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Abstract Applying numerical optimisation methods in the field of aerodynamic de-

sign optimisation normally leads to a huge amount of heterogeneous design data. While

most often only the most promising results are investigated and used to drive further

optimisations, general methods for investigating the entire design dataset are rare. We

propose methods that allow the extraction of comprehensible knowledge from aerody-

namic design data represented by discrete unstructured surface meshes. The knowledge

is prepared in a way that is usable for guiding further computational as well as man-

ual design and optimisation processes. A displacement measure is suggested in order

to investigate local differences between designs. This measure provides information on

the amount and direction of surface modifications. Using the displacement data in

conjunction with statistical methods or data mining techniques provides meaningful

knowledge from the dataset at hand. The theoretical concepts have been applied to a

data set of 3D turbine stator blade geometries. The results have been verified by means

of modifying the turbine blade geometry using direct manipulation of free form defor-

mation (DMFFD) techniques. The performance of the deformed blade design has been

calculated by running computational fluid dynamic (CFD) simulations. It is shown that

the suggested framework provides reasonable results which can directly be transformed

into design modifications in order to guide the design process.
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L. Graening, S. Menzel, M. Hasenjäger, T. Bihrer, M. Olhofer, B. Sendhoff
Honda Research Institute Europe GmbH
Carl-Legien-Strasse 30
D-63073 Offenbach/Main, Germany
E-mail: (lars.graening, stefan.menzel, martina.hasenjaeger, thomas.bihrer, markus.olhofer,
bernhard.sendhoff)@honda-ri.de



2

1 Introduction

In the field of 3D aerodynamic shape optimisation, a large amount of geometric and

flow field data is generated during the design process that usually encompasses several

optimisation runs, manual design phases and experiments. Typically, only the most

promising results with regard to one or more possibly competing performance indices

are exploited to define the overall result of the design process. However, a lot of in-

formation about the process and the problem at hand that can be condensed into

comprehensive rules is hidden in all of the data. Even poorly performing shapes can

provide interesting insight into the interrelation between geometry and performance.

The knowledge extracted from the data set at hand can be prepared in such a way

that it is on the one hand usable by the engineer and on the other hand by a follow-up

computational design and optimisation process. This type of knowledge extraction is

the major focus of the present paper.

The paper is organised as follows. In the remainder of the first section methods for

guiding computational and human centred design optimisation processes are reviewed.

This is followed by the specification of unstructured surface meshes that are used as a

common geometric representation of 3D designs. In Section 2, we will outline the new

displacement measure, which captures local differences between designs. The extraction

of knowledge based on displacement and performance data is described in Section 3.

The theoretic concepts have been applied to the design of a 3D turbine blade geometry

and the results are discussed in Section 4. In the last section, we summarise the paper

and highlight open issues.

1.1 Guiding Aerodynamic Design Optimisation

Different techniques have been researched in order to make use of already generated

design data for guiding further optimisations with the objective of improving the aero-

dynamic properties of the design at hand. Response surface methodology [27] is one

of the classical approaches in this domain where the parameters of a regression model

are estimated based on previously made experiments. It is expected that the regression

model reflects the true trend in mapping the design variables to the performance num-

bers. The estimated trend is used to generate new designs that are likely to improve the

aerodynamic performance. In computational optimisation techniques like evolutionary

algorithms (EA) it is common to use information from already generated designs to

guide the optimisation, e.g. using step size adaptation techniques like covariance ma-

trix adaptation [8] in order to control the variation of the design parameters during the

optimisation process. Another class of computational optimisation algorithms that are

derived from evolutionary algorithms uses a probabilistic approach to guide the optimi-

sation, namely estimation of distribution algorithms (EDA) [21]. In EDA the crossover

and mutation operators are replaced by learning and sampling the probability distribu-

tions (e.g. using Bayesian networks) of the best individuals out of a population in order

to exploit the considered system parameters. Typically the evaluation time is the most

limiting factor for exploring large parts of the design space. In computational optimi-

sation so-called surrogate models (also termed as meta-models) are used to estimate

the performance numbers thus replacing time-consuming high fidelity simulations [16].

Different kinds of surrogate models have been applied, e.g. artificial neural networks

(ANN), support vector machines (SVM), Kriging Models, etc.. The existing data is
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used to update the parameters of those models. Further techniques for incorporating

prior knowledge as well as knowledge acquired during the optimisation process are sum-

marised by Jin [17]. Keane and Nair [18] reviewed computer-aided design techniques

for analysing and optimising data applied to the aerospace domain.

Beyond those techniques, methods for extracting human readable knowledge from

aerodynamic design data are rare. The main purpose of knowledge extraction in this

domain is to guide human centred design optimisation by improving the understanding

of basic design principles related to the design problem at hand. Obayashi et al. [28]

have addressed the extraction of knowledge from a given data set in order to gain some

insights into the relationship between geometry and performance measurements. They

have used self-organising maps (SOM) [19] in order to find groups of similar designs

and for multi-criteria performance improvements and tradeoffs. Besides SOM, Chiba

et al. [4] have investigated the analysis of variance technique (ANOVA) in order to

identify the most important design parameters. Their methods have been applied to

supersonic wing design but the data and design parameter sets are generated by one

computational optimisation algorithm and were therefore well-defined. If there is no

common representation, like in the case the data are from different design processes,

including manual design processes involving data from CAD systems, their methods

can hardly be applied.

1.2 Surface Representation

Different geometric representations [29] make it difficult or even impossible to analyse

the whole data set based on one homogeneous parameterisation. If different optimisa-

tion runs have been performed with different design parameters, one first has to find an

adequate representation that captures all shape variations and that can be applied to

various data mining techniques. Therefore, we suggest the use of unstructured surface

meshes as a general representation. Each optimisation might be a manual or a com-

putational process and is possibly based on different shape descriptors. The majority

of shape representations are convertible to unstructured surface meshes, see e.g. [14],

[32].

Fig. 1 Illustration of the specification of a triangular surface mesh M : (V ,N ,K) with V
containing a set of vertices, N capturing normal vectors at the position of each vertex and K
specifying the polygonal faces that built up the mesh.

For the description of the surface mesh we start with the mathematical framework

given in [1]. It is assumed that the shape of a 3D design is described using a polygonal

surface mesh M, which is a partially linear approximation of the contour of the design.

We postulate that each mesh M consists of a list of vertices V, a complex K and a list
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of normal vectors N . The vertex list V = (v1, ..., vn) describes the geometric position

of the vertices in R
3, vi = (x1, x2, x3)

T . A vertex can be seen as a sample point of the

contour of the design. Each face of the polygonal surface mesh is defined by simplices of

the form {i1, i2, i3, ..., iµ} where il, l ∈ [1..n] are indices pointing to vertices that enclose

the polygonal face. Fig. 1 illustrates a triangular surface mesh where the number of

vertices, which have been used to form each polygon, is set to 3. In addition to the

vertex list, a list of normal vectors N = (n1, ..., nn) with ni = (n1, n2, n3)
T is given.

Each normal vector ni has a defined direction perpendicular to the surface mesh and

provides local curvature information at the position of vertex vi.

The unstructured surface mesh as a general representation allows the analysis of

local shape modifications and their influence on the performance value(s) independent

of the parametric representation that has been used during the design and optimisation

process.

2 Displacement Measurement

Under the assumption that the surface triangulation results in surface meshes for which

the location and the number of vertices is sufficiently precise to capture the character-

istic changes of all designs in the given data set, the displacement is measured between

each vertex on the reference design and each corresponding vertex on the modified

design. Mesh refinement and simplification algorithms, e.g. [31,7], allow a further op-

timisation of the triangulation. In order to measure the displacement between two

vertices of different surface meshes, the correspondence problem has to be solved and

an appropriate metric has to be found for measuring the amount and the direction of

the displacement between the pair of vertices. The resulting displacement data is the

basis for knowledge extraction from the design data set, see Section 3.

2.1 Identifying Corresponding Vertices

An appropriate identification of corresponding vertices is essential for measuring the

correct displacement between two surfaces. Wrong estimates will lead to an error in

the displacement measurement and hence to errors in any further knowledge extraction

step. Let Mr and Mm be two unstructured surface meshes, where Mr is a baseline or

reference mesh and Mm is the target or modified mesh. The main objective in solving

the correspondence problem is to find an appropriate function f which assigns to each

vertex vr
i ∈ Vr from the reference mesh Mr a corresponding vertex vm

j ∈ Vm from

the target mesh Mm. More formally this can be written as:

f : Vr → Vm, Vr ∈ Mr, Vm ∈ Mm (1)

So far there exists no universal transfer function f that leads to robust solutions

without providing any prior knowledge or assumption concerning the design data set

at hand. A more specific function has to be found which is tuned to the design data

characteristics. It is assumed that no rigid design modification has been applied to any

of the designs. All designs are located in a universal position. We rely on the fact that

the differences between designs can completely be expressed in terms of local non-rigid

design modifications.
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The following objective function is used in order to assign a corresponding vertex

vm
j to each vertex vr

i :

f(vr
i ) = min

j∈nm

n

|vr
i − v

m
j | · (2 − n

r
i ◦ n

m
j )

o

, (2)

where nm equals the number of vertices that make up the surface mesh of the target

design, |vr
i − vm

j | defines the Euclidean distance and nr
i ◦ nm

j measures the difference

between the normal vectors of the vertices. The objective function has been defined so

that the vertex vm
j that is closest to vr

i and has a similar normal vector is assigned

as the corresponding vertex. On the one hand if the normal vectors have the same

orientation the scalar product equals one and hence the function relies completely

on the spatial distance between vertices. If on the other hand the normal vectors

are perpendicular (pointing in opposite direction) the objective function is two times

(three times) the Euclidean distance. The objective function is a simplification of the

one used by Wang [33]. He additionally added a term that measures the difference in

the Gaussian curvature, which was mainly due to the application to the analysis of

brain images. In general, it is possible that one vertex from mesh Mm is assigned to

more than one a vertex of mesh Mr. An overview of different techniques for estimating

corresponding vertices is given in [22].

2.2 Definition

The displacement measure should describe the position of a vertex with respect to

another design. One way to capture this information is to use the difference vector

sij = vr
i − vm

j , which is the difference between vertex vr
i of mesh Mr and the cor-

responding vertex vm
j of mesh Mm. The difference vector clearly captures the dis-

placement between vr
i and vm

j . However, the difference vector is sensitive to possible

errors resulting from wrong estimations of the corresponding vertices or from different

sampling methods of the surfaces of the geometries. Furthermore, the difference vector

requires d = 3 parameters for describing the displacement of one vertex in R
3. Thus,

to capture the displacement between two complete surface meshes the number of pa-

rameters is 3 · nr, where nr equals the number of vertices that belong to the reference

mesh. To overcome the disadvantages of the difference vector, we suggest the following

displacement measure:

δ
r,m
i,j = δ(vr

i ,v
m
j ) = (vm

j − v
r
i ) ◦ n

r
i , δ ∈ (−∞, +∞) (3)

The displacement measure is defined as the projection of the difference vector

sij = (vr
i − vm

j ) onto the normal vector nr
i of vertex vr

i of the reference design Mr.

The absolute value of the displacement measure provides information on the amount

of vertex modification while the sign of the displacement measure in conjuction with

the normal vector of the vertex provides information on the direction of the vertex

modification. The normal vector nr
i points towards the normal or positive direction of

vertex modification.

2.3 Major Properties

The displacement measure is by definition a non-symmetric vector quantity containing

both the magnitude and the direction of vertex modification. If the modified vertex
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lies above the tangential plane described by the normal vector of the reference vertex,

the displacement measure is positive, see Fig. 2 a). Whereas if the vertex lies below

the tangential plane, Fig. 2 b), the displacement measure is negative. In the special

case where the modified vertex is located within the tangential plane, the displacement

measure is zero as shown in Fig. 2 c), which makes sense because we have to assume

that the difference is a result of a different triangulation. If the reference vertex has been

modified along the line described by the normal vector, the amount of the displacement

measure equals the Euclidean distance between the reference and the modified vertex.

Fig. 2 Examples of the displacement measure. Figures a) and b) illustrate that a vertex dis-
placement parallel (anti-parallel) to the normal direction results in a positive (negative) dis-
placement value. A displacement perpendicular to the normal vector results in a displacement
value of zero, as shown in c). Figure d) illustrates the error when calculating the displacement
measure, which results from the discretisation of the surface and the error when estimating
corresponding points.

As Fig. 2 d) indicates, the displacement value contains an error, which is mainly the

result of the discretisation of the surface using triangulation and of the correspondence

problem. Formally, this can be written as

δ
r,m
i,j = (sij + eij) ◦ n

r
i = sij ◦ n

r
i + eij ◦ n

r
i , (4)

where eij describes the error between the ideal displacement value and the measured

displacement value. Under the assumption that the curvature of both surfaces Mr and

Mm is similar at the position of the corresponding vertices it follows that nr
i ≈ nm

j .

Then, the error term from equation 4 simplify as:

eij ◦ n
r
i ≈ eij ◦ n

m
j . (5)

With eij ◦ nm
j = |eij | cos(∠(eij ,nm

j )), if additionally a smooth surface or a small

error |eij | is assumed, eij is perpendicular to nm
j and hence cos(∠(eij ,nm

j )) ≈ 0.

Thus the error term becomes zero. Therefore, the displacement measure is relatively

insensitive to small errors arising from the surface triangulation or from an incorrect

estimation of corresponding points.

Another advantage of the displacement measure compared with the difference vec-

tor is that only nr parameters are required for the description of the differences between

two unstructured surface meshes, where nr equals the number of vertices of the refer-

ence mesh.

3 Knowledge Extraction from Design Data

In aerodynamic design optimisation the main goal is to find three-dimensional shapes,

that are optimal for specific performance measurements, like aerodynamic drag or



7

lift, under specific constraints, e.g. manufacturing limitations. In general, during the

optimisation process a large number of shapes are generated and evaluated based on

different representations and parameterisations. The results are heterogeneous design

data sets from which only a very small number of designs are used in the end to

determine the optimal shape (or a set of optimal shapes) that is processed further, e.g.

in rapid prototyping devices for experiments. As we noted in the introduction, we aim

at exploiting the information contained in the large remaining part of the data set. In

this section, we describe how the displacement measure in conjunction with statistical

and data mining methods can be used in order to extract meaningful information

(knowledge) from heterogeneous design data sets. Figure 3 provides an overview of the

entire knowledge extraction framework.

Fig. 3 Overview of the knowledge extraction framework for analysing design data resulting
from the design optimisation process.

3.1 Displacement Analysis

Analysing local modifications in form of vertex displacement helps to gain some insight

into the exploration of the design space. Two measures are suggested: the relative mean

vertex displacement that provides information on how a vertex has been modified with

respect to one reference design and the overall displacement variance that identifies

the vertices that have been modified most frequently.

3.1.1 Relative Mean Vertex Displacement

In order to get information on local design modifications with respect to one baseline

design, we define the relative mean vertex displacement :

δ
r
i =

1

N − 1

N
X

m=1,m 6=r

δ
r,m
i,j (6)

Given a data set of N unstructured surface meshes δ
r
i evaluates the mean displace-

ment of vertex vm
j of all meshes Mm, m ∈ [1 . . . N ] from the vertex vr

i of the reference
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mesh Mr. Here, like in the following we assume that vm
j is the corresponding vertex

to vr
i . δ

r
i provides information on how far a reference vertex has been modified along

its normal vector with respect to the whole data set. If δ
r
i > 0, the vertex vm

i has

been modified parallel to the normal vector of the vertex and δ
r
i < 0 indicates a mod-

ification anti-parallel to the normal direction of the vertex. If δ
r
i = 0, the vertex has

not been modified, each displacement value was zero due to modifications orthogonal

to the normal vector or the modifications around the reference vertex in the data set

have cancelled each other out. If there are outliers that affect the calculation of δ
r
i ,

we recommend to use the median instead of the mean in order to retrieve the desired

information.

3.1.2 Overall Displacement Variance

In order to calculate δ
r
i , the baseline mesh r must be given. An alternative would be

to calculate the mean displacement between all possible shape combinations in the

data set. However, this is not a good alternative, because if the normal vectors of

corresponding vertices are similar, it holds that δ
r,m
i,j ≈ −δ

m,r
i,j and as a result such a

measure would always tend to zero.

In order to get an overview over the variations of local design modifications, an

overall displacement variance is defined as follows:

σδi
=

v

u

u

u

t

1

N(N − 1)

N
X

r=1

N
X

m=1,m 6=r

(δr,m
i,j − δi)2

σδi
≈

v

u

u

t

2

N(N − 1)
·

N
X

r=1

N
X

m=r+1

(δr,m
i,j )2 (7)

This measure describes the strength and the frequency of local design modifications

based on the whole data set. Following our argument above, we can set
Pn

r=1 δi ≈ 0.

3.2 Sensitivity Analysis

Sensitivity analysis relates the displacement measure to variations of the corresponding

performance values.

3.2.1 Relative Vertex Correlation Coefficient

The relative vertex correlation coefficient Rr
i from Equation 8 formalises the linear

relation between local modifications in form of vertex displacements and performance

values with respect to a chosen reference design. φr,m = fm − fr is the performance

difference between two designs r and m. φ
r

is the mean value of the performance

differences with respect to the reference design r.

R
r
i =

PN
m=1,m 6=r(δr,m

i,j − δ
r
i )(φr,m − φ

r
)

(N − 1)σδr
i
σφr

(8)
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σδr
i

=

v

u

u

u

t

1

N − 1

N
X

m=1,m 6=r

(δr,m
i,j − δ

r
i )2, φ

r
=

1

N − 1

N
X

m=1,m 6=r

φ
r,m

Rr
i > 0 indicates that moving the vertex parallel to the normal vector is most

likely to improve the performance of the design and vice versa. Again two situations

lead to a vanishing Rr
i value. Firstly, the obvious explanation is that an (anti)-parallel

modification of the vertex has no effect on the performance measure. Secondly, if the

vertex is already located in an optimal position, every modification will reduce the

performance and Rr
i will also be close to zero. In order to distinguish between the

two cases, one could fit a linear model to the displacement and performance difference

pairs and calculate the residual of the linear model. This residual provides information

on the uncertainty of the correlation coefficient. Of course, the uncertainty of the

correlation coefficient might also result from noisy data or non-linear relations between

displacement measure and performance differences.

3.2.2 Vertex Sensitivity

In order to identify vertices that are sensitive to performance changes based on the

whole data set without referring to one baseline shape, the Pearson correlation coeffi-

cient [12], is calculated based on all pairwise design comparisons. As φr,m = −φm,r,

calculating the mean value for all performance differences results in φ = 0. We define

the overall vertex correlation coefficient as follows (assuming again
PN

r=1 δi ≈ 0):

Ri = ·

PN
r=1

PN
m=1,m 6=r δ

r,m
i,j φr,m

N(N − 1)σδi
σφ

(9)

σφ =

v

u

u

t

2

N(N − 1)
·

N
X

r=1

N
X

m=r+1

(φr,m)2

The overall vertex correlation coefficient captures the linear relationship between

the displacement and performance changes. In order to be less sensitive to outliers or

noise in the data, it is reasonable to apply the Spearman rank based coefficient [12]

instead of the Pearson correlation coefficient. Since the overall vertex correlation is

linear, information is provided to distinguish between those vertices which are more

likely to improve the performance by moving them parallel to the direction of the

normal vector and those which improve the performance when moving them anti-

parallel to the direction of the normal vector.

In aerodynamic design optimisation the interrelation between design modifications

and performance changes is often highly non-linear. In order to capture also non-

linearities, one could use information based measures like mutual information [6] to

determine the sensitivity of vertices. The disadvantage of non-linear methods like mu-

tual information is that the information to predict the direction of design improvement

with respect to the normal vector is lost.
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3.3 Modelling and Analysing Interrelated Deformations

For the calculation of the measures described above, the displacement of each vertex

is considered independent of the others. Especially in aerodynamics, the interrelation

between distant vertices or design regions and their joint influence on the performance

plays an important role. In this section, special characteristics for the extraction of

knowledge in form of associative rules based on data from unstructured surface meshes

are discussed. The rules describe the relation between the displacement of distant ver-

tices and their joint influence on the performance criteria. Modelling the interrelation

between input variables is achieved by applying well known modelling techniques like

Fuzzy rule induction, Bayesian networks, decision trees or others to the data set, for

an overview of these techniques see e.g. [24].

3.3.1 Dimensionality Reduction

In general, the number of input parameters must be kept small for most modelling

techniques in order to produce a small set of interpretable and manageable association

rules. For the shape representation of section 1.2, the number of inputs equals the

number of vertices n, which is large in practice. Therefore, a reduction of the number

of input parameters is strongly required. In order to reduce the number of parameters

it is reasonable to combine neighbouring vertices to form nc design regions where

nc ≪ n. During a design or optimisation process, it is unlikely that only single vertices

are modified. Rather entire design regions of a certain extent are considered for shaping

new designs.

Our suggested procedure for dimensionality reduction by means of identifying local

design regions is summarised in Algorithm 1 and explained in more detail as follows.

In a first step, vertices that do not seem to contribute on the performance of the

designs are filtered out from the entire set of vertices. Therefore, the overall vertex

correlation coefficient, Ri, is calculated for each of the n vertices as formulised in Eq.

9. The vertices which seem to have no impact on the performance value are removed by

applying a threshold λ to Ri. Based on psychological research, done by Cohen [5], the

threshold is set to λ = ±0.3. Cohen states that a small or no correlation is observed for a

correlation coefficients with an absolute value smaller or equal to 0.3. The classification

of the correlation coefficient by Cohen is used just as a rule of thumb but helps us to

specify an appropriate threshold. The filtering based on the overall vertex correlation

coefficient results in a set of vertices that can be separated into two sets R+ and

R−. R+ contains vertices where Ri > 0 while R− contains vertices with a correlation

value Ri < 0. Finally, in order to form the desired design regions, a KMeans clustering

algorithm [23] is applied to each of the two resulting sets of vertices. Performing the

clustering on each set separately ensures that vertices that have a strictly different

impact on the performance are assigned to different design regions. The final clustering

splits the set of vertices based on a predefined distance measure into clusters. Generally,

the (squared) Euclidean distance is used. Thus, distant vertices are assigned to separate

clusters and neighbouring vertices to one and the same cluster (design region). The gap

statistic [11] is used to overcome the problem of selecting an appropriate number of

clusters in advance. Once the design regions have been identified the vertices closest to

the cluster centres are considered for modelling and for the extraction of design rules.
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Algorithm 1 Identification of design regions for dimensionality reduction

1: for i, 0 ≤ i ≤ n do

2: calculate Ri based on Eq. 9
3: if +λ < Ri ≤ 1.0 then

4: R+ ⇐ R+ ∪ {vi}
5: else if −1.0 < Ri ≤ −λ then

6: R
−

⇐ R
−

∪ {vi}
7: end if

8: C+ ⇐ Gap(KMeans(R+))
9: C

−
⇐ Gap(KMeans(R

−
))

10: C ⇐ C+ ∪ C
−

, C = {C1, C2, . . . , Ck}, Ci = {v1,v2, . . . , vni
}

11: CC ⇐ ClusterCentres(C), CC = {vCC1,vCC2, . . . , vCCnc
}

12:
13: return CC
14: end for

3.3.2 Rule Induction

Rule induction is one of the fundamental and most often applied tools in the field

of data mining and machine learning. Rules are easy to interpret by the engineer and

hence raise his/her understanding of the system in hand. In aerodynamics the influence

of one region of the design on the performance often strongly depends on the shape of

the remaining design regions. Our driving force is to extract knowledge describing the

complex relation between design regions and its performance number(s). It is important

that the aerodynamic engineer is able to use the rules for the further development of

new designs.

In the present framework rule extraction techniques are applied to the vertices

closest to the centre of the design regions, vCCj ∈ CC, that are the result of Algorithm

1. We basically distinguish between absolute and relative design rules. Absolute design

rules describe the interrelation between the absolute positions of the vertices and their

joint influence on the performance. An absolute design rule might look as follows:

IF vCC2x
> 1.2 AND vCC7y

< −0.2 THEN f = 12.2

This rule states that a change in the x coordinate of the vertex vCC2 above 1.2

and a change in the y coordinate of vertex vCC7 below −0.2 is expected to result in a

performance number of f = 12.2. Absolute design rules have two main disadvantages.

Firstly, the number of parameters for rule extraction is three times the number of

considered vertices, nc. This directly increases the number of possible rules that are

generated from the data set. Secondly, it is difficult to directly use the extracted rules

to generate new designs due to the fact that the rules provide no information about

the position of the vertices which are not used for modelling.

Design rules that are generated based on displacement data describe the interrela-

tion of vertices and their influence on the performance relative to a predefined reference

design. An example of a relative design rule is the following:

IF δ
r,m
CC2

> 0 AND δ
r,m
CC7

< 0 THEN φ
r,m

< 0

From this rule it is expected that a modification of the vertex vCC2 towards its

normal direction in conjunction with a modification of vertex vCC7 against the di-

rection of the normal vector will result in a reduced performance value. For relative
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design rules the number of parameters equals the number of vertices which are taken

into account for rule extraction. Hence the number of possible design rules is small

compared to absolute design rules. The reference design the relative rules relate to is

usable as an initial shape for generating new designs. What means that the extraction

of relative design rules can directly be integrated into the design process. Apart from

the design rules, the elongation of the cluster centre provides a hint on the size of the

design region considered for design modifications. Dependening on the requirements

the parametric input for the design rules is real-valued or restricted to the sign of the

displacement.

4 Application to 3D Turbine Blade Design Data

In order to demonstrate the feasibility of the theoretical concepts, the suggested meth-

ods have been applied to the data of an ultra-low aspect ratio transonic turbine stator

blade of a small Honda turbofan engine. The data set, used for knowledge extraction,

result from several computational optimisation runs where evolutionary strategies have

been applied [9]. The different optimisations were driven by two objectives, consider-

ing the total mass averaged pressure loss and the maximum variation of the pitch-wise

static outlet pressure. Other criteria like low pressure drag, low heat transfer, low ma-

terial stress were not considered in the optimisation of the blade. In order to estimate

the performance numbers, computational fluid dynamic (CFD) simulations have been

applied. The CFD solver used is a parallelised 3D in-house Navier Stokes flow solver,

called HSTAR3d [2]. The control point coordinates of a B-Spline representation of the

blade geometry were used as parameters for the optimisation. For detailed information

on the optimisation techniques and the parametrisation of the blade geometry, the

reader is referred to [9] and [10].

In the present case the evolutionary optimisation runs provide the data for the

data analysis. In general the suggested algorithms for knowledge extraction are not

restricted to data from computational optimisations. The data also might come from

manual optimisation processes where the performance has been determined under real

physical conditions, e.g. with wind tunnel experiments. Furthermore, the analysis is

independent from the geometric representation of the turbine blade, as long as the

triangular surface mesh can be retrieved from the used representation. In the following

analysis, the influence of the different turbine blade geometries on the total pressure loss

ω is under investigation. The analysis techniques described in this paper are restricted

to single performance numbers only. Multiple performance criteria can be considered

by calculating a weighted sum of the different performance numbers. More information

concerning the calculation of the pressure loss ω from the CFD simulation results are

provided by Kuno and Sonoda [20].

Finally the data set under investigation contains 200 blade geometries and their

corresponding total mass averaged pressure loss values.

4.1 The Turbine Blade Geometry

The structure of the axial gas turbine is rotationally symmetric. Eight equally shaped

blades (NB = 8) are uniformally distributed around the hub of the turbine stator

section. Thus, each of the 200 different stator blade geometries from the data set defines
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together with the hub and the casing a complete stator section of the gas turbine. The

axial length of the hub is the same for all blade geometries. Figure 4 a) illustrates

the shape of the initial turbine blade. This turbine blade was the starting point for

the different optimisations and has been selected as reference design for the following

analysis. Additionally, in Fig. 4 the most important parts of the blade are named.

The parameters of the reference stator blade are those of a High Pressure (HP)

turbine in the Honda HF118 turbofan engine. In the real engine the stator blade has an

impingement cooling, but for research purposes the blade without cooling was used to

demonstrate the feasibility of optimisation and knowledge extraction methods, focusing

on the aerodynamic performance. The pitch to chord ratio of the blade is the inverse

of the stage solidity which has a value of 0.706. The blade has a zero inlet metal angle,

an isentropic exit Mach number of 1.04, an outlet metal angle of 72.80 degrees and the

Zweifel loading coefficient has been chosen to be 0.80.

In a pre-processing step, the unstructured surface meshes of the 200 blade ge-

ometries have been generated. Given the B-Spline representation of the blades, the

bounding surface of the blade geometry has been triangulated. In general the triangu-

lation depends on the used representation and possibly depends on the application as

well. In the present case a uniform triangulation has been chosen, where the minimum

edge length of the triangles is large enough to represent all significant modifications

of the 200 blade designs. The hub and tip cross-sections are ignored for the triangula-

tion because there is no aerodynamic flow. The resulting triangulation of the reference

blade is shown in Fig. 4 a). Each of the generated surface meshes consists of 1200

vertices. A normal vector is assigned to each vertex pointing towards the outside of the

blade contour. Based on the unstructured surface meshes and their related performance

numbers, all pairwise comparisons are generated. From the pairwise comparisons the

displacement of corresponding vertices and the performance differences between blade

designs have been calculated. The database subject to knowledge extraction comprises

200 × 200 × 1200 displacement and 200 × 200 performance difference values.

4.2 An Engineering Approach to Knowledge Verification

The verification of the retrieved knowledge is essential in order to demonstrate the

feasibility of the applied techniques. A standard way in machine learning is to split

the entire data set into a training and a test or verification set. The application of

this technique to the design data set is not advisable. The number of designs in the

data set is often quite small. Thus, one cannot guarantee that the desired deforma-

tions (required to verify a certain hypothesis) are correctly represented in the test data

set. In this paper, we apply systematic deformations to the reference blade and verify

the expected results by re-calculating the performance of the deformed design. Each

re-calculation requires the simulation of the fluid dynamics, which makes the verifi-

cation more time consuming. Nevertheless, this kind of verification allows the test of

hypotheses generated from the extracted knowledge.

In order to perform the desired deformations to the reference design direct manip-

ulation of free-form deformation (DMFFD) has been applied [13,25]. DMFFD is an

extension of the standard free-form deformation (FFD) method [30]. It has two major

advantages for the present task which will become apparent after a brief explanation

of the method.
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a) b)

c) d)

Fig. 4 Illustration of the reference blade with a) its triangular surface mesh, b) its CFD grid,
c) the control volume which is needed to deform the blade surface as well as the CFD grid using
DMFFD and d) the flow field resulting from the CFD simulation. The coordinate system is
chosen so that x is the streamwise, y the pitchwise and z the radial direction. The illustration
of the flow field shows the pressure loss (colour-coded) relative to the inlet total pressure as
well as the velocity (vector field) of the stationary flow. The pressure loss ranges from 0.000
(blue) to 0.643 (red) and the velocity from almost 0.000 Mach (small arrow) to 1.296 Mach
(large arrow).

FFD has been introduced in the field of computer graphics and represents varia-

tions of a baseline object. The object has to be embedded into a trivariate spline by

transforming the object points to the spline coordinate system. The spline is defined

by a control volume which has to be set up. By moving the control points of the spline

the volume is deformed as well as all objects within the control volume.

In the direct manipulation of FFD the modifications are specified by the displace-

ment of object handles instead of the control points. These object handles can be set

arbitrary within the control volume. Based on their movement the positions of the

control points are calculated.

In the present context, the DMFFD method is particularly suited to apply the

extracted design rules to the reference design for two reasons. Firstly, highly sensitive

vertices or vertices included in the premise of a design rule can be selected as object

handles and displaced according to the rule. Furthermore, the adjacent vertices are

displaced continuously and thus a displacement of a whole design region is realized.

The size of these concurrently displaced areas depends on the granularity of the control

lattice. Secondly, with respect to CFD a time-consuming re-meshing is omitted since

the deformations affect the surface mesh as well as the CFD grid. For further details
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on deformation methods and their application to shape and design optimisation the

reader is referred to [26,25] and references therein.

The calculation of the quality of the deformed blade is done using the 3D flow solver

HSTAR3d [2]. The CFD simulation requires the generation of a CFD grid which has

been generated by discretising the space between two blades. Fig. 4 b) illustrates the

CFD grid of the initial turbine blade. The flow is the same between every two blades.

Hence one has to simulate the flow only for one out of eight sections. The CFD grid

has to be deformed according to the modifications of the surface mesh of the blade. A

control volume containing 7 × 7 × 9 control points, Fig. 4 c), has been placed around

the CFD grid. In order to verify the results from the knowledge extraction procedure,

the following steps are carried out:

Step 1 Transform the vertices of the initial surface mesh (Fig. 4 a)) so that they are

embedded in the control volume which encapsulates the CFD grid (Fig. 4 c)).

Therefore, transform the vertices to their corresponding position related to the

orientation of the CFD grid. This requires to group the vertices into those which

belong to the suction side and those which belong to the pressure side of the blade.

Step 2 Once the transformation is done, select the desired vertices from the trans-

formed surface mesh and determine the new position of the vertices based on the

design rules.

Step 3 Adapt the control points representing the control volume so that the induced

transformations of the DMFFD method describes the required transition to the

new position of the vertices specified in Step 2.

Step 4 Deform the CFD grid based on the transformations done in Step 3.

Step 5 Calculate the flow (Fig. 4 d))and the aerodynamic performance based on the

deformed CFD grid in Step 4.

4.3 Displacement and Sensitivity Analysis

Given the turbine blade data set the relative mean vertex displacement δ
r
i , the overall

displacement variance σδi
and the relative vertex correlation coefficient Rr

i are cal-

culated. The values are colour-coded and mapped onto the surface of the blade, as

illustrated in Fig. 5. δ
r
i as well as Rr

i are calculated relative to the reference blade il-

lustrated in Fig. 4. Fig. 5 a) provides a quick visual impression on the mean difference

of the reference blade to the remaining blade designs of the data set. A negative δ
r
i dis-

placement indicates deformation towards the inside while positive values of δ
r
i indicate

deformations towards the outside of the blade contour. Looking at the displacement

values at the suction side (Fig. 5 a) right) and the pressure side (Fig. 5 a) left) respec-

tively, one can see that most blades within the data set are much thinner nearby the

suction side leading edge and slightly thicker at parts of the pressure side involving the

pressure side trailing edge compared to the reference blade. The values of the overall

displacement variance, Fig. 5 b), highlight those regions which have been frequently

modified and those which have not been deformed at all. The values are transformed

to logarithmic scale to visualise also small variations. Vertices that are not deformed

at all might be interesting for the designer who can model those untouched regions to

test their influence on the performance of the blade.

The linear influence of the already deformed design regions on the performance is

illustrated in Fig. 5 c). Blue regions indicate a negative correlation (Rr
i < 0) between



16

a)

b)

c)

Fig. 5 Illustration of the results of the displacement and sensitivity analysis: a) relative mean
vertex displacement, b) overall displacement variance and c) relative vertex correlation coeffi-
cient. The left column shows the pressure side and the right column the suction side respec-
tively.

the displacement and the performance difference. This is interpreted as follows. Moving

a vertex i from a bluish region along the normal direction (δr,m
i > 0), towards the

outside of the blade surface, will result in a decrease in pressure loss (φr,m < 0) what

leads to an increased blade performance. Positive correlations (Rr
i > 0) are visualised

with a reddish colour. Positive correlations indicate that a displacement of the vertices

towards the outside of the contour will result in an increase of the pressure loss and

hence will lead to a decrease of the performance. The vertices around the leading edge

of the blade seem to be highly sensitive to performance changes, considering a linear

analysis. The sensitivity analysis lead to the conclusion that deforming the surface of

the suction side at the leading edge towards the outside of the blade (δr,m
i > 0) will

increase the pressure loss ω and thus decrease the performance. Vice versa, deforming

the leading edge to the inside of the blade is expected to increase the performance.

In order to directly verify whether the displacements of the vertices around the

leading edge are linearly correlated to changes in the pressure loss, a vertex (vCC7,

see Fig.7 b) ) from the surface mesh close to the leading edge has been chosen and

DMFFD has been applied. Thus, only vertices around the leading edge are deformed

while the position of the remaining vertices remains constant. The displacement values

δ
r,m
CC7

∈ {−4,−3,−2,−1, 1, 2, 3} are used. A value of δ
r,m
CC7

= 1 corresponds to a dis-

placement of approximately 6% of the axial chordlength of the blade, measured at the

hub section. The shape of the 3D surface mesh has been deformed based on DMFFD.

Additionally, the differences in the pressure loss between the reference and the modified

design φr,m = ωr − ωm are calculated. Fig. 6 summarises the results, which confirm

the expected linear relationship between the deformation of the leading edge and the

pressure loss. The reference blade and two experiments A and B are marked within
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Fig. 6 Results of the verification, showing the linear relationship between the deformation of
the leading edge and the resulting performance differences. A and B show the deformations of
the blade at the 2D hub cross section for a displacement of 3.0 and −3.0 respectively.

Fig. 6. For A and B the deformations are visualised on the 2D hub cross-section given

a displacement of δCC7 = 3.0 and δCC7 = −3.0 respectively.

4.4 Rule Induction

In order to extract meaningful design rules from the data set we first reduce the number

of considered vertices as described in Algorithm 1. The sensitivity value Ri is calculated

for each of the nr = 1200 vertices. The threshold λ = ±0.3 is assigned to the correlation

values in order to filter the most sensitive vertices from the blade surface. The two

resulting sets of vertices R+ and R− are illustrated in Fig. 7 a). Blue coloured regions

highlight vertices with Ri ≤ −0.3 while red coloured regions highlight those with

Ri ≥ 0.3. The remaining vertices (−0.3 < Ri < 0.3) are not considered for clustering

and rule induction. KMeans clustering together with the gap statistic is applied to the

two sets of sensitive vertices to generate the design regions. The vertices closest to the

resulting centres of the design regions, vr
CCj , j ∈ [1 . . . nc], are marked on the blade

surface which is shown in Fig. 7 b).

The sign of the displacement values from the vertices vr
CCj as well as the sign

of the performance differences φr,m are considered for the extraction of design rules.

A decision tree is generated in order to retrieve a set of comprehensible design rules

which are visualised in a tree like structure. The resulting decision tree is shown in Fig.

8. Because the decision tree is generated based on the displacement values it depicts

relative design rules. The tree has been generated by a recursive partitioning of the

input space with respect to the Gini index [24]. The Gini index is a measure of statistical

dispersion and is used to select the attribute upon which to split at each branch of the

tree. Each node of the tree lists information on the expected consequences specifying

the likelihood for increasing or decreasing the performance number. The root node

provides information on the distribution of the performance differences in the initial
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a)

b)

Fig. 7 Illustration of the results from dimensionality reduction. The filtered vertices are high-
lighted in a). A red colour is assigned to vertices with Ri ≥ 0.3 while vertices with Ri ≤ −0.3
are shown in blue. The vertices closest to the cluster centres, resulting from the clustering of
the filtered vertices are marked in b).

data set. It can be seen that quite a large number of blade designs (84%) show a better

performance than the chosen reference design. The branches represent a conjunction

of vertex displacements that entail a certain consequence. In order to keep the number

of rules manageable the growth of the tree has been limited to a predefined size. One

advantage of decision trees is that they can easily be converted into a set of IF-THEN-

rules. Exemplarily, the following two rules are extracted based on the branches marked

with A and B in Fig. 8:

A : IF δ
r,A
CC8

< 0 AND δ
r,A
CC10

< 0 AND δ
r,A
CC7

< 0 THEN φ
r,A

< 0

B : IF δ
r,B
CC8

> 0 AND δ
r,B
CC7

< 0 THEN φ
r,B

> 0.

Rule A suggests a strategy, where the involved vertices are moved against the

direction of their normal vector in order to decrease the pressure loss and hence to

improve the quality of the blade. While rule A is expected, rule B seems to be more

interesting. This rule indicates that an interrelated displacement of vertices around

vCC8 towards the outside of the blade together with a displacement of the vertices

around vCC7 to the inside of the blade will increase the pressure loss. This seems to

be contradictory to the experiments which are done in section 4.3. There it has been

shown that deforming vCC7 towards the inside of the blade decreases the pressure loss

and consequently increases the performance of the blade. From this one can conclude

that the latter statement only holds if vCC8 is not deformed towards the outside of

the blade.

In order to verify the reliability of classification trees, DMFFD is applied in or-

der to deform the reference blade. Two deformed designs are generated based on the

rules A and B. With respect to rule A, the following displacements are assigned to

the corresponding vertices on the reference design: δ
r,A
CC8

= −2.0, δ
r,A
CC10

= −2.0 and

δ
r,A
CC7

= −2.0. DMFFD deforms the remaining vertices accordingly. The displacements

of the deformed blade surface are illustrated in Fig. 9 a). It can be seen that apart from

the vertex used as object handle the displacement nicely tapers off. The re-calculation
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Fig. 8 Decision tree resulting from the 3D turbine blade data set. The vertices close to the
cluster centres are used as features for modelling the tree. Each node contains the probabilities
for increasing as well as decreasing the performance number. A and B mark branches (design
rules) verified by means of DMFFD.

a)

b)

Fig. 9 Illustration of the applied deformations based on rule A a) and B b). The displacement
values are colour-coded and mapped onto the surface of the reference blade.

of the performance of the deformed blade shows a reduction in the pressure loss of

φr,A = ωr − ωA = −10.50% compared with the performance of the initial blade. The

result confirms the expected outcome predicted from the design rule.

For rule B the following displacements are assigned: δ
r,B
CC8

= 2.0, δ
r,B
CC7

= −2.0.

The resulting deformations after applying DMFFD are illustrated in Fig. 9 b). The

re-calculation of the performance results in an increase in the pressure loss of φr,B =

5.68%. This result confirms the prediction of the design rule B and consolidates our

conclusions that a deformation at the leading edge only leads to a decrease of the

pressure loss if the pressure side trailing edge is not thickened.



20

5 Summary

In this paper, we investigated the task of knowledge extraction from heterogeneous

data sets that usually result from aerodynamic shape optimisation processes. The main

contribution described is the formulation of a displacement measure that acts on a gen-

eralised shape representation – the unstructured surface mesh. Only a general shape

representation allows to investigate design data independently from any of the repre-

sentations used during the design and optimisation process. Based on the displacement

and performance data set a framework has been presented that comprises a number

of approaches for displacement analysis, sensitivity analysis, dimensionality reduction

and rule extraction.

In order to demonstrate the feasibility of the suggested framework, we applied

the proposed methods to a data set taken from the optimisation of a 3D turbine

blade. Decision trees have been formulated to generate a set of comprehensive design

rules which refer to a pre-defined blade design. The reliability of the used methods

within the domain of aerodynamic design data has been demonstrated. The hypotheses

retrieved from the sensitivity analysis and the decision tree have successfully been

confirmed by actively deforming the reference blade using DMFFD and calculating

their aerodynamic quality.

One main goal of further research is to use the information from the data set in

order to improve the ongoing optimisation process, e.g. by specifying parameters of the

optimisation algorithms or by increasing the generalisation capabilities and reducing

the approximation errors of surrogate models [16].

6 Acknowledgement

The authors would like to thank T. Sonoda from the Honda Wako Nishi R&D Center

and T. Arima from the Honda Wako Research Center for their valuable support re-

garding turbomechanical aspects of our work and for providing us the CFD simulation

software HSTAR3d. Furthermore, the authors like to thank the members from NuTech

Solutions, a Netezza company, for their valuable contributions to our work.

References

1. M. Alexa, Recent Advances in Mesh Morphing, Computer Graphics Forum, vol. 21, no. 2,
pp. 173–197, 2002

2. T. Arima, T. Sonoda, M. Shirotori, A. Tamura, K. Kikuchi, A Numerical Investigation of
Transonic Axial Compressor Rotor Flow Using a Low-Reynolds-Number k − ǫ Turbulence
Model, ASME Journal of Turbomachinery, vol. 121, no. 1, pp. 44–58, 1999

3. L. Breiman, J.H. Friedman, R.A.Olshen and C.J. Stone, Classification and Regression
Trees, California, USA, Wadsworth, Inc., 1984

4. Kazuhisa Chiba, Shinkyu Jeong, Shigeru Obayashi and Hiroyuki Morino, Data Mining
for Multidisciplinary Design Space of Regional-Jet Wing, IEEE Congress on Evolutionary
Computation, vol. 3, pp. 2333–2340, 2005

5. J. Cohen, Statistical Power Analysis for the Behavioral Sciences (2nd ed.), Hillsdale, NJ:
Lawrence Erlbaum Associates, 1988

6. T. M. Cover, J. A. Thomas, Elements of Information Theory, John Wiley & Sons, Inc.,
Wiley Series in Telecommunication, 1991

7. M. Garland, P. S. Heckbert, Surface Simplification Using Quadratic Error Metrics, Pro-
ceedings of the 24th annual Conference on Computer Graphics and Interactive Techniques,
pp. 209–216, 1997



21

8. N. Hansen, A. Ostermeier, Completely Derandomized Self-adaptation in Evolutionary
Strategies, Evolutionary Computation, vol. 9, no. 2, pp. 159–195, 2001
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