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Abstract. In this paper we present an approach for probabilistic con-
tour prediction in an object tracking system. We combine level-set meth-
ods for image segmentation with optical flow estimations based on prob-
ability distribution functions (pdf’s) calculated at each image position.
Unlike most recent level-set methods that consider exclusively the sign
of the level-set function to determine an object and its background, we
introduce a novel interpretation of the value of the level-set function that
reflects the confidence in the contour. To this end, in a sequence of con-
secutive images, the contour of an object is transformed according to
the optical flow estimation and used as the initial object hypothesis in
the following image. The values of the initial level-set function are set
according to the optical flow pdf’s and thus provide an opportunity to
incorporate the uncertainties of the optical flow estimation in the object
contour prediction.

1 Introduction

In this paper we propose an object contour tracking approach based on level-set
methods for image segmentation and correlation-based patch-matching methods
for optical flow estimation. Using level-set methods for object detection enables
us to overcome the problems imposed by nonrigid object deformations and ob-
ject appearance changes. In tracking applications with dynamic template adap-
tion these changes lead to template drift and in applications without template
adaption to a decreased robustness. Utilising probabilistic optical flow for the
prediction of the object contour constitutes a non-parametric prediction model
that is capable of representing nonrigid object deformation as well as complex
and rapid object movements and thus providing a segmentation method with
a reliable initial contour that leads to a robust and quick convergence of the
level-set method even in the presence of a comparably low camera frame rate.
Furthermore, we introduce a novel interpretation of the value of the level-set
function. Unlike most recent level-set methods that consider exclusively the sign
of the level-set function to determine an object and its surroundings, we use the
value of the level-set function to reflect the confidence in the predicted initial
contour. This yields a robust and quick convergence of the level-set method in
those sections of the contour with a high initial confidence and a flexible and



mostly unconstrained (and thus also quick) convergence in those sections with
a low initial confidence.

The segmentation occurs by means of level-set methods [1–5], which separate
all image pixels into two disjoint regions [1] by favouring homogeneous image
properties for pixels within the same region and dissimilar image properties
for pixels belonging to different regions. The level-set formalism describes the
region properties using an energy functional that implicitly contains the region
description. Minimising the energy functional leads to the segmentation of the
image. The formulation of the energy functional dates back to e.g. Mumford and
Shah [2] and to Zhu and Yuille [3]. Later on, the functionals were reformulated
and minimised using the level-set framework e.g. by [4]. Among all segmentation
algorithms from computer vision, level-set methods provide perhaps the closest
link with the biologically motivated, connectionist models as represented e.g. by
[6]. Similar to neural models, level-set methods work on a grid of nodes located
in image/retinotopic space, interpreting the grid as having local connectivity,
and using local rules for the propagation of activity in the grid. Time is included
explicitly into the model by a formulation of the dynamics of the nodes activity.
Furthermore, the external influence from other sources (larger network effects,
feedback from other areas, inclusion of prior knowledge) can be readily integrated
on a node-per-node basis, which makes level-sets appealing for the integration
into biologically motivated system frameworks.

Optical flow estimation, i.e. the evaluation of the pixel-motion in a sequence
of consecutive images, yielded two prominent solution classes. Namely gradient-
based differential [7, 8] and correlation-based patch-matching [9, 10] algorithms.
While the former is based on the gradient constraint equation that utilises spa-
tiotemporal derivatives of the image intensity and thus requires nearly linear
image intensity resulting in velocities smaller than one pixel per frame and a
high frame rate of the camera, the latter uses similarity or distance measures
between a small patch of an image and its shifted counterpart that leads to
discrete velocities and comparatively high computational costs.

In [11] a comprehensive survey of object tracking algorithms is given. Depend-
ing on the vision task, object tracking algorithms are based on several object
representations , object detection strategies and prediction methods for the ob-
ject location . Nonrigid object deformation (e.g. walking person), complex and
rapid object movements (e.g. playing children), entire object appearance changes
(e.g. front side vs. back side) and object occlusions form some of the numerous
challenges in the field of object tracking.

In this paper we propose an approach that combines level-set segmentation
algorithms and optical flow estimation methods to form a tracking system. With
that combination we are able to overcome some of the principle problems the
approaches exhibit, when utilised separately (e.g.: initial level-set function, local
optima of the energy functional, aperture problem). The paper is organised as
follows. In Sect. 2.1 and 2.2 we describe the level-set method applied for image
segmentation and the probabilistic optical flow estimation used for the prediction
of the initial object contour, respectively. Section 3 introduces the proposed prob-



abilistic prediction method for object contour tracking. In Sect. 3.1 we suggest a
novel interpretation of the value of the initial level-set function. An approach for
level-set based object contour tracking based on a parametric prediction model
is introduced in Sect. 3.2, and extended by a non-parametric prediction model
in Sect. 3.3. The results of the proposed algorithms are presented in Sect. 4. A
short discussion finalises the paper.

2 Level-Set Segmentation and Optical Flow Estimation

2.1 Standard Level-Set based Region Segmentation

Level-set methods are front propagation methods. Starting with an initial con-
tour, a figure-background segregation task is solved by iteratively moving the
contour according to the solution of a partial differential equation (PDE). The
PDE is often originated from the minimisation of an energy functional [2, 3].

Compared to “active contours” (snakes) [12], that also constitute front propa-
gation methods and explicitly represent a contour by supporting points, level-set
methods represent contours implicitly by a level-set function that is defined over
the complete image plane. The contour is defined as an iso-level in the level-set
function, i.e. the contour is the set of all locations, where the level-set function
has a specific value. This value is commonly chosen to be zero, thus the inside
and outside regions can easily be determined by the Heaviside function H(x) 1.

The proposed object contour tracking framework is based on a standard
two-region level-set method for image segmentation. In a level-set framework,
a level-set function φ ∈ Ω 7→ R is used to divide the image plane Ω into two
disjoint regions, Ω1 (background) and Ω2 (object), where φ(x) > 0 if x ∈ Ω1 and
φ(x) < 0 if x ∈ Ω2. A functional of the level-set function φ can be formulated
that incorporates the following constraints:

– Segmentation constraint: the data within each region Ωi should be as similar
as possible to the corresponding region descriptor ρi.

– Smoothness constraint: the length of the contour separating the regions Ωi

should be as short as possible.

This leads to the expression

E(φ) = ν

∫

Ω

|∇H(φ)|dx −

2
∑

i=1

∫

Ω

χi(φ) log pi dx (1)

with the Heaviside function H(φ) and χ1 = H(φ) and χ2 = 1 − H(φ). That is,
the χi’s act as region masks, since χi = 1 for x ∈ Ωi and 0 otherwise. The first
term acts as a smoothness term, that favours few large regions as well as smooth
region boundaries, whereas the second term contains assignment probabilities
p1(x) and p2(x) that a pixel at position x belongs to the inner and outer regions
Ω1 and Ω2, respectively, favouring a unique region assignment.

1 H(x) = 1 for x > 0 and H(x) = 0 for x ≤ 0 .



Minimisation of this functional with respect to the level-set function φ using
gradient descent leads to

∂φ

∂t
= δ(φ)

[

ν div

(

∇φ

|∇φ|

)

+ log
p1

p2

]

. (2)

A region descriptor ρi(f) that depends on the image feature vector f serves
to describe the characteristic properties of the outer vs. the inner regions. The
assignment probabilities pi(x) for each image position are calculated based on
an image feature vector via pi(x) := ρi(f(x)). The parameters of the region
descriptor ρi(f) are gained in a separate step using the measured feature vectors
f(x) at all positions x ∈ Ωi of a region i.

2.2 Probabilistic Optical Flow Estimation

The characteristic motion pattern of an object in an image sequence I1:t at time
t is given by the optical flow Vt within the region that constitutes the object.
The optical flow Vt = {vt

x} is the set of velocity vectors vt
x of all pixels at every

location x in the image It at time t, meaning that the movement of each pixel is
represented with one velocity hypothesis. This representation neglects the fact
that in most cases the pixel movement cannot be unambiguously estimated due
to different kinds of motion-specific correspondence problems (e.g. the aperture
problem) and noisy data the measurement is based on.

As has been suggested and discussed by several authors [10], velocity proba-
bility density functions (pdf’s) are well suited to handle several kinds of motion
ambiguities. Following these ideas we model the uncertainty of the optical flow
Vt as follows:

P (Vt|Y t) =
∏

x

P (vt
x|Y

t) with Y t = {It, It+1} , (3)

where the probability for the optical flow P (Vt|Y t) is composed of locally in-
dependent velocity pdf’s P (vt

x|Y
t) for every image location x. P (vt

x|Y
t) can be

calculated using several standard methods, for details refer e.g. to [10]. These
pdf’s fully describe the motion estimations available for each position x, tak-
ing along (un)certainties and serving as a basis for the probabilistic prediction
method for object contour tracking as proposed in Sect. 3.3.

3 Probabilistic Prediction Method for Contour Tracking

3.1 Interpretation of the Value of the Initial Level-Set Function

In general, level-set methods evaluate exclusively the sign of the level-set func-
tion to determine an object and its surroundings. The exact value of the level-set
function is not considered by most approaches. Signed-distance functions are a
common means of regulating the value of the level-set function, as they enforce



the absolute value of the gradient of the level-set function to be one. For the
approach we propose in this paper (explained in detail in the next section),
it is required to extend the common understanding of the values of the level-
set function. Considering the front propagation and gradient descent nature of
the applied level-set method for image segmentation, the height of the level-set
function influences the time (number of iterations) until the occurrence of a zero
crossing (change of region assignment). In particular for numerical stability a
maximum time step value is required. Thus, sections of the contour exhibit-
ing large values of the level-set function in their neighbourhood generally move
slower than those with smaller values. Following that idea, a steep gradient of
the initial level-set function for a segmentation algorithm yields a slow defor-
mation of the contour, whereas a flat gradient leads to a mostly unconstrained
and quick deformation. Altogether this results in the possibility to control the
velocity of the propagated front, embedded entirely and without any algorithmic
changes in a standard level-set framework for image segmentation.

3.2 Level-Set based Segmentation in Image Sequences

Building an iterative level-set based object tracker, a trivial approach would
be the usage of the final level-set function of the preceding image φt−1 as the
initial level-set function φ̂t of the current image. To accelerate the convergence of
the minimisation process one might also use a smoothed version of the level-set
function:

φ̂t = Kσ ∗ φt−1 (4)

The performance of this approach depends on the velocity and deformations
of the tracked object. While the approach will succeed in tracking the object in
the presence of small movements and deformations, it is likely to fail under huge
deformations or large object movements.

To circumvent the above mentioned problem, tracking algorithms include a
prediction stage that estimates the object position in the next frame. Introducing
a first order prediction method in our level-set based framework would consider
the last two segmentation results χt−1

2 and χt−2
2 , measure the transformation

between them and predict the current initialisation of the image segmentation
algorithm on the basis of the measured transformation. A parametric approach,
based on a similarity2 transformation A, requires the estimation F of four pa-
rameters, namely the translation vector t = (tx, ty)T , the rotation ω and scale
s, comprised in a state vector s = (tx, ty, ω, s)T . In a level-set framework the
object translation might be estimated by the translation of the centre of gravity
of the inside masks χt−1

2 and χt−2

2 , the rotation by the evaluation of the principal
component3 of the two masks and the scale by the square root of the mask area

2 Similarity transformations constitute a subgroup of affine transformations where the
transformation matrix A is a scalar times an orthogonal matrix.

3 Here the principal component is the eigenvector to the largest eigenvalue of the
covariance matrix of the positions of the points within the masks χt−1

2
and χt−2

2
.



ratio.
φ̂t = A(φt−1, st−1) with s

t−1 = F (χt−1

2 , χt−2

2 ) (5)

In contrast to the above approach with “zero order” prediction, even objects
with high velocities can be tracked, as long as they move to some extent in ac-
cordance with the assumed similarity transformation model. Object movements
that violate the prediction model, in particular high dynamic movements, again
lead to failure.

To cope with high dynamic movements, higher order prediction models might
be exploited, but they still underlie the limitation to movements that approxi-
mately follow the assumed model. Another approach includes the measurement
of the real motion of all pixels (optical flow), belonging to the object, thus pro-
viding a means to accurately estimate the object position in the next frame,
even in the presence of high dynamic movements. In this way, the prediction is
not based on previous frames Y t−2 = {It−2, It−1} only, but also on the current
frame Y t−1 = {It−1, It}. Extending the above approach by the measurement of
optical flow leads to the estimation of the state vector s = (tx, ty, ω, s)T from
the flow field Vt−1, that might be achieved by a regression analysis R.

φ̂t = A(φt−1, st) with s
t = R(Vt−1, χt−1

2 ) (6)

Although the actual pixel velocities within the object are measured and used
for an accurate prediction of the object position, a similarity transformation
model is used for the prediction of the contour of the object. Strong defor-
mations of the object will still lead to an imprecise initialisation of the image
segmentation algorithm that might decrease the speed of convergence and the
robustness of the segmentation. In the next section a purely non-parametric ap-
proach is introduced that comprises both a non-parametric estimation of the
object position and a non-parametric estimation of the object deformation.

3.3 Probabilistic Prediction Method

In the following we propose an extension of the object tracking algorithm, devel-
oped in the previous section, that incorporates the optical flow measurement not
only in the estimation of the object position, but also in determining the accurate
deformation of the object. The optical flow Vt already contains all information
required. Utilising an image processing warp4 algorithm Wv that moves each
pixel within an image according to a given vector field, enables us to purely
non-parametrically predict an initial level-set function φ̂t for the segmentation
of the current image It.

φ̂t = Wv(φ
t−1,Vt−1) (7)

If the optical flow estimation provides an additional confidence measure C

a modulation of the prediction will lead to large values of the initial level-set
function at locations with high confidence and to small values at locations with

4 Backward warping yielded best results. For the backward warping, also the velocity
vectors need to be measured back in time.



low confidence. Thus the flexibility of the moving contour, as introduced in
Sect. 3.1 is adapted by the confidence of the optical flow estimation.

φ̂t = Wv(φ
t−1,Vt−1,C) (8)

In a last step, to introduce an even more robust and faster convergence of
the proposed algorithm, the entire velocity pdf P (Vt|Y t) is exploited in the
prediction stage to determine not only an accurate initial region χ̂t

2, but also

provide an optimal slope (see Sect. 3.1) of the initial level-set function φ̂t. Util-
ising a weighted warping algorithm Wp that moves each pixel within an image
not only in one direction, but in all possible directions and overlays all moved
pixels weighted by the probability P (Vt|Y t) for the given pixel and direction,
enables us to determine both the optimal initial region and the optimal slope of
the initial level-set function φ̂t.

φ̂t = Wp(φ
t−1, P (Vt−1|Y t−1)) with φ̂t(x) =

∑

vt

x′

P (vt−1

x′ |Y t−1)·φt−1(x−vt−1

x′ )

(9)
Altogether the proposed approach keeps the motion ambiguities of the optical

flow estimation and yields a flat gradient of the initial level-set function at those
sections of the contour where the information from the optical flow is ambiguous
and offers only low confidence, leading to a mostly unconstrained and quick con-
vergence. To the contrary, in regions of the contour where the optical flow has
a high confidence, the predicted initial level-set function exhibits a steep gradi-
ent, enforcing only little change to the contour. The proposed approach enables
a smooth transition between the prediction algorithm and the level-set image
segmentation method. Thus, the deformation of the contour is locally controlled
depending on which algorithm is superior. In sections of the contour with lit-
tle structure and thus only small confidence in the optical flow measurement,
the segmentation method will drive the contour evolution, whereas in sections,
where the optical flow estimation is very accurate, the impact of the segmen-
tation method on the contour deformation is suppressed and dominated by the
prediction algorithm.

4 Main Results

In order to show the performance of the proposed approach three exemplary
test image sequences were chosen. First, a sequence was artificially created with
known ground truth by moving an object in front of a background. The move-
ment was strictly based on similarity transformations, i.e. the transformations
of the object exhibit exclusively translation, rotation and scale. Second, two real
world examples were chosen. One outdoor scene with a driving car and an indoor
scene with a high dynamically moving object.

Figure 1 (top row) shows two initial level-set functions, indicating the same
initial figure-background condition of a circle in the middle of the image for
the image segmentation algorithm and thus leading to the same segmentation



φ

10

5

0

0

0

-10

-5

1/4

1/4

1/2
1/2

3/4

3/4

1

1

φ

10

5

0

0

0

-10

-5

1/4

1/4

1/2
1/2

3/4

3/4

1

1

φ

10

5

0

0

0

-10

-5

1/4

1/4

1/2
1/2

3/4

3/4

1

1

it
er

a
ti
o
n
s

width

5

10

10

15

20 30 40 50

Fig. 1. Top row: Two different initial level-set functions φ for the same figure-
background regions with steep (left) and flat (right) gradient. Bottom row: Final level-
set function, after segmentation (left) and number of iterations until convergence of
the segmentation algorithm, plotted for different widths of the contour of the initial
level-set function (right).

result (bottom row, left). The only difference of the initial level-set functions
are the steepness of their gradients at the contour, yielding different numbers
of iterations until convergence of the segmentation algorithm. Figure 1 (bottom
row, right) shows the number of iterations until convergence of the segmentation
algorithm, depending on the width (steepness of the gradient) of the contour of
the initial level-set function. In Fig. 2 one frame of the real-world test image
sequence with high dynamic motion is shown in detail. The images are overlaid
with segmentation results: previous segmentation result χt−1

2 (grey), current

segmentation initial condition φ̂t (white) and current segmentation result χt
2

(black). Figure 2 shows two times the same frame, but processed with different
prediction approaches. Whereas Fig. 2 (left) shows the results of a method with
first order prediction based on the last two segmentation results χt−2

2 and χt−1

2

(5) yielding a segmentation initial condition that leads to unreliable tracking
(the segmentation algorithm gets stuck in an unfavourable local minimum as
the initial condition is already to far away from the desired final contour), Fig. 2
(right) shows an approach based on the probabilistic optical flow measurement
(9), that is able to track the high dynamically moving object. Figure 3 shows
an overview of the used test sequences: an artificial test sequence (top), an
outdoor car sequence (middle) and an indoor sequence with high dynamic motion
(bottom). The sequences are overlaid with the segmentation result χt

2 (black)
using the prediction method introduced in Sect. 3.3 (9).



Fig. 2. Detailed view of the real-world image sequence with high dynamic motion,
overlaid with segmentation results: previous segmentation result χt−1

2
(grey), current

segmentation initial condition φ̂t (white) and current segmentation result χt

2 (black).
Shown are identical frames left and right, but different prediction approaches: first
order prediction based on the last two segmentation results χt−2

2
and χt−1

2
(5), yielding

a segmentation initial that leads to unrobust tracking, as the segmentation algorithm
is stuck in a local minimum (left) and probabilistic optical flow based measurement
(9), being able to track the high dynamically moving object (right).

Fig. 3. Overview of used test sequences. Artificial test sequence (top), outdoor car
sequence (middle), indoor sequence with high dynamic motion (bottom). The images
are overlaid with the segmentation result χt

2 (black). Shown are the first (upper left),
last (lower right) and ten intermidiate frames of the sequence.



5 Conclusions

We presented an approach for object contour tracking, based on a level-set
method for image segmentation and a correlation-based patch-matching method
for probabilistic optical flow estimation. Utilising the probabilistic optical flow
for the prediction of the object contour constitutes a non-parametric prediction
model that is capable of representing nonrigid object deformation as well as
complex and rapid object movements, thus providing the segmentation method
with a reliable initial contour that leads to a robust and quick convergence of
the level-set method.

Furthermore we introduced a novel interpretation of the value of the level-set
function. Unlike most recent level-set methods that consider exclusively the sign
of the level-set function to determine an object and its surroundings, we use the
value of the level-set function to reflect the confidence in the predicted initial
contour. This yields a robust and quick convergence of the level-set method
in those sections of the contour with a high initial confidence and a flexible,
mostly unconstrained and quick convergence in those sections with a low initial
confidence.
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