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Complex object representation
in a computer simulation of the neocortex

Sven Schrader, Rüdiger Kupper, Marc-Oliver Gewaltig, Ursula Körner, Edgar Körner

Abstract— In vision, an object representation is constructed
through a cascade of areas, each processing more and more
elaborate features of the stimulus image. We hypothesize that
the necessary signal flow involves a feed-forward path to
compose the object representation as well as a feedback path
to refine the representation and to correct errors. Using word
recognition as a metaphor for visual stimuli, we have imple-
mented this architecture in a spiking neural network. Given a
string of characters, the network quickly generates an initial
stimulus hypothesis after only 35 ms. Already the first wave of
action potentials traveling upwards the hierarchy contains the
correct local symbols (syllables, word) of the presented stimulus
primitives. In most cases, the activation of the correct word
precedes all other candidates with millisecond precision and is
most pronounced. Thus, our model codes the correctness of a
response in its relative latency. In a subsequent refinement stage,
where high-level activity modulates lower stages, this activation
dominance is propagated back, influencing its own afferent
activity to exhibit a unique decision.

I. INTRODUCTION

Despite the fact that we are provided with increasing
detail about neocortical connectivity (1; 2; 3; 4; 5), the
principles of higher brain functions are still poorly under-
stood. Structures that have been suggested as computational
units are often based on Hebb’s widely accepted idea of
neuronal assemblies (6) where information is processed by
sets of neurons rendering functional, rather than anatom-
ical, relations. Theoretical models, which are not subject
to experimental constraints, have become important tools
to investigate such principles. They are often simplified to
allow analytic treatment (7; 8; 9; 10). In particular, random
connection schemes often mimic the seemingly unspecific
nature of connections in the cortex (8; 11; 12). However,
the flow of information is bound to follow the structured
connections within and between brain areas. To address
this issue, we studied the dynamics of a large network of
integrate-and-fire neurons (13) whose architecture mimics
the most prominent features of cortical connectivity, its areal
division and its horizontal and vertical organization. In this
model, we study the integration of sensory stimuli and the
stages of visual processing in the ventral stream, the so-
called “what”-pathway. We investigated the potential of our
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network to recognize and neurally represent (14) complex
objects. Using the hierarchical composition of words, we
reduce the complexity of the visual modality to a one-
dimensional stimulus domain. The goal of our study is to
demonstrate how the hierarchy of the network (reflecting
the hierarchy of the modality) creates compositionality, a
unique high-level representation based on the application of
basic primitives. At this juncture, local feedback onto lower
stages is of particular functional importance. Large parts of
lateral connections between areas are modulatory (15). Using
modulatory feedback, we can show that initial activations
refine themselves iteratively by influencing their own input.

A. Columns and layers

Besides the division into several layers, large parts of the
brain are characterized by a vertical organization, prompting
the notion of the cortical column (16; 17; 18). Connections
may span layers vertically but are laterally confined to a
particular volume. Lateral connections between columns can
occur but are most pronounced in layers III and V (19). The
smallest of such units is the minicolumn (20; 21). Following
earlier work (22), we hypothesize that neocortical computa-
tion is carried out by elementary modules, the minicolumns,
which are repeated over the cortical surface and are general
‘processing units’ indifferent to the task at hand. Within
this framework, the set of minicolumns that share the same
receptive field is defined as one macrocolumn. We propose
that sensory integration, e.g. along the visual pathway, results
from the massively parallel action of those units, which per
se feature a stereotypical sequence of processing: Across
its layers, a macrocolumn splits recognition into subsequent
stages according to a fast “local hypothesis”, shaped in layers
IV and lower III which we call “A-system”, (see 22, for
details) and a slower refinement phase in layers II and upper
III, the “B-system”. Finally, activity in layers V and VI,
the “C-System”, is the neural representation of an object.
Downstream areas or efferent instances (e.g. motor output)
receive this activity for further processing or generation of
behavior. Extending a study using analog neurons (23), the
present paper seeks to elucidate how the above architecture
forms dynamic representations of composite entities with
biologically realistic neurons. We describe the neoCOREtext
model, a layered cortical model that demonstrates the forma-
tion of a fast initial stimulus hypothesis in the columns and
its subsequent refinement by inter-columnar communication.
We simulate the signal flow in the A- and B- systems of a
set of model columns across three hierarchical cortical areas.



B. Latency code

Usually, post-synaptic potentials are small as compared to
the distance to firing threshold (24; 25). Successful firing can
therefore be reached only by a high input rate, where the
neuron responds with a large variability, or by a coherent
input of many neurons, which leads to a more precise firing
behavior. Whether such temporal code is functionally used in
the brain is still under debate (26; 27; 28). Spikes occurring
with millisecond precision, however, point into the direction
that information can indeed be found in the precise timing of
action potentials (29; 30; 31; 32). Our network suggests how
time can be employed as a computational variable. Although
no effort has been made to explicitly incorporate or extract
information using spike patterns, the network reaches a state
where spike timing plays a critical role. Responses appear
in the form of narrow spike volleys whose occurrence times
encode its correctness. A perfect match will yield the fastest
response, while incomplete matches yield successively more
delayed responses. Thus, from the receiver’s point of view,
the relative latency of a signalled local decision from its
input neurons encodes directly the probablility of being true
(truth value). Relative latencies are a fundamental property
of our model since it is the mechanism that separates correct
decisions from wrong ones. We show how this separation can
be further improved using several feed-forward and feedback
pathways.

II. METHODS

We simulated our model with the simulation tool NEST
(33), using a newly developed Python interface (34). Sim-
ulations were run on a machine with two AMD Dual Core
Opteron 280 processors at 2.4 Ghz. A typical simulation took
about 1.5 seconds per millisecond simulated time. Offline
data analysis and display programs were implemented in
Python, using the scientific packages numpy and pylab.

III. MODEL

A. Network Architecture

Without loss of generality, we have chosen a simplified
stimulus environment in which complex objects are com-
posed from smaller parts. We realize the hierarchical con-
struction of words from syllables and letters and implement
a word recognition task. The neoCOREtext model consists of
three areas, “V1”, “V2” and “IT”, representing consecutive
steps in visual processing. Each area is composed of three
layers in which macrocolumns are arranged retinotopically.
The network scheme is shown in Figure 1. Within one
macrocolumn, the three layers A1, A2 and B perform the
guessing-refinement stages. The minicolumns represent the
local symbols at each retinal position. This is done by
populations of 65 neurons. The connections are explained in
Figure 2. Gray boxes symbolize the excitatory (rectangles,
N=50) and inhibitory (squares, N=15) neural sub-pools. The
number of connections is shown in Table III in the Appendix.

In this framework, we treat letters as primitives (such
as edges in vision) to be processed in V1, syllables as

Fig. 1. The neoCOREtext model. Shown from bottom to top are the differ-
ent levels of network architecture in the system. The three areas constitute
the subsequently higher order in word processing, letters (V1), syllables (V2)
and words (IT). Their feed-forward (double arrows) and feedback (round-
headed double arrows) connections manifest learned knowledge about word
compositionality (see Figure 2) The feedforward connections are divided
into two pathways, one which connects A-systems (‘A-pathway’) and one
between B-systems (‘B-pathway’) Within each area, the three cortical layers
form the A-B system of local symbol recognition. Their connectivity include
feed-forward excitation and feedback inhibition. The retinal arrangement is
carried out by the macrocolumns, where any local symbol (words, syllables,
letters) can be represented at any position of the array in the minicolumn.
Within each layer, a gray box denotes a small neural pool representing a
single local symbol, m denotes the quantity of the local alphabets. Arrows
are further explained in Figure 2.

intermediate features in V2 and words as high-level features
in IT. The stimulus enters the network in V1. Its task is
to evolve a dynamic state which activates the macrocolumn
in layer B of area IT, representing the stimulus word.
Figure 2 e demonstrates how inter-area connections are con-
structed according to the word composition into syllables
and letters. Local symbols converge onto the next higher
instance. 500 English words are stored by connecting the
underlying syllables (531 in total) and letters (26) in a feed-
forward manner. Modulatory feedback follows the opposite
direction, shaping divergent connectivity to lower areas. The
retinal width in our model is six symbols, Figures 1 and 2 e
show a width of five, for clarity.

The input to the network consists of two noise sources



Fig. 2. Connections in the neoCOREtext system. (a) feedforward con-
nections. Each neuron from the excitatory source population project to all
neurons of the source pool. (b) inhibitory feedback. Interneurons project
back to the excitatory target population. (c) lateral inhibition in IT-B. Each
symbols inhibits all other symbols. (d) recurrent connectivity is implemented
within and across excitatory and interneurons, respectively. (e) Connectivity
scheme constituting word knowledge. Neural pools that represent symbols
at particular positions on the retina are connected according to the word
composition into syllables and letters. Shown is the connectivity for the word
roses. Two minicolumns are connected in a divergent-convergent manner
(gray lines), from the excitatory pool of one level to all neurons in the next
level. The synapses project uni-directionally to higher areas (double-lined
arrow) and back to lower areas with modulatory synapses (round-headed
arrow). All words are stored in this way, multiple connections are excluded.
In addition, every symbol inhibits six neighboring symbols from the next
level in a center-surround fashion (three to the left and three to the right),
leading to a local feed-forward inhibition (not shown).

emitting spikes at a constant rate. In both cases, spike
intervals are randomly drawn such that the number of spikes
per unit time is Poisson distributed (Poisson process). The
stimulus is applied to all neurons in layer A1 of area V1
representing the letters at their positions. For instance, if the
word roses is stimulated, the stimulus is applied to the A1-
minicolumns for r at the first position, the one for o at the
second, and so on (see Figure 2 e, dashed arrows). In addition
to the letter stimuli, the entire network receives a constant
noise mimicking the spiking activity of the surrounding
network (see Appendix for details).

Altogether, the network consists of 18 macrocolumns
(three areas with 6 retinal positions each). Depending on
the number of local symbols, each macrocolumn comprises
between 5,000 and 100,000 neurons. Each of the 3,842
minicolums has 196 neurons (minicolumns beyond retina
position 1 in IT are spared, since they are not required).
Thus, the entire network comprises about 750,000 neurons
and 60,000,000 synaptic connections.

B. Types of inhibition

In each minicolumn, we have implemented a fraction of
inhibitory interneurons comprising 30 % of all neurons. Inhi-
bition can be reached directly, or by exciting the interneurons
of the target population. The latter indirect inhibition occurs

across areas because they are not connected via inhibitory
fibers (5). Feedback (B→A2), lateral and recurrent inhibition
are realized directly (Figure 2 b, c and d). In addition to
the feedforward connections across areas (Figure 2 e), every
symbol inhibits six neighboring symbols from the next level
in a center-surround fashion, leading to a local feed-forward
inhibition. For simplicity, the features are ordered alphabet-
ically rather than by similarity. Due to memory limitations,
this lateral inhibition is currently only implemented in Layer
B of area IT.

C. Neuron Model

The dynamics of each neuron is described by the integrate-
and-fire model (13)

τm
dV(t)

dt
= −V(t) + V0 + Rm(E(t) + I(t)), (1)

where τm denotes the membrane time constant, Rm the
resistance and E and I the sums of all incoming excita-
tory and inhibitory synaptic currents, respectively. When V
reaches a fixed threshold Vθ, a spike is emitted and the
membrane potential is reset to the resting potential V0 for
the time of the refractory period tref. Each incoming spike
elicits synaptic currents E and I which follow an α-function
α(t) = J t

τsyn
exp(− t

τsyn
) (35) after a fixed delay δ,

E, I(t) =
∑

j

∑
i,tj

i≤t

α(t− tji − δ), (2)

where tji represents the time of occurrence of the ith spike
from the jth presynaptic excitatory (inhibitory) neuron and
J the amplitude of the alpha-function (Greek letters in Table
III). Modulatory action potentials to a lower B system (round
headed arrows in Figures 1 and 2 e), enhance the synaptic
weight amplitude J by a a factor that decays exponentially
to one, J(t) = J0 × (1 + µ(t)), where

µ(t) = fmod

∑
j

∑
i,tj

i≤t

exp
(−t− tji − δ)

τmod
, (3)

and tji are the spike times from the next higher B system.
In all other layers, synaptic weights are constant, J(t) = J0.
Further details and parameters are given in the appendix.

IV. RESULTS

A. Initial hypothesis

We first consider the early (<50 ms) stimulus response of
the network. Figure 3 shows the responses of areas V1 and
IT after stimulation of the letters g,a,r,d,e,n. The symbols in
area V1 respond with a higher activity until stimulation is
switched of at 150 ms (Figure 3 b). Across layers, the network
activity becomes more structured. The phasic input creates
pulse-like patterns that feed onto the next area. The main
output layer of area V1 (A2) emits almost only pulses at
around 30 ms.

This trend continues in area IT, where symbol activity
is entirely composed of pulses (Figure 3 c). Spike volleys
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Fig. 3. Recognition of a word. (a) the stimulus to V1 starts at 0 ms and lasts for 150 ms. Background noise starts at -100 ms. (b) rasterplot of the spike
activities in area V1 during stimulation of the letters forming the word garden. Each row (separated by horizontal lines) stands for the neurons representing
the highlighted symbol. Shown are only symbols with strong responses, other symbols are almost silent.

appear at around 35 ms for the word that was stimulated,
garden, along with words that share a high overlap. We refer
to this set of symbol responses as initial candidate list. It
comprises about one percent of the entire set of 500 words.
Furthermore, Figure 3 indicates that the stimulus word is
activated ahead of the other candidates and its activity is
both strongest (in terms of number of spikes) and temporally
most confined. Thus the correct word dominates the other
candidates in terms of speed, strength and precision.

To asses how the network generates its initial hypothesis
on average, we stimulated with 104 polysyllabic words (their
letters in V1). For each stimulus, the correct word and a small
list of candidates is activated in IT-B at around 35 ms. As in
the example of Figure 3, the initial candidates comprise about
1% of all learned words. The responses are summarized in
Figure 4. Response pulses are shown in the two-dimensional
space, defined by their times of occurrence and their temporal
spread. Generally, the correct words appear earlier and are
stronger and more precise than their alternatives. The average
lead of the correct word is 1.8 ms. In 46 cases, the correct
word fails to lead other candidates, but still is the strongest
symbol, except in a single trial. In 18% of the trials, the
correct response is the third to appear or later.

B. Symbol refinement

If the stimulus persists for a longer period, response
pulses reoccur, representing a second set of word-candidates
at around 100 ms. Thus, area IT responds with waves of
pulses that are 60 ms apart. Without feedback, the second
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Fig. 4. Symbol activity in IT-B. Shown are the occurrence-times (abscissae)
and precisions (ordinate) of word-representing pulses for 104 recognition
trials. Each point denotes a different word occurrence. The strengths of the
pulses (number of spikes) is denoted in the point diameter. Parameters are
estimated by fitting a Gaussian rate profile on the individual pulses. The
temporal spread corresponds to the standard deviation. Correct words are
emphasized in gray, false-positives are black. Time is shown relative to
stimulus onset.



wave contained approximately the same words as before (not
shown). But with feedback (inhibitory and modulatory, see
Section III-A), the second set is reduced. As indicated in
Figure 3 a, the second wave represents mainly the correct
symbol. Figure 5 shows four examples of the recognition
dynamics.

In many cases, the dynamics reduces the activity until only
the correct word remains. As in Section IV-A we investigate
the dynamics of the second wave for the same 104 stimuli.
As shown in Figure 6, the ratio of correct versus incorrect
symbols is greatly increased (from 0.38 to 0.86, if false-
positives are present). 43 of the words are found correctly
and uniquely in the second wave. However, in 10 cases the
correct word does not appear in the second wave. The rest of
the trials contain the correct word in the second wave along
with weaker false-positives that share a great overlap with
the correct word (cf. Figure 5 b).
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Fig. 6. Word refinement in IT-B. Shown are two waves of word-pulses.
The first wave corresponds to Figure 4. About 60 ms after the first wave, a
second wave appears with almost only correct words (gray).

C. Symbol shift

To ascertain how the correct word ‘overrules’ the wrong
alternatives, we investigate the effect of modulatory feedback
in isolation. To this end, we have switched off the B→A2
inhibition (cf Figure 1). Thus, the candidates can reoccur, and
the network can not refine its hypothesis. Comparison of the
two symbol waves (Figure 7) reveals that the correct words,
which already appear at the onset of the first wave, reoccur
faster that the wrong candidates and are shifted further
ahead from the distribution. The average lead is enhanced by
2.7 ms. Thus, modulatory feedback alone appears to increase
the temporal segregation of correct versus incorrect words.
Yet due to the missing feedback inhibition, the relative
amount of false-positives during the second wave is larger.

In summary, word recognition takes place in two main
stages. In the first wave at about 35 ms, responses comprise
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Fig. 7. Shifting the correct symbols. The four histograms count the
occurrence times of words without feedback inhibition (B to A2). In the
early phase (around 40 ms), the correct words (gray) are located at the early
onset of the false-positive distribution (black). During the second wave
(around 100 ms), correct symbols appear earlier than before. The lead of
correct words is increased by 2.7 ms on average.

about one percent of all possible words and represent a set
of close candidates that come into question. From 104 trials,
55% of the earliest and 99% of the strongest responses corre-
spond to the correct word. In the second wave (100 ms), 90%
of the correct words reappear with the strongest response.
Modulatory feedback isolates the correct words by shifting
them further ahead.

V. DISCUSSION

In this paper we have presented the neoCOREtext model,
a network that is able to shape successively higher represen-
tations of complex objects. Using three hierarchy stages that
refer to steps in visual processing, entities are dynamically
‘composed’ from a set of primitives. For conceptual simplic-
ity, we have abstracted the sensory modality to the perception
of words given a string of characters. The underlying neuron
model is an integrate-and-fire neuron with action potential
generation. Our network features horizontal (layered) and
vertical (columnar) organization. We interpret those levels
of anatomical modularization as a division into functional
building blocks: Across layers and areas, a fast initial
hypothesis is formed via the A-A path which is refined by
feedback processes between the B-systems. Within columns,
local symbols compete by lateral inhibition and are subject
to feedback inhibition.

We showed in Section IV-A that higher areas respond
in pulse-like activity, even if the stimuli are continu-
ously applied. This sharpening is caused by the converging
knowledge-connectivity (Figure 2). For instance, a syllable
that is correctly excited by its letters (usually more than
one), receives a stronger input than unrelated syllables. Firing
threshold is quickly reached and the spikes of the underlying
population are more coherent. Consequently, the refractory
periods are temporally aligned, rendering the neural pool ex-
citable again at the same time. This leads to two predictions.
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Fig. 5. Word recognition examples. Shown are four examples of word recognition tasks. Pulses are symbolized as in Figure 4. (a) An example for distinct
recognition in the presence of many candidates (garden). (b) False-positives can occur in the second wave (within). (c) The earliest word occurrence during
the first wave for all 104 trials (Figure 4), before. (d) Example where only the correct word is elicited (always). This example corresponds to the point
with the highest temporal spread (std) in the first wave (Figure 4)

First, wrong symbols should not be active at all. Figure 5
shows that only words with a certain overlap are activated
during the first pulse, most of the words do not appear.
Second, symbols that are closer to the correct word should
appear earlier, because their input is higher and threshold
is reached earlier. Figure 5 a shows that the correct word,
garden, precedes the similar word golden, which differs by
two letters. This is confirmed in Figure 4 where, on average,
the correct word precedes the rest of the candidates by a few
milliseconds. This small lead allows fast lateral inhibition to
suppress the wrong alternatives.

Our network demonstrates that precise spike volleys can
arise from phasic inputs and, more importantly, it suggests
how information could be temporally coded. A response
gains its truth value by its relative latency. The earlier a
symbol appears, the more likely it is correct. Therefore,
information can be extracted as soon as possible. This is
already the case for the first wave of candidates (Figure 4),
when feedback has not yet arrived. The correct word can be
read out in almost all cases by a threshold or a simple winner-
takes-all circuit. This suggests how sensory information can
be processed in situations when there is no time to refine the
hypothesis. For example, it has been shown that decisions can
already be made within short periods that exclude feedback
paths (36).

During the second wave, the set of word candidates is
reduced by 73 % (Figure 6) and often consist of only the
correct word. We conclude that refinement works as follows.
First responses are propagated via both feedforward paths,
(“A” and “B” in Figure 1). They elicit a quick response
with a coarse hypothesis on the stimulus. Symbols that are

recognized in the B-systems suppress the activity in layer A2
with feedback inhibition (B-A2, see Figure 1), weakening the
contribution of the A-pathway. We state that this suppression
is critical in cortical processing - symbols that are already
recognized are taken out from the initial pathway, allowing
other symbols to be resolved. On the other hand, the impact
of correct symbols to the next area has been up-regulated
by the B-system with modulatory feedback. This results in
an elevated activity along the B-pathway. Thus, by means
of modulation, a B-system ‘gives credibility’ to its strongest
sources, predicting the most certain symbols. This Predictive
Coding scheme has a direct impact on strengths and relative
latencies of subsequent responses. Correct responses occur
stronger and earlier than before (Figure 7). Although this
shift is only in the millisecond range (2.7 ms on average),
a fast lateral inhibition uses this time lead and silences
the wrong symbols. Patterns that are already part of the
established interpretation of the input are kept at the B-
system, while its removal from the A-system enables a fur-
ther refinement of the interpretation by adding more details
of the input description.

We have shown that the responses of the word-area IT
are correct for the majority of the words. However, in 10
trials (9.6%), the correct word failed to reoccur in the second
wave of activity. These words did not produce a weaker
stimulus signal (e.g. they were not shorter than others).
Obviously, more reliable symbol repetition can be achieved
by strengthening the feed-forward path or by attenuating
the feedback. For instance, all correct words reoccurred in
the case without feedback inhibition (Figure 7). On the
other hand, this leads to an increase of word candidates and



complicates the separation into correct and wrong symbols.
Reliability could rather be increased by reaching more pre-
cise responses during the first wave. In fact, the words that
disappeared in the second wave failed to have the first or most
precise response in the initial wave and were also part of a
bigger candidate set (up to 11 candidates in the first wave,
7% of all words on average, as opposed to 1.2%). Therefore,
the weights of the feedforward path should be adjusted to
elicit equally sized candidate lists. This can be reached by
using weight normalization which takes word similarity into
account.

Some hundred thousand neurons seem to be a high amount
to code for 500 words. Our network size denotes an upper
bound for two reasons. First, we have realized all local sym-
bols with no regard to their retinal positions. For instance, the
syllable ing is also implemented at the first retinal position
although it only occurs at the end of words. Obviously,
symbols that are never used are not learned or would not
endure in a real-world situation. Second, nearby neurons
often fail to have identical receptive fields (37) indicating
that there is a high overlap between neural populations. This
receptive overlap, however, requires a similarity measure for
symbols. In our model, we have neglected such distance mea-
sures in order to demonstrate the network’s basic recognition
capabilities.

Having equipped the network with word-knowledge in a
supervised fashion, the question remains as to how complex
objects are learned. A possible learning signal could emanate
from layer A2, where unresolved symbols sustain a higher
activity. Thus, ‘ignorance’ of a symbol is translated into an
error signal that can mediate between symbols by means of
synaptic plasticity.

APPENDIX

Parameters of the integrate-and fire neuron are given
in Table I. The individual neurons receive their synaptic

parameter value unit
Rm 200 MΩ
V0 0.0 mV
Vθ 20.0 mV
τm 20 ms
tref 2.0 ms
τsyn 0.5 ms
τmod 50. ms
fmod 0.001 1

TABLE I
PARAMETERS OF THE INTEGRATE-AND FIRE NEURON AS IN EQU. (1) OF

SECTION III-C

currents as shown in Table II. Capital indices denote the
areas and layers. If no area is given, the equation holds for
all three layers. A superscript “−” denotes the next lower
area, otherwise terms refer to the same area. N denotes the
quantity of the connections, Greek letters the weights and
delays (see Table III).

source target weight/quantity delay (ms) remark
noise all 7.1 kHz Poisson noise

stimulus V1-A1 2.0 kHz Poisson noise

A1 A2
Nα = 50,
α = 0.3 pA δ = 1.0

A1 B
Nα = 50,
α = 0.3 pA δ = 1.0

B A2
Nη = 50,
η = −0.6 pA δ = 1.0

V1-A2 V2-A1
Nζ = 30,
ζ = 0.1 pA δ = 1.0

V1-B V2-B
Nζ = 30,
ζ = 0.1 pA δ = 1.0

V2-A2 IT-A1
Nγ = 30,
γ = 0.1 p δ = 1.0

V2-B IT-B
Nζ = 30,
ζ = 0.12 pA δ = 1.0

IT-B V2-B fmod = 0.001 δ = 1.0
V2-B V1-B fmod = 0.001 δ = 1.0

IT-B IT-B
Nλ = 10,
λ = −0.1 pA δ2 = 0.5

lateral
inhibition

all all

ρ = 0.1 pA,
Nee = Nei = 5 ,
Nie = Nii = 1.5 δ = 1.0

recurrent
connections
within one
minicolumn

TABLE III
PARAMETERS OF SYNAPTIC CONNECTIVITY.
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Statistics and Geometry. Berlin, Heidelberg, New
York: Springer-Verlag, 1991.

[2] B. Hellwig, “A quantitative analysis of the local con-
nectivity between pyramidal neurons in layers 2/3 of
the rat visual cortex,” Biological Cybernetics, vol. 2,
no. 82, pp. 111–121, Feb. 2000.

[3] R. J. Douglas and K. A. C. Martin, “Neuronal circuits of
the neocortex,” Annual Review of Neuroscience, vol. 27,
pp. 419–451, 2004.

[4] S. Song, S. Per, M. Reigl, S. Nelson, and D. Chklovskii,
“Highly nonrandom features of synaptic connectivity
in local cortical circuits,” Public Library of Science,
Biology, vol. 3, no. 3, pp. 0507–0519, 2005.

[5] A. M. Thomson and C. Lamy, “Functional maps of
neocortical local circuitry,” Frontiers in Neuroscience,
vol. 1, pp. 19–42, 2007.

[6] D. O. Hebb, The organization of behavior: A neuropsy-
chological theory. New York: John Wiley & Sons,
1949.

[7] D. J. Amit and N. Brunel, “Model of global sponta-
neous activity and local structured activity during delay



EV1-A1(t) = P + S(t) + ρ (Nee EA1(t− δ) + Nie IA1(t− δ))

IV1-A1(t) = P + S(t) + ρ (Nei EA1(t− δ) + Nii IA1(t− δ))

EA2(t) = P + Nα αEA1(t− δ) + ρ (Nee EA2(t− δ) + Nie IA2(t− δ)) + NηηIB(t− δ)

IA2(t) = P + Nα αEA1(t− δ) + ρ (Nei EA2(t− δ) + Nii IA2(t− δ))

EV1-B(t) = µ(t)[ P + Nα αEA1(t− δ) + ρ (Nee EB(t− δ) + Nie IB(t− δ))]

IV1-B(t) = µ(t)[ P + Nα αEA1(t− δ) + ρ (Nei EB(t− δ) + Nii IB(t− δ))]

EV2-A1(t) = P + Nγ γE
A−2

(t− δ) + ρ (Nee EA1(t− δ) + Nie IA1(t− δ))

IV2-A1(t) = P + Nγ γE
A−2

(t− δ) + ρ (Nei EA1(t− δ) + Nii IA1(t− δ))

EIT-A1(t) = P + Nγ γE
A−2

(t− δ) + ρ (Nee EA1(t− δ) + Nie IA1(t− δ))

IIT-A1(t) = P + Nγ γE
A−2

(t− δ) + ρ (Nei EA1(t− δ) + Nii IA1(t− δ))

EV2-B(t) = µ(t)[ P + Nα αEA1(t− δ) + ρ (Nee EB(t− δ) + Nie IB(t− δ)) + Nζ ζEB− ]

IV2-B(t) = µ(t)[ P + Nα αEA1(t− δ) + ρ (Nei EB(t− δ) + Nii IB(t− δ)) + Nζ ζEB− ]

EIT-B(t) = P + Nα αEA1(t− δ) + ρ (Nee EB(t− δ) + Nie IB(t− δ)) + Nζ ζEB− + Nλ λIB(t− δ2)

IIT-B(t) = P + Nα αEA1(t− δ) + ρ (Nei EB(t− δ) + Nii IB(t− δ)) + Nζ ζEB− + Nλ λIB(t− δ2)

TABLE II
EQUATIONS FOR THE INDIVIDUAL SYNAPTIC CURRENTS.

periods in the cerebral cortex,” Cerebral Cortex, vol. 7,
pp. 237–252, 1997.

[8] N. Brunel, “Dynamics of sparsely connected networks
of excitatory and inhibitory spiking neurons,” Journal
of Computational Neuroscience, vol. 8, no. 3, pp. 183–
208, 2000.

[9] D. Hansel and G. Mato, “Asynchronous states and the
emergence of synchrony in large networks of interacting
excitatory and inhibitory neurons,” Neural Computa-
tion, vol. 15, pp. 1–56, Jan 2003.

[10] E. Boustani and A. Destexhe, “A master equation
formalism for macroscopic modeling of asynchronous
irregular activity states,” Neural Computation, p. in
press, 2008.

[11] A. Kumar, S. Schrader, A. Aertsen, and S. Rotter, “The
high-conductance state of cortical networks,” Neural
Computation, vol. 20, no. 1, pp. 1–43, 2008.

[12] T. P. Vogels, K. Rajan, and L. F. Abbott, “Neural
network dynamics,” Annual Review of Neuroscience,
vol. 28, pp. 357–376, 2005.

[13] H. C. Tuckwell, Introduction to Theoretical Neurobiol-
ogy. Cambridge: Cambridge University Press, 1988,
vol. 1, ch. 3, The Lapique model of the nerve cell, pp.
85–123.

[14] H. B. Barlow, “Single units and sensation: a neuron
doctrine for perceptual psychology?” Perception, vol. 1,
no. 4, pp. 371–394, 1972.

[15] Y. Yoshimura, H. Sato, K. Imamura, and Y. Watanabe,
“Properties of horizontal and vertical inputs to pyra-
midal cells in the superficial layers of the cat visual
cortex,” J Neurosci, vol. 20, no. 5, pp. 1931–1940, Mar
2000.

[16] V. B. Mountcastle, “The columnar organization of the

neocortex,” Brain, vol. 120 ( Pt 4), pp. 701–722, Apr
1997.
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