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Abstract

In evolutionary–developmental biology, it is well established
that neural organization is coupled to a given organism’s
body-plan. Many theories attempt to underpin this coupling
and the transitions involved during the organism’s evolution,
for example the transition from radial to bilateral symme-
try. Before theoretically tackling these transitions however,
we felt it essential to first address, in this paper, precisely
why bilateral symmetry might be advantageous for a sim-
ple eel-like agent. We find that neural architectures affording
the best motor-coordinated behavior (architectures that allow
directional swimming of the agent), will readily emerge in
a way that is functionally–bilaterally symmetric, suggesting
therefore, that bilaterally symmetrical emergence for a long
elongated creature can be essential if it needs to travel over
some distance.

Introduction

The symmetrical properties of animals are mixed and varied.

Typically, most higher organisms are bilaterally symmetric,

that is to say, they can be partitioned into both dorsal and

ventral halves. By comparison, more primitive organisms

are radially symmetric and it is conjectured that the bilat-

eral properties of higher organisms evolved from such radi-

ata – and both from a common ancestor – during a process

of symmetry breaking (e.g., Meinhardt (2002)). The gen-

eral consensus is that the nervous systems of said organisms

evolved in a coupled fashion so that they followed suit from

body-plan architectural changes. As two fundamentally dif-

ferent examples, both the jellyfish (a radial organism) and

the flatworm (a bilateral organism) demonstrate this princi-

ple in that their nervous system architectures have clearly

evolved to reflect their body-plan morphologies.

Symmetry breaking is the evolutionary process that un-

derlies the aforementioned change in body-plan symmetry.

As discussed, this change is thought to have begun with a

radial ancestor. Meinhardt (2002) considers gene homology

as indicative of this common ancestry. More radical is the

view that bilateral organization came about when a colony

of individual polyps with Cnidarian (jellyfish) characteris-

tics came together, see e.g., Collins and Valentine (2001);

Holland (2003)). Further is the Polyp with a half nerve net

scenario, attributed to Lacalli (1996). This argues that at

some point during evolutionary history, a polyp started to

crawl on its side, resulting in a build-up of the nervous sys-

tem tissue in its ventral half and a concordant depletion in

its dorsal half.

We will pick up on the issue of symmetry and although we

do not account for the above theories, we will describe a very

simple framework for testing the advantage of bilateral sym-

metry and the associated neural network (as a model nervous

system) that emerges with this advantage (if indeed there is

any advantage). On the one hand, we see this as a step in de-

termining precisely why evolution favors particular bilateral

body-plan nervous system couplings. If the above theories

which all inherently argue that bilateral symmetry is evolu-

tionarily advantageous, then we should hopefully observe its

advantage for a simple agent in a simple environment. On

the other hand, we are interested in how information pro-

cessing might be structured in novel ways. We see our ap-

proach as one that enables us to study the coupling of neural

architecture to body-plan symmetry. Although we do not

strictly evolve the body-plan, we can still change the sym-

metry for a hypothetical system of muscles; and, since we

fix the locations of these muscles around particular parts of

the body, they can be considered as being part of the body-

plan. Accordingly, if all muscles around the model organism

are evolved to play a part in movement, then we will be able

to partition the body-plan into several planes of symmetry

and the muscle configuration can be regarded as being ra-

dially symmetric; whilst if only opposite muscles (those on

the dorsal or ventral, or left or right parts of the animat) are

evolved for movement, then we can hypothetically ‘cut’ the

agent into halves and the muscle configuration can be re-

garded as being bilaterally symmetric. These symmetrical

properties are not pre-defined, but will rather emerge if there

is any evolutionary advantage.

We are not the first to investigate the coupling be-

tween body-plan morphology and neural network con-

trollers. There are generally two bodies of researchers that

have made related investigations. The first body is inter-
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ested in modeling two dimensional models of undulatory

organisms with a view to establishing some kind of undu-

latory behavior, and the type of neural controller that can

bring this about; see for instance Zheng et al. (2004), Eke-

berg (1993a,b), Sfakiotakis and Tsakiris (2006), Beauregard

and Kennedy (2006), Ijspeert and Kodjabachian (1998). All

of these studies share the common aim of understanding

locomotion from a neuroscientific perspective. The sec-

ond body of researchers are less interested in neuroscience

but more interested in the behavior that can be evolved.

Within this body, Karl Sims is one of the earliest propo-

nents (Sims (1994a,b)) and many others have followed suit

(Eggenberger (1997); Bongard and Paul (2000); also see

Taylor and Massey (2001) for an extensive review). Most

of these models are three dimensional and are implemented

in part with powerful graphics libraries so as to provide the

required visualizations and physical embodiments.

In terms of investigating body-plan symmetry, Bongard

and Paul (2000) find that more locomotively efficient agents

have a tendency towards evolving bilateral symmetry. In

their model, they embed the neural controller into the agent’s

morphology so that both co-evolve. They further forgo any

developmental process since they argue that one could in-

herently introduce symmetry; instead, they explicitly map

the neuron weights and connectivities directly. However

by doing so, the synaptic strengths and interconnectivities

are de-coupled which in turn constrains the overall impor-

tance of neural network morphology. We argue that encod-

ing a network at a greater level of morphological detail, so

that neuron positional information has an actual bearing on

connection strength, is essential, if we are to later observe

any tendencies for different neurons to aggregate together

and therefore potentially demonstrate central nervous sys-

tem type characteristics. The ‘GasNets’ developed by Hus-

bands et al. (1998) utilise similar neuron spatial informa-

tion during a process of ‘gas’ diffusion, in which diffusing

gasses play a crucial role in neuromodulation. In compar-

ison, our model uses spatial information to determine con-

nection strength rather than neuromodulatory signal effect.

Of further note is the work of Downing (2007) who con-

structed an evolutionary–developmental model of neurogen-

esis to bring about directional movement for a radially sym-

metric five-limbed ‘starfish’. The model did not indicate

how neural architecture may actually be coupled to body-

plan morphology however.

Our own model has been constructed to meet our aim

of investigating nervous system architecture/body-plan mor-

phology couplings. In our simulations, both of these aspects

co-evolve. Our motivation for this undertaking, is to ini-

tially elucidate the ‘how’ of this process (beginning with this

paper), and our long-term goal is to better understand the

‘why’. Thus we are interested in both information process-

ing and the underlying evolutionary process. The model’s

task – that of directional swimming for an eel-like agent –

is one of the simplest we could think of, yet it is also highly

specialised inevitably requiring very task-specific couplings.

This makes the problem non-trivial.

The rest of this paper is laid out as follows. We first

outline and discuss some previous models of undulatory or-

ganisms. We secondly explain our model in more detail.

Thirdly, we discuss our experimental results. We finally con-

clude this paper.

A Model of Undulatory Locomotion

Undulatory locomotion is a type of locomotion often em-

ployed by bilaterally symmetric creatures requiring direc-

tional movement (e.g. an eel). Refer to Gillis (1996) for a

description of the underlying physics. Models of this type

of behavior often adopt a spring mass damper system so that

the mechanics are fluid and life-like. They secondly incor-

porate a friction model so that the modelled organism can

actually move within its simulated world. Thirdly, they usu-

ally have a control mechanism, for example, a continuous

time recurrent neural network (CTRNN). A CTRNN is of-

ten employed, because it is capable of exhibiting the central

pattern generating dynamics that are essential for coordi-

nated movement. A central pattern generator is a type of

neural network that can by the very nature of its inherent

dynamics, generate patterns of activity without any external

input. For an extensive exploration of CTRNN dynamics,

see the work of Randall Beer et al., Beer (2006); Psujek et al.

(2006); Beer and Gallagher (1992).

One of the earliest models attempting to use central pat-

tern generators (CPGs) to model undulatory locomotion is

that by Ekeberg (1993a,b), who hand-coded them using

neurophysiological data available at the time, to control a

lamprey-type agent. A similar approach is taken by Zheng

et al. (2004) to model leech swimming. Others within the

ALife community have taken the idea further by also in-

corporating evolution to derive the network architectures.

Ijspeert and Kodjabachian (1998) applies a developmental

as well as an evolutionary process in deriving the network

structure, using swimming speed and muscular contortion

for the fitness evaluation and a set of production rules for the

developmental process. More realistic models include those

of Sfakiotakis and Tsakiris (2006) who were able to repli-

cate some of the biological movement data observed for the

Anguilla anguilla eel (although their model omitted evolu-

tionary mechanism). In the model, the ‘eel’ would navigate

by incorporating sensory input from the front part of the an-

imat. Beauregard and Kennedy (2006) further developed a

model of an undulatory lamprey that could essentially track

the movement of and follow, an object. This latter work was

motivated out of a need to develop more realistic swimming

algorithms for the computer animation industry. Our own

model is explained in the following section.



Physical model

The Animat Fig. 1(a) represents a segment of the animat

constructed out of layers. For clarity, not all springs have

been depicted (in reality, each block in the animat has a

‘crane-like’ structure of springs to prevent it from collaps-

ing in on itself). Since the animat is three dimensional, it

is possible for it to undulate in multiple directions and/or

demonstrate other types of movement depending on the out-

put neurons of the neural network model.

The equations controlling the springs apply Hooke’s Law

with dampening dynamics; see Table 1 for the physical pa-

rameters of our system. Given a spring with mass points p1

and p2 on either end, it is compressed by forcing p1 towards

p2 and vise-versa. Using p1 as an example, the force exerted

upon it by the internal dynamics of the spring, is computed

as follows: −→
Fp1

= −r · −→Vp1 + k · d, (1)

where r is a dampening factor,
−→
Vp1 is the velocity of p1,

k is a spring constant defining spring torque and d is the

displacement of the spring from resting length. A change in

the mass point’s velocity,
−→
Vp1, is governed by a change in its

acceleration,
−−→
Ap1,

−−→
Ap1 (t + ∆t) =

−−→
Ap1 (t) +

−→
Fp1 +

−→
FE

p1
+
−−→
FW

p1

mp1

, (2)

−→
Vp1 (t + ∆t) =

−→
Vp1(t) +

−−→
Ap1 (t + ∆t) · dt, (3)

where mp1
is the mass of p1 and dt is the time-step (0.05)

used during the integration process (20 integration steps).

Note that
−→
FE

p1
is an external force applied to the mass point

whenever the output neuron controlling its associated spring,

becomes activated, and
−−→
FW

p1
represents the current environ-

mental force yielded by the surrounding ‘water’. Finally, the

position of the mass point, and hence the length of the spring

is updated as follows,

−→
Pp1 (t + ∆t) =

−→
Pp1 (t) +

−→
Vp1 (t + ∆t) · dt. (4)

The above equations afford a fluid and life-like representa-

tion.

The Environment The agent’s environmental niche is

modelled on movement through water. To keep things sim-

ple, we rely solely on the animat’s current velocity to derive

the environmental water force. This is the approach taken by

most researchers (e.g. Sfakiotakis and Tsakiris (2006)). For

all block faces, the water force,
−→
FW , is iteratively computed

and applied to each constituent mass point,

−−→
FW = −1

2
· ν · δ · α · −→V ·

(

~V
)2

(5)

On the RHS of the equation, the velocity parameter, ~V , is

squared to give an indication of ‘speed’. This determines

Parameter Value

Mass point masses 20.0

Layer springs k=200,r=10.5

Block springs ‘struts’ base k=25, r=50

Block springs ‘crane’ k=500,r=50

Environmental viscosity, ν 10

Environmental drag, δ 1.0

Animat block count 8

Animat length 6.4

Animat width 0.35

Neurons per block 10

Table 1: Physical Parameters. Note that k=spring constant

and r=spring dampenner. Note that the spring constants of

the block ‘struts’ are controlled by the CTRNN. The base

value of 25 sets an upper bound for one of these constants.

All values are reflective of trial and error.

the magnitude of the velocity, together with the viscosity, υ,

and the drag, δ , in determining the amount of environmental

force that should be applied; α is simply the area of the ani-

mat block face (6.4 ·0.35/8). The environmental parameters

that we use are given in Table 1.

Block

Strut

spring

Layer

(a) (b)

INACTIVE ACTIVE

(c)

Figure 1: (a,c) Diagrams indicating how springs contract in

pairs as activated by motor neurons; (b), a rendered visual-

ization of the agent.



HEADS ON SIDE ON Heads on

Side on (right)

Side on (top)

Figure 2: A diagram showing heads–on and side–on views of where the motor neurons (circles) are structurally located.

Figure 3: As additional gene values in our genome, different

active motor configurations (those motors that play a part in

movement) can be selected for during a process of evolution.

Filled circle - active motor; dashed line - plane of symme-

try. Taken from a heads–on perspective, looking down the

animat from one of its ends.

Neural network implementation

A continuous time recurrent neural network (CTRNN) is

employed to regulate the spring-pair compressions. The ac-

tivation of a ‘motor’ neuron is used to calculate the spring

constant of an associated spring, with a preset force of ‘200’

but this force is only applied if the activation is between zero

and one. The maximum spring constant is ‘25’. Each block

is self-contained and houses the neural network architecture

encoded for by the ‘neural architecture’ parameters labeled

in Fig. 5. We could have chosen instead to encode a set of

neural architecture parameters for each block, but this would

have drastically increased the size of the search space during

a process of evolution, reducing its tractability.

Weight values and inter-connectivity amongst neurons are

entirely governed by neuron position. Neurons change po-

sition during evolution (because of mutation) except for the

motor neurons which always reside within the centers of the

block faces, see Fig. 2. Note further that the motor neurons

can either bring about movement activity, or they can just

serve as general interneurons. Accordingly, different ‘active

motor configurations’ (Fig. 3) will have different impacts on

the range of possible movements so are evolved along with

the neural network architecture (see section ‘Evolutionary

Algorithm’).

The membrane potential of a CTRNN neuron is computed

according to its incoming pre-synaptic activity. In discrete

time-steps, this activity, µi, of neuron i can be modelled as

follows (based on Blynel and Floreano (2002)),

µi (n + 1) = µi (n) +



−µi (n) +
N

∑

j=1

wijAj (n) + I





τi

,

(6)

where n is a discrete time-step and τi is the time constant

for neuron i. The value Aj is the current output activity of

presynaptic neuron j. The value I represents an external in-

put current. Since the network never receives any ‘sensory

input’, it has to be triggered and so we set this value to 1.0

for the first two neurons for the very first time-step of a sim-

ulation run. A neuron might also be inhibitory in which case

the signs of all outgoing weights are flipped.

A weight value from neuron i to neuron j is derived ac-

cording to the Euclidean distance between them, the impact

of which is controlled by a parameter ξ (2.0), Eq. 7. We also

constrain the weights to fall within wmax (20) and wmin

(0.0001), Eq. 8.

λij =
ξ

dij

, (7)

wij =











wmax λij ≥ wmax,

wmin λij ≤ wmin,

λij otherwise.

(8)

Connectivity Connectivity between a pair of neurons is

established according to a minimum distance requirement.

Hence we employ three threshold parameters. The first de-

cides interneuron–interneuron connectivity; the second de-

cides interneuron–effector connectivity and the third decides

connectivity between neurons from a pair of contiguous sub-

neural architectures. Since there are no sensory neurons cur-

rently employed in the model, there are no additional param-

eters as might be expected for more advanced architectures.

A connection is formally decided as follows:

Cij =

{

1 dij ≤ Γq,

0 otherwise.
(9)



where Γq is a threshold parameter that we evolve. Note that

in terms of connectivity between subnetwork architectures

sp and sq, neuron i from sp is only allowed to make one

inter-subnetwork connection and that is explicitly chosen to

be neuron i from sq , see Fig. 4. Motor neurons never make

inter-subnetwork connections.

Figure 4: A diagram clarifying the repeated neuron archi-

tectures and how they are contiguously connected. Filled

circles – motor neurons; unfilled circles – general interneu-

rons. Non-dashed lines – interneuron connections.

Evolutionary Algorithm

The evolutionary algorithm optimizes the architectural pa-

rameters of the CTRNN network as described above to-

gether with the active motor configurations. These parame-

ters form the individual’s genotype. Both real and binary pa-

rameters are employed throughout so the algorithm employs

a mixed real-valued and binary representation, see Fig. 5.

The implementation method that we employ utilizes self-

adaptation of the mutation parameters. This affords a

broader discovery of solutions during early evolution and

a finer traversal during the later stages (e.g. Liang et al.

(1998)).

Fitness measure. This is simply chosen to be the distance

that the animat can move forwards during 200 time-steps.

During testing of the simulation, we occasionally found that

the physical interactions of the springs would oscillate out of

control due to poor dampening dynamics causing either an

animat ‘implosion’ or ‘explosion’. Whenever this happened,

the fitness of the individual would be set to -10000.

Mutation. All real-valued genes are mutated with values

drawn from a normal distribution having an expectancy of

0 and a variance governed by the mutation parameter. This

occurs for every gene with a preset probability, Φ, set to

0.02; when it occurs, the mutation parameter is also adapted.

For a real-valued y-positional gene,

yi =

{

yi + N (0, σi) rand() < Φ,

yi otherwise.
(10)

whilst for a binary valued inhibitory or motor activity gene,

mi =

{

!mi rand() < Φ,

mi otherwise.
(11)

The adaptation of the mutation parameters relies on the

setting of two strategy parameters, τo = 1.0/
√
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Figure 5: A representation of an individual chromosome

where gene groups have been partitioned. The example is

for an individual with 8 neurons per animat block. Note

that in this example, there are only 4 genes per positional

group because the positions of the four motor neurons re-

main fixed.

τ1 = 1.0/
√

2
√

D which have been shown to be optimal in a

process of self-adaptation (see Bäck and Schwefel (1993)).

D is the dimensionality of the gene vector. Therefore, with

respect to the example given in Fig. 5, D=4, for any of the

positional groups; D=8 for the thresholds and time constants

and lastly D=3 for the connectivity thresholds. The σ muta-

tion parameters are then ‘self-adapted’ as shown,

σi ←− σi ∗ exp (N (0, τ0) + Ni (0, τ1)) . (12)

Crossover. All genes within a chromosome are subject

to being exchanged with genes from another chromosome

(single point crossover). This process occurs with a preset

probability, χ, set to 0.2; when it occurs the mutation pa-

rameters are also crossed over between the same two chro-

mosomes. Note that candidates for this operation are pulled

out from the population at random, up to the size of the pop-

ulation. For any gene (both real-valued and binary types) the

crossing over process can be summarized as follows:

〈yi, yj〉 =
{

〈yj,yi〉 rand() < χ,

〈yi, yj〉 otherwise.
(13)

Selection. In our scheme we use binary tournament se-

lection with an elitist strategy. To begin with, we rank the



population according to fitness and pick an elite number of

individuals to form the start of the offspring. The remaining

offspring population is then chosen randomly using binary

tournament selection in which (until the offspring popula-

tion reaches the population size), two population members

are picked at random and the fittest is chosen with a preset

probability. Except for the elitist, all members are then sub-

jected to the above mutation and crossing over operations.

We use binary tournament selection since it facilitates diver-

sity.

Results

Fig. 7 shows the progression of best fitness for a simulation

run. Given the active motor configurations annotated on to

the plot, we can see that fitter individuals favor a bilaterally

symmetric configuration (motors opposite each other). This

optimal configuration of up/down or left/right active motor

configurations was found to emerge in six out of six simu-

lation runs (results omitted). These configurations evolved

with the neural network architecture as shown in Fig. 8. The

neural network dynamics of the active motor neurons are

given in Fig. 9. Interestingly, we can see that whilst all

blocks demonstrate a variety of mostly CPG dynamics, only

the first, second and sixth show both active neurons to have

CPG dynamics. Blocks three, four, five, seven and eight

all only show one of the active motor neurons to have CPG

dynamics (either A or B); the other neuron for one of these

blocks has an activity that is shown to trail off towards a neg-

ative value. Furthermore, this active motor neuron is seen to

alternate in successive blocks for which only one of the neu-

rons is active: block three’s active motor neuron is motor

neuron ‘A’, whilst block four’s is ‘B’ and then block five’s

is ‘A’ again; block seven’s is ‘A’ whilst block eight’s is ‘B’.

These dynamics directly contribute to the movements of the

animat since we know that the spring pairs for a given block

compress whenever the associated motor neuron has an ac-

tivity of between 0 and 1.

−0.5
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0
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Figure 6: A motion–captured visualization of the animat

travelling in the direction marked by arrows. Note, a more

negative value on the lower axis indicates further forward

travel.

Fig. 6 shows a motion–captured visualization of the an-

imat travelling in a direction marked by arrows. It is dif-

ficult to observe any undulatory movements. In fact, the

animat moves forward by crumpling and then extending its

body segments (although there are also some very small

undulatory-type movements).
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Figure 7: A graph showing the progression of the fittest pop-

ulation member over a simulated evolutionary period. Ac-

tive motor configurations annotate different points of inno-

vation; active motors are represented by filled circles.
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Figure 8: Visualizations of the neural network architecture

from the fittest individual. In the lower visualization, the an-

imat is shown head–on and the motor neurons that are used

for movement are solidly circled (filled circles in Fig. 7);

(motor neurons not used for movement – dashed circles).
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Figure 9: The CTRNN dynamics for the active motor neu-

rons in each animat block, 1-8, each represented by a sub

graph. They are labelled ‘BOTH’, ‘A’ or ‘B’ according to

whether both active motor neurons or only one of them (A

or B) demonstrate CPG dynamics.

Discussion

As noted in the introduction, nature has provided exam-

ples showing that nervous system architecture is coupled to

body-plan morphology. Based on this knowledge and the

hypothesis that different couplings are favored by different

environments, we constructed a simple model to shed some

light on how such a coupling could emerge during a process

of simulated evolution.

The discovery that our simulated agent would in many

ways reflect natural counterparts in terms of preferring a bi-

laterally symmetric motor configuration is interesting, since

other than the physical characteristics of the agent (how the

springs were interconnected) and the physical features of the

environment (drag and viscosity), we placed no further con-

straints upon the movement mechanisms. Of course we in-

tuitively know that bilateral symmetry is advantageous (con-

sider how we walk), but the way that the control system

should arrange itself - to configure itself - in concert with

the body-plan, is less clear. The coupling is complex and

the two components should not be considered separate; the

architecture of the nervous system places indirect pressure

on the type of body-plan morphology (configuration of mo-

tors, within our model), that can evolve and vise-versa. Our

framework has helped us to elucidate this interplay of body,

nervous system and environment.

Our long term research goal is to better our understanding

of the ‘why’ of the above evolutionary process, especially

with a fuller regard to body-plan symmetry; with this paper,

we have only begun to broach this subject.

We share the intuitive view that a change in body-plan

symmetry likely occurred as organisms found themselves

immersed in environments requiring directional movement.

It is further our own view that this change would have been

facilitated by an evolutionary drive towards those body-

plan/nervous system couplings that minimize energy loss.

Indeed, evolution could in part be pressured by those move-

ment mechanisms requiring no energy. As an analogy, con-

sider how we would compress a spring. We must of course

apply energy, but upon releasing the compression, the spring

passively returns to its natural resting length. The same the-

ory can be applied to muscle contractions and relaxations in

a process known as self-stabilization, Pfeifer and Bongard

(2006).

In terms of our model, we can consider how simulated

evolution strives to find a balance between the number of ac-

tive spring compressions and the number of passive spring

relaxations since both preclude movement. If we attach an

energy measure to this process, we might find that evolu-

tion prefers a maximization of passive relaxations, since this

would perhaps conserve the most energy (but the springs

would always have to be compressed first). Defining such

a measure will be hard however, since in reality, energy can

be lost from both the nervous system and from the ‘muscles’

and determining the levels of loss from each will directly de-

termine the evolutionary process. Ideally, both energy losses

will be coupled.

Future work

We are currently extending the model to address more fully

the evolutionary transition from radial to bilateral symme-

try. This will allow us to extensibly investigate the complex

interactions between body, nervous system and environment

and will bring us a step closer in answering why certain of

these interactions emerge in a particular way. We plan to

do this by (i) extending the range of morphological features;

(ii) incorporating a more flexible body-plan/nervous system

coupling representation; (iii) extending the flexibility of the

environment so that at various stages of the simulation, spe-

cific couplings are pre-disposed.

Conclusion

In setting out to model an elongated agent that could move

(e.g. swim) through water, we have shown an evolution-

ary preference for a bilaterally symmetric control system (a

CTRNN) whose dynamics ultimately shape this movement

mechanism. We further conclude that since the CTRNN ar-

chitecture is coupled to the body-plan motor system, and that



movement depends on this coupling, forward movement re-

quires a very specific coupling in order that the correct dy-

namics can be obtained; and moreover, evolution prefers a

coupling that will, because of its inherent features, endow

bilaterally symmetric functionality.
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