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Abstract. In optimization, it is now a common practice to use lower fidelity
computational models in place of the original model when dealing with problems
with computationally expensive objective functions. In this paper, we present a
study on evolutionary optimization with dynamic fidelity computational models
capable of acclimatizing to localized complexity, for enhancing design search ef-
ficiency. In particular, we propose an evolutionary framework for model fidelity
control that decides, at runtime, the appropriate fidelity level of the computa-
tional model, which is deemed to be computationally less expensive, to be used
in place of the exact analysis code as the search progresses. Empirical study on
an aerodynamic airfoil design problem based on a Memetic Algorithm with Dy-
namic Fidelity Model (MA-DFM) demonstrates that improved quality solution
and efficiency are obtained over existing evolutionary schemes.

1 Introduction

In science and engineering, computational models are commonly created to simulate
and analyze a set of processes or phenomena observed in the physical system so as to
gain new insights. Computational models serve as efficient and convenient alternatives
for conducting studies on the original system that are otherwise deemed to be too costly
or hazardous to construct. They are typically expressed in the form of mathematical
equations and then implemented as computer simulation codes. A motivating real world
example for us is the aerodynamic aircraft wing analysis and design where various
multi-fidelity models ranging from low-fidelity simple-physics models to high-fidelity
detailed simulation models have been studied [1–6]. In this field, Navier-Stokes and
Euler equations are examples of two computational models with different fidelity, where
the latter is obtained by removing the viscosity terms from the Navier-Stokes equation.
The term “fidelity” here refers to the extent to which a model is capable to mimic
the original physical system of interest. A common assumption is that higher fidelity
models are generally more accurate at the expense of a higher computational cost. The
complexity and level of details of a physical system comes in many forms, from variable
mathematical models [7], variable parametric formulations [4, 8–10], variable operating
conditions [11] to variable residual tolerance levels [12].
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In recent years, a rising trend in science and engineering is on the use of increas-
ingly high-fidelity accurate analysis codes in the analysis and design process. For exam-
ple, modern Computational Structural Mechanics, Computational Electro-Magnetics,
Computational Fluid Dynamics, and Computational Quantum Mechanics solvers have
been shown to be astonishingly accurate. Such analysis codes play a central role in the
design process since they aid designers and scientists in validating designs and also
enable them to study the effects of altering key design parameters on product perfor-
mance. However, the move towards using accurate high-fidelity analysis codes results
in high computational cost and complexity in the design optimization process, which
consequently leads to longer design cycle times. It is worth noting that with the use of
high-fidelity computational models, minutes to hours of supercomputer time are often
necessary to evaluate or simulate a potential design.

One common approach to enhancing search efficiency in conventional multidis-
ciplinary optimization is via the use of lower fidelity model(s) in place of the original
computationally expensive model. From a survey of the literature, it is worth noting that
most efforts spend on dealing with optimization problems with computationally expen-
sive model, particularly in the field of surrogate-assisted optimization, have generally
focused on the use of data-fitting approximation models, such as Kriging, Radial Basis
Function, Multivariate Adaptive Regression Splines, Polynomial Regression, Artificial
Neural Networks and several others. Even though data-fitting models are generally easy
and computationally inexpensive to construct, they are often disregarded by domain ex-
perts since they are generally black-box mathematical models that do not provide mean-
ingful scientific interpretation of the underlying processes that is modeled. In contrast
to the use of black-box data-fitting approximation models as a replacement of the com-
putationally expensive model, we seek for alternative variable fidelity computational
analysis models in the present work.

In the context of evolutionary optimization, significant studies on enhancing search
efficiency via the use of variable fidelity computational analysis models have been made
in recent years. It is possible to categorize existing evolutionary algorithms [13] that em-
ploy variable fidelity computational models into 1) non-adaptive, i.e., one or more fixed
low fidelity model(s) in tandem with the original expensive computational model, or 2)
deterministic adaptive approaches, i.e., pre-defined adaptation rule(s) is(are) used to
manage the variable fidelity models employed. In the first category, [9] employs a fixed
lower resolution computational model during the evolutionary design of a communi-
cation antenna. Subsequently, the obtained solution is then refined by space mapping.
On the other hand, instances of deterministic adaptation can be found in [4, 8, 10]. In
[4], the evolutionary search employs computational models of different grid mesh that
varies from coarse to fine grids at pre-defined stages of the GA search. In a multi-island
GA optimizer [8, 10], multiple subpopulation of individuals are equipped with models
of variable fidelity levels. Individuals then migrate across subpopulation which are sub-
sequently evaluated based on the computational model of the respective subpopulation.
Last but not least, [7] uses a pre-defined adaptation rule to regulate the proportions of
individuals in the population with different fidelity models in the evolutionary search.

In this paper, our objective is to present an investigation on evolutionary frame-
work that employs dynamic fidelity computational models for solving problems with



computationally expensive objective functions. In particular, we propose a evolution-
ary framework for model fidelity control that decides, at runtime, the complexity level
of the localized computational model to be used in place of the exact analysis code as
the search progresses. Based on [13], the proposed evolutionary framework falls under
the category of dynamic adaptation. In contrast to non-adaptive and deterministic adap-
tive approaches, where domain knowledge on the appropriate choice of fidelity level
to use or established heuristics/rules that are known to work well on the problems of
interest are assumed to be available, dynamic adaptive approaches require minimum in-
tervention of external mechanisms, and have been shown to be more effective in many
contexts [14, 15]. Further, we would like to note that the present study represents a first
attempt on dynamic adaptation in evolutionary optimization where dynamic localized
fidelity computational models have been deployed for solving problems with computa-
tionally expensive objective functions.

The remaining of this paper is organized as follows. Section 2 describes a multi-
fidelity airfoil computational model used in the present study for aerodynamic design.
Subsequently, Section 3 introduces the memetic evolutionary framework with dynamic
fidelity computational models for optimizing the computationally expensive aerody-
namic design problem. Section 4 summarizes the empirical results on the aerodynamic
design problem and analyzes the results with comparison to existing evolutionary opti-
mizers. Finally, Section 5 provides a brief conclusion of this paper.

2 Multi-Fidelity Models in the Aerodynamic Airfoil Design
Problem

In this section, we provide an example of multi-fidelity computational models, preva-
lent in many real-world problems, using the aerodynamic airfoil design problem. For
illustration purpose, Fig. 1 depicts an aircraft together with an airfoil, which is simply
the cross-section of the aircraft wing (see Fig. 1). Particularly, we consider the paramet-
ric design optimization of 2D airfoil structure using a subsonic inverse pressure design
problem. In the inverse design problem, the aim is to minimize the difference between
the surface pressure P of a given airfoil with the desired pressure profile Pd of a base-
line shape. If W is the flow variables and S the shape design variables, the inverse
pressure design problem can be formulated as a minimization problem of the form:

f (W,S) =
1
2

∫

wall

(P − Pd)
2
dσ (1)

For the purpose of this study, the target pressure profile is generated from the NACA
0015 airfoil3 as the baseline shape. The airfoil geometry used here is characterized
using 24-parameter Hicks-Henne representation4 as described in Fig. 2. Since we only

3 The NACA 0015 is one of the four-digit series airfoils. The first two digits ‘00’ implies the
none existence of camber. The next two digits, i.e. ‘15’ indicates a 15% thickness to chord
length ratio.

4 The Hicks-Henne representation describes the upper and lower surfaces of the airfoil as linear
combinations of a finite number of basis functions.



consider compressible non-viscous flow, a finite-volume Euler solver with body-fitted
grid and explicit time-stepping is employed for the purpose of this study. The free-
stream conditions in this problem are subsonic speed of Mach=0.5, and angle of attack
(AOA)=2.0, corresponding to symmetric pressure profiles on the upper and lower walls.
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Fig. 1. (a) An aircraft and (b) an airfoil, the cross-section shape of the wing.

 

Fig. 2. Airfoil geometry characterized using 24 design variables with the NACA 0015 as baseline.

In practice, the evaluation of a single individual design (refer to equation 1) is an
iterative process, usually terminated after a certain residual error threshold or a maxi-
mum number of iterations has been reached. Since this is an inverse pressure problem,
the residual error here refers to the pressure difference between the respective design
and the baseline airfoil and is expected to reach a value close to zero. In the case of
limited computational budget, it is also possible to treat the maximum number of it-
erations as the effective termination condition. Hence, variable fidelity models can be
obtained at different levels of residual error tolerance and/or maximum iterations. Gen-
erally, lower residual error tolerance and greater number of iterations provide higher
fidelity outputs.



The correlation factor (r) and root mean square error (rmse) of the models at vari-
able levels of residual error tolerance (i.e., fidelity) to the original high fidelity airfoil
analysis model are reported in Figs. 3 and 4, respectively. In this study, a set of design
points, obtained from space-filling Design of Experiment (DOE) sampling, are parti-
tioned into separate local clusters based on their proximity in the search space of the
airfoil model. The correlation factor, rj

k, and root mean square error, rmsej
k for data

cluster j at fidelity level k, are defined as follows:

rj
k =

n
∑n

i=1 fif̂i −
∑n

i=1 fi

∑n
i=1 f̂i√

[n
∑n

i=1 f2
i − (

∑n
i=1 fi)2][n

∑n
i=1 f̂i

2 − (
∑n

i=1 f̂i)2]
. (2)

rmsej
k =

√∑n
i=1 |fi − f̂i|

2

n
(3)

where n is the number of data in cluster k, fi is the output from the original analysis
code for data i, and f̂i is the output from the fidelity level k of data i.
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Fig. 3. Correlation factor of the 20 clustered localized models for variable levels of residual error
tolerances, while taking the original airfoil analysis code as the reference model (i.e., with a
fidelity of 1)

The large rmse values in Fig. 4 highlighted large discrepancies between the low
fidelity models and the original analysis code. On the other hand, Fig. 3 displays good
fitness landscape correlation between the low fidelity localized models and the original
model at early stages of the convergence. In the context of optimization, the absolute
fitness of a design is generally non-crucial, rather it is the relative fitness of the solu-
tions that is important in leading the search towards the global optimal solution. In this
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Fig. 4. rmse of the 20 clustered localized models for variable levels of residual error tolerances,
while taking the original airfoil analysis code as the reference model (i.e., with a fidelity of 1)

case, this implies the correlation between the predicted fitness values is of utmost im-
portance. For greater details, the reader is referred to [16–18], where it was shown that
the correlation metric represents a more useful metric for estimating the quality of an
approximation model over one that is based on absolute error.

3 Memetic framework with Dynamic Fidelity Computational
Models

Without loss of generality, we consider a general nonlinear programming problem of
the following form:

minimize: f(x),
subject to: xl

i ≤ xi ≤ xu
i , (4)

where i = 1, 2, . . . , d, d is the dimensionality of the search problem, and xl
i, xu

i are the
lower and upper bounds of the ith dimension of vector x, respectively. In this paper,
we are interested in cases where the evaluation function of f(x) is computationally
expensive and it is desired to obtain near optimal solution on a limited computational
budget.

Based on previous analysis in Section 2, here we present an evolutionary memetic
framework aimed at improving the efficiency of multi-fidelity evolutionary optimiza-
tion, which is labeled here as Memetic Algorithm with Dynamic Fidelity Models (MA-
DFM). The idea behind the proposed MA-DFM is that the complexity level of the
localized computational model to be used in place of the exact analysis code, is dynam-
ically determined at run time as the search progresses. In the process, a user specific



correlation factor, η, is utilized to determine the minimum level of fidelity that is con-
sidered to match well with the original model. The pseudo codes of the standard MA
and MA-DFM used in the present work are outlined in Algorithm 1 and 2, respectively.

Algorithm 1 Standard Memetic Algorithm (MA)
1: Initialization: Generate a population of design vectors.
2: while computational budget is not exhausted do
3: Evaluate all individuals in the population using the exact fitness function.
4: for each individual x in the population do
5: • Apply local search using exact fitness function with probability of Pls and intensity

of Ils to find an improved solution, xopt.
6: • Replace x with the locally improved solution, i.e. x = xopt and f (x) = f (xopt).
7: end for
8: Apply standard evolutionary operators to create a new population.
9: end while

The MA-DFM (refer to Algorithm 2) begins with the initialization of a population of
design points. During the database building phase, the search operates as a traditional
evolutionary algorithm for the initial few generations. In this stage, only the original
analysis code is used as the fitness function while at the same time, all partial results
obtained in the evaluation of the computational model are archived in database, =. Sub-
sequently, the algorithm proceeds to the memetic search phase. Henceforth, for each
individual x, an appropriate fidelity level, ϕ, of the computational model to use in the
local learning phase may then be determined based on the m nearest points in database
=. For instance, a user-specified confidence based on correlation, η, may be introduced
to obtain the minimum fidelity model to be used in place of the original model in the
local search. Upon local convergence based on the low fidelity model, the locally opti-
mized solution xopt is then validated using the original model and replaces the original
starting individual if improved solution is attained, in the spirit of Lamarckian Learn-
ing (refer to line 10 of Algorithm 2). The entire search cycle is then repeated until the
maximum allowable computational budget is exhausted.

It is worth highlighting on the novel use of dynamic localized computational model
in the proposed framework. Particularly, local models are used in favor of global models
since constructing accurate global models is fundamentally flawed due to the curse of
dimensionality [18–21]. Further, this allows more precise estimation on the unique char-
acteristics of the problem landscapes, thus leading to the prediction on the appropriate
level of localized model fidelity over the use of the original computationally expensive
model.

4 Empirical Study

In this section, we present an empirical study using the inverse pressure problem de-
scribed in Section 2. We validate the efficacy of the proposed MA-DFM against the



Algorithm 2 MA with Dynamic Fidelity Models (MA-DFM)
1: Initialization: Generate a database, = containing a population of designs, archive all exact

evaluations made in the database.
2: while computational budget is not exhausted do
3: if database building phase then
4: • Evolve the population using standard EA, archive all exact evaluations at different

iterations into the database.
5: else
6: for each individual x in the EA population do
7: • Find m nearest points to x in database.
8: • Based on the m points, find the minimum fidelity level ϕ, at which the correlation

measure between fidelity level of ϕ and the original analysis code, has reached η,
i.e. rϕ ≥ η

9: • Apply local search on x using fitness function at fidelity level ϕ, fϕ(.) with prob-
ability of Pls and intensity of Ils to find an improved solution, xopt.

10: • Replace x with the locally improved solution, i.e. x = xopt and f (x) = f (xopt).
11: • Archive all new exact function evaluations made in database =.
12: end for
13: Apply standard evolutionary operators to create a new population.
14: end if
15: end while

standard GA, MA, and a non-adaptive MA that employs a fixed fidelity model or MA-
FFM in short. In contrast to MA-DFM, note that MA-FFM performs local searches hav-
ing a pre-defined fixed model of low fidelity (fζ), where ζ < 1. The common parametric
configurations of all 4 schemes used in the present experimental study are summarized
in Table 1 and briefly described in what follows.

In the local search procedure, the well-established Feasible Sequential Quadratic
Programming (FSQP) method [22] is employed. Although Ils defines the maximum
computational budget of each individual in the local learning phase, the actual time in-
curred do vary according to the fidelity level used. In the present study, the computation
cost per evaluation is determined by the fidelity level of the model used, i.e., evaluating
a computational model with a fidelity level of 0.7 translates to a compute cost of 0.7
evaluation count. On the other hand, note that each evaluation of the fixed low fidelity
in the local search for MA-FFM is performed at a constant cost of ζ, which is here
assumed as 0.5 in our experiment setting, which is half the computational expense of
the original model. Since model accuracy is highly dependent on the sufficiency of the
m data points used for model building, the size of nearest neighboring points used is
defined by (d+1)(d+2)/2, where d is the dimensionality of the optimization problem
and is 24 for the airfoil problem considered here. A maximum computational budget of
5000 function evaluations is used in the experimental study.

The obtained average convergence trends for each of the 4 algorithms, across 10
independent runs, are summarized in Fig. 5. It is also worth noting that in all the al-
gorithms considered, the first 1000 exact evaluations represent the results of the stan-
dard GA, hence similar initial search trends are shown in the figure. Nevertheless, the
search trends begin to differ after 1000 evaluations where it can be observed that all



Table 1. Setting of experiments for GA, MA, MA-FFM, and MA-DFM.

General Parameters
Population size (Npop) 100
Crossover probability (Pcross) 0.9
Mutation probability (Pmut) 0.1
Maximum number of exact evaluations 5000

MA, MA-FFM, and MA-DFM - specific Parameters
Local search probability (Pls) 0.2
Local search intensity (Ils) 10 local search iterations

MA-FFM and MA-DFM - specific Parameters
Database building phase 1000 evaluations
Number of nearest neighbours (m) (d+1)(d+2)/2

MA-FFM - specific Parameters
Fixed lower fidelity level used (ζ) 0.5

MA-DFM - specific Parameters
Minimum correlation required (η) 0.75

the memetic schemes (MA, MA-FFM, and MA-DFM) studied outperform the standard
GA significantly at 95% level of confidence, see statistical test given in Table 3. This
demonstrates the ability of the MAs in converging to good quality solution more effi-
ciently than a standard GA [23, 24].

Next, note that among the two multi-fidelity MA schemes, while both MA-FFM and
MA-DFM employs lower fidelity model as the fitness function, the latter is observed to
perform better. The t − test results reported in Table 3, calculated based on statistical
data from Table 2 and Fig. 6, confirms this significant difference in performance. Sub-
sequently, the best airfoil shapes and the upper and lower surface pressure coefficients
obtained by 4 schemes compared in the experiments are plotted in Figs. 7 and 8, re-
spectively. It is shown from these figures that the best shape/pressure profile obtained
by MA-DFM is closer to the shape/pressure profile of the NACA0015 baseline airfoil.
The results obtained on the real world aerodynamic problem thus demonstrate the abil-
ity of the MA-DFM in model fidelity control that decides, at runtime, the appropriate
fidelity level of the computational model to be used in place of the exact analysis code
as the search progresses.

Table 2. Mean and standard deviation of GA, MA, MA-FFM, and MA-DFM search at the end of
5000 function evaluations.

Scheme Mean ± Std. deviation
GA 3.5776e-3 ± 9.5973e-4
MA 2.1232e-3 ± 4.9329e-4
MA-FFM 2.6417e-3 ± 5.0709e-4
MA-DFM 1.5131e-3 ± 4.0862e-4
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Table 3. t-test at 95% confidence level for GA, MA, MA-FFM, and MA-DFM search (s+, s−,
or ≈ at row i and column j indicates that results of scheme at row i are significantly better,
significantly worse, or indifferent compared to those at column j).

Scheme GA MA MA-FFM MA-DFM
GA ≈ s− s− s−
MA s+ ≈ s+ s−

MA-FFM s+ s− ≈ s−
MA-DFM s+ s+ s+ ≈

5 Conclusions

In this paper, we have proposed and studied a multi-fidelity evolutionary optimization
technique, which we call the Memetic Algorithm with Dynamic Fidelity Model (MA-
DFM). In contrast to existing techniques in the field which uses only non-adaptive or
deterministic adaptive fidelity models, the MA-DFM dynamically acclimatizes to the
local complexity for enhancing computational efficiency. In particular, the evolutionary
framework studied is equipped with model fidelity control that decides, at runtime, the
appropriate fidelity level of the computational model, which is deemed to be compu-
tationally less expensive, to be used in place of the exact analysis code as the search
progresses. Empirical study on the aerodynamic airfoil design problem using standard
evolutionary optimizers such as GA, MA, and MA-FFM demonstrates that MA-DFM
is capable to arrive at improved quality solution and efficiency due to its ability in em-
ploying appropriate fidelity level of the computational model in the evolutionary search.
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