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Depth from Perspective Transformations

Nils Einecke, Sven Rebhan, Julian Eggert

Abstract— All binocular depth estimation algorithms need Correlation based depth algorithms are the standard ap-
to apply some kind of matching process for correspondence proach for extracting depth information. The main idea
search. Unfortunately, this search process is difficult besause of dates back to 1976 [12]. Inspired by their research of the
ambiguities. One possibility to reduce ambiguities is to us 3-D h : | t M. d 1 d that
models of the scene geometry. In this paper we interpret the uman_ visua _sys em Marr and colleagues propose a
scene as a composition of basic parameterizable surfacesew depth information can be extracted from stereo cameras by
present a general way of deriving formulas for perspectivet  finding corresponding points. The difference in the positio
mapping such surfaces from one stereo camera image to the of the corresponding points is directly coupled to the depth
second one. For estimating the model parameters we perform 4 finq these correspondences, patchwise correlationseof th

a search in the parameter space, which is guided by the ¢ . lculated. Th in advant f
error between the mapped and the original view. By means WO Camera iImages are caiculated. 1he main advantages 0

of the found model parameters depth values can be extracted. Correlation based depth algorithms are simplicity and dpee
For searching the model parameter space we use the Hooke- The drawback is the break down in homogeneous regions or

Jeeves optimization which does not need an explicit gradién jn repetitive structures as correlations here lead to pleltr
formulation and hence constitutes an easy way of circumvemy  ncertain correspondences, known as the aperture problem.
the complex gradient formulas. . . _ . .
One way of circumventing this is to use a resolution pyramid
[1]. By searching correspondences in the images at differen
scales, the aperture problem can be reduced. Unfortunately

A dense and accurate depth map is a prerequisite for Sceq;grespondences foun(_j at a coarser scale are Ie_ss a_ccurate.
analysis, autonomous system navigation and object manipu-Another way of tackling the aperture problem is to incor-
lation. Depth estimation and related approaches corestitut por_ate model knowledge. This is done either in a postproce_ss
vast field of algorithms: "Shape-from-X" approaches (likel® improve the generated depth maps or recently also in
Shape from Texture [6] or Shape from Shading [19]), deptwe corr_elatlon process itself. AIg_onthms tha_t incorgera
from motion [4], depth feature learning [13], 3-D mode|Mmodels into a postprocess try to fit surfaces into the depth

generation [16] and stereoscopic depth [15], to name jugiaps. By this outliers are removed and unlabeled areas are
the most prominent ones. filled. Most commonly planes are fit into the depth maps,

There are two main approaches to stereoscopic depth:vﬁ@-w—:‘tirnes also coupled with an image segmentation step

ational and correlation based methods. Variational metho 1. The probl_em with this kind of app_roaches Is that |_ts
[2], [17] minimize a certain energy function to calculate th accuracy crucially depends on the quality of the underlying

depth of a scene. The energy function describes the errorg pth algorithm. Here th? algorithms incorporating models
means of comparing the gray values of the pixels in one inft the correlation level, i.e. in the matching process that

age with their counterparts in a second image which depenﬂ termines the correspondences, have the advantage over

on the depth. The main advantage of variational approashe gorithms incorporating models in the postprocessing.

the possibility to directly introduce additional constrisi. For I&corfpokrjatu;g ;nodelzm EEG m:_ﬂch;_ng pr((:)cess LIS ra;tr:wer new
example a smoothness constraint is often used as this pagd} [N N€ld of stereo depth estimation. Lurrently, the pre-
a "fill-in-effect” in areas where no correspondence inf01fmava.llllng approach is that of extendmg the sFandard matching
tion is available. High computational effort and WeaknesseWlth a homography transformation constraint [8]. Instead o

with large displacements (for rectified stereo cameras, thgeterm|n|ngtthe t;atr;]slarglon betwehentcorr(faspon;jlng patch(ta_
is equivalent to large disparities) are two drawbacks of thttl—.:Ie parameters of the homography transtormation are est-
variational approaches. Large displacements are difftoult mated, such that expected patch correspondences from one to
handle, because the number of suboptimal local squtior?QOtr;er ca;neral can bg ?snmated: AC“%a”y' thfe hlomoggar[J)hy
increases with the displacement range. To some extent ghjgnstormation is used for mapping VIews ot planar -
effect can be alleviated using coarse-to-fine strategiet bsurfaces bgtween arbl_trarlly oriented cameras, meanag th
this introduces additional parameters that have to be tun underly_mg model_ls planar. The correspondence search
in order to arrive at reasonable results. with planarity constraints enhances the accuracy and allow
to map larger parts of a scene at once, which in turn
N. Einecke is with the Honda Research Institute Europe, Iemaireduces the.ap(.erture prOb!em' Unfortunately, the homdgrap
nils.einecke@honda-ri.de _ transformation is only defined for planar surfaces. As far as
svesh r;fhb;f‘éhgn d"é‘i"tr*: déhe Honda Research Institute Europe, emajhe guthors know, there are currently no attempts to find a
' ' way to be able to use more complex surface models.

J. Eggert is with the Honda Research Institute Europe, emai . o
julian.eggert@honda-ri.de In this paper, we present a general way for deriving

I. INTRODUCTION



formulas for transforming the views of a surface between The paper is structured as follows: In section Il we
two camera images based on parameterizable surface moddiscuss the derivation of the surface mapping formulas at
Furthermore we present an algorithm that can estimate ttiee example of planes and spheres. The equations derived
model parameters and calculate depth maps from these modescribe the transformation of the left camera image into
parameters. Note that the transformation formulas have to the right camera image given a set of surface parameters.
derived for each model. Here we show this at the exampla section Ill we describe our algorithm that exploits the
of a planar and a spherical model. With this framework welerived mapping formulas for generating depth maps. We
are able to map various parameterizable surfaces betwedgscribe the three sub-steps of our algorithm: segmentatio
camera views and by this overcome the limitations of thestimation of the unknown surface parameters and depth map
commonly used homography transformation which is basegeneration. In the result section IV we analyze our approach
on a planar model. In fact the planar model (homography) Iy first evaluating the accuracy of the parameter estimation
just a special case of our approach. With the derived forsnulghe planar model under ideal as well as cluttered conditions
we are able to replace the standard correlation matching fohen we show the performance of the algorithm on three ex-
finding correspondences with a surface parameter estimatiample scenes of increasing difficulty. Furthermore, we show
process. This is a straightforward extension from poinetdas some results using the spherical model which overcomes the
correlation, over edge matching and area matching to reahitations of the homography. A summary and an outlook
3-D patch (surface) matching. Our algorithm determinesoncludes the paper in section V.
the surface model parameters for a given transformation
formula and uses them to generate depth maps. For parameter Il. MATHEMATICAL BASICS
estimation we use the Hooke-Jeeves [9] optimization method |n the following, we derive formulas for transforming sur-
As this optimization does not need an explicit formulatiorface patches from one camera view to another based on an ar-
of the gradient, it is very easy to replace the transformmatiobitrary parametric description of the surface patchesakec
formulas. It removes the necessity of deriving the complesf planes such a transformation is known as homography.
gradient formulas or to rely on approximations of the gradiwe derive the formulas starting from a different background
ent. This is an advantage over direct approaches [3], [7] theo motivate the research and usage of other surface models
use a Taylor approximation of the image gradient in a KLTthan planes, which the homography is restricted to. In order
like [11] fashion which is necessary for a gradient descemy make the formulation easier we derive the formulas for a
in the surface’s parameter space. parallel camera setting. However, the approach itself is no

Our algorithm for surface parameter estimation and deptonstrained to such a setting.
construction consists of three main steps:

A. Stereo Perspective Projection

1. Segment one image into regions that belong to one
parameterizable surface model. In this paper, we consider a parallel stereo camera setting

2. Estimate the model parameters using the Hooke-JeeWéiéh two cameras, left(L) and right(R), which have the same
optimization. focal length (just for convenience). Furthermore we have

3. Generate the depth map by means of the estimat80o coordinate systems with the origins in the foci of the
model parameters. two cameras. The perspective projections for 3-D points int

First one camera image has to be partitioned into muItipIté1ese two coordinate systems lying on the CCD chips are

regions, each obeying one surface model. Currently, we use N 1
a simple segmentation algorithm to extract homogeneous uL = Z Y @
regions as these are likely to contain continuous surfaces. B ;o

In the second step the surface model parameters have to urp = % ( A > 5 2)

be estimated for each region by performing a searching in
the respective model’'s parameter space. As described abowereu;, anduy are the perspective projectionsxf and
we've decided to use the Hooke-Jeeves optimization fory, respectively. Note that; andur are two-dimensional
parameter estimation. This has several advantages which vahip coordinates, whilex; and x%, are three-dimensional
be discussed later. The last step constitutes the caloulafi world coordinates. Because of the special geometry of a
the depth maps from the estimated surface model parametgrarallel stereo system coordinates from the left coordinat
Recently, a similar approach [7] using a planar assumptigystem can be easily transformed into coordinates in the
was shown to be very accurate and efficient in constructing 8ght coordinate system by subtracting the base dingence

D models from multiple camera images. Here we concentrakegn. (2) can be rewritten as

on depth map estimation, the extension from planar to other Flah—b

surface models and give a detailed algorithmic explanation aR = < L >
and analysis. To show the applicability of our framework, L

we introduce a special instance of our algorithm that tackld=or a correspondence pair af, andug the 3-D coordinates
the aperture problem in homogeneous regions by assumir§ of the corresponding 3-D world point could be calculated.
that homogeneous regions are most likely to be planes. The other way around, if the depth of a point is known, it can

®3)

v
2L



target plane

cosoy  sinagzsinay  COs g Sin oy
”””””””””””””””” T = 0 COS Qi —sin ag (7

matrix

/ —sinay, sinog Cosoy — COS Qy COS Qy
leading to the following formula
virtual ) .
1 anchor X' =T[X %] +%a - ®)
anc
P (XasYarZa) Because the unrotated plane is parallel to the CCD-chip of
the camera, the z-coordinate for points on the unrotatetepla
o L is always equal to the z-coordinate of the anchoe z,.

Using this, we can rewrite the equation above as

projections o - .
/ \ y/ — Y — Yo + Ya ) (9)
- _———— 2 0 Za
left camera right camera The depth:’ of a pointx, given the anchor point and rotation
angles, then is
Fig. 1. This image shows the schematic build up of a pareatéebs camera
setting and a planar surface, 2-D top view only. — —(:c — Za) sin oy + (y — ya) sin a, cos ay + Zq, (10)

where(z —x,) and(y —y,) can also be expressed with their
be transformed from one view to the other. By rearrangingounterparts on the rotated plane using Eqn. (9):

Egn. (1) we get ' (g — i ]
vz, — ' —xz, (yco Ya) SIn v sin oy, (11)
.o S«
o = ULz - 2 (4) 1y Y
f Y=Y = 2. (12)
, _ ULy * Z/L (5) COS Oy
o= f ' Applying Egn. (11) and (12) to Egn. (10) and replacing world

- . o coordinates with their projections on the CCD-chips (E4i. (
Substitutingz}, and 7 in Eqn. (3) and simplifying leads 4 Eqgn. (5)) finally leads to
to the fundamental equation for mapping parameterizable

surface views T Uqz SIN Oy — Uqy tan o, + f cos ay (13)
F ) L “urgsinay —urytana, + fcosay
Hr = UL bZ ( 0 ) ' ®)  With this we have an equation that describgs by the

parameters of a planar model. Substitutitig in the base
By means of the above equation a pixel from the left camefadn. (6) leads to

can be transformed to a pixel in the right camera using the

known depth:; . What is necessary now is a way to describe Urs = ULz —
27 by means of a parametric description. In the following we
will sketch the derivations for planes and spheres. However
the method is applicable in an analogous way to othéfhese equations allow for a mapping of the view of a plane
parametric surfaces. from the left camera to the right camera by means of the
planar parameters:{, o, anday).

bf (uLzsinay — upy tan ag + f cosay) (14)
Za (Uag SIN Oty — Uay tan az + f cos ay)

URy = ULy - (15)

B. Plane formulation )
C. Sphere formulation

In order to derive a formula) that depends on planar
parameters we assume that a planar image regemget
plang originates from avirtual plane parallel to the CCD-

Mapping planes is already known as the homography
transformation. Now we will show that it is possible to

chip, which has been rotated at a certain anchor point aboﬂ?o map other parametric surfaces using th? sphere as
the x- and y-axis. Figure 1 shows a schematic top view. Th example. We need to formulaﬂi as a _functlc_)n of a
anchor point is specified in world coordinates and denotdiframetric model. A sphere in the three dimensional space
with x,. The orientation is specified via rotation angles abodft®" be formulated as

the x-axis¢,) and y-axis,). Note that these two rotations 2 = (2 — %)2 +(y— ya)2 (2 — Za)2 : (16)
suffice to describe any possible plane orientation. Thetpoin

x on the original frontoparallel plane are transformed intavhere(z,, y., 2,) is the anchor point (center) of the sphere.
pointsx’ on the rotated plane by applying the transformatiofror more clearness see Figure 2. Again we replace the world



target anchor

sphere (Xa:Ya:Za)
Fig. 3. The image on the right shows a false colored result siftple
Region Growing procedure applied on the left image. Thipmeessing can
be improved as there are some regions which cluster pixefs ffifferent
planes, e.g. the car and its shadow are merged into one rdgawever,
Region Growing already provides a sufficiently reliablertstg point for

® ° the mapping of parameterizable surfaces.
proj ections continuous surfaces. The main idea of the algorithm is

to determine the parameters for each surface patch in the

i —— stereo camera images and use these parameters to generate

. a disparity map.
left camera right camera

A. Segmentation

Fig. 2. This image shows the schematic build up of a paraieks camera

setting and a spherical surface, 2-D top view only, In order to be able to apply the Depth-from-Perspective-

Transformation (DfPT) algorithm to a whole scene it is
necessary to provide masks that specify regions within the

coordinates with their projections on the CCD-chips ang§cene that contain parameterizable surfaces. It is yet an

rearrange the formula for, . We get open question how to do so in a general way. However,
for our purposes a segmentation approach based on Region

P pE A p? = vA 7 17) _Growing [12_3] ;uffices. Here the underlying idea is that Igrge

’ A isochromatic image patches are likely to belong to single

with surfaces.

wl A+l Figure 3 displays a sample image and its region map

A= 1+ % (18) in false colors. Note that the patches are not perfectly

WpaTa + ULyUL isochromatic as choosing a color dlstanCPT threshold of zero

po= zg o —— = (19) would lead to a vast number of small regions due to CCD-

f chip noise and the illumination and reflection charactiesst

v o= iyl -1t (20)  in real world scenes. The quality of this preprocessing,step
At a first glance having two solutions in Eqn. (17) looks-€- the quality of the_masks provided for_the DfPT algorithm
disappointing. In fact, a closer look at Figure 2 reveal§an have a strong impact on the quality of the computed
that using the minus in Eqn. (17) means mapping a sphefdface parameters and hence on the computed disparity
(convex structure) and using the plus means mapping a boy#lues. Region Growing is a quite simple method which can
(concave structure). As we are looking for spheres we usd€ improved but it is sufficient for the analysis discussed in

this work.
p= /P2 = VA
LT T (21)  B. Parameter estimation
Inserting this into the base Eqn. (6) leads to Having a set of masks we can determine the parameters
for each surface utilizing the formulas derived in sectibn |
_ _ bfA 1 o X
=ty - ——F——| | - (22) For finding the parameters of a parametric surface the work
=\ 1 = VA flow is as follows.

This equation allows for a mapping of the view of a sphere Assume a mask is provided for each surface of the left
from the left camera to the right camera by means of thétereo camera image. First the mask is applied to the left

sphere parameters,( z,, y, andr). image in order to exclude all other parts of the image except

the surface to process. Now by means of Hooke-Jeeves

I1l. DEPTH FROMPERSPECTIVETRANSFORMATIONS optimization [9] the parameters of the surface model are
(DFPT) determined.

In this section we present an algorithm that exploits the Hooke-Jeeves is an iterative optimization algorithm for
derived formulas for mapping parameterizable surfaces f¢fithess) functions based on sampling the landscape defined
computing disparity maps. As a first step one stereo cameog the function. Starting from an initial parameter set, an
image has to be partitioned into regions (patches) comigini iterative refinement is conducted by sampling parametsr set



that are certain step sizes away and taking the best set. |
no better solution is found, the step size is reduced. This is
repeated until a minimal step size has been reached. Herg
we use the Euclidean distance between the masked regio
of the left image and the transformed right image as the
fitness function for the Hooke-Jeeves algorithm. This meaf&- 4. The six objects used to evaluate our DfPT approaclendered
that the search algorithm tries to find those parameters or e

a parametric surface that minimize the Euclidean distance
between the mapped and the actual view of a surface. The
whole procedure is repeated for each mask.

For planes we start the Hooke-Jeeves optimization wjth
anda, set to zero and either set to a scene typical value
if the kind of scene is known, e.g. for indoor scenes we use
generally 2m as starting value, or we use standard cowalati
techniques for an initiak value. Nevertheless, the Hooke-
Jeeves optimization has proven to be quite robust agaiast th
starting conditions, even when no resolution pyramid isluserig. 5. The left and the right image show the left and the rigtv of

For spheres we calculate starting parameters by first doiﬁg disk object, respectively. In this case the object has a distafck0
. virtual units and is rotate@0° about the x-axis and0° about the y-axis.
a standard correlation of the patch to get a rough value for
zq. Then we initialize the position of the centet,( y,) by
mapping the center of the patch to world coordinates using
the guessed depth,. Finally the radiusr is initialized by
mapping the left and the right border of the region mask to In this section we evaluate our approach. For this purpose

world coordinates. we've applied our approach to rendered and real world

The Hooke-Jeeves optimization has several advantag&$nes.
over the Taylor approximation of the image gradient in- )
troduced in [11]. First, it is easy to replace one fitnes§: POVRay generated stereo images
function with another, i.e. it is straightforward to exchen ~ We used POVRay generated stereo images to make a
the mapping functions. Second, there is no need to deripeoof-of-concept evaluation of our approach. The idedlize
equations that describe the gradient of the fitness funeison character of such images allows to judge the propertiessof th
the Hooke-Jeeves optimization searches the parametes spapproach neglecting additional difficulties that arisewrial
by means of sampling. Third, the Hooke-Jeeves optimizatiomorld images, e.g. noise, camera calibration or challejgin
is numerically very stable, since only simple arithmetidighting conditions.
functions are used for the mapping function. Last but not We have chosen six planar objects of different shape for
least, an advantage we've discovered is that there is mee following experiment. These six objects are depicted in
need to use a resolution pyramid. This is in contrast tpigure 4. The objects were placed in an empty POVRay
Taylor approximation approaches which usually need to usgene and rendered for two camera viewpoints in order to
a resolution pyramid because they only incorporate the firsimulate a stereo camera system. All objects were rotated
derivatives. about thez- and y-axis in 10° steps in the range o£60°.
Rotating the planar objects leads to projective deformatio
of the image of the objects in the two views from which our
C. Calculating disparity or depth maps approach draws information about the orientation of planar
objects. We determined how accurate our approach estimates
After the parameters for the surfaces have been estimatége parameters of the planar objects, &g anda, and depth
depth or disparity values can be calculated from them. This The planar objects had a distance of 100 virtual units
is easily done by iterating over all pixels within a mask an@vhich corresponds to a disparity of about 65 pixels. The
using the parametric description for depthi.e. Eqn. (13) image resolution wa856 x 256 whereas the objects had a
for planar surfaces or Eqn. (21) for spherical surfaces.  size of roughly64 x 64 pixels. Figure 5 shows exemplarily
Furthermore additional steps could be taken to improvidae left and the right view of thdisk object rotate®0° about
the disparity maps. In principle most of the standard sterdbe x-axis andi0° about the y-axis.
postprocessing methods are applicable, for example a left-For each object and orientation our approach was run 100
right check could be done by calculating disparity maps faimes with different random initializations of the depth
both views and merging them using the residual errors of thEghe initial depth value was varied randomly between 60 and
Hooke-Jeeves optimization. Furthermore the missing partgl0 whereas the initial values ef, and o, were always
in structured parts of the scene can be filled by standamdro. Figure 6 shows histograms of the errorsef o, and
correlation based stereo. z over all objects and orientations.

IV. MAIN RESULTS
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Fig. 6. Histograms showing the error for the three plane matersa., o, and z applied to different orientations of the six planar objesten in
figure 4. For each orientation 100 runs with random initiahditons for the surface parameters were conducted.

B. Standard stereo test images

The stereo community provides a vast set of stereo images
with ground truth, which allow to compare the accuracy of
different stereo algorithms. Here we've used the conesescen
from the Middlebury data set [14] for further experiments.

In order to evaluate the performance of our algorithm the
plane parameters for each homogeneous region have to be
transformed into disparity values. This can easily be done
Fig. 7. These two images show the left and the right view ofdiex  USing Egn. (6). It has to be mentioned that the cones data set
object in front of a cluttered background. Parameters epoed to those does not contain demanding aperture problems as the whole
in figure 5. scene is well structured. Nevertheless reasonable regans

be extracted by Region Growing due to the colorful objects
shown. Figure 9 shows the results of our approach on the

This preliminary test shows the validity of our approachcones scene. The first row shows the left camera view and
It is the case that under these artificial conditions the orfhe left ground truth disparity map. In the second row the
entations of the planes can be estimated quite accurately.'/fsult of Region Growing is shown at the left side, and at
most cases the estimated values do not differ more than o€ right side the disparity map generated by our algorithm

degree from the actual value, even though the objects dfeshown. The disparity ranges from zero (black) to 55 pixels
small in size and untextured. (white). Each color in the Region Growing map represents

. . e region processed by the algorithm, i.e. a planar surface
In a second series of experiments we tested how we]l . . .
) . his map also shows which parts of the scene are estimated
our approach can cope with clutter in the background. Far,

this purpose we introduced a plane at a large distance aﬁtda"' For all black pixels no homogeneous region was found,

. ' . I.e. for these pixels no plane parameters are estimated and
mapped an image taken from an office environment onlﬁ)

it (see Figure 7). Note that the clutter background is fa1ence no disparity can be calculated. As a consequence the

; i ) . -~ disparity map in Figure 9 shows some gaps. Nevertheless,
away, so that there is almost no disparity for objects in thleorrihe )r/emalioning p%rts of the images tr?e rzjisparity map is

background. This is quite challenging, as the surroundin : .
of the white test objects changes dramatically, making Iif\egery smooth due fo the planar assumption. Especially large

A regions, like the planks of the fence, are well estimated.
harder for the Hooke-Jeeves optimization. X
If the planar assumption does not hold, e.g. on the cones,
The results for the second test are depicted in figure ghe planes are fitted as well as possible, but of course can
As expected the performance drops due to the cluttereght represent perfectly the non-linear shape properti¢iseof
background. There are several errors in estimating theeplafegion. However, the results show that violations of theata
parameters. Disregarding some rare cases the deitbtill  assumption lead to only minor problems and the disparity
estimated very accurately, but the accuracy of the two anglﬁhaps are quite accurate.
a; and «,, is lower compared to the uncluttered case. FOor po more severe problem is that small regions tend to be
78% of o, and 82% ofa, the error was not larger tha)®  |esg accurately estimated. The main reason for this is tieat t
(and for 60% ofa,, and 62% of, the error was not larger gmgjier a region, the less accurate the plane parameters can
than5°). be estimated due to the smaller resolution. Another reason i
Altogether these preliminary tests show that our approachat we use a fixed dilatation of the region masks provided by
is able to estimate plane orientation and distance quité weRegion Growing. Unfortunately, this means that for smaller
Clutter in the background can cause errors in the estimateegions proportionally more background is incorporated in
values, but the results are very promising. the parameter estimation. This can be improved and will be
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parameters were conducted.

and results of our approach in the same arrangement as in
the cones scene. The rendered images and the ground truth
are from [10]. Here disparity ranges from zero (black) to
25 pixels (white). The bottom right image shows that our
algorithm is well suited for the large homogeneous surfaces
that this scene is composed of. The disparity map generated
by our approach is close to the ground truth and the processed
surfaces show hardly any error. The only exception is the
right wall which is closest to the virtual camera. Due to &lac

of a proper border the algorithm fails to generate accurate
disparity values. The problem here is that there is only & lef
border in both images. Because of this the problem of finding
a corresponding plane is underdetermined. Another problem
is the ball in the foreground. As the plane assumption does
not hold for its surface, our approach is unable to find
accurate disparity values for the whole surface. Howeher, t
calculated disparity is still quite close to the ground Hrut

For a better comparison, in figure 11 the left disparity ma
Fig. 9. This figure shows the results of our approach on thedMizlry P 9 panty P

cones data. In the first row the left and the right image shaneft camera of a correlation based stereo algorithm and our approach
view and the left ground truth disparity maps, respectivélye left image are shown. It can be seen that our algorithm produces more
in t_he second row shows a false colpr image of the s_egmema't all gccurate and "sharper” results, i.e. our algorithm refldus
regions for WhICh parameters are estimated. The right iniadke second depth discontinuities very well. In contrast the results of
row shows the disparity map generated by our approach. Gilags encode
disparity from black (zero disparity) to white (55 pixel pésity). standard stereo look smeared. However, the correlaticedbas
algorithm calculates a more dense disparity map, espgciall
regions of high structure like the pictures on the wall or
one focus of future work. the tiles in the distance. Here our approach fails due to
It should be mentioned here that standard correlation basgdiack of proper masks. It is very important to note that
approaches generate denser disparity maps for this sceftse gaps in our approach do not appear because of the
because all objects are well structured and the images afetailed image structure. If one crafts a mask by hand for the
taken under optimal lighting conditions. The results in th@icture on the wall, our algorithm has no problems estingatin
cones scene show that, considering the accuracy of titee plane parameters and calculating the disparities. The
disparity of the image patches found by Region Growing, oysroblem is just that our rudimentary preprocessing step
approach is comparable to state-of-the-art stereo akgosit (Region Growing) is not able to provide masks for planes
in case of medium structured "nomogeneous regions”.  with high structure.
In order to show the real advantages of our approach )
over standard correlation based stereo algorithms thédoorr C- Real world stereo images
scene was used. This is a rendered scene that consists mainljlthough standard stereo test images, like the cones stereo
of homogeneous planes. Here correlation based approaciraage shown in the last section, are taken from the real
heavily suffer from the aperture problem, i.e. they are natorld, they are commonly gained under idealized conditions
able to calculate reliable disparity or depth within homogeEspecially the homogeneous illumination does not prewail i
neous regions. the real world. Hence we took some pictures from a stereo
Figure 10 shows the original image, ground truth disparitgamera in use on a car for scene analysis.




Fig. 12. This figure shows the results of our approach on reddvear data.
The top left image shows the left camera image from withindhie Below
is the region segmentation of that image. At the bottom rtbbt disparity
map generated by our algorithm is shown. Due to a lack of gtammh
disparity we calculated a pixelwise absolute error betwtbenoriginal left
image and the transformed right image (using the disparép)mThis error

Fig. 10. This figure shows the results of our approach on theemd map is shown on the top right. Gray values encode disparin fblack

corridor data. In the top row the left and right image show I#fe camera
view and the left camera view ground truth disparity, retipely. The
left image in the bottom row depicts the result of segmemtain false

(zero disparity) to white (55 pixel disparity) for the batiaight image and
error from black (zero error) to white for the top right imade both the
disparity and the error map, pixels not assigned to a regienreasked out

colors, i.e. each color represents one region. The regutfisparities of our (value set to zero).

algorithm are shown in the bottom right image. For the digpamages the
gray values range from black (zero disparity) to white (2&epdisparity).

to errors in the disparity estimation of the left part of the
street. As no ground truth depth estimation is available for
the car scene, we can only judge the correctness by means
of transforming the right view into the left view by means

of the disparity maps. The top right of figure 12 shows the
absolute distance between the transformed and the original
left view. The error is calculated pixel wise as follows:

Fig. 11. Comparison of a standard correlation based stégeotam (left)
with our approach (right).

I and T are the original and the transformed image, re-
spectively. At each(z,y) position the average absolute
distance between the RGB values of the original and the
transformed image are calculated. This means that thearror

In the top left of figure 12 the left camera view of the(z,y) position is per pixel and channel. Furthermore, regions
stereo system of the car is shown. Note that the camenathout mask are set to zero error. The errors are coded
struggles with overexposure in real world conditions (thérom black (zero error / non-masked region) to white (pixel
sky is completely overexposed). In general, real world ecercthannel error 20 or higher). This means that transformed
can exhibit complex lighting conditions like dramatic ltgig  pixels that differ more than an average of 20 units per RGB
changes within the scene (overexposure problem), specutdrannel are displayed in white. These error maps highlight
reflections and cast shadows. Furthermore, surfaces are tia problem of different illumination under different view
looking exactly the same in the left and the right camerangles. There are parts within one street region that match
image, e.g. the street in the front has a different appearangadly while some regions match very well. For example the
in the left and the right image which is partly due toright street region matches well in its left half but badlyits
reflections of the car interior on the window and partly dueight half. A close look has revealed this cannot be accalinte
to the reflection properties of the street. Here our algorith for by a wrong parameter estimation because the disparity
struggles a bit with the border effect, i.e. as the street radient has the correct direction. In fact, this shows thait
quite near, there is some part missing in the other cameragorithm can cope well with local ambiguities if paramster
view. This leads to small errors in the parameters and henaad depth map for large regions are estimated.



Fig. 13. These two images are depth map close-ups of the rbdhe
corridor scene. The estimated disparity map using the plaael is shown
on the left and the estimated disparity map using the spdlenmdel is
shown on the right. The planar model has some problems ingfjttivhich
can be seen in the gradient of the depth values in the leftémidgte that
gray values code from zero disparity (black) to 25 pixel didty (white).

Fig. 14. The left image shows the left camera view of the egstidered
in POVRay. On the right the disparity map generated by ouorélyn
using the spherical model is shown. Gray values range frackh{50 pixel
disparity) to white (70 pixel disparity).

D. Using a spherical model

First, we've showed that by assuming a parameterizable
surface model it is possible to derive formulas that enable
us to perspectively transform image regions between the two
cameras of a parallel stereo camera setting. This general
approach has been shown at the example of a planar and a
spherical surface model. Hereby we overcome the limitation
of the homography transformation, which is restricted to
planes.

Based on this we've introduced an algorithm that exploits
the newly derived formulas of parametric surface transfor-
mation for disparity calculation. The algorithm consisfts o
three main steps. First, the image has to be segmented into
regions that belong to one parameterizable surface model.
Second, the parameters of the model are estimated using the
Hooke-Jeeves optimization method. Third, by means of the
estimated parameters a disparity map is generated. By doing
several experiments we've shown the high accuracy of our
algorithm in terms of parameter estimation and disparitp ma
generation.

For the planar model we've proposed to use Region
Growing for the segmentation step. This is based on the idea
that isochromatic image regions are likely to belong to one
surface. Indeed we've shown that this is well suited for a
large variety of scenes. The advantage of this applicatfon o
our algorithm is that it is complementary to standard stereo
because standard stereo is bad in estimating disparities fo
large homogenous regions.

For future work we plan to extend our approach in order
to be able to cope with various types of parameterizable
surfaces. One key point that has to be solved here is the
problem of segmenting the image into regions of parame-
terizable surfaces. As this is quite difficult, we also think

Up to now we have only presented results for the planP0ut implementing a multi-hypothesis system. By applying

model. In this section we will show some results for sphereg.1
Let us first have a look at the sphere of the corridor scenf!

e optimization for a certain region with different surac
odels, the best model can be selected by means of the

Figure 13 shows the result of our algorithm using the planaFSidual errors produced by the single models. Furthermore

and the spherical model in a close-up. Compared to ul
results of the planar model, the spherical model leads tdhmu

better disparity values.

Furthermore we rendered an image of the earth in POVRay

gture work will concentrate on fusing our approach with
gtandard correlation based stereo algorithms in order to
combine the advantages of both approaches.
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