
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Coupling of mental concepts to a reactive layer:
incremental approach in system design

Inna Mikhailova, Martin Heracles, Bram Bolder, Herbert
Janßen, Holger Brandl, Jens Schmüdderich, Christian
Goerick

2008

Preprint:

This is an accepted article published in Proceedings of the 8th International
Workshop on Epigenetic Robotics, Brighton, England. The final authenticated
version is available online at: https://doi.org/[DOI not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Coupling of mental concepts to a reactive layer:

incremental approach in system design

Inna Mikhailova∗ Martin Heracles∗ Bram Bolder∗ Herbert Janssen∗

Holger Brandl∗∗ Jens Schmüdderich∗∗ Christian Goerick∗
∗Honda Research Institute Europe GmbH, Carl-Legien-Strasse 30,

63073 Offenbach / Main, Germany
inna.mikhailova@honda-ri.de

∗∗Applied Computer Science Group, Bielefeld University,
33501 Bielefeld, Germany

Abstract

The design of a system that bootstraps
an open-ended development is one of the
most intriguing questions in Developmental
Robotics. Inspired by evolution we propose
an incremental design. We start with a reac-
tive layer that provides task-unspecific inter-
action with the environment. We extend this
initial layer by a layer of multi-modal expec-
tation generation. The two layers are coupled
by means of an active resolution of expecta-
tion mismatches. Such an extension allows
for the transition from reactive behavior to
hypothesis testing and goal-directed behavior.
The expectations can also be used as a teach-
ing signal. The proposed architecture is vali-
dated on the example of multi-modal learning
and evaluation of auditory labels tested on the
humanoid robot Asimo.

1 Introduction

In the last years research in Developmental Robotics
moved from a ”no-predesign” philosophy to a ”mini-
mal design” philosophy. The first one aims at emer-
gence of abilities from ”tabula rasa”. The second
one aims at a careful design of a system that can use
already existing abilities for open-ended acquisition
and integration of new abilities, (Prince et al., 2005).
In other words the latest research is looking for a sys-
tem sufficient for bootstrapping of the development.

In the case of a simple agent, an evolutionary pro-
cess, e.g. (Schembri et al., 2007), can provide a boot-
strapping system suited to learning in its ecological
niche. Unfortunately, the interaction between a hu-
manoid robot and its environment has such a high
complexity that a purely evolutionary approach can
not be used yet. Still, we can take our inspiration
from evolution and build our bootstrapping system
incrementally. In the incremental design the layers

added later to the system do not block the previous
layers so that the overall system behavior is more
robust. A further advantage of incremental system
building is that we are not pressed to implement
short-cut solutions to get to our goal. Instead, it
is possible to carefully design the interfaces for later
extensions.

Here we start from a reactive layer for task-
unspecific interaction with the environment imple-
mented earlier (Bolder et al., 2007). On top of this
layer we propose to build a layer that allows for an
expectation-driven behavior (section 2). In section
3 we concretize the general idea on the example of
the system with speech driven expectations. Sec-
tion 4 provides more details about the mechanism of
expectation generation. Finally, in section 5 we an-
alyze our system: which parts require further work
of the designer in the sense of incremental building
and which parts support further steps of the system
itself in the sense of bootstrapping the development.

2 Coupling of reactive and abstrac-
tion layers

A robot, which uses internal world-models, runs the
risk that the models may be out of sync with the
reality. The behavior-based robotics and subsump-
tion control architectures attempt to solve this well-
known AI problem by designing simple reactive be-
haviors that do not need complex world models. This
works well for simple scenarios but not for complex
ones. It is still an open question how an anticipative
layer that uses internal models and a reactive layer
can be integrated together in order to efficiently con-
trol the behavior (Butz et al., 2007).

2.1 Related work

Some recent approaches in Reinforcement Learning
use a reactive layer for the description of the state
of the system-environment interaction as well as for

execution of plans, e.g. (Hart et al., 2006). These
approaches do not switch between reactive and an-
ticipative modes; they are forced to always evaluate
the future reward and to always plan ahead.

The behavior-based approaches provide a possibil-
ity for the planning layer to manipulate the action se-
lection in the reactive layer (Ulam and Arkin, 2008).
However, the anticipation does not influence the per-
ception that is separated into a ’symbol converter’.

Common to all discussed above approaches is the
fact that the extension of the reactive behavior aims
directly at planning. However, from the evolutionary
perspective, the anticipation may first be used sim-
ply to detect an inappropriate behavior. The model
described in (Balkenius, 1995) goes in this direction.
The focus is set on expectancy learning and the in-
terplay between the expectancy system, the percep-
tion system, and the control that does not require
extensive planning (e.g. conditioning, habituation,
behavior suspension in case of the expectation mis-
match). The planning is seen as a next incremental
step. Our approach, described below, shows some
parallels to this work. One of our original contribu-
tions is the active resolution of mismatch situations
in a way that has not been proposed before.

2.2 Abstraction layer

There exist a number of notions: abstraction, seman-
tic knowledge, model, etc., that denote an entity used
by non-reactive behavior generation. We use an ex-
pression ’mental concept’. It is not used in the sense
of a passive world model, but as a potential trigger
of an expectation-driven behavior.

We say that the system learns a concept if it can
bind different behaviorally relevant features into one
entity. The decision to bind the features together
into an entity can have different sources. Possible
sources are correlation of features in time, in space,
and correlation to the same reward. In such cases
binding can be represented in form of an associative
memory. Another source of binding can be e.g. usage
of the same prediction model for some set of features.

The system should not only passively ’perceive’
but actively evaluate and refine/relearn the concepts.
We turn our reactive system into an active system
by generation of expectations. One feature that is
bound with other features to a concept generates ex-
pectation for the rest. These expectations are com-
pared to the actual features. If there exist an overlap
it can be used for disambiguation. If the difference is
too high, the mismatch triggers a behavior that can
potentially resolve the conflict. A resolving behavior
can have different levels of complexity. For example,
in order to meet the expectation of visual features the
system can simply perform a random search or it can
activate the search for the expected feature by mod-
ulating the saliency map. Similarly the mismatch in

Figure 1: Coupling of mental concepts to a reactive layer.

The loop on the lower part shows the reactive layer. The

upper part generates and evaluates expectations with

help of the associative memory. In this upper part two

loops are active: to the left the loop of expectation-based

perception and to the right a loop of expectation-based

action.

audio channel can either activate a simple request
for the human to pronounce a new word or it can
trigger the system to pronounce the right word by
itself. The mismatch resolving reenacts the features
that belong to the concept and brings the system
again into the situation where it can re-experience
the binding of features to the concept and check its
correctness.

In this way our system achieves a coupling between
sensing and acting not only on the reactive level but
also on the level of expectations generated by men-
tal concepts (see Figure 1). The loose coupling of
abstractions to the reactive behavior has several ad-
vantages compared to inclusion of an action into the
mental concept, as it is usually done with predic-
tion of action outcome (see (Butz et al., 2007) for
overview). First, it allows for a sufficient decoupling
of the dynamics of the concept learning from the
dynamics of the behavior. This leads to both sta-
bilization and transparency of the overall behavior.
Second, it allows to link a multitude of behaviors
to the same concept. Finally, it provides a possi-
bility to use the concepts as the subject of higher
mental functions (attention, communication, plan-
ning, memorization) in the sense of symbol detach-
ment (Pezzulo and Castelfranchi, 2007).

Below we compare our approach to other archi-
tectures that integrate anticipative and reactive con-
trol. Unlike subsumption architectures the abstrac-
tion layer not only inhibits the behavior generated
on the lower layer, but also modulates the behav-
ior. In difference to the behavior-based approach
(Ulam and Arkin, 2008), the top-down influence by
expectations is used for ’perception’ as well. Further
our system can switch from an expectation-driven

mode to a reactive mode if it does not observe any
features that are bound to the concepts and does
not have internal sources for expectation generation
(e.g. planning). Different to the case of reinforce-
ment learning, the expectation can be, but needs not
to be generated by a planning routine. We believe
that the control reorganization during the child de-
velopment also uses the expectancy first for simple
manipulation of a reactive layer before using it for
an extensive planning. Different to (Balkenius, 1995)
we use the mismatch in expectation not only to stop
the executed behavior but also to resolve the mis-
match. This mechanism can be used later for hy-
pothesis testing and refinement of the concepts.

3 System instance: learning and eval-
uation of speech labels

One possible instantiation of our architecture is a
system that generates expectations by using associ-
ations of speech labels to behaviorally relevant non-
speech feature classes. For example the system learns
that humans use the word ’table’ for flat surfaces at
the height of their waist. This is behaviorally rele-
vant, because the naming of the ’right thing’ with a
’right word’ can trigger a primary social reward at
the early stage of development and serve as a sub-
goal in later stages (e.g. asking for the table if you
need to deposit something). We want to emphasize
that we do not reduce the learning of concepts to the
learning of words. We consider the binding of a word
to behaviorally relevant non-speech features as one
possible scenario for learning mental concepts.

We implemented our system on the humanoid
robot Asimo equipped with stereo vision cameras.
The auditory signal for audio saliency was recorded
by microphones mounted on Asimo. The auditory
signal for the speech recognition was recorded via a
headset used by a human. Figure 2 shows the experi-
mental setup while Figure 3 shows the overall system
design. The extraction and classification of the vi-
sual features as well as the online learning of speech
clustering are not in focus of this paper and will be
described in detail elsewhere. Focus of this paper is
a general system design that allows for the extension
of a reactive system by expectation generation and
evaluation.

3.1 Reactive layer for bootstrapping inter-
action

The basic reactive layer comprises saliency-driven
gazing and tracking/reaching for proto-objects. The
behavior selection is implemented by a competitive
dynamics (arbiter) that allows several behaviors to
run in parallel. The commands issued by different
subsystems have different priorities so that the mo-
tion interface can resolve the resting conflicts. The

Figure 2: Experimental setup. The humanoid robot

Asimo interacts with a user in a reactive way by ap-

proaching and reaching for a proto-object. The user

wears a headset for recording the speech signal. The

user can teach the robot speech labels which describe

behavior-relevant features of interaction: properties of

proto-objects or the activity of the robot.

robot’s joints are controlled by whole-body-motion
algorithms that includes walking. The self-collision
avoidance prevents the robot to take dangerous pos-
tures. This reactive part of our system is shown on
the lower part of Figure 3.

The saliency-driven gazing in spirit of
(Itti et al., 1998) is implemented with the help
of Dynamic Neural Fields. The saliency uses both
audio and visual input. The audio saliency helps to
attract the attention of the robot if the human is not
yet in the robot’s field of view. The motor command
issued by this sub-system has the lowest priority and
will be suppressed in the conflict resolution in case if
the proto-object fixation issues a gazing command.

A proto-object is a coherent region or group of
features in the field of view. Three different visual
cues enter the system, each with their own short
term memory. Depth proto-objects are based on
contiguous regions of depth values in a restricted
range we call the peripersonal space. This overlaps
roughly with the manipulation range of both arms.
The second kind of proto-objects are based on ob-
ject proper motion, i.e. contiguous regions of im-
age regions with similar movement relative to the
robot (Schmüdderich et al.,). These proto-objects
allow an interaction over a larger range. One can
attract the robot for instance by waving. The third
kind of proto-objects are based on textured or non-
textured planar surfaces. Although the method can
extract planar surfaces in arbitrary orientations, we
restrict ourselves here to roughly horizontal surfaces.
These proto-objects allow the robot to identify be-
haviorally relevant support surfaces like chairs, ta-
bles, and the floor. The proto-objects from the three
sources are then merged, i.e. those that probably de-
scribe the same entity in the world are merged into

CompareCompareCompareCompare

STM STM STM

PO Merge

Planar POsDepth POs Motion POs

Left ImageDepth Map

PO Features
Features
Speech

Gaze

ConfirmationExpectation

Visit

Arbiter

Behaviors

Evaluate

MatchRequest Mismatch
Audio

Mismatch
Visual

Mismatch
Action

Combine

Compare

Motion
Classif.

Matrix
Assoc.

Gaze

Motion
Interface

Image Acquisition
Audio
EarsHeadSet

Audio

Associative memory

Evaluation Mask

Criterion
Learning

Classif.
Plane

Cluster
Learning

Speech

’Yes’ Gesture

’No’ Gesture

MapTo
Action

Action
Classif.

Pos
Classif.Classif.

Audio and
Visual Saliency

Whole body motion
Colision avoidance

Figure 3: Incremental system design. The solid box

on the bottom shows the implementation of the reac-

tive part that comprises saliency-driven gazing and track-

ing/reaching for proto-objects. The dashed box displays

the layer of feature classification. The dotted box shows

the abstraction layer of expectation generation based on

associative memory. The dark painted modules repre-

sent crucial predesign that leads to stabilization of the

system. The rounded boxes show the modules that cre-

ate potential for next steps (see section 5).

one proto-object and assign a unique ID. The com-
plete list of proto-objects is available for all inter-
ested subsystems. A second instance of short-term
memory on the level of merged proto-object is used
in order to increase the stability of the perceived 3D
location.

A simple proto-object attention mechanism se-
lects one of the currently available proto-objects. Its
unique ID, the ’selected-ID’ is also made available
to the rest of the system. The selection mechanism
stays on the same proto-object as long as it is avail-
able or the top down influence deselects the current
ID. As long as there are proto-objects available (that
weren’t deselected), a next proto-object is selected
based on an arbitrary metric based on status and
distance to the robot. For example in the current
instance the robot selects the closest proto-object. If
no proto-object are available, the selected-ID is set to
the value ’invalid’. The selection mechanism allows

stable interaction with any single proto-object. The
advantage of proto-objects is that we can start the
interaction with environment without higher sensory
processing (e.g. object recognition).

The reactive layer is implemented as a number of
behaviors Bi, i ∈ [1 . . . N], several of which can be
active at any time, plus a competitive selection mech-
anism (arbiter) in form of a non-linear dynamical sys-
tem (Bergener et al., 1999, Bolder et al., 2007). The
state of the arbiter at any time can be described
by the vector of current behavior activation values,
i.e. the result of the competitive selection. This vec-
tor can be either stored to bias the reactive layer later
on or be mapped bidirectionally to action classes
such as ’forward’ and ’return’.

If no top-down input is present (purely reactive
case) the behavior selection is solely based on a fit-
ness value Fi that is provided by each behavior. Top-
down input - in our case from the expectation gener-
ation system - can act as an additional bias βi to the
fitness of each behavior so that the competitive ad-
vantage Ci provided as input to the selection mech-
anism is a sum Ci = Fi + βi. This serves as both
a way to trigger certain gestures - nod head, shake
head, learning gesture - and a way to push the reac-
tive layer in the direction of a memorized behavior
activation state.

Since this external influence to the reactive layer
always acts merely as a bias, the reactive system is
still fully functional with respect to non-biased in-
teraction behaviors while under the influence of top-
down input. Practically this means that Asimo will
e.g. still fixate and reach for objects when a ’re-
turn’ command was issued and Asimo is thus walk-
ing backwards.

3.2 Extension by an abstraction layer

While a proto-object is stably tracked by the reac-
tive layer, the system extracts the features of the
proto-object, the state of behavior activation, and
the speech features. In order to stabilize the learn-
ing we suppose that all non-speech features can be
reliably classified. We accept this assumption for our
first version of the system because the experiments
on animals show that there exist indeed an order-
ing in the developmental of different sensory systems
(Smith and Gasser, 2005). We use a mask that we
call ’evaluation mask’ for differentiating between re-
liable channels and channels to learn. This mask
filters the input to the associative memory in such a
way that data from a learning channel requests a con-
firmation, whereas the data from reliable channels
sends a confirmation that can be used as a teaching
signal. This mechanism will be explained in more
detail in the next section.

An attention mechanism further restricts the chan-
nels that can generate teaching signals. In our frame-

seconds
66 72 104 125 154 184 236 258 277 32111880 8857

left right table chair

returnapproach

tablechair
still

returnright left

moving
right

still

Figure 4: One run of the experiment: speech learning and evaluation. The text in the image shows the word learning

sessions, the text on the top - the utterances for evaluation. The upper two plots display the proto object information.

The labels stand for the source of proto object: ’D’- Depth, ’M’- Motion, ’P’- Plane; dark color shows high values. The

second plot displays the object’s position in the cylindric coordinates centered at robot’s torso (waist): thick line shows

the angle (rad), the dashed line - the hight, and the thin line - the depth. The plot on the very bottom shows the state

of the behavior activations: ’Y’-node,’N’-shake, ’LL’,’LR’-learning gestures with left/right hand, ’PL’,’PR’-pointing

with left/right hand, ’R’-return, ’A’-approach. The behaviors can run in parallel. Note the switch of the right and left

hand doing pointing and learning gesture at 38 sec as the object moves from left to right. The middle 3 plots shows

the state of the abstraction system. The first 9 values of expectation-, request-, and evaluation-vectors correspond to

speech channel. The dashed boxes show the expectations in non-speech channels generated by learning criteria. The

corresponding expectations in speech channel is used as a teaching signal. The evaluation show both the expectation

match (dark) and mismatch (bright). At the 72 sec the user says ’right’ while showing an object on the left. This

creates a mismatch (white spot in Evaluation) that triggers head shaking (label ’N’ in behavior activation plot) and

stops tracking. The request stays active until the robot finds the object on the right (80 sec) and nodes (label ’Y’).At

the end of the experiment we evaluate some of the learned labels while Asimo is tracking a not yet seen object.

work attention is implemented in form of expectation
for some particular feature channel. This expecta-
tion is raised by specific, predesigned user utterances
that we call ’learning criteria’. For example if the
user says ’learn where this object is’, an expecta-
tion of activity for any class in the position classifier
is generated. Obviously a predesigned link from a
known ’learning criterion’ utterance to the channel
expectation is a strong simplification. Still, this link
is nothing but an association and thus it could be
learned as well.

The fact that humans use words to name the fea-
tures is also known to the system and is represented
by a predesigned association matrix of the associative
memory. It contains a non-zero element at location
(i,j) if the feature classes (i) and (j) are associated.
In contrast to detailed correlation, associations rep-
resent the general information that the features can

be bound. With help of this associative memory the
system can generate a teaching signal and learn the
speech classes. The details of speech processing and
learning can be found in (Brandl et al., 2008).

We use online learning, thus the learned classes
can immediately be evaluated. By using the associa-
tive memory again the speech channel now generates
expectations for non-speech-features. For example
when the human says ’table’ the system expects to
see a flat surface at the height of the waist. If the
currently tracked object doesn’t have the expected
features then the expectation mismatch inhibits the
reactive tracking of this object. The system switches
to the tracking of another object until the expected
object properties are seen or a time-out cancels the
expectation.

The expectation mismatch in the description of the
action executed by the system can directly activate

the respective actions via a bias to the competitive
behavior selection mechanism. Thus the system can
be taught ’command’-like utterances that influence
the action of the system without disabling the au-
tonomy. Without expectations the system continues
to interact with its environment in a reactive man-
ner.

In order to make the behavior of the system under-
standable for the user, the robot communicates the
state of expectation. In case of the expectation mis-
match it shakes its head (’No’ gesture) and in case
of the match it nods (’Yes’ gesture). The gestures
are triggered via a bias vector in a way similar to the
associated ’commands’. In the future we will extend
the system by means to monitor the human reaction
to the Yes/No gestures. Then the active evaluation
of the expectation can be used for the refinement or
relearning of the corresponding concept.

Figure 4 shows a run of the experiment. A typi-
cal learning session looks like follows (28-57 sec. in
Figure 4): the user says ’learn where this object is!’
(learn criteria) and then says ’left’ a few times while
presenting the object on the left side of the robot. If
the user does not speak for 4 seconds the learning ses-
sion is considered to be over. Newly learned clusters
can be immediately evaluated: The user presents an
object on the left side of the robot and says ’left’ (66
sec.). Speech class ’left’ now raises an expectation for
the interaction on the left. This expectation is sat-
isfied here since an object is shown on the left side,
so the robot nods (Yes). In contrast, when the user
presents an object on the left side but says ’right’ (72
sec.), the expectation is not satisfied, so the robot
shakes its head (No). Expectation is not only eval-
uated but it also influences the behavior: the robot
stops tracking the object. The expectation continues
to influence the behavior for a limited time (5 sec-
onds). If an object on the right is presented within
this time the robot nods (80 sec. in Figure 4).

4 Expectation generation and evalua-
tion

In this section we discuss details of the expectation
generation and evaluation that takes place in the
bottom-up/top-down loop via the associative mem-
ory (see Figure 1).

As we already mentioned, all classifiers Fc for fea-
ture Xc, where c is the index of the feature channel,
are treated in the same way. The output of every
classifier at time step t is a vector of values f i

c(Xc)
that represent the likelihood that Xc belongs to a
class i. For motion the f i

c are binary values: 1.0 if the
proto-object is generated from a motion channel and
0.0 otherwise. For plane and position classification
we use a population code: f i

c = d(Xc, X
i
c), where

Xi
c is the center of the i-th cluster and d(x, y) is a

metric, e.g. d(x, y) = λ exp(−‖x−y‖2
σ2). The clusters

for non-speech features are predefined. The speech
classifier is described in (Brandl et al., 2008). Every
classifier output is the bottom-up input ~Ibu

c (t) to a
module which we call ’compare’ (see Figure 3).

If the expectation confirms the classification, then
the bottom-up activity is memorized as the internal
state ~Sc(t) of the compare module and is propagated
to its output ’match’ ~Mc(t).

If the classification contradicts the expectation,
the module resets its internal state and sends the
output ’mismatch’ ~Hc(t).

If the expectations for the particular feature are
negligibly small and the bottom-up input was not
yet confirmed by the expectation so that the internal
state is negligibly small as well, the compare module
sends the ’request’ output ~Rc(t).

��
��
��

��
��
��

��
��
��

��
��
��

...

��
��
��

��
��
��

match ��
��
��

��
��
��

��
��
��

��
��
��...
��
��
��

��
��
��

mismatch

Compare

��
��
��
��

match ��
��
��
��
��
��
��
��...
��
��
��
��

mismatch

Compare

��
��
��
��

Compare

��
��
��

��
��
��

Compare

��
��
��
��

request
...

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��...

is confirmed
expectation
Step3:

Step1:
request for
confirmation

Step2:
evaluation of

expectation
generated

��
��
��
��

��
��
��

��
��
��

Compare

��
��
��
��

��
��
��
��

...

��
��
��
��

match

��
��
��

��
��
��

��
��
��
��
��
��
��
��...
��
��
��
��

mismatch

��
��
��
��
�
�
�
�

Compare

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��
�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

split

... ...

...

bottom−uptop−down

mismatchrequest match

request
...

associative memory

...

split

... ...

...
associative memory

...

request
...

bottom−uptop−down

mismatchrequest match

bottom−uptop−down

match mismatchrequest

...

bottom−uptop−down

match mismatchrequest

expectation confirmation

expectation confirmation

... ...

...
associative memory

bottom−uptop−down

match mismatchrequest

bottom−uptop−down

mismatchrequest match

confirmationexpectation

concatenate and mask

concatenate and mask

concatenate and mask

~R1
~H1

~R2
~M2

~H2

~R
w

~I
bu

1
~I

td
1

~I
bu

2
~I

td
2

~M
w

~E

~M1

~E
i ~E

f

Figure 5: Unfolded example of 3 successive steps of the

expectation generation and evaluation loop (the case of

expectation match). The dashed line shows the feed-

back pathway if not unfolded. White spaces of request

and match vectors show which parts are inhibited by the

evaluation mask. For the sake of simplicity we show only

two feature channels: one that generates the expectation

and another one that can confirm the first one via the as-

sociative memory. The grey line in the background shows

the progress of changes through the loop.

Processing of the ’mismatch’ output is feature-
specific. In contrast, the processing of the ’match’

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

�
�
�

�
�
�

��
��
��
��...

���
���
���
���...

���
���
���
���

���
���
���
���
�
�
�
�

��
��
��
��

��
��
��

��
��
�� speech top−down

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

CompareCompare

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

request mismatchmatch

speech

...

bottom−uptop−down top−down

associative memory

...

...

...

Criterion
Learning

expectation confirmation

split

split

concatenate and mask

~M
w~R

w

~R1

~I
bu

1
~I

bu
2

~I
td

2

~H2

~I
td

1

~E
f~E

i

~H1
~R2

~M2
~M1

~E

Figure 6: Generation of the teaching signal for the online-

speech learning. At the bottom the expectation for one

feature channel (e.g. position) is generated from a specific

utterance (e.g. ’learn where this object is’). This top-

down expectation is propagated through the loop in the

standard way (see Figure 5) and generates the teaching

signal for the speech shown at the top.

and ’request’ outputs is not feature specific. The
outputs of all channels are concatenated to a com-
mon ’match’ ~M(t) and a common ’request’ ~R(t).
These two vectors are multiplied componentwise
with the evaluation mask ~W that defines which chan-
nel should send a request and which channel a con-
firmation: ~Mw(t) = ~W • ~M(t), ~Rw(t) = ~W • ~R(t).
The associations ~Ef and ~Ei to these vectors are gen-
erated by multiplication with the association matrix
A: ~Ef (t) = A ~Mw(t) and ~Ei(t) = A ~Rw(t).

We recall that the ’match’ vector contains the fea-
tures that were expected. Thus the association ~Ef

to match can serves as a confirmation to not yet ex-
pected features. In terms of predictive models this is
a ’forward model’, whereas the association ~Ei to the
’request’ is analog to an ’inverse model’. It shows
which features can generate the confirmation for a
request. These two outputs of the associative mem-
ory are combined with the expectation ~El gener-
ated by the attention system (learning criterion) and
sent back through the loop as an expectation vector
~E(t) = ~Ef (t)+ ~Ei(t)+ ~El(t). This vector is then split
according to the used feature channel c (we denote
this operation by []c) and every ’compare’ module
receives its corresponding part as top-down expec-
tation ~Itd

c (t + ∆t) = [~E(t)]c. This step closes the
loop of expectation-based perception. In Figure 5
we schematically unfold an example of 3 successive
steps of the loop. In Figure 6 we show how the gen-
eral expectation mechanism can be used to generate
a teaching signal.

5 Analysis: distribution of learning
and predesign

Our long-term goal is the design of a bootstrap-
ping system for open-ended autonomous develop-
ment. For this reason we would like to carefully
analyze which parts of our system can be considered
necessary for bootstrapping; which parts help the de-
signer to make further steps in incremental building;
and which parts would enable the system to make
further developmental steps.

Many approaches in Developmental Robotics learn
models or concepts as correlations directly on the
level of the features using only the statistics of the
data. The problem for these bottom-up approaches
is how to find the right level of generalization and
how to update the models (stability-plasticity prob-
lem). As a side effect of these difficulties the research
often stops at the level of correlation learning not
coupling it to behavior at all or using it only for sim-
ple reactive behavior.

We do not learn in a bottom-up way, instead we
stabilize the learning with help of a top-down teach-
ing signal. As we explained in section 3, four pre-
designed parts in our system contribute to stabiliza-
tion of learning at the level of a feature classifier:
predesigned feature classifiers, an evaluation mask,
the way how a user generates attention, and the as-
sociative memory.

The fixed classifiers provide initial hypotheses
about possible clustering. The autonomous genera-
tion of hypotheses is necessary in order to learn more
concepts, but it does not directly contribute to better
learning behavior. We already have tested an unsu-
pervised clustering instead of predesigned clusters.
In contrast, the refining of the initial classifier hy-
pothesis is crucial for the grounding of the concepts
and it has to be considered together with the prob-
lem of concept representation by a fixed associative
memory.

Similar arguments are valid for the predesign of
learning criteria as a source of attention. Since we
use a well defined interface in form of expectations,
the source of these expectations can easily be re-
placed. We have preliminary results on how to raise
the expectation by monitoring repeated changes in a
particular feature channel. Replacement of predesign
by emergent solutions would increase the number of
things that can be taught to the system, without di-
rect improvement of the learning behavior.

We believe that crucial steps towards more com-
plex learning behavior and a truly complete, situated
system are an integration of more complex behavior
for resolving expectation mismatches and an integra-
tion of rewards as signals for building an associative
memory.

6 Summary

We presented a way in which a reactive layer can
be extended by an abstraction layer that generates
expectations. The expectations can be used both
as teaching signal and for generation of expectation-
driven behavior. The expectations that are not met
by sensory input activate mismatch resolution: a be-
havior that stops either if the expectation is met
(with a positive answer) or after a time-out (with a
negative answer). We see this behavior as a first step
towards hypothesis testing and goal-directed behav-
ior. We have shown the feasibility of our approach in
a system working with the humanoid robot Asimo.
The system was tested extensively during interaction
with different users and shows a stable and reliable
performance.

In the framework of open-ended development we
set a high value on task/scenario independent solu-
tions, flexible interfaces, and the possibility of grow-
ing and scaling up. Below we summarize the design
features that support the incremental building of an
intelligent system:

• a generic concept of proto-objects allows for boot-
strapping the development of the system with
stable, task-unspecific reactive behavior;

• all feature channels are handled in a similar way
for easy integration of additional channels;

• a mask decides which feature channel generates
an expectation, it can be replaced by an inter-
nally generated mask without a system redesign;

• there is no explicitly coded teaching signal, in-
stead the mechanism of expectation generation is
used.

In summary, both the coupling of mental abstrac-
tions to the reactive layer and a flexible design al-
low for further steps in incremental building of au-
tonomously developing systems.

Acknowledgements

We would like to thank our colleagues Mark Dunn,
Achim Bendig, Michael Gienger, Benjamin Dittes,
Marcus Stein, Antonello Ceravola, Martin Heck-
mann, Tobias Rodemann and Frank Joublin for the
support and fruitful discussions.

References

Balkenius, C. (1995). Natural Intelligence in Artifi-
cial Creatures. Lund University Cognitive Stud-
ies 37.

Bergener, T., Bruckhoff, C., Dahm, P., Janßen, H.,
Joublin, F., Menzner, R., Steinhage, A., and von
Seelen, W. (1999). Complex behavior by means

of dynamical systems for an anthropomorphic
robot. Neural Networks, 12(7-8):1087–1099.

Bolder, B., Dunn, M., Gienger, M., Janssen, H.,
Sugiura, H., and Goerick, C. (2007). Visually
guided whole body interaction. In IEEE Inter-
national Conference on Robotics and Automa-
tion (ICRA 2007). IEEE.

Brandl, H., Joublin, F., and Goerick, C. (2008).
Towards unsupervised online word clustering.
In Proceedings of International Conference on
Acoustics Speech, and Signal Processing, pages
5073–76.

Butz, M. V., Sigaud, O., Pezzulo, G., and Bal-
dassarre, G. (2007). Anticipatory Behavior in
Adaptive Learning Systems: Advances in Antic-
ipatory Processing. Springer LNAI 4520.

Hart, S., Ou, S., Sweeney, J., and Grupen, R.
(2006). A framework for learning declarative
structure. In Robotics: Science and Systems -
Workshop on Manipulation for Human Environ-
ments. Philadelphia, Pennsylvania.

Itti, L., Koch, C., and Niebur, E. (1998). A model
of saliency-based visual attention for rapid scene
analysis. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 20(11):1254–1259.

Pezzulo, G. and Castelfranchi, C. (2007). The sym-
bol detachment problem. Cognitive Processing,
8(2):115–131.

Prince, C. G., Helder, N. A., and Hollich, G. J.
(2005). Ongoing emergence: A core concept in
epigenetic robotics. In Proceedings of the Fifth
International Workshop on Epigenetic Robotics:
Modeling Cognitive Development in Robotic Sys-
tems, Nara,Japan.

Schembri, M., Mirolli, M., and Baldassarre, G.
(2007). Evolution and learning in an intrin-
sically motivated reinforcement learning robot.
Advances in Artificial Life, pages 294–303.

Schmüdderich, J., Willert, V., Eggert, J., Rebhan,
S., Goerick, C., Sagerer, G., and Körner, E. De-
tecting objects proper motion using optical flow,
kinematics and depth information. IEEE Trans.
Man Cybern. Part B – Accepted.

Smith, L. and Gasser, M. (2005). The development
of embodied cognition: Six lessons from babies.
Artif. Life, 11(1-2):13–30.

Ulam, P. and Arkin, R. (2008). Biasing behavioral
activation with intent. to appear in Intelligent
Service Robotics.

