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Depth from Perspective Transformations

Nils Einecke, Sven Rebhan, Julian Eggert

Abstract— All binocular depth estimation algorithms need
to apply some kind of matching process for correspondence
search. Unfortunately, this search process is difficult because of
ambiguities. One possibility to reduce ambiguities is to use 3-D
models of the scene geometry. In this paper we interpret the
scene as a composition of basic parameterizable surfaces. We
present a general way of deriving formulas for perspectively
mapping such surfaces from one stereo camera image to the
second one. For estimating the model parameters we perform
a search in the parameter space, which is guided by the
error between the mapped and the original view. By means
of the found model parameters depth values can be extracted.
For searching the model parameter space we use the Hooke-
Jeeves optimization which does not need an explicit gradient
formulation and hence constitutes an easy way of circumventing
the complex gradient formulas.

I. I NTRODUCTION

A dense and accurate depth map is a prerequisite for scene
analysis, autonomous system navigation and object manipu-
lation. Depth estimation and related approaches constitute a
vast field of algorithms: ”Shape-from-X” approaches (like
Shape from Texture [6] or Shape from Shading [19]), depth
from motion [4], depth feature learning [13], 3-D model
generation [16] and stereoscopic depth [15], to name just
the most prominent ones.

There are two main approaches to stereoscopic depth: vari-
ational and correlation based methods. Variational methods
[2], [17] minimize a certain energy function to calculate the
depth of a scene. The energy function describes the error by
means of comparing the gray values of the pixels in one im-
age with their counterparts in a second image which depends
on the depth. The main advantage of variational approaches is
the possibility to directly introduce additional constraints. For
example a smoothness constraint is often used as this leads to
a ”fill-in-effect” in areas where no correspondence informa-
tion is available. High computational effort and weaknesses
with large displacements (for rectified stereo cameras, this
is equivalent to large disparities) are two drawbacks of the
variational approaches. Large displacements are difficultto
handle, because the number of suboptimal local solutions
increases with the displacement range. To some extent this
effect can be alleviated using coarse-to-fine strategies, but
this introduces additional parameters that have to be tuned
in order to arrive at reasonable results.
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Correlation based depth algorithms are the standard ap-
proach for extracting depth information. The main idea
dates back to 1976 [12]. Inspired by their research of the
human visual system Marr and colleagues proposed that
depth information can be extracted from stereo cameras by
finding corresponding points. The difference in the position
of the corresponding points is directly coupled to the depth.
To find these correspondences, patchwise correlations of the
two camera images are calculated. The main advantages of
correlation based depth algorithms are simplicity and speed.
The drawback is the break down in homogeneous regions or
in repetitive structures as correlations here lead to multiple or
uncertain correspondences, known as the aperture problem.
One way of circumventing this is to use a resolution pyramid
[1]. By searching correspondences in the images at different
scales, the aperture problem can be reduced. Unfortunately,
correspondences found at a coarser scale are less accurate.

Another way of tackling the aperture problem is to incor-
porate model knowledge. This is done either in a postprocess
to improve the generated depth maps or recently also in
the correlation process itself. Algorithms that incorporate
models into a postprocess try to fit surfaces into the depth
maps. By this outliers are removed and unlabeled areas are
filled. Most commonly planes are fit into the depth maps,
sometimes also coupled with an image segmentation step
[5]. The problem with this kind of approaches is that its
accuracy crucially depends on the quality of the underlying
depth algorithm. Here the algorithms incorporating models
at the correlation level, i.e. in the matching process that
determines the correspondences, have the advantage over
algorithms incorporating models in the postprocessing.

Incorporating models in the matching process is rather new
in the field of stereo depth estimation. Currently, the pre-
vailing approach is that of extending the standard matching
with a homography transformation constraint [8]. Instead of
determining the translation between corresponding patches
the parameters of the homography transformation are esti-
mated, such that expected patch correspondences from one to
another camera can be estimated. Actually, the homography
transformation is used for mapping views of planar 3-D
surfaces between arbitrarily oriented cameras, meaning that
the underlying model is planar. The correspondence search
with planarity constraints enhances the accuracy and allows
to map larger parts of a scene at once, which in turn
reduces the aperture problem. Unfortunately, the homography
transformation is only defined for planar surfaces. As far as
the authors know, there are currently no attempts to find a
way to be able to use more complex surface models.

In this paper, we present a general way for deriving



formulas for transforming the views of a surface between
two camera images based on parameterizable surface models.
Furthermore we present an algorithm that can estimate the
model parameters and calculate depth maps from these model
parameters. Note that the transformation formulas have to be
derived for each model. Here we show this at the example
of a planar and a spherical model. With this framework we
are able to map various parameterizable surfaces between
camera views and by this overcome the limitations of the
commonly used homography transformation which is based
on a planar model. In fact the planar model (homography) is
just a special case of our approach. With the derived formulas
we are able to replace the standard correlation matching for
finding correspondences with a surface parameter estimation
process. This is a straightforward extension from point based
correlation, over edge matching and area matching to real
3-D patch (surface) matching. Our algorithm determines
the surface model parameters for a given transformation
formula and uses them to generate depth maps. For parameter
estimation we use the Hooke-Jeeves [9] optimization method.
As this optimization does not need an explicit formulation
of the gradient, it is very easy to replace the transformation
formulas. It removes the necessity of deriving the complex
gradient formulas or to rely on approximations of the gradi-
ent. This is an advantage over direct approaches [3], [7] that
use a Taylor approximation of the image gradient in a KLT-
like [11] fashion which is necessary for a gradient descent
in the surface’s parameter space.

Our algorithm for surface parameter estimation and depth
construction consists of three main steps:

1. Segment one image into regions that belong to one
parameterizable surface model.

2. Estimate the model parameters using the Hooke-Jeeves
optimization.

3. Generate the depth map by means of the estimated
model parameters.

First one camera image has to be partitioned into multiple
regions, each obeying one surface model. Currently, we use
a simple segmentation algorithm to extract homogeneous
regions as these are likely to contain continuous surfaces.
In the second step the surface model parameters have to
be estimated for each region by performing a searching in
the respective model’s parameter space. As described above,
we’ve decided to use the Hooke-Jeeves optimization for
parameter estimation. This has several advantages which will
be discussed later. The last step constitutes the calculation of
the depth maps from the estimated surface model parameters.
Recently, a similar approach [7] using a planar assumption
was shown to be very accurate and efficient in constructing 3-
D models from multiple camera images. Here we concentrate
on depth map estimation, the extension from planar to other
surface models and give a detailed algorithmic explanation
and analysis. To show the applicability of our framework,
we introduce a special instance of our algorithm that tackles
the aperture problem in homogeneous regions by assuming
that homogeneous regions are most likely to be planes.

The paper is structured as follows: In section II we
discuss the derivation of the surface mapping formulas at
the example of planes and spheres. The equations derived
describe the transformation of the left camera image into
the right camera image given a set of surface parameters.
In section III we describe our algorithm that exploits the
derived mapping formulas for generating depth maps. We
describe the three sub-steps of our algorithm: segmentation,
estimation of the unknown surface parameters and depth map
generation. In the result section IV we analyze our approach
by first evaluating the accuracy of the parameter estimationof
the planar model under ideal as well as cluttered conditions.
Then we show the performance of the algorithm on three ex-
ample scenes of increasing difficulty. Furthermore, we show
some results using the spherical model which overcomes the
limitations of the homography. A summary and an outlook
concludes the paper in section V.

II. M ATHEMATICAL BASICS

In the following, we derive formulas for transforming sur-
face patches from one camera view to another based on an ar-
bitrary parametric description of the surface patches. In case
of planes such a transformation is known as homography.
We derive the formulas starting from a different background
to motivate the research and usage of other surface models
than planes, which the homography is restricted to. In order
to make the formulation easier we derive the formulas for a
parallel camera setting. However, the approach itself is not
constrained to such a setting.

A. Stereo Perspective Projection

In this paper, we consider a parallel stereo camera setting
with two cameras, left(L) and right(R), which have the same
focal length (just for convenience). Furthermore we have
two coordinate systems with the origins in the foci of the
two cameras. The perspective projections for 3-D points into
these two coordinate systems lying on the CCD chips are

ūL =
f

z′L

(

x′

L

y′

L

)

(1)

ūR =
f

z′R

(

x′

R

y′

R

)

, (2)

whereūL andūR are the perspective projections ofx̄
′

L and
x̄
′

R, respectively. Note that̄uL and ūR are two-dimensional
chip coordinates, whilēx′

L and x̄
′

R are three-dimensional
world coordinates. Because of the special geometry of a
parallel stereo system coordinates from the left coordinate
system can be easily transformed into coordinates in the
right coordinate system by subtracting the base lineb. Hence
Eqn. (2) can be rewritten as

ūR =
f

z′L

(

x′

L − b
y′

L

)

. (3)

For a correspondence pair ofūL andūR the 3-D coordinates
x̄
′

L of the corresponding 3-D world point could be calculated.
The other way around, if the depth of a point is known, it can
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Fig. 1. This image shows the schematic build up of a parallel stereo camera
setting and a planar surface, 2-D top view only.

be transformed from one view to the other. By rearranging
Eqn. (1) we get

x′

L =
uLx · z′L

f
(4)

y′

L =
uLy · z′L

f
. (5)

Substitutingx′

L and y′

L in Eqn. (3) and simplifying leads
to the fundamental equation for mapping parameterizable
surface views

ūR = ūL − b
f

z′L

(

1
0

)

. (6)

By means of the above equation a pixel from the left camera
can be transformed to a pixel in the right camera using the
known depthz′L. What is necessary now is a way to describe
z′L by means of a parametric description. In the following we
will sketch the derivations for planes and spheres. However,
the method is applicable in an analogous way to other
parametric surfaces.

B. Plane formulation

In order to derive a formulaz′L that depends on planar
parameters we assume that a planar image region (target
plane) originates from avirtual planeparallel to the CCD-
chip, which has been rotated at a certain anchor point about
the x- and y-axis. Figure 1 shows a schematic top view. The
anchor point is specified in world coordinates and denoted
with x̄a. The orientation is specified via rotation angles about
the x-axis(αx) and y-axis(αy). Note that these two rotations
suffice to describe any possible plane orientation. The points
x̄ on the original frontoparallel plane are transformed into
pointsx̄′ on the rotated plane by applying the transformation

matrix

T =

(

cos αy sin αx sin αy cos αx sin αy

0 cos αx − sin αx

− sin αy sin αx cos αy cos αx cos αy

)

(7)

leading to the following formula

x̄
′ = T [x̄ − x̄a] + x̄a . (8)

Because the unrotated plane is parallel to the CCD-chip of
the camera, the z-coordinate for points on the unrotated plane
is always equal to the z-coordinate of the anchorz = za.
Using this, we can rewrite the equation above as
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0



+





xa

ya
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 . (9)

The depthz′ of a pointx̄, given the anchor point and rotation
angles, then is

z′ = −(x − xa) sin αy + (y − ya) sin αx cosαy + za, (10)

where(x−xa) and(y−ya) can also be expressed with their
counterparts on the rotated plane using Eqn. (9):

x − xa =
x′ − xa − (y − ya) sin αx sin αy

cosαy

(11)

y − ya =
y′ − ya

cosαx

. (12)

Applying Eqn. (11) and (12) to Eqn. (10) and replacing world
coordinates with their projections on the CCD-chips (Eqn. (4)
and Eqn. (5)) finally leads to

z′L = za

uax sin αy − uay tan αx + f cosαy

uLx sin αy − uLy tan αx + f cosαy

. (13)

With this we have an equation that describesz′L by the
parameters of a planar model. Substitutingz′L in the base
Eqn. (6) leads to

uRx = uLx −

bf (uLx sin αy − uLy tan αx + f cos αy)

za (uax sin αy − uay tan αx + f cos αy)
(14)

uRy = uLy . (15)

These equations allow for a mapping of the view of a plane
from the left camera to the right camera by means of the
planar parameters (za, αx andαy).

C. Sphere formulation

Mapping planes is already known as the homography
transformation. Now we will show that it is possible to
also map other parametric surfaces using the sphere as
an example. We need to formulatez′L as a function of a
parametric model. A sphere in the three dimensional space
can be formulated as

r2 = (x − xa)2 + (y − ya)2 + (z − za)2 , (16)

where(xa, ya, za) is the anchor point (center) of the sphere.
For more clearness see Figure 2. Again we replace the world
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Fig. 2. This image shows the schematic build up of a parallel stereo camera
setting and a spherical surface, 2-D top view only.

coordinates with their projections on the CCD-chips and
rearrange the formula forz′L. We get

zL1,2 =
µ ±

√

µ2 − νλ

λ
, (17)

with

λ = 1 +
u2

Lx + u2

Ly

f2
(18)

µ = za +
uLxxa + uLyyL

f
(19)

ν = x2

a + y2

a + z2

a − r2 . (20)

At a first glance having two solutions in Eqn. (17) looks
disappointing. In fact, a closer look at Figure 2 reveals
that using the minus in Eqn. (17) means mapping a sphere
(convex structure) and using the plus means mapping a bowl
(concave structure). As we are looking for spheres we use

zL =
µ −

√

µ2 − νλ

λ
. (21)

Inserting this into the base Eqn. (6) leads to

ūR = ūL −
bfλ

µ −
√

µ2 − νλ

(

1
0

)

. (22)

This equation allows for a mapping of the view of a sphere
from the left camera to the right camera by means of the
sphere parameters (za, xa, ya andr).

III. D EPTH FROMPERSPECTIVETRANSFORMATIONS

(DFPT)

In this section we present an algorithm that exploits the
derived formulas for mapping parameterizable surfaces for
computing disparity maps. As a first step one stereo camera
image has to be partitioned into regions (patches) containing

Fig. 3. The image on the right shows a false colored result of asimple
Region Growing procedure applied on the left image. This preprocessing can
be improved as there are some regions which cluster pixels from different
planes, e.g. the car and its shadow are merged into one region. However,
Region Growing already provides a sufficiently reliable starting point for
the mapping of parameterizable surfaces.

continuous surfaces. The main idea of the algorithm is
to determine the parameters for each surface patch in the
stereo camera images and use these parameters to generate
a disparity map.

A. Segmentation

In order to be able to apply the Depth-from-Perspective-
Transformation (DfPT) algorithm to a whole scene it is
necessary to provide masks that specify regions within the
scene that contain parameterizable surfaces. It is yet an
open question how to do so in a general way. However,
for our purposes a segmentation approach based on Region
Growing [18] suffices. Here the underlying idea is that large
isochromatic image patches are likely to belong to single
surfaces.

Figure 3 displays a sample image and its region map
in false colors. Note that the patches are not perfectly
isochromatic as choosing a color distance threshold of zero
would lead to a vast number of small regions due to CCD-
chip noise and the illumination and reflection characteristics
in real world scenes. The quality of this preprocessing step,
i.e. the quality of the masks provided for the DfPT algorithm,
can have a strong impact on the quality of the computed
surface parameters and hence on the computed disparity
values. Region Growing is a quite simple method which can
be improved but it is sufficient for the analysis discussed in
this work.

B. Parameter estimation

Having a set of masks we can determine the parameters
for each surface utilizing the formulas derived in section II.
For finding the parameters of a parametric surface the work
flow is as follows.

Assume a mask is provided for each surface of the left
stereo camera image. First the mask is applied to the left
image in order to exclude all other parts of the image except
the surface to process. Now by means of Hooke-Jeeves
optimization [9] the parameters of the surface model are
determined.

Hooke-Jeeves is an iterative optimization algorithm for
(fitness) functions based on sampling the landscape defined
by the function. Starting from an initial parameter set, an
iterative refinement is conducted by sampling parameter sets



that are certain step sizes away and taking the best set. If
no better solution is found, the step size is reduced. This is
repeated until a minimal step size has been reached. Here
we use the Euclidean distance between the masked region
of the left image and the transformed right image as the
fitness function for the Hooke-Jeeves algorithm. This means
that the search algorithm tries to find those parameters of
a parametric surface that minimize the Euclidean distance
between the mapped and the actual view of a surface. The
whole procedure is repeated for each mask.

For planes we start the Hooke-Jeeves optimization withαx

andαy set to zero andz either set to a scene typical value
if the kind of scene is known, e.g. for indoor scenes we use
generally 2m as starting value, or we use standard correlation
techniques for an initialz value. Nevertheless, the Hooke-
Jeeves optimization has proven to be quite robust against the
starting conditions, even when no resolution pyramid is used.

For spheres we calculate starting parameters by first doing
a standard correlation of the patch to get a rough value for
za. Then we initialize the position of the center (xa, ya) by
mapping the center of the patch to world coordinates using
the guessed depthza. Finally the radiusr is initialized by
mapping the left and the right border of the region mask to
world coordinates.

The Hooke-Jeeves optimization has several advantages
over the Taylor approximation of the image gradient in-
troduced in [11]. First, it is easy to replace one fitness
function with another, i.e. it is straightforward to exchange
the mapping functions. Second, there is no need to derive
equations that describe the gradient of the fitness functionas
the Hooke-Jeeves optimization searches the parameter space
by means of sampling. Third, the Hooke-Jeeves optimization
is numerically very stable, since only simple arithmetic
functions are used for the mapping function. Last but not
least, an advantage we’ve discovered is that there is no
need to use a resolution pyramid. This is in contrast to
Taylor approximation approaches which usually need to use
a resolution pyramid because they only incorporate the first
derivatives.

C. Calculating disparity or depth maps

After the parameters for the surfaces have been estimated,
depth or disparity values can be calculated from them. This
is easily done by iterating over all pixels within a mask and
using the parametric description for depthz, i.e. Eqn. (13)
for planar surfaces or Eqn. (21) for spherical surfaces.

Furthermore additional steps could be taken to improve
the disparity maps. In principle most of the standard stereo
postprocessing methods are applicable, for example a left-
right check could be done by calculating disparity maps for
both views and merging them using the residual errors of the
Hooke-Jeeves optimization. Furthermore the missing parts
in structured parts of the scene can be filled by standard
correlation based stereo.

Fig. 4. The six objects used to evaluate our DfPT approach in rendered
scenes.

Fig. 5. The left and the right image show the left and the rightview of
the disk object, respectively. In this case the object has a distanceof 100
virtual units and is rotated20◦ about the x-axis and40◦ about the y-axis.

IV. M AIN RESULTS

In this section we evaluate our approach. For this purpose
we’ve applied our approach to rendered and real world
scenes.

A. POVRay generated stereo images

We used POVRay generated stereo images to make a
proof-of-concept evaluation of our approach. The idealized
character of such images allows to judge the properties of the
approach neglecting additional difficulties that arise with real
world images, e.g. noise, camera calibration or challenging
lighting conditions.

We have chosen six planar objects of different shape for
the following experiment. These six objects are depicted in
Figure 4. The objects were placed in an empty POVRay
scene and rendered for two camera viewpoints in order to
simulate a stereo camera system. All objects were rotated
about thex- andy-axis in 10◦ steps in the range of±60◦.
Rotating the planar objects leads to projective deformations
of the image of the objects in the two views from which our
approach draws information about the orientation of planar
objects. We determined how accurate our approach estimates
the parameters of the planar objects, i.e.αx andαy and depth
z. The planar objects had a distance of 100 virtual units
which corresponds to a disparity of about 65 pixels. The
image resolution was256 × 256 whereas the objects had a
size of roughly64 × 64 pixels. Figure 5 shows exemplarily
the left and the right view of thediskobject rotated20◦ about
the x-axis and40◦ about the y-axis.

For each object and orientation our approach was run 100
times with different random initializations of the depthz.
The initial depth value was varied randomly between 60 and
140 whereas the initial values ofαx and αy were always
zero. Figure 6 shows histograms of the errors ofαx, αy and
z over all objects and orientations.



−10 −8 −6 −4 −2 0 2 4 6 8 10
0

10

20

30

40

50

60

error of α
x
 in degree

pr
op

or
tio

n 
of

 r
un

s 
in

 p
er

ce
nt

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

10

20

30

40

50

60

error of α
y
 in degree

pr
op

or
tio

n 
of

 r
un

s 
in

 p
er

ce
nt

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

error of z
a

pr
op

or
tio

n 
of

 r
un

s 
in

 p
er

ce
nt

Fig. 6. Histograms showing the error for the three plane parametersαx, αy and z applied to different orientations of the six planar objectsseen in
figure 4. For each orientation 100 runs with random initial conditions for the surface parameters were conducted.

Fig. 7. These two images show the left and the right view of thedisk
object in front of a cluttered background. Parameters correspond to those
in figure 5.

This preliminary test shows the validity of our approach.
It is the case that under these artificial conditions the ori-
entations of the planes can be estimated quite accurately. In
most cases the estimated values do not differ more than one
degree from the actual value, even though the objects are
small in size and untextured.

In a second series of experiments we tested how well
our approach can cope with clutter in the background. For
this purpose we introduced a plane at a large distance and
mapped an image taken from an office environment onto
it (see Figure 7). Note that the clutter background is far
away, so that there is almost no disparity for objects in the
background. This is quite challenging, as the surrounding
of the white test objects changes dramatically, making life
harder for the Hooke-Jeeves optimization.

The results for the second test are depicted in figure 8.
As expected the performance drops due to the cluttered
background. There are several errors in estimating the plane
parameters. Disregarding some rare cases the depthz is still
estimated very accurately, but the accuracy of the two angles
αx and αy is lower compared to the uncluttered case. For
78% ofαx and 82% ofαy the error was not larger than10◦

(and for 60% ofαx and 62% ofαy the error was not larger
than5◦).

Altogether these preliminary tests show that our approach
is able to estimate plane orientation and distance quite well.
Clutter in the background can cause errors in the estimated
values, but the results are very promising.

B. Standard stereo test images

The stereo community provides a vast set of stereo images
with ground truth, which allow to compare the accuracy of
different stereo algorithms. Here we’ve used the cones scene
from the Middlebury data set [14] for further experiments.

In order to evaluate the performance of our algorithm the
plane parameters for each homogeneous region have to be
transformed into disparity values. This can easily be done
using Eqn. (6). It has to be mentioned that the cones data set
does not contain demanding aperture problems as the whole
scene is well structured. Nevertheless reasonable regionscan
be extracted by Region Growing due to the colorful objects
shown. Figure 9 shows the results of our approach on the
cones scene. The first row shows the left camera view and
the left ground truth disparity map. In the second row the
result of Region Growing is shown at the left side, and at
the right side the disparity map generated by our algorithm
is shown. The disparity ranges from zero (black) to 55 pixels
(white). Each color in the Region Growing map represents
one region processed by the algorithm, i.e. a planar surface.
This map also shows which parts of the scene are estimated
at all. For all black pixels no homogeneous region was found,
i.e. for these pixels no plane parameters are estimated and
hence no disparity can be calculated. As a consequence the
disparity map in Figure 9 shows some gaps. Nevertheless,
for the remaining parts of the images, the disparity map is
very smooth due to the planar assumption. Especially large
regions, like the planks of the fence, are well estimated.
If the planar assumption does not hold, e.g. on the cones,
the planes are fitted as well as possible, but of course can
not represent perfectly the non-linear shape properties ofthe
region. However, the results show that violations of the planar
assumption lead to only minor problems and the disparity
maps are quite accurate.

A more severe problem is that small regions tend to be
less accurately estimated. The main reason for this is that the
smaller a region, the less accurate the plane parameters can
be estimated due to the smaller resolution. Another reason is
that we use a fixed dilatation of the region masks provided by
Region Growing. Unfortunately, this means that for smaller
regions proportionally more background is incorporated into
the parameter estimation. This can be improved and will be
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Fig. 8. Histograms showing the error for the three plane parametersαx, αy and z applied to different orientations of the six planar objectsseen in
figure 4, positioned in front of the cluttered background seen in figure 7. For each orientation 100 runs with random initial conditions for the surface
parameters were conducted.

Fig. 9. This figure shows the results of our approach on the Middlebury
cones data. In the first row the left and the right image show the left camera
view and the left ground truth disparity maps, respectively. The left image
in the second row shows a false color image of the segmentation, i.e. all
regions for which parameters are estimated. The right imagein the second
row shows the disparity map generated by our approach. Gray values encode
disparity from black (zero disparity) to white (55 pixel disparity).

one focus of future work.
It should be mentioned here that standard correlation based

approaches generate denser disparity maps for this scene,
because all objects are well structured and the images are
taken under optimal lighting conditions. The results in the
cones scene show that, considering the accuracy of the
disparity of the image patches found by Region Growing, our
approach is comparable to state-of-the-art stereo algorithms
in case of medium structured ”homogeneous regions”.

In order to show the real advantages of our approach
over standard correlation based stereo algorithms the corridor
scene was used. This is a rendered scene that consists mainly
of homogeneous planes. Here correlation based approaches
heavily suffer from the aperture problem, i.e. they are not
able to calculate reliable disparity or depth within homoge-
neous regions.

Figure 10 shows the original image, ground truth disparity

and results of our approach in the same arrangement as in
the cones scene. The rendered images and the ground truth
are from [10]. Here disparity ranges from zero (black) to
25 pixels (white). The bottom right image shows that our
algorithm is well suited for the large homogeneous surfaces
that this scene is composed of. The disparity map generated
by our approach is close to the ground truth and the processed
surfaces show hardly any error. The only exception is the
right wall which is closest to the virtual camera. Due to a lack
of a proper border the algorithm fails to generate accurate
disparity values. The problem here is that there is only a left
border in both images. Because of this the problem of finding
a corresponding plane is underdetermined. Another problem
is the ball in the foreground. As the plane assumption does
not hold for its surface, our approach is unable to find
accurate disparity values for the whole surface. However, the
calculated disparity is still quite close to the ground truth.
For a better comparison, in figure 11 the left disparity map
of a correlation based stereo algorithm and our approach
are shown. It can be seen that our algorithm produces more
accurate and ”sharper” results, i.e. our algorithm reflectsthe
depth discontinuities very well. In contrast the results of
standard stereo look smeared. However, the correlation based
algorithm calculates a more dense disparity map, especially
regions of high structure like the pictures on the wall or
the tiles in the distance. Here our approach fails due to
a lack of proper masks. It is very important to note that
these gaps in our approach do not appear because of the
detailed image structure. If one crafts a mask by hand for the
picture on the wall, our algorithm has no problems estimating
the plane parameters and calculating the disparities. The
problem is just that our rudimentary preprocessing step
(Region Growing) is not able to provide masks for planes
with high structure.

C. Real world stereo images

Although standard stereo test images, like the cones stereo
image shown in the last section, are taken from the real
world, they are commonly gained under idealized conditions.
Especially the homogeneous illumination does not prevail in
the real world. Hence we took some pictures from a stereo
camera in use on a car for scene analysis.



Fig. 10. This figure shows the results of our approach on the rendered
corridor data. In the top row the left and right image show theleft camera
view and the left camera view ground truth disparity, respectively. The
left image in the bottom row depicts the result of segmentation in false
colors, i.e. each color represents one region. The resulting disparities of our
algorithm are shown in the bottom right image. For the disparity images the
gray values range from black (zero disparity) to white (25 pixel disparity).

Fig. 11. Comparison of a standard correlation based stereo algorithm (left)
with our approach (right).

In the top left of figure 12 the left camera view of the
stereo system of the car is shown. Note that the camera
struggles with overexposure in real world conditions (the
sky is completely overexposed). In general, real world scene
can exhibit complex lighting conditions like dramatic lighting
changes within the scene (overexposure problem), specular
reflections and cast shadows. Furthermore, surfaces are not
looking exactly the same in the left and the right camera
image, e.g. the street in the front has a different appearance
in the left and the right image which is partly due to
reflections of the car interior on the window and partly due
to the reflection properties of the street. Here our algorithm
struggles a bit with the border effect, i.e. as the street is
quite near, there is some part missing in the other camera’s
view. This leads to small errors in the parameters and hence

Fig. 12. This figure shows the results of our approach on real world car data.
The top left image shows the left camera image from within thecar. Below
is the region segmentation of that image. At the bottom rightthe disparity
map generated by our algorithm is shown. Due to a lack of ground truth
disparity we calculated a pixelwise absolute error betweenthe original left
image and the transformed right image (using the disparity map). This error
map is shown on the top right. Gray values encode disparity from black
(zero disparity) to white (55 pixel disparity) for the bottom right image and
error from black (zero error) to white for the top right image. In both the
disparity and the error map, pixels not assigned to a region are masked out
(value set to zero).

to errors in the disparity estimation of the left part of the
street. As no ground truth depth estimation is available for
the car scene, we can only judge the correctness by means
of transforming the right view into the left view by means
of the disparity maps. The top right of figure 12 shows the
absolute distance between the transformed and the original
left view. The error is calculated pixel wise as follows:

Ex,y = (|IR
x,y −T R

x,y|+ |IG
x,y −T G

x,y|+ |IB
x,y −T B

x,y|)/3 (23)

I and T are the original and the transformed image, re-
spectively. At each(x, y) position the average absolute
distance between the RGB values of the original and the
transformed image are calculated. This means that the errorat
(x, y) position is per pixel and channel. Furthermore, regions
without mask are set to zero error. The errors are coded
from black (zero error / non-masked region) to white (pixel
channel error 20 or higher). This means that transformed
pixels that differ more than an average of 20 units per RGB
channel are displayed in white. These error maps highlight
the problem of different illumination under different viewing
angles. There are parts within one street region that match
badly while some regions match very well. For example the
right street region matches well in its left half but badly inits
right half. A close look has revealed this cannot be accounted
for by a wrong parameter estimation because the disparity
gradient has the correct direction. In fact, this shows thatour
algorithm can cope well with local ambiguities if parameters
and depth map for large regions are estimated.



Fig. 13. These two images are depth map close-ups of the ball in the
corridor scene. The estimated disparity map using the planar model is shown
on the left and the estimated disparity map using the spherical model is
shown on the right. The planar model has some problems in fitting, which
can be seen in the gradient of the depth values in the left image. Note that
gray values code from zero disparity (black) to 25 pixel disparity (white).

Fig. 14. The left image shows the left camera view of the earthrendered
in POVRay. On the right the disparity map generated by our algorithm
using the spherical model is shown. Gray values range from black (50 pixel
disparity) to white (70 pixel disparity).

D. Using a spherical model

Up to now we have only presented results for the planar
model. In this section we will show some results for spheres.
Let us first have a look at the sphere of the corridor scene.
Figure 13 shows the result of our algorithm using the planar
and the spherical model in a close-up. Compared to the
results of the planar model, the spherical model leads to much
better disparity values.

Furthermore we rendered an image of the earth in POVRay
in order to judge how well parameters are guessed for the
sphere. Figure 14 shows the left image of the earth and the
result of our algorithm using the spherical model. The actual
parameters of the earth are3000, 0, 40000, 6366 for xa,
ya, za and r, respectively. Our algorithm estimates2949,
31, 40101, 6448 for xa, ya, za and r, respectively. This
shows that it is possible to also estimate sphere parameters
quite accurately. Unfortunately, we have no automatic mask
generation for spheres yet. One idea is to also use Region
Growing and let different surface models compete for each
region, selecting the best in the end. This will be part of
future work.

V. CONCLUSIONS

In this work we’ve presented a new approach to stereo
disparity calculation based on perspective transformations.

First, we’ve showed that by assuming a parameterizable
surface model it is possible to derive formulas that enable
us to perspectively transform image regions between the two
cameras of a parallel stereo camera setting. This general
approach has been shown at the example of a planar and a
spherical surface model. Hereby we overcome the limitations
of the homography transformation, which is restricted to
planes.

Based on this we’ve introduced an algorithm that exploits
the newly derived formulas of parametric surface transfor-
mation for disparity calculation. The algorithm consists of
three main steps. First, the image has to be segmented into
regions that belong to one parameterizable surface model.
Second, the parameters of the model are estimated using the
Hooke-Jeeves optimization method. Third, by means of the
estimated parameters a disparity map is generated. By doing
several experiments we’ve shown the high accuracy of our
algorithm in terms of parameter estimation and disparity map
generation.

For the planar model we’ve proposed to use Region
Growing for the segmentation step. This is based on the idea
that isochromatic image regions are likely to belong to one
surface. Indeed we’ve shown that this is well suited for a
large variety of scenes. The advantage of this application of
our algorithm is that it is complementary to standard stereo
because standard stereo is bad in estimating disparities for
large homogenous regions.

For future work we plan to extend our approach in order
to be able to cope with various types of parameterizable
surfaces. One key point that has to be solved here is the
problem of segmenting the image into regions of parame-
terizable surfaces. As this is quite difficult, we also think
about implementing a multi-hypothesis system. By applying
the optimization for a certain region with different surface
models, the best model can be selected by means of the
residual errors produced by the single models. Furthermore,
future work will concentrate on fusing our approach with
standard correlation based stereo algorithms in order to
combine the advantages of both approaches.
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