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Chapter 4 

REPRESENTING THE CHANGE -  
FREE FORM DEFORMATION FOR 
EVOLUTIONARY DESIGN OPTIMIZATION 

Stefan Menzel1 and Bernhard Sendhoff1 

1Honda Research Institute Europe GmbH, Carl-Legien-Str. 30,  
D-63073 Offenbach/Main, Germany 

Abstract  The representation of a design influences the success of any kind of 
optimization significantly. The perfect trade-off between the number of 
parameters which define the search space and the achievable design flexibility 
is very crucial since it influences the convergence speed of the chosen 
optimization algorithm as well as the possibility to find the design which 
provides the best performance. Classical methods mostly define the design 
directly, e.g. via spline surfaces or by representations which are specialized to 
one design task. In the present chapter, the so-called deformation methods are 
focused which follow a different approach. Instead of describing the shape 
directly, deformation terms are used to morph an initial design into new ones. 
This decouples a complex design from an expensive shape description while 
relying purely on mapping terms which are responsible for the geometry 
transformations. Thus, the designer is encouraged to determine the optimal 
relation between parameter set and design flexibility according to the given 
task. With respect to optimization, these mapping terms are considered as 
parameters. In this chapter, the combination of two state of the art deformation 
algorithms with evolutionary optimization is focused. After an introduction of 
these techniques, a framework for an autonomous design optimization is 
sketched in more detail. By means of two optimizations, which feature a stator 
blade of a jet turbine the workability is shown and the advantages of such 
representations are highlighted.  

Keywords design optimization, direct manipulation, evolutionary algorithms, 
evolutionary optimization, free form deformation, representation, turbine blade 
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1. INTRODUCTION 

Evolutionary algorithms have been successfully applied to a variety of 
design optimization problems (Sonoda et al., 2004; Oyama et al., 2000; Foli 
et al., 2006; Ong et al., 2006; Kanazaki et al., 2002). In most cases, the 
design is represented either by a specialized representation based on standard 
engineering practice, e.g. circles and connecting curves for two-dimensional 
blades or an aircraft wing design (Oyama et al., 2000), or by splines, 
NURBS (Hasenjäger et al., 2005; Lépine et al., 2001) and D-NURBS 
(Terzopoulos et al., 1994). Other representations like solid modelling 
(Requicha, 1980) or solutions to partial differential equations (Ugail et al., 
2003) have been used less frequently, especially for practical applications. 

While standard engineering representations are often very compact, they 
are almost always incomplete in the sense that not all possible shapes can be 
represented. Although NURBS are only complete if the representation is 
adaptive (Olhofer et al., 2001), their versatility is usually much higher. At 
the same time, the representation of complex shapes with many edges (like 
e.g. a whole turbine) requires a NURBS surface with a very large number of 
control points. However, the number of control points defines the dimension 
of the search space. If the dimension is much larger than 200 and no 
subspaces can be easily identified to allow a sequential search, the shape 
design optimization process is prohibitively time consuming and the 
convergence may not be achieved.  

Free form deformation (FFD) techniques, which we will introduce in the 
next section, are fundamentally different from other representations in that 
they do not represent the actual shape but changes to a baseline shape. The 
baseline shape can be arbitrarily complex. Of course the changes that can be 
represented might be limited by the complexity of the representation. In this 
chapter, we will introduce free-form deformation and direct manipulation of 
free-from deformation in the context of evolutionary shape design. We will 
apply both methods to the design of a stator blade for a real gas turbine 
engine. Although the strength of FFD is particularly evident for very 
complex shapes, turbine blades are a reasonable compromise, because their 
complexity is high enough to require a NURBS representation with just 
below 100 control points (Hasenjäger et al., 2005) while it is sufficiently 
simple to analyze the evolutionary process. 
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2. AERODYNAMIC OPTIMIZATION USING 
DEFORMATION TECHNIQUES 

In order to realize a fully automated aerodynamic design optimization, 
the so-called deformation techniques are becoming more widely used as an 
efficient object representation recently. Introduced in the late 1980’s in the 
field of computer graphics (Sederberg et al., 1986; Coquillart, 1990), these 
methods hold several advantages for representing geometries, especially if 
these geometries possess a high degree of complexity. Usually the number of 
parameters to represent such complex geometries, e.g. only by splines or 
spline surfaces, is too large to be feasible. When applying free form 
deformation (FFD), the current state-of-the-art deformation algorithm, the 
object is embedded within a lattice of control points, which defines the 
degrees of freedom for the deformation. The parameter set and consequently 
the difficulty of the optimization problem can be tuned by the number and 
choice of control points or control point groups. When defining the 
parameter set of a FFD system we have to find the optimal trade-off between 
search space dimension and design flexibility, i.e. freedom of variation. 
However, compared to spline based representations, in the FFD framework 
the complexity of design variations and not of the initial design is the 
limiting factor.    

In case of problems that need finite element or finite volume methods for 
design evaluations like in computational fluid dynamics, FFD has another 
advantage (Perry et al., 2000; Menzel et al., 2005). The fidelity of 
computational fluid dynamics (CFD) simulations depends to a large degree 
on the quality of the mesh or grid that is used for the simulation. For 
complex shapes and structures, mesh generation is a very time consuming 
process (several days), which more often than not requires manual fine-
tuning or resolution of meshing problems. In particular, in the context of 
population based search methods like evolutionary algorithms, manual mesh 
generation is not feasible. In the FFD framework, the mesh is deformed just 
like the design is deformed. Therefore, the mathematical deformation 
procedure is applied to the design and to the mesh simultaneously. This has 
the great advantage that mesh generation just has to be done once at the 
beginning of the optimization for the baseline design. During optimization 
the mesh is always adapted to the changing design. Of course, the quality of 
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the deformed mesh has to be controlled during the evolutionary search 
process. However, for complex shape design, the whole optimization process 
takes days and weeks and the sporadic analysis of the current mesh quality in 
parallel to the search process is feasible.  

In Section 3, two kinds of deformation methods are briefly introduced: 
the standard free form deformation (FFD) and the direct manipulation of free 
form deformations (DMFFD) as one of its extensions. The latter method 
makes use of object points as direct handles on the geometry to take into 
account the sensitivity of the FFD method to the initial placement of the 
control points. In Section 4, both methods are used as representations for an 
evolutionary design optimization of an aerodynamic shape case study. On 
the one hand FFD is applied to optimise a three-dimensional blade geometry 
to show the basic behavior of FFD in optimizations while dealing with 
complex structures. On the other hand both techniques, FFD and DMFFD, 
are used as representations in a two dimensional blade optimization to 
illustrate the differences and advantages of DMFFD over FFD. 

3. REPRESENTING DESIGNS WITH 
DEFORMATION METHODS 

In this section, the methods of free form deformation (FFD) and direct 
manipulation of free form deformations (DMFFD) are briefly introduced. 

3.1 Free Form Deformation (FFD) 

The basic idea behind free form deformation is depicted in Figure 4-1 a). 
The sphere represents the object which is the target of the optimization. It is 
embedded in a lattice of control points (CP). Firstly, the coordinates of the 
object have to be mapped to the coordinates in the spline parameter space. If 
the object is a surface point cloud of the design or a mesh which originates 
from an aerodynamic computer simulation (as in our example in Section 4), 
each grid point has to be converted into spline parameter space to allow the 
deformations. After this process of ‘freezing’, the object can be modified by 
moving a control point to a new position. The new control point positions 
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are the inputs for the spline equations and the updated geometry is 
calculated. Since everything within the control volume is deformed, a grid 
from computational fluid dynamics that is attached to the shape is also 
adapted. Hence, the deformation affects not only the shape of the design but 
also the grid points of the computational mesh, which is needed for the CFD 
evaluations of the proposed designs. The new shape and the corresponding 
CFD mesh are generated at the same time without the need for an automated 
or manual re-meshing procedure. This feature significantly reduces the 
computational costs and allows a high degree of automation. Thus, by 
applying FFD the grid point coordinates are changed but the grid structure is 
kept. 

 

     

 
Figure 4-1. Free Form Deformation (Perry et al., 2000). The design is embedded within a 
lattice of control points. The modification of control points affects the shape as well as 
everything else inside the control volume. – b) Direct Manipulation of Free Form 
Deformations. The object point is chosen directly on the surface and the required movements 
of the control points to realize the target movement of the object point are calculated e.g. by 
the least squares method. The dotted control volume is invisible to the designer as s/he works 
directly on the object points; the control volume can be chosen arbitrarily.  

a) 

b) 
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As we already mentioned, the number and distribution of control points 
have to be chosen carefully. As one can imagine, an inappropriate set-up of 
the FFD control volume increases the necessary size of the parameter set 
and, therefore, the dimensionality of the search space. One of the reasons is 
that the impact of a control point on an object decreases when the distance 
from the object increases. Even a small object variation requires a large 
modification of the control point if the initial distance between object and 
control point is large which also violates the strong causality condition that 
is important in particular for Evolution Strategies (Sendhoff et al., 1997). 
This in turn often modifies other areas of the design space which has to be 
compensated for by the movement of other control points. Hence, often 
correlated mutations of control points are necessary for a local change of the 
object geometry. To reduce the influence of the initial positions of the 
control points, DMFFD is considered as a representation for evolutionary 
optimization. DMFFD allows to determine variations directly on the shape. 
Therefore, local deformations of the object depend only on the so called 
object points. 

3.2 Direct Manipulation of Free Form Deformations 
(DMFFD) 

Direct manipulation of free form deformations as an extension to the 
standard FFD has been introduced in (Hsu et al., 1992). Instead of moving 
control points (CP), whose influence on the shape is not always intuitive, the 
designer is encouraged to modify the shape directly by specifying so called 
object points (OP). 

Although the initial setup of the control volume is similar to FFD, the 
control volume becomes invisible to the user and necessary correlated 
modifications are calculated analytically. In a first step, a lattice of control 
points has to be constructed and the coordinates of the object and the CFD 
mesh have to be frozen. But the control volume can be arbitrary, i.e., the 
number and positions of control points do not need to have any logical 
relationship to the embedded object, besides the fact that the number of 
control points determines the degree of freedom of the modifications. In the 
next step, the designer specifies object points, which define handles of the 
represented object that can be repositioned. The shape is modified by 
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directly changing the positions of these object points. The control points are 
determined analytically so that the shape variations (induced by the object 
point variations) are realized by the deformations associated with the new 
control point positions. In other words, the control points are calculated in 
such a way that the object points meet the given new positions under the 
constraint of minimal movement of the control points in a least square sense. 
Of course the object variations must be realizable by the deformations from 
the calculated new control point positions, i.e., if the number of control 
points is too small, some variations given by new object point positions 
might not be representable by a deformation.   

In Figure 4-1 b) an object point has been specified at the top of the 
sphere. The designer is able to move this object point upwards without any 
knowledge of the “underlying” control volume which can be initialized 
arbitrarily. The direct manipulation algorithm calculates the corresponding 
positions of the control points to mimic the targeted object point movement. 
The solution is shown in Figure 4-1 b).  

Direct manipulation of free form deformation has several advantages 
when combined with evolutionary optimization as compared to standard 
FFD. First, the construction of the control volume and the number and 
distribution of control points are not as important as in standard FFD. 
Furthermore, the number of optimization parameters equals to the number of 
object points. For an illustration of both methods in the context of an 
evolutionary design optimization, a stator blade of a jet turbine is considered 
as a test scenario. The set-up and the results are discussed in Section 4. 

4. FFD AND DMFFD IN EVOLUTIONARY DESIGN 
OPTIMIZATION 

In this section, two applications of FFD methods for the evolutionary 
optimization of aerodynamic structures are described. The aerodynamic 
problems are well suited to demonstrate both advantages of FFD. They are 
sufficiently complex and they require CFD calculations for the evaluation.  

Evolutionary algorithms belong to the group of stochastic optimization 
algorithms. They mimic the principles of Neo-Darwinian evolution, see e.g. 
(Fogel, 1995; Rechenberg, 1994; Schwefel, 1995) by applying operators for 
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reproduction, mutation and/or recombination and selection. Prominent 
examples of EAs are Evolution Strategies (ES), Genetic Algorithms (GA) or 
Genetic Programming (GP). Among the advantages of evolutionary 
algorithms are robustness against noisy or discontinuous quality functions, 
the ability to escape from local optima and to enable global search. In the 
course of optimization, a population of possible solutions (e.g. a vector of 
continuous parameters, the objective variables) keeps adapted to solve a 
given problem over several generations. The adaptation occurs by variation 
of solutions contained in a population and by selection of the best solutions 
for the next generation.  

 

 
Figure 4-2.  The generational cycle in evolutionary design optimization. 

Schematically, the evolution cycle is depicted in Figure 4-2, which has 
already included the turbine blade as the optimization target. In this paper, a 
special variant of Evolution Strategies, the Covariance Matrix Adaptation 
(CMA), is applied which has the advantage of a high convergence rate for 
real-valued problems compared to other evolutionary algorithms. This is 
particularly important for very time consuming evaluations like CFD 
simulations. The successful application of this type of algorithm has been 
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shown previously e.g. for a two-dimensional turbine blade optimization 
(Sonoda et al., 2004; Olhofer et al., 2001). A detailed description of the 
CMA algorithm is provided in (Hansen et al., 2001). 

4.1 The stator turbine blade as an aerodynamic test 
scenario 

The subject of optimization in this study is a turbine stator blade that is 
part of a gas turbine for a small business jet. An illustration of the turbine is 
shown in Figure 4-3. Around the hub of the turbine, eight blades are equally 
distributed. Because of the low number of stator blades, this design is 
referred to as an ultra-low-aspect-ratio stator and is less common for the 
design of gas turbine engines. For more detailed information on the turbine 
architecture and on the results of a spline-based optimization, the interested 
reader is referred to (Hasenjäger et al., 2005). Here we will use the design 
problem of a three dimensional stator blade to highlight the applicability of 
the standard FFD for complex structures, and a two-dimensional 
optimization to compare DMFFD with FFD. 

 

      

Figure 4-3. Gas Turbine and its fluid dynamics in one blade section (Hasenjäger et al., 2005). 

4.2 Evolutionary Optimization of a 3D Structure using 
FFD 

The first step when it comes to numerical design optimization is to 
extract the characteristic optimization parameters from the representation of 
the given geometry. In terms of applying free form deformation, as 
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mentioned above, a lattice of control points has to be constructed which 
encloses the target geometry. Because of the rotational symmetry in the 
present problem, only one of the eight turbine blade sections needs to be 
extracted for further evaluations. In the present problem, the fitness value is 
calculated via CFD simulation and the region between two blades has to be 
meshed for solving the numerical equations accordingly. This mesh, which 
includes the blade’s suction and pressure side as boundary layers, was 
embedded by the lattice of control points to allow the simultaneous 
deformation of stator blade and computational grid. Finally, twelve control 
points have been taken from the lattice as optimization parameters. To 
simplify the calculations and because of the bending of the turbine blade the 
global x, y and z coordinates of the design and of the knots of the CFD grid 
have been transferred to a local cylinder coordinate system x’, y’ and z’. The 
lattice is fully three dimensional and a sample cross-section is depicted in 
Figure 4-4. As explained above, the CFD mesh plays an important role in the 
blade optimization and, therefore, all grid knots that can be found in the CFD 
mesh between two neighboring blade surfaces have to be fully embedded in 
the control volume. As a consequence, the deformations are applied to the 
turbine blade surfaces and simultaneously to the CFD mesh so that a re-
meshing process can be omitted. 

The blade shape is depicted in Figure 4-4. The continuous upper line is 
the pressure side and the continuous lower line the suction side of two 
neighboring turbine blades. The grey region marks the area of the knots and 
volume cells of the CFD grid. The two blade contours are depicted to show 
the position of the blades with respect to the control volume. As already 
mentioned, it should be kept in mind that not the shape of one whole blade is 
embedded in the control volume but the passage between two blades where 
the CFD grid is defined. In local x’-direction seven control points have been 
placed. In local y’-direction the rotational symmetry strongly influences the 
number and positioning of the control points. 

Although all of these control points are important for freezing and 
deforming the geometry and the CFD mesh, only 12 points have been 
optimised. Six of these points are shown in Figure 4-2 and Figure 4-4 for the 
hub section and another six points have been chosen analogously for the 
casing section. In total 24 parameters (x and y coordinates of the 12 points) 
have been considered in the evolutionary optimization and were encoded in 
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the parent’s chromosome. To maximize the influence of these control points 
on the blade geometry they have been positioned as close as possible to the 
boundary layers of the blade so that the mutation of the control points has a 
high impact on the design. In this first test scenario due to the small 
population size the number of optimization parameters has been kept as low 
as possible. As a consequence, the movements of the 12 control points result 
in rather global design changes of the blade, which can also be observed 
from the resulting shapes depicted in Figure 4-6. The present optimization 
was motivated by the need to correlate these global design changes with the 
performance differences. A higher degree of locality of the changes can 
easily be realized by refining the control point lattice by increasing the 
number of control points, e.g. the optimization with the spline representation 
discussed in (Hasenjäger et al., 2005) required 88 parameters. 

 

                        

Figure 4-4.  Embedding the turbine blade and the CFD mesh in an FFD lattice. 
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Based on these control point settings the initial CFD grid and the blade 
geometry have been frozen, i.e. the coordinates of the grid knots have been 
calculated in spline parameter space. Afterwards the 24 parameters were 
encoded in the initial parent’s chromosome and the optimization was started. 
The first parameter sets were generated and extracted to calculate the new 
positions of the control points. Based on these updated control point 
positions the free form deformation of the CFD grid and the blade geometry 
were performed and the CFD simulation started. 

After the calculation has finished the result of the fitness function is 
determined by a weighted sum of two flow features and three geometric 
properties. As the main optimization criterion the minimization of the 
pressure loss has been chosen. To keep the blade geometry within feasible 
constraints, four additional values have been extracted from the CFD 
calculation and blade geometry, respectively. Often an optimum of the 
fitness landscape is very close to the constraints, hence the boundary 
conditions have to be checked carefully. To avoid hard constraints, which 
would directly exclude illegal designs, weights have been introduced so that 
it was possible to determine a performance index for all evaluations. High 
penalty terms (1e20) have been assigned to these weights w2 to w5 which 
outweigh the contribution of the objective t1 by far. In case of a violation of 
constraints, the optimization is quickly driven back to feasible design 
regions. Before the optimization, the target ranges for the outflow angle, the 
maximum solidity, the minimum blade thickness and the trailing edge 
thickness have been defined observing constraints set by other turbine parts, 
by used materials and by the manufacturing process. Whereas the solidity t3 
of the turbine is a measure for the blade spacing, the blade thickness t4 and 
trailing edge thickness t5 are calculated for a single blade. The calculation is 
done as follows: 

∑
=

→+=
5

2

2
1 min

i
ii twtf   (1)

with: 

 t1 pressure loss      t2 difference to target outflow angle 
 t3 difference to target solidity t4 difference to target minimum blade thickness 
 t5 difference to target minimum trailing edge thickness 
 wi weights for the different input data t2, … t5 
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The course of the fitness is depicted in Figure 4-5. Note that the fitness is 
to be minimized. A total number of 134 generations have been calculated 
resulting in an overall optimization time of approximately six weeks on a 
computer cluster. The runtime is closely related to the performance of the 
CFD solver which depends on the calculation models and computational 
grid. The overall grid size of one simulation was 175 x 52 x 64 = 582400 
cells and the time for the calculation of one blade took about five to six 
hours on a PIII Xeon, 2.0 Ghz node, depending on the convergence 
behaviour. As flow solver the parallelized 3D Navier-Stokes flow solver 
HSTAR3D (Arima et al., 1999) has been used which is perfectly adjusted to 
the present problem. The solver is parallelized for four CPUs resulting in a 
total usage of 8 individuals x 4 CPUs = 32 CPUs at the same time. The node 
communication was realized via the Parallel Virtual Machine (PVM) 
framework in a master/client configuration (Geist at al., 1995). 
 

      

 

Figure 4-5.  Courses of fitness and global step-size during optimization. 
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In the first ten generations a (1,6)-strategy has been used but was 
extended to a (1,8)-strategy starting from generation 11 because of the high 
variance of the fitness values. Generally, a population size above 10 is 
recommended but could not be realized due to restrictions of the available 
computer power. The fitness value of the initial blade is about 10.69 and is 
marked by the dashed line in the fitness graphs.    

It can be seen that in the beginning the fitness value of the best design in 
each generation increases (no elitism) and reaches the initial level again at 
generation 60. After this point the best individual always performs better 
than the initial one and stays within a range of 10,27 to 10,60. The best value 
of 10,27 is reached in generation 87, which corresponds to a performance 
gain of 4 %. 

The course of the optimization can also be analyzed by observing the 
development of the global step-size. Right from the beginning the step-size 
decreases and reaches a plateau after approximately 60 generations. At the 
beginning large mutations were generated leading to an increase of the 
fitness value. This posed a serious problem due to the small population size 
of only 6 offspring. Therefore, the population size was increased to 8 
individuals starting from generation 11. The initial blade and the shape of the 
best design from generation 87 are depicted in Figure 4-6 to visualize the 
changes which occurred.   
 

                    
Figure 4-6.  Initial and optimized shape of the turbine blade (hub and casing section). 
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4.3 The Impact of Object Points: A Comparison of FFD 
and DMFFD as Representations in Evolutionary 
Design Optimization 

As already explained in Section 3, the standard FFD optimization 
strongly depends on an appropriate set-up of the control volume which relies 
on the existing know-how of the designer. DMFFD can reduce this influence 
by introducing object points that can be placed directly on the shape.  

In order to compare FFD with DMFFD, we have carried out four 
optimization runs of a two-dimensional turbine blade (see Figure 4-2). The 
first optimization uses the standard free form deformation representation and 
the remaining three the direct manipulation technique. The two dimensional 
scenario has been chosen because of the large amount of computational 
resources that are needed for the CFD simulations, especially for the three 
dimensional flow solver. In all four optimizations, the population size has 
been set to 32 individuals and an approximation model has been used. In a 
pre-evaluation step all 32 individuals have been evaluated with a neural 
network and only the 16 most promising ones have been simulated with the 
CFD solver to determine the individual fitness. The “true” fitness values 
have also been used to re-train the neural network online. From the 16 CFD 
results the best individual has been selected as the parent for the next 
generation, similar to the standard notation of evolutionary strategies we call 
this a (1,32(16)) strategy. 

Table 4-1. Type and number of parameters. 

 
 
 
 
 
 

 

The details for each run are summarized in Table 4-1. The number of 
parameters equals the dimension of the search space. Their distribution on 
the design is depicted in Figure 4-7. The number of control points refers to 

 

Run TYPE 
Number of  
parameters 

Number of  
control points

1 control points 10 10 
2 object points 5 10 
3 object points 13 10 
4 object points 13 36 
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the control point coordinates which can be modified in the FFD control 
volume. This is different from the total number of control point coordinates 
because points at the upper, lower and left border have to be constant due to 
CFD mesh consistency. Additionally, control points on the right edge of the 
control volume can be modified only in y-direction in order to fix the x-
length of the design. For run 1 to run 3 the same FFD control mesh is used 
which is shown in Figure 4-7 in the upper left part for run 1. 

 

       
 
 
 
 

                  
Figure 4-7. Number and distribution of optimization parameters. run1: 10 parameters (P1-P4: 
x, y; P5, P6: y); run2: 5 parameters (P1, P2: x, y; P3: y); run3: 13 parameters (P1-P6: x, y; P7: y); 
run4: 13 parameters (P1-P6: x, y; P7: y). The continuous curve marks the initial designs, the 
dashed curves the optimized ones. The control volume is only drawn for run 1. The control 
volumes for run 2 and run 3 are the same as for run 1. Run 4 has been modified in such a way 
that two rows and columns of control points have been inserted corresponding to a simple 
knot insertion algorithms as explained in (Piegl et al., 1997). 

The general workflow of the design optimization is similar to the 
optimization described in Section 4.2. A control volume consisting of 4x4 
control points has been set up in which the turbine blade is embedded (see 
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Figure 4-7). For easier visualization the CFD mesh is not plotted. However, 
we should keep in mind that during the deformation step the blade geometry 
as well as the CFD mesh are modified which allows the omission of the 
costly re-meshing process. 

The control points CP1-CP4 can be freely moved in the x-y plane during 
the optimization, while CP5 and CP6 are only allowed to move in the vertical 
direction as stated above. After the encoding of these parameters (x and y 
coordinates of points CP1 to CP4 and the y-coordinate of CP5 and CP6) in the 
chromosome of the parent individual, the control point positions are 
optimized. This includes the mutation of the control points, the deformation 
of the CFD grid based on the free form deformation algorithm and the 
execution of the CFD flow solver. As described in the previous section, the 
ES-CMA is used together with a neural network meta-model. 

For run 4, the modifications at the leading and trailing edge are shown in 
a higher resolution to illustrate the occurring deformations. Initial circular or 
ellipsoid arcs are not kept after deformation because they turn out to be 
inferior to other leading and trailing edge geometries.  

In runs 2, 3 and 4 the direct manipulation of free form deformations is 
applied to modify the control points directly, i.e.: 
 

1. The chromosomes contain object point positions (Pi) instead of control 
point positions (CPi) as parameter sets. 

 
2. The control points are calculated based on the encoded object points 

with the method for direct manipulation. Here the object points given in 
Figure 4-7 are used in the three runs. According to Section 3, the 
procedure of how to calculate the control point positions which are 
required for deforming the design and the grid is sketched as follows. 
After the object point positions have been mutated in each generation, 
the positions of the control points are updated. The new positions of the 
control points are calculated in such a way that the modifications of the 
object points are realized as best as possible, i.e. in the present scenario 
in a least squares sense as described in (Hsu et al., 1992). After an 
update of the control volume, the design and the CFD grid is deformed 
and prepared for performance evaluation. 
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The fitness progressions of all four optimization runs are summarized in 
Figure 4-8. 
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Figure 4-8.  The progress of the fitness of the runs 1 – 4. 

One major drawback of the direct manipulation method is that the 
calculation of the control points has to be carried out based on the desired 
object point positions without being able to incorporate constraints imposed 
by the CFD grid. In particular, negative volumes can emerge which can be 
described as loops in the design space. 

This can usually be avoided by keeping the order of control points during 
the deformation step. However, when using direct manipulation a desired 
object point position can sometimes only be realized by a large degree of 
control point modifications including destroying the order of control points. 
Methods for repairing and improving the structure of control points are 
therefore topic of our current research, cf. (Bihrer, 2006). To guarantee valid 
CFD meshes, in the present optimization the order of control points is 
checked after every mutation step. If the order of the control points is 
changed the mutation is repeated until a valid individual is generated. Figure 
4-8 summarizes the results of the optimizations. Base run 1 that uses the 
standard FFD representation resulted in a converged fitness of 0.62 which 
means a 37% gain compared to the fitness of the initial turbine blade of 0.98. 
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According to Figure 4-7, three object points have been chosen for run 2. 
It resulted in a fitness of 0.7 but it needed less than half the number of 
generations and the optimization run is very stable. This is due to the 
reduced number of parameters which is only 5 (2 object points movable in x- 
and y-, one object point movable in y-direction). However, it also shows that 
the flexibility of the design is limited by the choice of object points. This 
demonstrates that an optimization using direct manipulation is limited by 
two factors. On the one hand, a low number of object points restricts the 
flexibility of the design because these are the parameters which are 
optimized. On the other hand, the number of control points limits the degree 
of realizable shape variations because the control points actually induce the 
targeted object point modifications through the defined deformations. If the 
number of control points is too low, the targeted object point movements 
cannot be achieved. 

 In run 3, the number of object points (OP) has been increased to 7, i.e. 
13 optimization parameters (6 OP movable in x- and y-, one OP movable in 
y-direction) to improve the flexibility of the design. The fitness decreased to 
0.5. This is an improvement compared to the optimization run 1. This 
improvement is particularly interesting because the optimization is based on 
the same control point grid as in run 1. Even if the number of parameters for 
the optimization is larger than in run 3, the parameters for the deformations 
are identical because they are limited by the control point grid. Therefore, 
the actual design freedom is the same in both runs. Since the number and 
distribution of control points did not change between both runs the 
optimization of run 1 must have converged to a local optimum. The structure 
of the search space seems to be changed by the direct manipulation in a way 
that the local maximum is avoided in this optimization run. Of course we 
must be careful to draw conclusions from just one optimization run. 
Nevertheless, we can state that the different representation of the same 
degree of variability will lead in general to a different search space behavior. 

As a consequence, for this optimization it can be seen that the usage of 
object points has been more successful. The fitness decreased faster and also 
at an earlier generation which is particularly important when dealing with 
time consuming evaluation functions like CFD simulations.  

To analyze whether the performance could be even more increased by 
allowing more flexibility in the possible deformations, two rows and 
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columns of control points have been inserted into the control volume, 
resulting in 36 control points in run 4 while the number of object points was 
kept at 7. The fitness improvement due to the control point insertion is only 
slightly to 0.45. This is also a promising observation because the number of 
optimization parameters is still 13 and the course of the fitness is quite 
similar to the one of run 3. Hence, the increase of flexibility by control point 
insertion did not affect the convergence behavior. 

In summary, we have shown that the usage of the direct manipulation of 
free form deformation method has been advantageous in many ways in this 
optimization. If only 3 object points are chosen, like in run 2, the 
convergence speed improved drastically and resulted still in a good 
performance compared to the optimization of the control points in run 1. 
This can be explained by the lower number of parameters in the 
optimization. If the number of object points is increased, like in run 3, and at 
the same time keeping the control points fixed, the fitness can be further 
improved although the possible transformations are kept constant in all three 
experiments. Here obviously the re-structuring of the search space by the 
introduction of the direct manipulation methods is beneficial. 

Even an increase of control points in the control volume, as it has been 
done in run 4, did not slow down the optimization. This is a very promising 
result since the influence of the number of control points did not affect the 
convergence speed but the number of object points did. As a consequence 
one could argue for choosing a high number of control points in the 
optimization to achieve a high flexibility of the transformation and less 
constraints for the modification due to restrictions in the transformation. This 
definitely decreases the effect of the control point position and reduces the 
necessary prior knowledge about the optimization problem while setting up 
the control volume.  

5. SUMMARY AND CONCLUSIONS 

In this chapter, the features and advantages of the application of 
deformation techniques as a representation in evolutionary design 
optimization have been presented. Even complex designs like automobile 
parts can be encoded by free form deformation techniques. The limiting 
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factor is not the complexity of the baseline design but the allowed variations. 
The fewer the control points, the more global the induced changes. If the 
control points are positioned based on expert knowledge, even meaningful 
large scale changes could be represented. At the same time, if a large number 
of control points is available, local variations can also be realized just as 
with standard spline representations. For the future, one could envision 
hierarchical FFD representations which can incorporate (and rely on) expert 
knowledge to a different degree.  

The second decisive advantage of FFD representations for evolutionary 
design optimization is that the computational mesh for the CFD calculations 
is deformed together with the design shape. Therefore, a costly re-meshing 
procedure can be avoided. Indeed for some very complex geometries, re-
meshing during optimization is not possible and in turn optimization is only 
possible with FFD representations. Of course it is still necessary to check 
that the mesh remains to be feasible after a certain number of deformation 
e.g. every tenth generation.  

Besides applying FFD representations to the evolutionary design 
optimization of a three-dimensional stator blade of a gas turbine engine, to 
demonstrate the feasibility in a reasonably complex test scenario, we also 
introduced direct manipulation FFD as an extension. In DMFFD, design 
changes are only indirectly encoded in the chromosome. The evolutionary 
optimization acts directly on object points, however, this only leads to 
“desired” design variations. These “desired” changes are then realized as 
close as possible by the underlying FFD algorithm based on a certain 
number of control points using e.g. a least squares algorithm. Three 
scenarios are possible. (1) The desired degree of freedom is larger than the 
realizable degree of freedom – thus evolutionary induced changes might not 
be realized; (2) the desired degree of freedom roughly equals the realizable 
degree of freedom – thus most changes can be realized one to one; (3) the 
desired degree of freedom is smaller than the realizable degree of freedom – 
thus desired changes can be represented in different ways and therefore, 
different path’ through the search space are available. All three relations are 
interesting in their own right and deserve a more detailed analysis.  

A more practical problem of DMFFD is that constraints for mesh 
deformation are more difficult to incorporate in the search process. 
Additional methods for securing mesh consistency must be researched.  
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Although we have not performed a sufficient number of runs (all design 
optimization runs with CFD calculations even if meta-models or surrogate 
models are employed are computationally expensive) to give a clear 
preference to the DMFFD, it seems that DMFFD will give us more 
flexibility in the optimization and it will also allow to make design changes 
more clearly visible to the engineer during the optimization.  
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