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Chapter 4
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D-63073 Offenbach/Main, Germany

Abstract

Keywords

The representation of a design influences thecemsc of any kind of
optimization significantly. The perfect trade-offetaveen the number of
parameters which define the search space and fievable design flexibility
is very crucial since it influences the convergerspeed of the chosen
optimization algorithm as well as the possibility find the design which
provides the best performance. Classical methodstlyndefine the design
directly, e.g. via spline surfaces or by repreg@ma which are specialized to
one design task. In the present chapter, the $edadgformation methodare
focused which follow a different approach. Instesddescribing the shape
directly, deformation terms are used to morph éimindesign into new ones.
This decouples a complex design from an expendiapes description while
relying purely on mapping terms which are respdesiior the geometry
transformations. Thus, the designer is encouragedetermine the optimal
relation between parameter set and design fleiibéccording to the given
task. With respect to optimization, these mappiegns are considered as
parameters. In this chapter, the combination of dtate of the art deformation
algorithms with evolutionary optimization is focaséfter an introduction of
these techniques, a framework for an autonomougrdesptimization is
sketched in more detail. By means of two optimeati which feature a stator
blade of a jet turbine the workability is shown aheé advantages of such
representations are highlighted.

design optimization, direct manipulation, evolatoy algorithms,
evolutionary optimization, free form deformatiorpresentation, turbine blade



64 EVOLUTONARY COMPUTATION IN PRACTI

1 INTRODUCTION

Evolutionary algorithms have been successfully iadpto a variety of
design optimization problems (Sonoda et al., 2@ ma et al., 2000; Foli
et al., 2006; Ong et al., 2006; Kanazaki et alQ20In most cases, the
design is represented either by a specialized septation based on standard
engineering practice, e.g. circles and connectinges for two-dimensional
blades or an aircraft wing design (Oyama et alQ020or by splines,
NURBS (Hasenjager et al., 2005; Lépine et al., 208id D-NURBS
(Terzopoulos et al., 1994). Other representatidke kolid modelling
(Requicha, 1980) or solutions to partial differah&quations (Ugail et al.,
2003) have been used less frequently, especiallyréxtical applications.

While standard engineering representations aren aéey compact, they
are almost always incomplete in the sense thaalhpbssible shapes can be
represented. Although NURBS are only complete & tepresentation is
adaptive (Olhofer et al., 2001), their versatilisyusually much higher. At
the same time, the representation of complex shafihsmany edges (like
e.g. a whole turbine) requires a NURBS surface wittery large number of
control points. However, the number of control peidefines the dimension
of the search space. If the dimension is much tatgan 200 and no
subspaces can be easily identified to allow a s#@lesearch, the shape
design optimization process is prohibitively tim®nsuming and the
convergence may not be achieved.

Free form deformation (FFD) techniques, which wé introduce in the
next section, are fundamentally different from othepresentations in that
they do not represent the actual shape but changedaseline shape. The
baseline shape can be arbitrarily complex. Of athis changes that can be
represented might be limited by the complexityhsf tepresentation. In this
chapter, we will introduce free-form deformatiordadirect manipulation of
free-from deformation in the context of evolutiopahape design. We will
apply both methods to the design of a stator bfadea real gas turbine
engine. Although the strength of FFD is particyladvident for very
complex shapes, turbine blades are a reasonablpraomise, because their
complexity is high enough to require a NURBS repn¢gtion with just
below 100 control points (Hasenjager et al., 2088)le it is sufficiently
simple to analyze the evolutionary process.
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2. AERODYNAMIC OPTIMIZATION USING
DEFORMATION TECHNIQUES

In order to realize a fully automated aerodynangsigh optimization,
the so-called deformation techniques are becomiagenwidely used as an
efficient object representation recently. Introdiige the late 1980’s in the
field of computer graphics (Sederberg et al., 1986quillart, 1990), these
methods hold several advantages for representiomegeies, especially if
these geometries possess a high degree of conyplggitally the number of
parameters to represent such complex geometrigsorly by splines or
spline surfaces, is too large to be feasible. Wheplying free form
deformation (FFD), the current state-of-the-artodefation algorithm, the
object is embedded within a lattice of control pejnwhich defines the
degrees of freedom for the deformation. The paransst and consequently
the difficulty of the optimization problem can bened by the number and
choice of control points or control point groups.h&d defining the
parameter set of a FFD system we have to find ptienal trade-off between
search space dimension and design flexibility, ftreedom of variation.
However, compared to spline based representatioribe FFD framework
the complexity of design variations and not of fhdial design is the
limiting factor.

In case of problems that need finite element atefimolume methods for
design evaluations like in computational fluid dyries, FFD has another
advantage (Perry et al., 2000; Menzel et al.,, 2009)e fidelity of
computational fluid dynamics (CFD) simulations degi& to a large degree
on the quality of the mesh or grid that is used ttoe simulation. For
complex shapes and structures, mesh generatiorvésyatime consuming
process (several days), which more often than equires manual fine-
tuning or resolution of meshing problems. In patte, in the context of
population based search methods like evolutionlgyrithms, manual mesh
generation is not feasible. In the FFD framewohle esh is deformed just
like the design is deformed. Therefore, the mathieala deformation
procedure is applied to the design and to the mashltaneously. This has
the great advantage that mesh generation justchae tdone once at the
beginning of the optimization for the baseline dasiDuring optimization
the mesh is always adapted to the changing deSigoourse, the quality of
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the deformed mesh has to be controlled during twludonary search
process. However, for complex shape design, théendpatimization process
takes days and weeks and the sporadic analydi® @trrent mesh quality in
parallel to the search process is feasible.

In Section 3, two kinds of deformation methods lariefly introduced:
the standard free form deformation (FFD) and theadimanipulation of free
form deformations (DMFFD) as one of its extensiohke latter method
makes use of object points as direct handles orgdloenetry to take into
account the sensitivity of the FFD method to thiéahplacement of the
control points. In Section 4, both methods are wsedepresentations for an
evolutionary design optimization of an aerodynasti@ape case study. On
the one hand FFD is applied to optimise a threeedsional blade geometry
to show the basic behavior of FFD in optimizatiomgile dealing with
complex structures. On the other hand both teclsigeFD and DMFFD,
are used as representations in a two dimensiorasebbptimization to
illustrate the differences and advantages of DMEWEr FFD.

3. REPRESENTING DESIGNSWITH
DEFORMATION METHODS

In this section, the methods of free form deforovat{FFD) and direct
manipulation of free form deformations (DMFFD) éréefly introduced.

31 Free Form Defor mation (FFD)

The basic idea behind free form deformation is ctepliin Figure 4-1 a).
The sphere represents the object which is thettafgbe optimization. It is
embedded in a lattice of control points (CP). Rirshe coordinates of the
object have to be mapped to the coordinates islire parameter space. If
the object is a surface point cloud of the desiga mesh which originates
from an aerodynamic computer simulation (as inexample in Section 4),
each grid point has to be converted into splin@mpater space to allow the
deformations. After this process of ‘freezing’, thigiect can be modified by
moving a control point to a new position. The nemtcol point positions
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are the inputs for the spline equations and theatgod geometry is

calculated. Since everything within the controlurok is deformed, a grid
from computational fluid dynamics that is attachedthe shape is also
adapted. Hence, the deformation affects not ordystiape of the design but
also the grid points of the computational meshcWwhs needed for the CFD
evaluations of the proposed designs. The new shagehe corresponding
CFD mesh are generated at the same time withoutethe for an automated
or manual re-meshing procedure. This feature samifly reduces the

computational costs and allows a high degree obraation. Thus, by

applying FFD the grid point coordinates are changadhe grid structure is
kept.

b)

f

Figure 4-1.Free Form Deformation (Perry et al., 2000). Thsigteis embedded within a
lattice of control points. The modification of cooit points affects the shape as well as
everything else inside the control volume. — b) ebir Manipulation of Free Form
Deformations. The object point is chosen directiytloe surface and the required movements
of the control points to realize the target movetr@the object point are calculated e.g. by
the least squares method. The dotted control voisrievisible to the designer as s/he works
directly on the object points; the control volunaade chosen arbitrarily.
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As we already mentioned, the number and distributibcontrol points
have to be chosen carefully. As one can imaginenappropriate set-up of
the FFD control volume increases the necessarydfizhe parameter set
and, therefore, the dimensionality of the sear@cespOne of the reasons is
that the impact of a control point on an objectrdases when the distance
from the object increases. Even a small objectatian requires a large
modification of the control point if the initial siance between object and
control point is large which also violates the sfga@ausality condition that
is important in particular for Evolution Strategi€Sendhoff et al., 1997).
This in turn often modifies other areas of the gespace which has to be
compensated for by the movement of other contrahtpo Hence, often
correlated mutations of control points are necesfara local change of the
object geometry. To reduce the influence of thdiahipositions of the
control points, DMFFD is considered as a represiemsor evolutionary
optimization. DMFFD allows to determine variatiotisectly on the shape.
Therefore, local deformations of the object depentyy on the so called
object points.

3.2 Direct Manipulation of Free Form Deformations
(DM FFD)

Direct manipulation of free form deformations as extension to the
standard FFD has been introduced in (Hsu et a@2)19nstead of moving
control points (CP), whose influence on the shap®ot always intuitive, the
designer is encouraged to modify the shape dirdxtlgpecifying so called
object points (OP).

Although the initial setup of the control volumessnilar to FFD, the
control volume becomes invisible to the user andegssary correlated
modifications are calculated analytically. In asfistep, a lattice of control
points has to be constructed and the coordinatéiseobbject and the CFD
mesh have to be frozen. But the control volume lpararbitrary, i.e., the
number and positions of control points do not neechave any logical
relationship to the embedded object, besides the tfat the number of
control points determines the degree of freedom@fmodifications. In the
next step, the designer specifies object pointschwtefine handles of the
represented object that can be repositioned. Tlapestis modified by
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directly changing the positions of these objechimiThe control points are
determined analytically so that the shape variatiGnduced by the object
point variations) are realized by the deformatiassociated with the new
control point positions. In other words, the cohpoints are calculated in
such a way that the object points meet the givem pesitions under the
constraint of minimal movement of the control peiim a least square sense.
Of course the object variations must be realizblyl¢he deformations from
the calculated new control point positions, i.€.the number of control
points is too small, some variations given by néject point positions
might not be representable by a deformation.

In Figure 4-1 b) an object point has been specifiedhe top of the
sphere. The designer is able to move this objeictt ppwards without any
knowledge of the “underlying” control volume whidan be initialized
arbitrarily. The direct manipulation algorithm callates the corresponding
positions of the control points to mimic the tasgkbbject point movement.
The solution is shown in Figure 4-1 b).

Direct manipulation of free form deformation hasreyal advantages
when combined with evolutionary optimization as pamed to standard
FFD. First, the construction of the control voluraed the number and
distribution of control points are not as importaag in standard FFD.
Furthermore, the number of optimization parametersals to the number of
object points. For an illustration of both methddsthe context of an
evolutionary design optimization, a stator blade gét turbine is considered
as atest scenario. The set-up and the resultissmessed in Section 4.

4. FFD AND DMFFD IN EVOLUTIONARY DESIGN
OPTIMIZATION

In this section, two applications of FFD methods floe evolutionary
optimization of aerodynamic structures are desdribEhe aerodynamic
problems are well suited to demonstrate both adggst of FFD. They are
sufficiently complex and they require CFD calcudas for the evaluation.

Evolutionary algorithms belong to the group of &t@stic optimization
algorithms. They mimic the principles of Neo-Darigim evolution, see e.g.
(Fogel, 1995; Rechenberg, 1994; Schwefel, 1995 dptying operators for
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reproduction, mutation and/or recombination andect@n. Prominent
examples of EAs are Evolution Strategies (ES), Gerndgorithms (GA) or
Genetic Programming (GP). Among the advantages \aflugonary
algorithms are robustness against noisy or discootis quality functions,
the ability to escape from local optima and to émajbobal search. In the
course of optimization, a population of possiblé&usons (e.g. a vector of
continuous parameters, the objective variablespkesdapted to solve a
given problem over several generations. The adaptaccurs by variation
of solutions contained in a population and by s@acof the best solutions
for the next generation.
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Figure 4-2. The generational cycle in evolutionary desigrirojzation.

Schematically, the evolution cycle is depicted igufe 4-2, which has
already included the turbine blade as the optiriumatiarget. In this paper, a
special variant of Evolution Strategies, the Ccaace Matrix Adaptation
(CMA), is applied which has the advantage of a highvergence rate for
real-valued problems compared to other evolutioragorithms. This is
particularly important for very time consuming eaaions like CFD
simulations. The successful application of thisetyyd algorithm has been
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shown previously e.g. for a two-dimensional turbiniede optimization
(Sonoda et al., 2004; Olhofer et al., 2001). A itledadescription of the
CMA algorithm is provided in (Hansen et al., 2001).

4.1 The stator turbine blade as an aerodynamic test
scenario

The subject of optimization in this study is a fnebstator blade that is
part of a gas turbine for a small business jetillystration of the turbine is
shown in Figure 4-3. Around the hub of the turbigight blades are equally
distributed. Because of the low number of statadbs, this design is
referred to as an ultra-low-aspect-ratio stator entess common for the
design of gas turbine engines. For more detailéatrimation on the turbine
architecture and on the results of a spline-bagtichization, the interested
reader is referred to (Hasenjager et al., 2005j)e ke will use the design
problem of a three dimensional stator blade to llghhthe applicability of
the standard FFD for complex structures, and a dineensional
optimization to compare DMFFD with FFD.

strong inward-radial cross flow

isentropic Mach number contours

Figure 4-3 Gas Turbine and its fluid dynamics in one blagletisn (Hasenjager et al., 2005).

4.2 Evolutionary Optimization of a 3D Structureusing
FFD

The first step when it comes to numerical desigtindpation is to
extract the characteristic optimization paramebenn the representation of
the given geometry. In terms of applying free fodeformation, as
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mentioned above, a lattice of control points hasbdoconstructed which
encloses the target geometry. Because of the gotdtisymmetry in the
present problem, only one of the eight turbine &ladctions needs to be
extracted for further evaluations. In the presanblem, the fithess value is
calculated via CFD simulation and the region betwee blades has to be
meshed for solving the numerical equations accghdinrhis mesh, which
includes the blade’s suction and pressure side camdary layers, was
embedded by the lattice of control points to alldhe simultaneous
deformation of stator blade and computational dridally, twelve control
points have been taken from the lattice as optiticimaparameters. To
simplify the calculations and because of the bandiithe turbine blade the
global x, y and z coordinates of the design anthefknots of the CFD grid
have been transferred to a local cylinder coordisgstem X', y' and z'. The
lattice is fully three dimensional and a samplessfsection is depicted in
Figure 4-4. As explained above, the CFD mesh paysnportant role in the
blade optimization and, therefore, all grid kndtattcan be found in the CFD
mesh between two neighboring blade surfaces habe fally embedded in
the control volume. As a consequence, the defoomatare applied to the
turbine blade surfaces and simultaneously to th® @Giesh so that a re-
meshing process can be omitted.

The blade shape is depicted in Figure 4-4. Theimootis upper line is
the pressure side and the continuous lower linestiion side of two
neighboring turbine blades. The grey region makhlksarea of the knots and
volume cells of the CFD grid. The two blade consoare depicted to show
the position of the blades with respect to the mmbntolume. As already
mentioned, it should be kept in mind that not thepe of one whole blade is
embedded in the control volume but the passagedeetwwo blades where
the CFD grid is defined. In local x'-direction seveontrol points have been
placed. In local y'-direction the rotational symmyestrongly influences the
number and positioning of the control points.

Although all of these control points are importdot freezing and
deforming the geometry and the CFD mesh, only lihtgohave been
optimised. Six of these points are shown in Figit2and Figure 4-4 for the
hub section and another six points have been chasalogously for the
casing section. In total 24 parameters (x and ydinates of the 12 points)
have been considered in the evolutionary optinipatind were encoded in
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the parent’s chromosome. To maximize the influesfcénese control points

on the blade geometry they have been positionexdbas as possible to the
boundary layers of the blade so that the mutatfaie control points has a
high impact on the design. In this first test scenalue to the small

population size the number of optimization paramseles been kept as low
as possible. As a consequence, the movements @Pthentrol points result

in rather global design changes of the blade, whih also be observed
from the resulting shapes depicted in Figure 44t Present optimization
was motivated by the need to correlate these gldésign changes with the
performance differences. A higher degree of logatit the changes can
easily be realized by refining the control pointtite by increasing the

number of control points, e.g. the optimizationhntite spline representation
discussed in (Hasenjager et al., 2005) requirepbB8meters.

hub section

___sectiona-a

casing

a hub

e

casing

hub

X
Figure 4-4 Embedding the turbine blade and the CFD mesimiRFD lattice.
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Based on these control point settings the initiBDQrid and the blade
geometry have been frozen, i.e. the coordinateleofyrid knots have been
calculated in spline parameter space. Afterwards 2h parameters were
encoded in the initial parent’s chromosome andibtémization was started.
The first parameter sets were generated and extrdotcalculate the new
positions of the control points. Based on theseatgml control point
positions the free form deformation of the CFD gaitl the blade geometry
were performed and the CFD simulation started.

After the calculation has finished the result oé tfitness function is
determined by a weighted sum of two flow featured #shree geometric
properties. As the main optimization criterion th@nimization of the
pressure loss has been chosen. To keep the bladeetyg within feasible
constraints, four additional values have been etdérh from the CFD
calculation and blade geometry, respectively. Often optimum of the
fitness landscape is very close to the constraing)ce the boundary
conditions have to be checked carefully. To avaddhconstraints, which
would directly exclude illegal designs, weights @deen introduced so that
it was possible to determine a performance indexafbevaluations. High
penalty terms (8 have been assigned to these weightsomw which
outweigh the contribution of the objectivehly far. In case of a violation of
constraints, the optimization is quickly driven kato feasible design
regions. Before the optimization, the target rarfgeshe outflow angle, the
maximum solidity, the minimum blade thickness am@ trailing edge
thickness have been defined observing constragtbysother turbine parts,
by used materials and by the manufacturing prod¥b&reas the solidity t
of the turbine is a measure for the blade spac¢hegplade thickness and
trailing edge thickness aire calculated for a single blade. The calculaion
done as follows:

5
f=t +> wt? - min (1)

i=2
with:

t; pressure loss » tdifference to target outflow angle

t; difference to target solidity 4 tdifference to target minimum blade thickness
ts difference to target minimum trailing edge thickae

w; weights for the different input datg t.. t5
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The course of the fitness is depicted in Figure Mid&e that the fitness is
to be minimized. A total number of 134 generatitiase been calculated
resulting in an overall optimization time of appiroately six weeks on a
computer cluster. The runtime is closely relatedh® performance of the
CFD solver which depends on the calculation modeld computational
grid. The overall grid size of one simulation wa&b x 52 x 64 = 582400
cells and the time for the calculation of one bladek about five to six
hours on a PIlll Xeon, 2.0 Ghz node, depending om ¢bnvergence
behaviour. As flow solver the parallelized 3D Nawv8tokes flow solver
HSTAR3D (Arima et al., 1999) has been used whigheidectly adjusted to
the present problem. The solver is parallelizedféor CPUs resulting in a
total usage of 8 individuals x 4 CPUs = 32 CPUthatsame time. The node
communication was realized via the Parallel Virtidhchine (PVM)
framework in a master/client configuration (Geisal, 1995).
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Figure 4-5. Courses of fitness and global step-size duririgripation.
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In the first ten generations a (1,6)-strategy haenbused but was
extended to a (1,8)-strategy starting from genematil because of the high
variance of the fitness values. Generally, a pdjmrasize above 10 is
recommended but could not be realized due to céistns of the available
computer power. The fitness value of the initisldd is about 10.69 and is
marked by the dashed line in the fitness graphs.

It can be seen that in the beginning the fitnedsevaf the best design in
each generation increases (no elitism) and reatigemitial level again at
generation 60. After this point the best individahlvays performs better
than the initial one and stays within a range q2ZQo 10,60. The best value
of 10,27 is reached in generation 87, which cowedp to a performance
gain of 4 %.

The course of the optimization can also be analjmgabserving the
development of the global step-size. Right from ltkginning the step-size
decreases and reaches a plateau after approxinGejgnerations. At the
beginning large mutations were generated leadin@rtoincrease of the
fitness value. This posed a serious problem dukesmall population size
of only 6 offspring. Therefore, the population sim@&s increased to 8
individuals starting from generation 11. The idibtade and the shape of the
best design from generation 87 are depicted inrEigu6 to visualize the
changes which occurred

hub sectidh
casing

hub sectidn
casing

Figure 4-6 Initial and optimized shape of the turbine bléldéb and casing section).
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4.3 The Impact of Object Points: A Comparison of FFD
and DMFFD as Representationsin Evolutionary
Design Optimization

As already explained in Section 3, the standard Féfilimization
strongly depends on an appropriate set-up of ther@ovolume which relies
on the existing know-how of the designer. DMFFD oediuce this influence
by introducing object points that can be placeddlly on the shape.

In order to compare FFD with DMFFD, we have carrieat four
optimization runs of a two-dimensional turbine lda@ee Figure 4-2). The
first optimization uses the standard free form defttion representation and
the remaining three the direct manipulation techeidrhe two dimensional
scenario has been chosen because of the large ambwomputational
resources that are needed for the CFD simulatiesecially for the three
dimensional flow solver. In all four optimizationthe population size has
been set to 32 individuals and an approximationehbds been used. In a
pre-evaluation step all 32 individuals have beealated with a neural
network and only the 16 most promising ones hawn lsmulated with the
CFD solver to determine the individual fitness. Tirie” fithess values
have also been used to re-train the neural netaalike. From the 16 CFD
results the best individual has been selected aspé#irtent for the next
generation, similar to the standard notation ofl@i@nary strategies we call
this a (1,32(16)) strategy.

Table 4-1 Type and number of parameters.

Number of Number of

Run TYPE .
parameters control point
1  control points 10 10
2 object points 5 10
3 object points 13 10
4 object points 13 36

The details for each run are summarized in Table Zhe number of
parameters equals the dimension of the search .spheé@ distribution on
the design is depicted in Figure 4-7. The numbetanttrol points refers to
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the control point coordinates which can be modifiedthe FFD control
volume. This is different from the total numberamintrol point coordinates
because points at the upper, lower and left bdndee to be constant due to
CFD mesh consistency. Additionally, control poiatsthe right edge of the
control volume can be modified only in y-directiom order to fix the x-
length of the design. For run 1 to run 3 the safP Eontrol mesh is used
which is shown in Figure 4-7 in the upper left dartrun 1.

Figure 4-7.Number and distribution of optimization parametemml: 10 parameters (1.

X, Y; Ps, Ps: y); run2: 5 parameters {FP,: x, y; Bs: y); run3: 13 parameters (Ps: x, y; P y);
rund: 13 parameters {#P%: x, y; P: y). The continuous curve marks the initial desigtie
dashed curves the optimized ones. The control velismonly drawn for run 1. The control
volumes for run 2 and run 3 are the same as fof.riRun 4 has been modified in such a way
that two rows and columns of control points haverbeserted corresponding to a simple
knot insertion algorithms as explained in (Pieghlet1997).

The general workflow of the design optimization danilar to the
optimization described in Section 4.2. A controlwoe consisting of 4x4
control points has been set up in which the turlbilaele is embedded (see
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Figure 4-7). For easier visualization the CFD misshot plotted. However,
we should keep in mind that during the deformatitap the blade geometry
as well asthe CFD mesh are modified which allows the omissib the
costly re-meshing process.

The control points CPCP, can be freely moved in the x-y plane during
the optimization, while CPand CR are only allowed to move in the vertical
direction as stated above. After the encoding eb¢hparameters (x and y
coordinates of points GRo CR, and the y-coordinate of GR&nd CR) in the
chromosome of the parent individual, the controlinpgpositions are
optimized. This includes the mutation of the cohpwints, the deformation
of the CFD grid based on the free form deformatigorithm and the
execution of the CFD flow solver. As describedlie previous section, the
ES-CMA is used together with a neural network nretatel.

For run 4, the modifications at the leading anditiga edge are shown in
a higher resolution to illustrate the occurringatefations. Initial circular or
ellipsoid arcs are not kept after deformation beeathey turn out to be
inferior to other leading and trailing edge geofestr

In runs 2, 3 and 4 the direct manipulation of ffeem deformations is
applied to modify the control points directly, i.e.

1. The chromosomes contain object point positionsiiBtead of control
point positions (Cfp as parameter sets.

2. The control points are calculated based on the datt@bject points
with the method for direct manipulation. Here tlieot points given in
Figure 4-7 are used in the three runs. AccordingSéation 3, the
procedure of how to calculate the control pointifimss which are
required for deforming the design and the gridkistched as follows.
After the object point positions have been mutatedach generation,
the positions of the control points are updatec fiéw positions of the
control points are calculated in such a way thatrttodifications of the
object points are realized as best as possiblenitee present scenario
in a least squares sense as described in (Hsu, €t98R2). After an
update of the control volume, the design and thB Gid is deformed
and prepared for performance evaluation.
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The fitness progressions of all four optimizatioms are summarized in
Figure 4-8.

2,51

Run 1

c- Run2
Run 3
Run 4

Fitness

0 10 20 30 40 50 60 70 80 90 100
Generation

Figure 4-8 The progress of the fitness of the runs 1 — 4.

One major drawback of the direct manipulation mdthe that the
calculation of the control points has to be cared based on the desired
object point positions without being able to inamate constraints imposed
by the CFD grid. In particular, negative volumes emnerge which can be
described as loops in the design space.

This can usually be avoided by keeping the ordeoofrol points during
the deformation step. However, when using direchimdation a desired
object point position can sometimes only be redlibg a large degree of
control point modifications including destroyingetlorder of control points.
Methods for repairing and improving the structufecontrol points are
therefore topic of our current research, cf. (Bihg®06). To guarantee valid
CFD meshes, in the present optimization the ordecomtrol points is
checked after every mutation step. If the orderttwf control points is
changed the mutation is repeated until a validviddial is generated. Figure
4-8 summarizes the results of the optimizationsseBaun 1 that uses the
standard FFD representation resulted in a convefigggebs of 0.62 which
means a 37% gain compared to the fitness of tlialihirbine blade of 0.98.
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According to Figure 4-7, three object points hagerbchosen for run 2.
It resulted in a fitness of 0.7 but it needed l#sn half the number of
generations and the optimization run is very stableis is due to the
reduced number of parameters which is only 5 (2aihpoints movable in x-
and y-, one object point movable in y-directionpwéver, it also shows that
the flexibility of the design is limited by the dee of object points. This
demonstrates that an optimization using direct maation is limited by
two factors. On the one hand, a low number of dbpmints restricts the
flexibility of the design because these are theapsters which are
optimized. On the other hand, the number of comtadhts limits the degree
of realizable shape variations because the coptinitsactually induce the
targeted object point modifications through theired deformations. If the
number of control points is too low, the targetdgeot point movements
cannot be achieved.

In run 3, the number of object points (OP) hasnbieereased to 7, i.e.
13 optimization parameters (6 OP movable in x- ynadne OP movable in
y-direction) to improve the flexibility of the degi. The fithess decreased to
0.5. This is an improvement compared to the opttion run 1. This
improvement is particularly interesting becauseapgmization is based on
the same control point grid as in run 1. Even & ttumber of parameters for
the optimization is larger than in run 3, the pagters for the deformations
are identical because they are limited by the cbmtoint grid. Therefore,
the actual design freedom is the same in both r@mxe the number and
distribution of control points did not change betweboth runs the
optimization of run 1 must have converged to allopéimum. The structure
of the search space seems to be changed by tlot mia@ipulation in a way
that the local maximum is avoided in this optimiaatrun. Of course we
must be careful to draw conclusions from just orgingization run.
Nevertheless, we can state that the different septation of the same
degree of variability will lead in general to afdient search space behavior.

As a consequence, for this optimization it can &éensthat the usage of
object points has been more successful. The fithesseased faster and also
at an earlier generation which is particularly impat when dealing with
time consuming evaluation functions like CFD sintiolas.

To analyze whether the performance could be evere imezreased by
allowing more flexibility in the possible deformatis, two rows and
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columns of control points have been inserted ifte tontrol volume,
resulting in 36 control points in run 4 while thenmber of object points was
kept at 7. The fitness improvement due to the cbmiint insertion is only
slightly to 0.45. This is also a promising obseiMatbecause the number of
optimization parameters is still 13 and the couwdhe fitness is quite
similar to the one of run 3. Hence, the increasteafbility by control point
insertion did not affect the convergence behavior.

In summary, we have shown that the usage of theetdmanipulation of
free form deformation method has been advantageoosny ways in this
optimization. If only 3 object points are choseikelin run 2, the
convergence speed improved drastically and resudidtl in a good
performance compared to the optimization of thetrobrpoints in run 1.
This can be explained by the lower number of patarsein the
optimization. If the number of object points isti@ased, like in run 3, and at
the same time keeping the control points fixed, fitress can be further
improved although the possible transformationskap constant in all three
experiments. Here obviously the re-structuring ted search space by the
introduction of the direct manipulation methodbéneficial.

Even an increase of control points in the contallme, as it has been
done in run 4, did not slow down the optimizati®his is a very promising
result since the influence of the number of conpwihts did not affect the
convergence speed but the number of object poidtsAd a consequence
one could argue for choosing a high number of cbnpoints in the
optimization to achieve a high flexibility of theahsformation and less
constraints for the modification due to restricdon the transformation. This
definitely decreases the effect of the control ppiosition and reduces the
necessary prior knowledge about the optimizatiabl@m while setting up
the control volume.

5. SUMMARY AND CONCLUSIONS

In this chapter, the features and advantages of ajfygication of
deformation techniques as a representation in &golary design
optimization have been presented. Even complexgdsdike automobile
parts can be encoded by free form deformation igdes. The limiting
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factor is not the complexity of the baseline dedighthe allowed variations.
The fewer the control points, the more global théuced changes. If the
control points are positioned based on expert kadgé, even meaningful
large scale changes could be represented. At the 8me, if a large number
of control points is available, local variationsncalso be realized just as
with standard spline representations. For the éjtune could envision
hierarchical FFD representations which can incatm(and rely on) expert
knowledge to a different degree.

The second decisive advantage of FFD represersatanevolutionary
design optimization is that the computational miestthe CFD calculations
is deformed together with the design shape. Thexefp costly re-meshing
procedure can be avoided. Indeed for some very lBxTgeometries, re-
meshing during optimization is not possible anduim optimization is only
possible with FFD representations. Of course itib necessary to check
that the mesh remains to be feasible after a certaiber of deformation
e.g. every tenth generation.

Besides applying FFD representations to the ewnlaty design
optimization of a three-dimensional stator bladeaajas turbine engine, to
demonstrate the feasibility in a reasonably compést scenario, we also
introduced direct manipulation FFD as an extenslanDMFFD, design
changes are only indirectly encoded in the chromasoThe evolutionary
optimization acts directly on object points, howevthis only leads to
“desired” design variations. These “desired” changee then realized as
close as possible by the underlying FFD algorithased on a certain
number of control points using e.g. a least squag®rithm. Three
scenarios are possible. (1) The desired degresefiédm is larger than the
realizable degree of freedom — thus evolutionadu@ed changes might not
be realized; (2) the desired degree of freedomhiyugguals the realizable
degree of freedom — thus most changes can beedabiae to one; (3) the
desired degree of freedom is smaller than thezaalik degree of freedom —
thus desired changes can be represented in differays and therefore,
different path’ through the search space are edaila\ll three relations are
interesting in their own right and deserve a maited analysis.

A more practical problem of DMFFD is that consttairfor mesh
deformation are more difficult to incorporate inethsearch process.
Additional methods for securing mesh consistencgtrbe researched.
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Although we have not performed a sufficient numtsieruns (all design
optimization runs with CFD calculations even if er@bodels or surrogate
models are employed are computationally expenstee)give a clear
preference to the DMFFD, it seems that DMFFD willeg us more
flexibility in the optimization and it will also klw to make design changes
more clearly visible to the engineer during theroj#ation.
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