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Abstract. The covariance matrix adaptation evolution strategy (CMA-ES) rates
among the most successful evolutionary algorithms for continuous parameter op-
timization. Nevertheless, it is plagued with some drawbacks like the complexity
of the adaptation process and the reliance on a number of sophisticatedly con-
structed strategy parameter formulae for which no or little theoretical substantia-
tion is available. Furthermore, the CMA-ES does not work well for large popula-
tion sizes. In this paper, we propose an alternative – simpler – adaptation step of
the covariance matrix which is closer to the ”traditional” mutative self-adaptation.
We compare the newly proposed algorithm, which we term the CMSA-ES, with
the CMA-ES on a number of different test functions and are able to demonstrate
its superiority in particular for large population sizes.

1 Introduction

State-of-the-art Evolutionary Algorithms (EA) in real-valued search domains use non-
isotropic mutation distributions in order to explore the search space. The Covariance
Matrix Adaptation Evolution Strategy (CMA-ES), proposed by Hansen, Ostermeier,
and Gawelczyk [1] and further developed in [2, 3], is currently the most widely used,
and in its restart version [4] arguably the best performing EA for continuous optimiza-
tion on a (sub-)set of test functions [5].3

At the same time, the CMA-ES is also plagued with a couple of drawbacks which
we want to address in this paper by proposing an alternative adaptation of the covari-
ance matrix. As we will see in the next section, the adaptation process in the CMA-ES
is rather complex and involves a number of free parameters which have to be set with
no or little theoretical guidance. Although thorough empirical investigations have been
performed to identify suitable parameter settings [2, 3], still the application of the algo-
rithm requires extensive experience.

Secondly, the performance of the CMA-ES does not scale well with increasing pop-
ulation size. This problem has been alleviated by the introduction of the hybrid version

3 According to “Tutorial: Covariance Matrix Adaptation (CMA) Evolution Strategy”, presented
by N. Hansen at PPSN Conference, Sep. 8, 2006, Reykjavik.



of the CMA-ES [3] with direct covariance matrix estimation, which will be our starting
point in the next section and which will be used for comparison with our suggested
algorithm.

Additionally, the CMA-ES due to the cumulative step size adaptation experiences
problems when the fitness information is disturbed by heavy noise (noisy objective
functions) [6, 7] and instabilities can occur when very large populations are needed [8].

Extensions of the CMA-ES and alternative approaches to covariance matrix adapta-
tion have been proposed in the literature. Auger et al. [9] proposed an alternative method
to calculate the covariance matrix by locally estimating the Hessian (Taylor expansion)
matrix, however, at the expense of a large computational overhead of O(N6). A first
multi-objective (1 + λ)-CMA-ES has been described in [10] that uses the ”traditional”
1/5-rule for controlling the global step size.

In this paper, we will proceed in a different direction and revisit the mutative self-
adaptation process in the context of covariance matrix adaptation. In the next section,
we will briefly recall the CMA-ES and propose our new algorithm in Section 3. The
empirical comparison between both algorithms will be described in Section 4 followed
by the conclusion in the last section.

2 The (µ/µW , λ)-CMA-ES

In Figure 1 the basic (µ/µW , λ)-CMA-ES is presented. This is done at a level that
assumes that the reader is already acquainted with the (hybrid) CMA-ES as described
in [3].

The CMA-ES uses weighted recombination which is indicated by the subscript “W ”
in the strategy parentheses. The correlated mutations are generated in a two-step process
where at first a vector Nl(0, I) of i.i.d. standard normal random components is trans-
formed by the matrix

√
C in step (L1). The resulting random vectors z =

√
C N(0, I)

are N(0,C) distributed. The matrix
√

C may be interpreted as the “square root” of the
covariance matrix C. The standard way in CMA-ES [2, 3] to obtain

√
C is based on

eigenvalue decomposition solving the eigenvalue problem. After producing the corre-
lated Gaussian vector s, it is scaled in length in (L2), thus, representing the mutation
σs which is finally added to the old parental state producing the offspring in (L2). The
offspring’s fitness is evaluated in (L3). The new parental state is calculated in (L4) by
recombination of the µ best offspring realized by weighted averaging. The adaptation of
C is performed in (L6) using a cumulated p vector and the generational cross momen-
tum matrix estimate 〈ssT〉w weighted by the µ−1

eff factor. (L6) performs an exponential
smoothing (averaging) where the C “memory” decays with (1− τ−1

c )g (g - generation
counter). The quantity τc can be interpreted as a decay time constant determining the
number of generations g needed to “forget” the initial C matrix. It is quite clear that τc
must be a function of the endogenous strategy parameters and the problem dimension-
ality N . In (L5) exponential smoothing is used to update the p vector with the direction
〈s〉w of the actually taken step from parent y at generation g to g + 1 which has taken
place in (L4). Therefore, p may be regarded as the average search step. The update of
the covariance matrix C via the p vector is done in such a way that selected steps from
the past on average are also preferred in future. This resembles the momentum term



(µ/µW , λ)-CMA-ES (one generation cycle)

For l = 1 To λ

sl ←
√

C Nl(0, I) (L1)

yl ← y + σsl (L2)

fl ← f(yl) (L3)

End
y← y + σ〈s〉w (L4)

p←
(

1− 1

τp

)

p +

√

1

τp

(

2− 1

τp

)

√
µeff 〈s〉w (L5)

C←
(

1− 1

τc

)

C +
1

τc

[

1

µeff
ppT +

(

1− 1

µeff

)

〈ssT 〉w
]

(L6)

pσ ←
(

1− 1

τσ

)

pσ +

√

1

τσ

(

2− 1

τσ

)

√
µeff 〈N(0, I)〉w (L7)

σ ← σ exp

[

‖pσ‖ − χN
d χN

]

(L8)

Fig. 1. The algorithmic “essence” of the CMA-ES. Endowed with initialization an outer genera-
tion loop and an appropriated termination condition, an approximation of the optimizer is given
by the final result of the parent y. In general weighted recombination, denoted by “〈·〉w”, is used.
Note, the individuals’ N vectors used in (L7) are from the selected individuals that have been
generated in (L1). χN = E[χN ] is the expected value of the χ distribution with N degrees of
freedom being the search space dimensionality. Initially, C =

√
C = I, pσ = 0, and p = 0.

Basically, the following parameters have to be chosen d, τσ , τc, τp, and µeff .

approach in nonlinear programming. Therefore, the original form of the CMA-ES [2]
can also be regarded as a randomized momentum term strategy.

3 The (µ/µI, λ)-CMA-σ-SA-ES

There are two main ingredients to build an efficient ES that works well on arbitrarily
rotated ellipsoidal success domains:

1. a covariance matrix adaptation algorithm which is able to learn the shape of the
success domain sufficiently exact and fast,

2. a routine that adapts a global step size σ

As we mentioned already in the introduction, the disadvantage of the different versions
of the CMA-ES presented in the literature is the large number of exogenous strategy
parameters needed. There are five main parameters (d, τσ, τc, τp, and µ−1

eff ) interacting



with each other dynamically. While the effect of d and τσ has been analyzed on the
sphere model [11], the interaction with the other time constants remains unclear. Fur-
thermore, the CMA-ES does not always behave well in robust optimization scenarios
[8, 12] when the number of offspring λ is significantly larger than the parameter space
dimension.

3.1 The (µ/µI , λ)-CMA-σ-SA-ES Algorithm

In the following, the CMSA-ES will be proposed based on a radical simplification of
the covariance learning rule and a revival of the well-known σ-self-adaptation (σSA)
approach. Figure 2 shows the contents of the generation loop. As customary in self-

(µ/µI , λ)-CMA-σ-SA-ES (one generation cycle)

For l = 1 To λ

σl ← 〈σ〉eτNl(0,1) (R1)

sl ←
√

C Nl(0, I) (R2)

zl ← σlsl (R3)

yl ← y + zl (R4)

fl ← f(yl) (R5)

End
y← y + 〈z〉 (R6)

C←
(

1− 1

τc

)

C +
1

τc
〈ssT 〉 (R7)

Fig. 2. Contents of the generation loop of the self-adaptive CMA-ES. Recombination, expressed
by the “〈·〉” notation, is done (in the simplest case) by mean value calculation. The covariance
matrix is initially chosen to be the identity matrix, i.e. C =

√
C = I. For the choice of the

strategy parameters τ and τc, see the text.

adaptation ES, each of the λ offspring individuals has its own mutation strength σl
which is generated by the log-normal rule in line (R1). The generation of the object pa-
rameter yl is done consecutively in line (R2 – R4). First, correlated random direction sl
is generated in (R2). This random direction is scaled in length by the individual’s muta-
tion strength σl in (R3) and finally added to the parental state y in line (R4) producing
the offspring’s object parameter vector y. Its fitness fl is evaluated in (R5).

In line (R6), recombination of the µ best offspring is performed. In the experiments
done so far, wm = 1/µ appeared as a reasonable choice, i.e., the angular bracket oper-
ation 〈·〉 is simply an averaging over the µ best offspring individuals.

The covariance matrix adaptation takes place in (R7). Comparing with the rules used
in the hybrid CMA-ES in lines (L5) and (L6), Fig. 1, one sees how simple this new rule



is. Actually, it could be recovered from (L6) for µeff →∞. As will be shown in the ex-
perimental Section 4, this CMA rule together with σ-self-adaptation yields comparable
and even better results. As in the case of the object parameter recombination, recom-
bining the generational cross momentum matrices smsT

m is done with uniform weights
(i.e., simple averaging over the contribution of the µ best individuals).

Due to the simplicity of the newly proposed self-adaptive CMSA-ES, there is a
certain chance to put the choice of the (only) two endogenous strategy parameters,
the learning rate τ and the covariance cumulation time constant τc, on a theoretically
motivated basis.

3.2 Parameter Settings for the CMSA-ES

The Learning Parameter τ . This parameter basically influences the time needed to
learn the global step size σ and its accuracy. Assuming a locally ellipsoidal fitness
landscape and provided that the covariance is adapted correctly, the σNl(0, I) vectors
in the CMSA-ES of Fig. 2 “experience” conditions similar to a spherical landscape.
That is, under steady state conditions, one can use the τ which maximizes the steady
state progress rate on the sphere model. As can be shown (due to space restrictions the
derivation is beyond the scope of this paper) for sufficiently large µ, λ, and N this is
the case for

τopt =
1√
2N

. (1)

This value has been used in the simulations of the CMSA-ES presented below. Note,
this choice is not the optimal one for the initial phase of covariance adaptation. If one
wants to increase the speed by which the C matrix is adapted, smaller values (e.g.
τ = τopt/2) should be used. A strategy that provides a “second order” adaptation of τ
could be envisioned, but has not been tested yet.

The τc Time Constant. The covariance learning rule (R7) contains the covariance
learning time constant τc, the choice of which can be derived by information theoretical
means. There are two aspects that must be considered: (1) the information dynamics of
the covariance update; and (2) the minimum information needed to determine a covari-
ance matrix. Again we must defer the derivation steps to an upcoming paper. The final
result of the derivation is

τc = 1 +
N(N + 1)

2µ
. (2)

This formula will be used in the simulations of the CMSA-ES in Section 4.

An Alternative Approach to
√

C. Calculating
√

C via spectral decomposition re-
quires the solution of the eigenvalue problem. While that approach provides additional
information w.r.t. the sensitivity of the fitness landscape in the vicinity of the optimizer
state, it is computationally demanding and not always required. Dropping the symmetry



of the
√

C matrix, the Cholesky decomposition offers a much simpler alternative which
does not need the eigenvalue decomposition. Standard Cholesky decomposition yields
a upper triangular matrix in O(N3) floating point operations the outcome of which can
directly be used as

√
C

T
. That is, the s vectors are obtained by matrix multiplication

of the transposed outcome of the Cholesky algorithm with the standard normal vector
N(0, I).

4 Comparison between CMSA-ES and CMA-ES

In order to demonstrate the effectiveness of the C adaptation rule (R7) in Fig. 2 and the
choice of the parameters, empirical investigations are necessary to evaluate the behavior
of the CMSA-ES and to compare it with the state-of-the-art (µ/µW , λ)-CMA-ES [13].

The CMSA-ES is a straightforward implementation of the algorithm in Fig. 2 using
(2) and (1) for τc and τ , respectively. A truncation ratio of µ/λ = 1/4 has been used
throughout the simulations. This may be regarded as a compromise w.r.t. the progress
rate under non-noisy conditions and final fitness error under additive symmetric fitness
noise with constant strength (e.g. constant standard deviation) [8]. Furthermore, this
choice is consonant with Hansen’s recommendation to use “variance effective selection
mass” µeff = λ/4 in the hybrid CMA-ES which transfers to µ = λ/4 in the case of
intermediate (uniformly weighted) recombination.

4.1 Test Functions

Tests have been performed on 12 test functions belonging to different problem classes.
We will report results for four of them displayed in Tab. 1 each representing one class.
The results of the other eight functions are qualitatively similar to these classes. We
chose the sphere function as a kind of baseline for all continuous optimization tasks,
the Schwefel ellipsoid because of the required adaptation of the covariance matrix and
its special spectrum, the Rosenbrock function because it requires continuous change of
the covariance matrix and the Rastrigin function because of its multi-modality.

Name Function yinit σinit fstop

Sphere fSp(y) :=
N
∑

i=1

y2
i (1, . . . , 1) 1 10−10

Schwefel Ellipsoid fSch(y) :=
N
∑

i=1

(

i
∑

j=1

yi

)2

(1, . . . , 1) 1 10−10

Rosenbrock fRos(y) :=

N−1
∑

i=1

(

100(y2
i − yi+1)2 + (yi − 1)2) (0, . . . , 0) 0.1 10−10

Rastrigin fRas(y) := 10N +
N
∑

i=1

(

y2
i − 10 cos(2πyi)

)

‖y‖ = 10 5 10−10

Table 1. Test functions, initialization, and stop criterion for the evaluation of the CMA-ES.



Note, all test functions except Rastrigin’s use a deterministic initialization for the
object parameter vector y. In the case of Rastrigin’s function, the initial vector is ran-
domly initialized on a hypersphere with given radius ‖y‖.

4.2 Simulation Settings

The simulation settings are directly taken from [13]. Both algorithms are compared for
search space dimensionalitiesN = 2, 3, 5, 10, 20, 40, 80, and 160 considering offspring
populations sizes λ = 8, λ = 4N , and λ = 4N2. For the latter population sizes, the
maximum dimensionality of N = 80 has been chosen in order to keep the simulation
time within reasonable limits. For each N -λ-combination, 20 independent runs have
been used to obtain the average number of generations to reach fstop (given in Tab. 1).
These average generation numbers together with the corresponding standard deviation
(displayed as error bars) vs. search space dimensionality N are displayed in the plots.

4.3 Results

The somewhat surprising results for the sphere function are presented in Fig. 3. Usually
it is expected that the CMA-ES works better than self-adaptive ES on the sphere model
due to the use of cumulative step length adaptation (CSA) in the CMA-ES [6]. Since
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Fig. 3. Top row and bottom left: performance comparison on the sphere test function. Bottom
right: performance comparison on Schwefel’s Ellipsoid test function for constant λ = 8.



both CMA and CMSA start with an initial covariance matrix C = I, i.e., with isotropic
mutations, the superiority of CSA must be questioned. This is consonant with obser-
vations that the CMA-ES does not work well with population sizes λ � N . However,
even more remarkable is the observation that the new self-adaptive CMSA-ES works
comparably well in the small population and small search space dimensionality regime.

Originally, the CMA-ES and its recent hybrid versions were designed to adapt to
arbitrary quadratic test functions. Therefore, the comparison of the performance on
the ellipsoidal test function class provides a good basis to evaluate the different strate-
gies. “Schwefel’s Ellipsoid” is a rotated ellipsoid with moderately increasing eigenvalue
spectrum (w.r.t. N ), but an isolated largest eigenvalue. As can be seen in the left graph
of Fig.4, the performance of the CMSA changes to the worse (compared to CMA) if
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Fig. 4. Detailed performance comparison on Schwefel’s Ellipsoid test function.

N gets larger. This is due to the increasing condition number of the mixing matrix in
the ellipsoid function when N gets larger. However, as to large population sizes (right
graph in Fig.4), CMSA performs better.

The Rosenbrock function seems to be somewhat harder for the CMSA-ES as can
be seen in Fig. 5 in the case of constant and linear population sizing. In the case of
quadratic population sizing both strategies perform nearly equally well. It seems that
the path cumulation with decay rates proportional to 1/N (or larger) is a necessary in-
gredient in CMA-ES to effectively change the covariance matrix. This cannot be accom-
plished by the simple update rule (R7) used in our CMSA-ES when using population
sizes of O(N).

For Rastrigin’s function, only the quadratic population sizing has been used because
the constant λ = 8 and the linear population sizing λ = 4N does not ensure conver-
gence to the global optimizer. It is to be mentioned that the quadratic population sizing
λ = 4N2 is not the optimal population sizing for this problem class. Actually, the op-
timal population sizing is weakly sublinear so that λ ∝ N would be the better choice.
However, the proportionality factor is rather large. That is why, one observes conver-
gence to local optima in runs with λ = 4N2 for small N . This is also reflected in the
larger standard deviations of the generation numbers in Fig. 5 (bottom right). As to the
performance, one sees that the CMSA-ES clearly beats the CMA-ES. Similar behav-



 100

 1000

 10000

 100000

 1e+06

 10  100

# 
G

en
er

at
io

ns
 (R

os
en

br
oc

k)

Dimensionality N

λ = 8
CMSA

CMA

 100

 1000

 10000

 100000

 1e+06

 10  100

# 
G

en
er

at
io

ns
 (R

os
en

br
oc

k)

Dimensionality N

λ = 4N

CMSA

CMA

 100

 1000

 10000

 100000

 1e+06

 10  100

# 
G

en
er

at
io

ns
 (R

os
en

br
oc

k)

Dimensionality N

λ = 4N2

CMSA
CMA

 100

 1000

 10  100

# 
G

en
er

at
io

ns
 (R

as
tr

ig
in

)

Dimensionality N

λ = 4N2

CMSA

CMA

Fig. 5. Detailed performance comparison on Rosenbrock’s test function and on Rastrigin test
function (bottom right figure).

ior can be expected for other multi-modal test functions where the global optimizer is
surrounded by a huge number of local optima.

5 Summary and Conclusion

In this paper, we have outlined the new (µ/µI , λ)-CMA-σ-SA-ES algorithm that uses
mutative self-adaptation instead of cumulative step length adaptation to adjust the global
step size σ during search. Compared to the standard CMA-ES which has (at least) four
exogenous strategy parameters to be fixed, our new strategy contains only two, the time
constants τ and τc. While the choice of some of those strategy parameters in CMA-ES
is based on extensive empirical investigations, the new CMSA-ES time constants rely
on information theoretical considerations.

The comparison of the CMSA-ES with the current state-of-the-art Evolution Strat-
egy for real-valued parameter optimization, revealed a general pattern. While the CMA-
ES performed slightly better for small population sizes, the newly proposed CMSA-
ES achieved considerably better results for large population sizes. Surprisingly, for the
sphere function both algorithms worked equally well even for small population sizes.
Generally, we believe that due to its improved clarity and simplicity, the newly proposed
algorithm is a serious competitor to the established CMA-ES. In case of large popula-
tions, we clearly recommend to employ the CMSA-ES. Large populations are required



in particular in the context of robust optimization [8, 12]. Even for practical applications
large populations can be feasible, e.g. in the context of massive parallelization or rapid
serialization of experiments like in quantum control [14]. Therefore, the increased per-
formance for larger population sizes of the proposed CMSA-ES has potential practical
implications.
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