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Abstract— We present a sound localization system that ope-
rates in real-time, calculates three binaural cues (IED, IID,
and ITD) and integrates them in a biologically inspired fashion
to a combined localization estimation. Position information is
furthermore integrated over frequency channels and time. The
localization system controls a head motor to fovealize on and
track the dominant sound source. Due to an integrated noise-
reduction module the system shows robust localization capabi-
lities even in noisy conditions. Real-time performance is gained
by multi-threaded parallel operation across different machines
using a timestamp-based synchronization scheme to compensate
for processing delays.

I. INTRODUCTION

Sound localization in a real-world environment (see e.g. [1]–

[4]) is a hard problem, requiring an integration of different

modules into a system that runs in real-time. A number of

approaches (e.g. [2], [5]) use special sensing or computing

hardware to solve this problem. In contrast to this we present

an architecture that uses a humanoid head with just two

microphones and reaches real-time capabilities using standard

computing hardware. Robustness regarding noise and echoes

is achieved by using measurement window selection (detailed

in [6]), a static noise reduction system and integration over

frequency channels, localization cues and time.

There are three cues for the relative position of a sound

source: the Interaural Time Difference (ITD), the Interaural

Intensity Difference (IID) and finally the Interaural Envelope

Difference (IED). Each of these cues has its drawbacks:

ITD only works for the lower frequency range, becoming

ambiguous beyond a critical frequency of around 1kHz (de-

pending on head dimensions), IID is strong only for the

higher frequencies and very much dependent on the hardware

characteristics of head and microphones, and IED is generally

considered to be quite unreliable on its own [7]. In addition

both echoes and additional noise sources degrade system

operation. Sound localization therefore requires an integration

of information from different sources at the correct time. As a

target application we set a scenario with a varying number of

auditory sources (e.g. humans) in a normal (noisy and echoic)

room. People are supposed to address the system through calls,

claps, whispers or any other sound. The system should turn

immediately to the position of the currently strongest sound

source, while ignoring static noise sources like air condition

or fan noise. The design of our system was constrained by

the need to add more functionality in the future, therefore

requiring a flexible software architecture and general-purpose

hardware. While [6] details the cue computation and window

selection algorithm used in our system, this paper focuses

on three different aspects: integrating localization information,

stationary noise reduction, and the software skeleton around

which our system is built.

A. Related Approaches

Robot sound localization has been presented before, ho-

wever with a different hardware and software structure and

a different focus. Many authors used microphone arrays

[5], [8] to get a satisfactory performance under real-world

conditions. Our system uses only two microphones mounted

on a humanoid head. We also use conventional computing

hardware (single CPU systems or SMP machines) instead of

dedicated hardware. Despite of this we are capable of using

the computationally more expensive Gammatone filters [9]

which are considered to be a good approximation of processing

in the human cochlea and provide a high resolution in time

and frequency. We are using zero-crossings [10] to measure

ITD and IED. Also inspired from the biological example

is the integration of cues in a neuron-like manner. Another

biologically-inspired approach has been presented in [11],

which focuses on a probabilistic estimation of sound source

position, but not on the capability to work in a real-world

scenario. Therefore, our system is special in the sense that

it provides a biologically-inspired binaural sound localization

with the necessary robustness to operate in real-world envi-

ronments.

II. SYSTEM ARCHITECTURE

The system consists of different processing modules, which

can be grouped into sound recording, preprocessing, cue ex-

traction, cue mapping, integration and neck control elements.



For a view of the complete graph see Fig. 1. In addition, there

are modules for synchronization, latency compensation and

downsampling (note that for reasons of clarity synchronization

modules are not shown in the graph).

Fig. 1. The complete system graph. For a description see text.

A. Preprocessing

The system records sound data from two microphones

mounted on a humanoid head, and then uses a Gammatone

filterbank (GFB) [9], [12], [13] with Equivalent-Rectangular

Bandwidth (ERB) to get frequency-specific signal responses

g(c, k) (channel c, time index k). In our experiments we used

between 30 and 180 different frequency channels in the range

of 100 Hz to 10 kHz and a sampling rate of 24 kHz. We then

compute the signal’s envelope e(c, k) through rectification and

frequency-specific low pass filtering. We apply a high-pass

filtering with a cut-off frequency of 500 Hz on the envelope

signal. The resulting signal will be denoted h(c, k). Based on

the envelope signal we also compute l(c, k) using a low-pass

filter with a cut-off frequency of 40 Hz in order to remove

pitch-based amplitude modulations of unresolved harmonics.

The noise reduction operates on the low-pass filtered signal

l(c, k), producing the noise-reduced signal s(c, k).

B. Localization Cues

Both ITD and IED are based on comparing consecutive

zero-crossings from left and right microphones. The compa-

rison is done for every zero-crossing point of one side with

the previous and the next zero-crossing on the contra-lateral

side. IED is based on zero-crossings taken from the high-pass

signal h(c, k), while ITD uses Gammatone filterbank output

g(c, k). IID computation is based on a comparison of left and

right noise free signals (nl(c, k) and nr(c, k)):

IID(c, k) =
sl(c, k)− sr(c, k)

max(sl(c, k), sr(c, k))
. (1)

Cues are computed continuously but measured only at certain

times, where echoes have a limited effect. How these measure-

ment windows are computed is described in detail in [6]. The

basic approach is a maximum search near signal onsets with

an inhibition of trailing maxima. This approach is inspired by

the precedence-effect in hearing psychology.

C. Cue Mapping

After computing the three interaural cues we integrate them

in a biologically-inspired manner and map them as a cue-triple

to different positions along the horizontal (azimuth) axis. For

every position i and frequency channel c we define a node with

a receptive field RFi,c = ( IEDi,c, IIDi,c, ITDi,c, σIED
i,c , σIID

i,c ,

σITD
i,c , wIED

i,c , wIID
i,c , wITD

i,c ) within cue space. Receptive field

center, width, and confidence, respectively, are defined using

the calibration procedure described below. For a cue-triple

(IED,IID,ITD) measured at time index k we compute the

response Mc(i, k) of every node i by calculating the distance

of the cue-triple to the receptive field centers of the nodes:

Mc(i, k) = wIED
i,c · exp

(

−
(IED−IEDi,c)

2

(σIED
i,c

)2

)

(2)

+wIID
i,c · exp

(

−
(IID−IIDi,c)

2

(σIID
i,c

)2

)

(3)

+wITD
i,c · exp

(

−
(ITD−ITDi,c)

2

(σITD
i,c

)2

)

(4)

Responses are additive for each cue, therefore missing or

inaccurate cues will not impair localization if the remaining

cues are working properly. After node responses have been

computed, the nodes with the highest responses are taken

as candidate positions for the measured sound event. With

Mmax
c (k) = max

i
(Mc(i, k)) as the maximum response over

all nodes we compute the normalized response Nc(i, k):

Nc(i, k) = exp

(

Mc(i, k)−Mmax
c (k)

σN

)

, (5)
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Fig. 2. Localization responses for individual cues and combined over all
channels(M ). The final normalized responses N are shown in black.

with σN = 0.1 as a normalization constant. This operation is

a weak winner-take-all strategy leaving only a few strongly

activated nodes. We set all responses below a threshold level

ΘS = 0.1 to zero. As a result we get one or a few candidate

nodes (= positions) for every recorded sound event. Cue

ambiguities, e.g. as known for ITD in the high-frequency

range, can be resolved via the integration of the other cues or

represented as multiple location candidates if a disambiguation

is not possible. Fig. 2 shows an example for a single auditory

event (measured IED, IID, ITD triple). The graph plots the



localization responses for the three cues individually and as

a combination (M ), plus the normalized responses N . Cue

ambiguities are reduced to the two most likely candidate

positions in this example.

D. Spectral Subtraction

An important requirement for our system is that it can

suppress localization of permanently active noise sources such

as fan noise and exclude the interfering source characteristics

from the computation of the target cues. In order to achieve

this we use the biologically plausible approach of subtracting

the estimated mean value of the fan noise envelope nl/r(c, k)
from the overall left (l) and right (r) envelope ll/r(c, k), i.e.

sl/r(c, k) = ll/r(c, k)− E
{

nl/r(c, k)
}

. (6)

This approach, which is known as Spectral Subtraction when

applied in the Short Time Fourier Transform domain [14],

proves to be beneficial for cue computation as it removes a

strong bias. For example instead of the incorrect IID value

sl(c, k)− sr(c, k) + nl(c, k)− nr(c, k)

max(sl(c, k) + nl(c, k), sr(c, k) + nr(c, k))
(7)

the system now calculates

sl(c, k)− sr(c, k) + ñl(c, k)− ñr(c, k)

max(sl(c, k) + ñl(c, k), sr(c, k) + ñr(c, k))
(8)

which increases the robustness to noise as the noise mean is

removed and in the case of completely deterministic signals

ideal compensation for the noise is achieved. The term ñl/r

contains the residual zero mean noise because a statistical

description is more realistic.

The remaining problem of noise level estimation is solved

on-line by exploiting the fact that the mean noise value does

not change quickly in time and that it can be observed solely

in speech / sound event pauses. Figure 3 depicts the situation.

At the beginning of the recording the microphones pick up

fan noise only, then a speaker is active and speech components

superimpose the noise level. However it is important to see that

pauses occur naturally in speech and the sound level drops to

the noise level in normal conversations. From this observation

we can derive our algorithm which is a simplified filter bank

adapted version of Cohen’s Minimum Controlled Recursive

Averaging [15], [16].

First, we choose a first order recursive filter structure for

estimation of the mean noise envelope (note that for nota-

tional convenience we dropped the channel index c and the

distinction between left and right),

n̂(k) = γ(p(k))n̂(k − 1) + (1− γ(p(k))) · l(k) , (9)

and make the filter’s smoothing constant γ dependent on the

speech probability p(k) in channel c at time k:

γ (p(k)) = γmin + (1− γmin) · p(k) (10)

In times of high speech probability p(k) ≈ 1 the estimation

of the mean value freezes (γ = 1) while in pauses a minimum

value γmin is applied which is a compromise between adap-

tation speed and error variance. Too high values lead to slow

convergence whereas small values lead to fluctuations in the

level.

In the next step we need to approximate the speech pro-

bability p(k). The trick here is to use the running minimum

lmin(k) of a smoothed version of the signal envelope

ls(k) = γs · ls(k − 1) + (1− γs) · l(k)

lmin(k) = min{ls(m) | k − L+ 1 < m < k}

as a noise baseline. Against this baseline we can then test

Λ(k) = ls(k)/lmin(k)

and decide for speech if Λ(k) is above a certain threshold

value Tspeech. With this hard indication of speech, i.e. p(k) ∈

{0, 1}, we then control the averaging. However, this Voice

Activity Detection scheme has the drawback that it can not

respond fast to noise level changes as a long minimum filter

length L is required to prevent increases during speech [15].

Therefore, a second iteration of minimum filtering is applied

where detected speech segments of the first iteration are

excluded, for details see [15]. The threshold values Tspeech
are obtained from simulations with fan noise only and result

in different values for each channel as the bandwidth increases

along the frequency axis.
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Fig. 3. Estimated mean noise level (blue) in channel 40. Note that the system
is able to adapt in the short speech pause at 0.09 sec.

The complete behavior of the algorithm can be seen in figure

3. At the beginning the noise level (blue line) adjusts starting

from near zero to the current level at the beginning and stops

the estimation as the first spoken words arrive. Later on it

resumes operation in the small pause and stops again.

Due to the noise reduction, the IID computation, which

turned out to the best single cue for our scenarios, is far less

affected by static noise than in competing approaches making

the noise reduction an important requirement for operation in

noisy conditions. Furthermore, the noise estimation also plays

an important role for measuring ITD and IED values as a

robust adapting noise level baseline is needed to reject cue

measurement points for pure noise signals [6].



E. Calibration

The relation between cue values and positions is learned

offline in a special calibration scenario where we present a

number of auditory stimuli from a fixed speaker and record

from our microphones while the head is moved to different

defined positions. The recorded sound files are sent through

the architecture to measure the cues. For the cues measured at

one position we compute the mean cue values (the receptive

field) plus the variance of measurements. The latter is used to

assign confidence values w (see above) as is described in [6].

The receptive field width σ is set per channel depending on

the range of measured cue values.

F. Integration

Evidence E(i, k) for different positions (nodes) is computed

by integrating normalized responses Nc(i, k) over time and all

frequency channels. First we integrate over time in a neuron-

like fashion:

Ec(i, k) = α ∗ Ec(i, k − 1) +Nc(i, k). (11)

The constant α is given by α = exp
(

−∆k
τ

)

, with an

integration time constant τ = 100 ms. Then we sum node

responses over all channels:

E(i, k) =
∑

c

Ec(i, k) (12)

Performance can be improved considerably by smoothing the

evidences over time and positions. We employed a Gaussian

smoothing filter with a width of 400 ms in time and 10 degrees

in positions. The result is a smoother evidence which results in

better localization performance due to the integration of more

localization cues for every time step and position.

G. Stream Tracking

Following the evidence computation auditory objects have

to be identified and tracked over time. This process is called

Auditory Streaming. For the scenario we have chosen, it

suffices to track only a single auditory stream. To start a stream

the maximum evidence Emax has to exceed a threshold Tstart.

As long as the evidence stays above Tstop the stream is kept

active. The position of a stream xs is initialized as:

xs(k) = P (imax = argmax
i

(E(i, k))), (13)

where x = P (i) is the function that maps node indices to

positions. Positions are updated as long as the stream is active

by first computing the position xl(k) of the local evidence

maximum. The new maximum is searched for only in the local

surrounding of the current stream position (∆i = 20 degrees

in system) to stabilize the search process. Then we update the

stream’s position by:

xs(k) = β · xs(k − 1) + (1− β) · xl(k) . (14)

The constant β is a smoothing parameter. In case the global

evidence maximum exceeds the local maximum by a certain

factor Tswitch (Emax > Tswitch · El), the stream’s position

is instantly switched to the position of the global maximum.

If Emax falls below Tstop the stream is closed.

H. Head Control

An active stream will trigger a head movement to face the

perceived location of the sound source xs(k). If no streams

are active, the head is kept still. Head movements and sound

localization are synchronized in a way to ensure that noise

generated by ego motion is suppressed. This is done by setting

all Nc(i, k) to zero from the time on a new head motor

command has been sent up to the point where the head motion

is finished. Being able to localize sound sources during head

saccades is still an open problem under investigation.

III. IMPLEMENTATION

We implement different processing elements (e.g. filter-

banks, noise reduction, temporal integration) in separate mo-

dules. The total number is more than 100 in our application.

Modules are written in a standardized component model

(BBCM [17], [18]). Therefore integration of modules from

different researchers was comparatively easy and straightfor-

ward. The linking of modules on the software side is done

within a real-time middleware and integration (called RTBOS

[17], [18]) that interconnects modules flexibly and also allows

the distribution of processing over several threads, CPUs and

even computers. Network communication is done via TCP/IP.

As a result we can flexibly integrate a large number of

modules (see also [19] for another large-scale system using the

BBCM/RTBOS system) for sequential and parallel execution.

To speed-up computation we also make use of Intel’s IPP

library.

A. Recording Hardware

Two DPA 4060-BM omni-directional microphones and a

MAudio Delta1010 recording system are used to record sound

data with a sampling rate of 24 kHz. The microphones are

mounted on different humanoid heads at the approximate

positions of human ears. Heads are filled with foam or other

damping material but are otherwise basically empty. The head

is mounted on a neck element (Amtec Robotics PowerCube

PW070), connected to a PC via CANbus. The head can turn

360 degrees at high speed, which is unfortunately accompanied

by substantial noise (due to the close proximity of the neck

to the microphones).

B. Timestamp-based Synchronization

To optimize processing speed vs. communication overhead

sound data is analyzed in blocks of 50 ms length (1200

samples). As different parts of the system can run in parallel,

a synchronization of data blocks is necessary. We use a

timestamp generated in the sound recording module that is

transferred by RTBOS throughout the system to align blocks

from different processing streams and to detect holes in the

processing chain. Our system can handle missing blocks and

will even show an acceptable performance in case of frequent



discontinuities (see Fig. 4). These are normally the result of

either network communication delays or high computational

load for some CPUs.

C. Latency Compensation and Subsampling

We also compensate processing latencies that result from

using different filters for cues and measurement windows: ITD

computation works on the direct output of the Gammatone

filter bank while the measurement window is calculated on

a low-pass-filtered envelope signal. Filters introduce a group

delay which leads to different latencies. These can sum up to

624 samples (26 ms). If this difference is not compensated,

cues will be measured outside the optimal window (see

[6]) leading to severe impairments in echoic environments.

Our architecture can handle arbitrary latency differences and

compensates them when needed by delaying the faster signal.

The compensation is done per channel so that the low-latency

high-frequency channels are not blocked by the high-latency

low frequency channels. This operation is executed together

with the timestamp synchronization, as depicted in Fig. 4.

As can be seen in the system graph (Fig. 1), signals are

downsampled at different stages of processing. The subsamp-

ling factor used is 24, which means that a large share of the

system effectively runs at 1 kHz only. This results in a speed

up of approximately 2 for the overall system.

Fig. 4. The operation of the synchronization module for the example of two
inputs. Blocks are stored internally until all inputs with a common timestamp
have been received. A missing block in at least one input will trigger a warning
message and the data in this block will be skipped. After synchronization,
latencies are compensated by delaying the faster signal (here input 2).

IV. RESULTS

Our architecture was tested on-line in two different rooms.

Both rooms were noisy and echoic (750 ms and 330 ms re-

verberation time), but the system showed a robust localization

in all cases. In an on-line scenario several people attracted the

system’s attention by calling it or making different sounds.

Even in this very noisy environment the system found the

correct sound source using at most three, but normally only

a single head movement. Localization performance was still

good when music was played and very strong background

noise (Asimo fan noise) was added. More information on these

scenarios and some results can be found in [6]. The system

also shows a quick response, we measured a response latency

of less than 400 ms (between signal onset and generation of a

head movement command). Now we present some results of

our system working offline on pre-recorded soundfiles.

A. Low-noise Scenario

The system runs on-line either stand-alone on a single

machine using 60 channels and with an additional 4-CPU-

SMP with up to 180 channels of the GFB. We investigated

the effect of increasing the number of frequency channels by

testing the performance of the system on a database recorded

with one of our heads. Sound files were recorded at 1 degree

increments. We used 20 files for training and 15 files (short

human (English) utterances) for testing. Data was recorded in a

normal echoic room (7x15 m, reverberation time 750 ms) with

a modest level of background noise (air condition, computer

fan). The SNR of test files was around 10-15 dB. Microphones

were mounted on a humanoid dummy head. We evaluated the

mean localization error ǭ (in degrees) over all test files and

positions, the maximal deviation from the true target over all

files ǫmax, and the mean localization error per channel ǭc (in

degrees). The range of source positions is 180 degrees (-90 to

+ 90 degrees). The results are given in the following table:

channels ǭ ǫmax ǭc
30 2.8° 46° 17.8°

60 2.3° 42° 17.2°

90 2.2° 43° 17.0°

120 2.2° 42° 16.9°

180 2.2° 39° 16.8°

This experiment shows that there is an improvement in

performance with increasing number of channels, but only

marginally when going beyond 60 channels. As can be seen

the system has a very high precision for high SNR speech

signals in normal environments. Outliers are very rare (more

than 99% of all sound sources are localized within 10 degrees

of the correct position) and in almost 20% of all cases the

localization had a precision of 1 degree. The mean error per

channel, though, is considerably higher, clearly demonstrating

the need to integrate over channels.

B. Test-case results under different noise and echo conditions

We also performed tests on data recorded from Asimo’s

head microphones (data kindly provided by K. Nakadai) in

two different rooms (one anechoic and a normal office room

with considerable echoes). We also compared the situation

where Asimo is turned off (SNR of ca. 12 dB) and turned

on (approximately 6 dB SNR ). The system was tested with

a fixed setting (60 channels of the Gammatone filterbank, 24

kHz sampling rate) to investigate the effect of noise and echo.

Data was recorded at positions spaced 10 degrees apart from

-90 to +90 degrees. We got the mean integrated localization

error / mean channel-wise localization error for the different

scenarios as follows:

ǭ / ǭc Asimo off Asimo on

anechoic 0.39°/ 15.36° 2.46°/ 39.77°

echoic 1.96°/ 28.26° 1.51°/ 35.71°



As can be seen the performance in a noise- and echo-free

environment is almost perfect. Echoes reduce performance not

as much as Asimo’s strong fan noise. The combination of

echo and noise is less severe than noise alone in this case

which is due to a few outliers in the data. Fig. 5 shows

the mean localization error per channel for the four different

scenarios. The highest frequency channels are generally poorly

performing and especially channels between 600 Hz and 3

kHz (channel number 18 to 40) are strongly affected by

noise. Despite this increase in mean channel error, the overall

performance is still very good, considering the high noise

level.
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Fig. 5. Mean localization error per channel for different noise and echo
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V. SUMMARY AND CONCLUSION

We have presented a system for real-time, real-world

sound source localization using standard hardware and a

two-microphone set-up on a humanoid head. The system

shows a robust performance even under noisy and echoic

conditions. This robustness is achieved by taking inspiration

from biological auditory processing systems. Firstly, we are

using a biologically-inspired integration of cues. Secondly

we model the precedence effect for echo-cancellation [6]

which improved the stability and reliability of cue computation

considerably. Finally, we are using the Gammatone-Filterbank

instead of FFT and zero-crossings instead of correlation-based

approaches for IED and ITD computation. It is therefore

demonstrated that biologically inspired real-time sound loca-

lization in an every-day environment can be achieved with

conventional hardware and using just two microphones on a

humanoid head.

The current architecture will be the basis for the integration

of additional auditory processing capabilities, like e.g. pitch

tracking [20], which will require a larger number of frequency

channels and more processing modules to operate. The pre-

sented architecture has the capacity to be expanded to meet

these requirements
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