitable for real-world scenarios, which is also726

reflected by the high SE and SP computed on ground truth727

images created for the key scenarios of robot interaction in728

indoor scenes. The rejection based on the Mahalanobis norm729

of the relative OF includes the reliability of depth and flow730

estimations and allows the compensation of qualitatively weak731

measurements by stronger ones. For example, distant and,732

hence, unreliable points can show OPM if the corresponding733

OF estimation is credible and vice versa.734

Running with 2.5 Hz, the system is at the border to being735

real-time ready. Nevertheless, a higher frame rate is desired736

and necessary for the interaction with the robot. Most of the737

computation time is spend for the estimation of the OF, and it738

was high in our scenario due to the large ranges required for739

a proper acquisition of people walking close to the camera. In740

more sophisticated interaction scenarios, where people kept a741

distance of approximately 1 m, we reduced the displacement742

range and ran the system with 7 Hz.743

By comparing an OF without preceding EM compensation744

with our relative one, we could prove that the proposed step-by-745

step movement estimation is a key feature for the reduction of746

both computation time and ambiguities in the OF measurement.747

The EMF used in our system proved to be quite accurate.748

As we pointed out, inaccuracy in the EMF would still enable749

the system to detect OPM, at least if the inaccuracy is modeled750

accordingly by the flow variance. However, the estimated OPM751

would not acquire pure-object-caused motion but a superposi-752

tion with the EMF and hence be inaccurate.753

Unfortunately, our system cannot cope with errors that occur754

likewise in OF and disparity estimation. Both these methods755

search for correlations between images in a patchwise manner.756

This has two implications for our system: It fails to detect757

movement for large homogenous regions and blurs object758

boundaries due to the patchwise computation. The used tempo-759

ral integration of the OF described in [33] helps to overcome760

the first aspect; hence, it does not occur frequently for the761

continuous movement shown in our evaluation. Nevertheless,762

to cope with the second aspect, the system would need to 763

incorporate more accurate information about motion and depth 764

discontinuities. 765

IV. CONCLUSION 766

In this paper, a system being capable of perceiving OPM 767

from a moving platform has been presented. The effects of a 768

step-by-step movement estimation, including the compensation 769

of EM prior to the OF computation, are central for the robust- 770

ness of the system against the firm EM of the robot. Robustness 771

against noise in the depth and flow estimation appears to result 772

from the probabilistic rejection mechanism, which neglects 773

velocities based on their amplitude and reliability. 774

From a macroscopic system perspective, we plan to reduce 775

the system’s unidirectional dependence on the accuracy of 776

the EMF. In biology, this is achieved by using not only the 777

proprioception and depth information for motion estimation, 778

as described in Section I-B, but also vice versa: The motion 779

estimation is combined with proprioception to determine the 780

depth, as well as the depth and motion are used to figure 781

the proprioception. Because our system provides segmentation 782

information about moving objects, we can separate the non- 783

moving parts of a scene and enhance the depth estimation, using 784

OF and kinematics. For robots with less precise kinematics, a 785

fusion of OF and depth could be used to improve the kinematics 786

accuracy. 787

The movement computed by this system will be used in the 788

future for the attraction of visual attention, as well as real-time 789

object interaction. 790
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