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Abstract 
There are two elementary building blocks whose intimate 
relationship has been overlooked so far: The cortical column 
as ubiquitous local processor underlying all cognitive 
operations and the Bayesian framework with the generic 
operation of calculating posterior probabilities given 
likelihoods and prior probabilities. In this contribution we try 
to bridge this gap by providing a detailed mapping between 
parts of the cortical column and processing steps involved in 
Bayesian reasoning. The resulting columnar network is 
implemented and fully integrated within an intentional vision 
system, which is also shortly characterized. 
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Introduction 
We have developed a relational knowledge representation 
which combines ideas from classical semantic networks, 
Bayesian graphical models and the current knowledge on 
neocortical structures. Within this relational network all 
semantic entities (properties, objects, concepts …) are 
represented by uniform nodes and causal links. The network 
nodes and their connectivity are strongly motivated by 
functional models of the cortical column. Our previous work 
used spreading activation schemas as inference strategy, but 
here we focus on Bayesian message passing and its possible 
biological realization. After we have provided detailed 
arguments for a mapping between Bayesian formulas and 
columnar layers, a rough overview on the currently 
implemented system will be given. 

Columnar Belief Propagation 
Bayesian Networks 
Bayesian networks have been successfully applied to 
numerous application domains and recently also within 
cognitive science (e.g. Chater, Tenenbaum & Yuille, 2006). 
These networks are also termed belief networks, 
probabilistic or causal networks and share simple syntactic 
elements: A directed acyclic graph (DAG) consisting of a 
set of nodes, which represent the variables involved, and a 
set of unidirectional, unlabeled links which are typically 
interpreted as “directly influences”. Finally a conditional 
probability table (CPT) is attached to each node which 
defines the probability for a node given its parents: 

( ))|( ii xparentsxP     (1) 

The basic task Bayesian networks have to solve 
consists in the computation of posterior probabilities for 
a set of query variables, given measurements for some 
evidence variables. For this probabilistic inference 
many different inference strategies can be used, but 
most of them are not suitable for an interpretation in 
biological terms, because they modify the structure of 
the graph. For example the most popular exact inference 
algorithm, the clique-tree propagation algorithm, 
requires even several transformations: First a 
transformation into an undirected graph, then a 
triangulation of the resulting moral graph and finally a 
clustering, which results in a so-called clique-tree, on 
which the inference is run. 

For a biological interpretation any modification of the 
graphical representation is to be understood as some 
sort of learning, which clearly is not the case in here. 
The same argument applies to the many variants of 
clustering algorithms and also of conditioning 
algorithms. However, there is a rather old inference 
strategy, the polytree algorithm, also known as belief 
propagation or message passing that does not alter the 
graph structure and has further interesting properties, 
which will be detailed in the following. 

Bayesian Propagation Rules 
Belief propagation is an exact inference scheme which 
requires local computations only. They are carried out 
within each node and the results are transmitted to all 
directly connected child and parent nodes. For a 
recapitulation of the formulas we use the notation 
introduced by Pearl (1988). These are valid for polytrees, 
which are DAGs with the restriction that multiple paths 
between two nodes are not allowed. 

An interesting feature of belief propagation is the 
separation of evidence variables into two disjoint subsets, 
i.e. the evidence introduced by child nodes and the 
evidence introduced by parent nodes. This leads to λ(x), 
representing diagnostic support for the proposition X=x 
and to π(x), representing causal support for x. The 
posterior probability or belief (BEL) of a node x can 
hence be written as 
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Alpha is a normalization constant and each node’s λ and π 
are calculated according to the following equations: 
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Here two sorts of messages enter the computation: So-
called λ-messages (right hand side of equation 3), which are 
messages received from child nodes (Yi), and π-messages 
(right hand side of equation 4), which are received from the 
node’s parents (Ui). The incoming messages are separately 
combined and, for the computation of π, additionally 
weighted by the conditional probabilities of node x 
(provided by the CPT). 

These incoming λ- and π-messages are used not only for 
the local computation of the node’s belief BEL, but also for 
the computation of the messages the node sends itself to its 
parents (equation 5) and children (equation 6): 
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Both equations reveal that the node’s output is a 

normalized combination of both sorts of incoming 
messages. Note that normalization constants ß and γ can be 
omitted, it suffices to normalize the posterior probabilities 
(with α in equation 2). 

Whereas there is only one π, λ and BEL associated with 
each node, there are as many π-messages as the node has 
child nodes and as many λ-messages as the node has parent 
nodes (since the formulas are not only for trees, but for 
polytrees). Additionally the CPT, which gives the 
probability of node x given all parents, has to be stored here. 

Representational Constraints 
In this subchapter we argue that the cortical column is the 
biological entity which might best correspond to a belief 
network’s node. Furthermore we show how the calculation 
of belief propagation might indeed be realized within each 
cortical column of the brain. 

First, any DAG requires localized, interconnected units 
with a direction defined. For Bayesian networks four further 
requirements have to be met: 

 
• there has to be a storage place for the CPTs at each 

entity 
• a belief value has to be stored and updated at each 

entity 

• the assumed entities have to represent concepts on 
various levels like properties, objects and concepts 

• for a Bayesian interpretation all links between 
these entities have to represent dependencies, e.g. 
“A causes B”, if there is a link from A to B 

 
From the work of Fellemann and van Essen (1991) it is 

well known that a “direction” within the cortex can be 
defined purely on the basis of the laminar pattern, leading to 
a complete cortical hierarchy. Therefore it is straightforward 
to associate a connected pair of network nodes with two 
neural entities from a connected pair of cortical areas. If we 
follow this hierarchy from bottom to top, we encounter 
neurons which are sensitive to increasingly more complex 
stimuli: In the visual cortex there is a progression from 
simple features to more complex ones, from object parts to 
objects and scenes. This path can easily be interpreted in a 
Bayesian manner and this has been done so already 
successfully by others (e.g. Yuille & Kersten, 2006). The 
key idea hereby is that object parts are “caused” by the 
corresponding objects, which in turn are “caused” by scenes 
which contain them. Despite these different levels of 
granularity, the basic neural entity in question has to be 
uniform and there are even more requirements to be met by 
this entity in realizing the belief propagation algorithm: 
 

• there should be a continuous, parallel updating 
mechanism for the computations of λ and π 

• two different link types are needed for passing λ- 
and π-messages 

• all connections have to be reciprocal, since 
between two connected nodes both types of 
messages need to be send 

• the entity has to provide m+n different outputs 
simultaneously (for each of the m child and n 
parent nodes) 

 
Clearly, the granular level of a single neuron is too fine to 

accomplish the requirements of storing the various 
parameters and calculating a couple of different output 
messages, but “each minicolumn has all cortical 
phenotypes, and each has several output channels” 
(Mountcastle, 2003). It is this entity which is found 
everywhere in the neocortex and is hence assumed to be the 
basic building block of the cortical computing machinery. In 
order to clarify how the inference formulas can be related in 
detail to certain subsystems of this cortical column, we 
briefly describe this “local processor” next (for details see 
e.g. Thomson & Bannister, 2003). 

The Cortical Column 
The cortical column vertically connects neurons across the 
six cortical layers with a distinct circuitry: Neurons in layer 
II/III send their axons to neurons in columns of the next 
higher cortical area. There the signals mainly target at 
granular layer IV but also pyramidal cells in layer VI 
receive afferent input (see Fig. 1). Primary source of 
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efferent inputs are the deep layers V/VI, which target in the 
superficial layers (I, II, upper III) in columns of the next 
lower cortical area (Rockland, 1994). 

 

 
Figure 1: The main connectivity between two columns 

from successive cortical areas (e.g. visual areas V4 and IT) 
is shown. Columnar layers are numbered by Roman 

numerals and the projections between them are labeled 
according to the type of message transmitted. 

 

Given the causal interpretation motivated above, the 
connections between columns along the ascending pathway 
correspond to links from nodes to their parent nodes. The 
resulting cortical bottom-up (BU) information flow can 
hence be understood as a realization of the passing of λ-
messages. Accordingly, the inter-columnar projections 
along the descending pathway correspond to links from 
nodes to child nodes and the cortical top-down (TD) flow 
realizes the passing of π-messages. However, not only these 
BU- and TD-outputs, but also substantial parts of the 
formulas and intermediate computation stages can be 
matched to columnar layers. 

Resulting Mapping 
Before we detail the parallels between message passing and 
columnar circuitry, it should be emphasized that we do not 
claim the calculation of posterior probabilities being the 
only role of the cortical column. However we do believe 
that Bayesian message passing might very well be realized 
within the columnar machinery. Also, we are totally aware 
of the complexity of the cortical column and hereby refer to 
a quite abstract functional view on columnar layers. Fig. 2 
provides an overview of the proposed mapping between 
Bayesian nodes and biological columns. 

BU inputs enter twice 
Information from lower cortical areas enters the column (at 
least) twice, at layer IV as the primary target of the 
ascending pathway and also at layer VI (see Fig. 1). 
Analogously, in the Bayesian model each λ-message λYj is 
needed in two equations: For the computation of λ (Equ. 3) 

and for the computation of the outgoing π-messages πYj. The 
latter is not apparent from Equ. 6., but becomes obvious if 
we insert (2) in (6): 
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This BU stream can also be inspected in Fig. 2 by following 
the outputs of child nodes Y1, Y2, Y3 to node X. 

BU / TD asymmetry 
There is a well documented asymmetry between BU- and 
TD-inputs to the cortex: Whereas forward connections 
from lower areas are quite focused, the feedback signals 
from higher areas are generally much more widespread 
(e.g. Suzuki, Saleem & Tanaka, 2000). Interestingly, a 
similar pattern can be found within the message passing 
formulas: 

For an analysis we have to check how often a particular λ-
message is needed during the node’s computation compared 
to the number of accesses to a particular π-message. 
Following the equations, each ingoing π-message is needed 
once for the computation of π (Equ. 4) and n-1 times for the 
computation of the outgoing λ-messages (Equ. 5). Contrary, 
each ingoing λ-message is needed once for the computation 
of λ (Equ. 3) and once for the computation of the outgoing 
π-messages (Equ. 7). It is crucial, of cause, that Equ. 5 
cannot be further simplified (which is due to the additional 
weighting with CPT entries). 

The impact of this asymmetry becomes evident for a 
realistic number of child and parent nodes: With a growing 
number of child nodes the number of a particular BU-input 
remains constant (and equals 2), whereas the number of a 
particular TD-input grows linearly with the number n of 
parent nodes (and equals n). 

Local computations 
Within the cortical hierarchy columns from successive areas 
like V2 and V4 are highly interconnected. Also the formulas 
show a local connectivity pattern: Here only information 
from direct neighbors is used for the computations at each 
node and the result is sent only to nodes in the next upper 
and lower layer. It should be noted, however, that in biology 
there are also “shortcuts” between areas more far apart, 
especially between those which have a common border (like 
e.g. V2 and PO). 

Storage of CPT in dendritic trees 
It is well known that there is a very dense wiring in the 
upper layers II/III, which is also a prerequisite for storing 
the local CPT. As can be seen in Fig. 2, these layers are just 
beneath those processes, which need values from the CPT: 
λX and π. But there are two more interesting facts from 
biology: First, horizontal inputs to layer II/III are mostly 
modulatory (Ichinose & Murakoshi, 1996), which would fit 
to the “weighting behaviour” of the CPT entries. Secondly, 
the synapses of these connections are those that change first 

area n column 
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II 
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VI 

area n-1 column 
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during training (Rioult-Pedotti, Friedman & Donoghue, 
2000), a property highly desirable, because all CPTs have to 
be learned sometime. 

Intertwined processing streams 
There could be separate processing streams for BU and TD 
information and the role of each column/node would then 
consist in fusing all locally available information of one 
sort. This is not the case in the neocortex, where complex 
interactions of BU and TD information can be observed, and 
also not in the Bayesian model: Equ. 5 and 6 show that there 
is a non-trivial mixing of λ- and π-messages instead. 

 
Figure 2: Message passing parameters as they might be 

localized within a cortical column. Depicted is node x with 
connections to child nodes Y1, Y1, Y3 and parent nodes U1, 

U2, U3. Cortical layers are numbered on the left. Arrows 
indicate computational dependencies, not shown are 

normalization factors. 

The canonical microcircuit 
In all mammals a basic intra-columnar wiring pattern has 
been found: A canonical functional microcircuit, which 
projects from layer IV to layers II/III and from there to 
lower layers V and VI (Callaway, 1998). The arrangement 

of processing steps in Fig. 2 shows a similar circuit. It starts 
at layer IV with the computation of λ, which is needed for 
the calculation of λX in layer II. The result is passed to layer 
III for the calculation of π and then to BEL at layer V and λY 
at layer VI. 

Behavioral Output 
The most important parameter, though, might be the 
behavioural output of the cortical column. Neurons highly 
associated with this role are pyramidal cells in layer V, 
since they project to action and attention related subcortical 
structures (e.g. Lomber & Payne, 2000). In Bayesian models 
the “output” of a node is just the posterior probability BEL 
and should hence be strongly associated with cortical layer 
V. This layer is near to the proposed locations of those 
calculations which are needed for or depend on BEL: λ, π 
and πYj. Therefore localizing BEL at layer V might also be 
inferred from a wiring length constraint. 

Discussion 
The question of relating Bayesian formulas to 
neurobiological findings has been addressed by several 
researches in the recent years. But, whereas we identify the 
cortical column as the basic unit for belief computations, 
others target at single neurons (e.g. Rao, 2004; Deneve, 
2005; Yu & Dayan, 2005) or at whole cortical areas (e.g. 
Lee & Mumford, 2003; George & Hawkins, 2005). The 
latter at least mentions the cortical column but the exact 
relationship remains obscure. Others are unsure at all on 
which computational level the cortical column should be 
located (Minsky, 2007, p.293). 

The drawback of message passing schemes described 
herein is that it only works for polytrees (i.e. singly 
connected networks), but there are approximate inference 
strategies, which are extensions of standard message passing 
and are applicable for arbitrary DAGs, e.g. loopy belief 
propagation (Murphy, Weiss & Jordan, 1999). The 
extension proposed by Pearl, loop cutest conditioning, is an 
exact inference procedure for DAGs, but it changes the 
connectivity of the network and therefore is not of interest 
in here. 

Moreover, exact inference in Bayesian Networks is NP-
hard, which makes it necessary to use approximations. Since 
the cognitive system sketched in here will ultimately be 
integrated into our humanoid robot ASIMO, real-time 
algorithms are of special importance. An interesting 
modification of the standard message-passing therefore is 
the anytime algorithm “localized partial evaluation” 
(Draper, 1995). Instead of point-valued messages it uses 
interval-valued messages by computing upper and lower 
bounds of nodes within the “neighborhood” of only the 
query nodes. As long as we restrict our representation to 
polytrees, we profit from the polynomial complexity (in 
number of nodes) of standard belief propagation. Here the 
number of propagation steps depends on the length of the 
longest path in the network. 
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System Integration 
Our graphical representation is embedded twofold: It makes 
use of public available databases on common sense 
knowledge to allow for high-level reasoning and it is 
embedded in a top-down controlled intentional vision 
system which connects concepts with real-world 
measurements (Eggert, Rebhan & Körner, 2007). 

Relational Network 
The basic representational dimensions used in our model of 
short- and long-term memory (STM, LTM) are associated 
with two bodies of knowledge which are of outstanding 
interest for most cognitive tasks: knowledge about 
hierarchical relationships and ontological knowledge about 
properties and subclass relations. As we argued in Röhrbein, 
Eggert and Körner (2007a), these semantic links can be 
associated with different functional subsystems of the 
cortical column. For the representation of arbitrary relations 
(like “gives”, “made of” etc.) we use so-called relational 
prototypes, which function as a template and which are 
connected with all instances of that type (Röhrbein, Eggert 
& Körner, 2007b). 

 
 

Figure 3: Sketch of the overall system. Inputs are 
processed in many different channels and interact with 

stored LTM representations via STM entities. 
Several databases provide the knowledge for the 

relational LTM network 
 

All these network links differ in two important aspects 
to common semantic network links: First, we only use a 
very restricted set of basic link types, which are 
biologically justified, since they can be associated with 
specific cortical source and target populations. Second, 
these links do not vary from node to node, but are common 
to all nodes. This is in contrast to the conception of STM 
and LTM by Navalpakkam and Itti (1995), who commit 
that their symbolic knowledge architecture is not 
biological. 

Coupling with ontological knowledge 
One important aspect of our approach is that we use only 
one uniform node type in the network, which thus is the 
representational entity of all concepts in both STM and 
LTM. The motivation for this homogenous layout is that the 
basic structure of the biological column is widely 
independent of the cortical site (although there are 
variations, e.g. Barone & Kennedy, 2000). For the 
knowledge instantiation of the relational LTM we made use 
of several databases (see Röhrbein et al., 2007a), for 
instance about 200.000 assertions which were collected by 
the Open Mind Common Sense project at M.I.T. 

Here we make use only of knowledge about hierarchical 
relationships which is usually expressed in meronymies and 
holonymies, but also in relations like “is located in” or in 
the temporal domain (“happens during” etc). These are quite 
essential as it is well known that hierarchies are used all 
over the neocortex as the core organization principle to deal 
with the nested structure of the surrounding world. 

Grounding with Saliency Data 
For the grounding of concepts with sensory data, STM 
nodes for "proto-objects" are provided, which are linked to 
sensory measurements and properties like size and shape 
(Fig. 4). These entities are structured in a way that 
resembles the biological separation in a feature extraction 
stream and a pathway for saliency computation. 
 

 
 

Figure 4: The ontological knowledge in LTM includes 
properties like color and size which can be linked to 

appropriate objects in STM. The figure, which is generated 
from our system, is motivated by an example from Barr 

(2004) on context influences. 
 

In any probabilistic inference system the basic task amounts 
to computing the posterior probability distribution for a set 
of query variables, given new information about some 
evidence variables. In our semantic Bayesian network 
several types of reasoning can be performed, depending on 
these two sets of variables: Diagnostic reasoning, which 
asks for an object or scene given one or several 
measurements. Predictive reasoning, which starts with 
evidence for a particular scene and makes predictions about 
objects to be recognized and features to be measured. 
Intercausal reasoning, where we have evidence for a feature 
and a corresponding object and are interested in the 

databases 

LTM 

STMs 

low-level 
computations 

inputs 
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probability of alternative object hypotheses.  Here the 
evidence for the particular object already “explains away” 
the evidence for the alternatives. Combined reasoning, 
which asks for an object given evidence for both the current 
scene and one or several measurements. 

If a search task now is provided by triggering a concept 
like "hairdryer”, an instance of the prototype entity is 
generated and several feature nodes have values attached, 
which are extracted from the triggered LTM representations. 
This target object can then be matched against stored STM 
entities, which have all the same structure. If the match is 
insufficient, e.g. because features are missing, this STM 
entity can now be enriched by a highly selective modulation 
of the saliency computation and a direct feature extraction. 
This is possible due to the information attached to the target 
object. If no object at all is found in STM a new default 
entity is used to trigger this top-down processing. For the 
instantiation of root and leaf nodes and other details we 
refer to Rebhan et al. (2008). 
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