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Abstract

Evolutionary Dynamic Weighted Aggrega-
tion (EDWA) has shown to be both effective
and computationally efficient [1] for multi-
objective optimization (MOO). Besides, it
was also found empirically and surprisingly
that EDWA was able to deal with multi-
objective optimization problems with a con-
cave Pareto front, which has proved to be
beyond the capability of the Conventional
Weighted Aggregation (CWA) methods [2].
In this paper, a theory on why CWA fails
for multi-objective problems with a concave
Pareto front is provided schematically. Ac-
cording to this theory, it can easily be ex-
plained why EDWA has worked well for both
convex and concave multi-objective prob-
lems. Simulation examples are conducted on
various test functions to support our theory.
It is concluded that EDWA is an effective and
efficient method for solving multi-objective
optimization problems.

1 Introduction

Evolutionary multi-objective optimization has been
widely investigated in the recent years [3, 4]. Gen-
erally speaking, there are three main approaches
to evolutionary multi-objective optimization, namely,
weighted aggregation approaches, population-based
non-Pareto approaches and Pareto-based approaches
[5].

Conventional weighted aggregation (CWA) based ap-
proaches two main weaknesses. Firstly, aggregation
based approaches can provide only one Pareto solu-
tion from one run of optimization. Secondly, it has
been shown that weighted aggregation is unable to

deal with multi-objective optimization problems with
a concave Pareto front [2].

One effort using weighted aggregation based approach
for multi-objective optimization (MOO) was reported
in [6]. In that work, the weights of the different objec-
tives are encoded in the chromosome to obtain more
than one Pareto solution. Phenotypic fitness sharing
is used to keep the diversity of the weight combina-
tions and mating restrictions are required so that the
algorithm can work properly.

An efficient and effective method called evolutionary
dynamic weighted aggregation (EDWA) was proposed
in [1]. The original idea in EDWA was straightfor-
ward, i.e. if the weights for the different objectives
are changing during optimization, the optimizer will
go through all points on the Pareto front. If the
found non-dominated solutions are archived, the whole
Pareto front can be achieved. This has been shown to
be working well for both convex and concave Pareto
fronts.

In this paper, a theory on evolutionary multi-objective
optimization using weighted aggregation is suggested.
Based on this theory, the reason why EDWA is able
to deal with MOO is revealed. Simulations are carried
out on different test functions both to support our the-
ory and to demonstrate the effectiveness of EDWA.

2 Multi-objective Optimization with

Weighted Aggregation

2.1 Definition of Multi-objective

Optimization

Consider a multi-objective optimization problem with
k objectives (fi, i = 1, 2, ..., k) and n decision variables
(xi, i = 1, 2, ..., n):

f(x) = (f1(x), ..., fk(x)), (1)
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(a) Convex Pareto front                                           (b) Concave Pareto front   

Figure 1: Convex and concave Pareto fronts.

The target of the optimization is to minimize fi(x), i =
1, 2, ..., k subject to

gi(x) ≤ 0, i = 1, 2, ...,m. (2)

Since the k objectives may be conflicting with each
other, it is usually difficult to obtain the global mini-
mum for each objective at the same time. Therefore,
the target of MOO is to achieve a set of solutions that
are Pareto optimal. The related concepts of Pareto
dominance, Pareto optimality, Pareto optimal set and
Pareto front are defined as follows [4]:

Pareto dominance: A vector u = (u1, ..., uk)
is said to dominate v = (v1, ..., vk) if and only if
ui ≤ vi, i = 1, 2, ..., k and there exists at least one
element with ui < vi.

Pareto optimality: A solution x is said to be
Pareto optimal if and only if there does not exist
another solution x′ so that f(x) is dominated by f(x′).
All the solutions that are Pareto optimal for a given
multi-objective optimization problem are called the
Pareto optimal set (P?).

Pareto front: For a given multi-objective opti-
mization problem and its Pareto optimal set P?, the
Pareto front (PF?) is defined as:

PF? = {f(x) = (f1(x), ..., fk(x))|x ∈ P?}. (3)

There are generally convex and concave Pareto fronts.
A Pareto front (PF?) is said to be convex if and only
if ∀u,v ∈ PF?,∀λ ∈ (0, 1),∃w ∈ PF? : λ||u|| + (1 −
λ)||v|| ≥ ||w||.
On the contrary, a Pareto front is said to be concave
if and only if ∀u,v ∈ PF?,∀λ ∈ (0, 1),∃w ∈ PF? :
λ||u||+ (1− λ)||v|| ≤ ||w||.
For example, Fig.1(a) is a convex Pareto front and
Fig.1(b) is a concave Pareto front. Of course, a Pareto
front can be partially convex and partially concave.

2.2 Conventional Weighted Aggregation for

MOO

Conventional Weighted Aggregation (CWA) is a
straightforward approach to multi-objective optimiza-
tion. In this method, the different objectives are
summed up to a single scalar with a prescribed weight

F =
k
∑

i=1

wifi(x), (4)

where wi is the non-negative weight for objective
fi(x), i = 1, ..., k. Usually, a priori knowledge is
needed to specify the weights. During the optimiza-
tion, the weights are fixed in conventional weighted
aggregation method.

Using this method, only one Pareto optimal solution
can be obtained with one run of the optimization al-
gorithm. In other words, if one intends to obtain dif-
ferent Pareto solutions, one has to run the optimizer
several times. This is of course not allowed in a lot of
real world problems because it usually takes too much
time to run the optimization more than once.

What is worse, efficiency is not the only problem for
CWA. It was pointed out that CWA is not able to ob-
tain the Pareto solutions that are located in the con-
cave region of the Pareto front [2].

However, it is not as straightforward as one might
imagine to explain the reason why the solutions in the
concave region of the Pareto front cannot be obtained
using CWA. One attempt to explain this problem is
illustrated in Fig. 2, which was provided in [2]. In
the figure, line L denotes solutions with the same cost
and the slope of the line is determined by the weights.
According to this theory, the solutions in the concave
region between point A and B cannot be reached by
CWA based methods. Unfortunately, this illustration
is incorrect because the solutions outside the shaded
area are unreachable anyway and therefore, it is impos-
sible for the optimizer to proceed towards the Pareto
front from the origin, in particular for minimization
problems.

In [5], another illustration as shown in Fig. 3 is used.
However, from this illustration, it is still unclear why
the solutions in the concave region are not obtainable
with CWA methods. Further explanations are pro-
vided as follows. In Fig. 4 (a), it can be seen that
the line with equal cost will converge to a point on
a convex Pareto front when the slant of the line is
given, that is, when the weights are fixed. In contrast,
the line will continue to move after it reaches a point
(point C, which is corresponding to the given weights)
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(a) Convex Pareto front.                                                (b) Concave Pareto front.

Figure 2: Geometrical representation of weighted sum
approach abstracted from [2].
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Figure 3: Line of equal cost introduced by the
weighted-sum approach abstracted from [4].

in the concave region of the Pareto front, until no fur-
ther minimization of the cost is possible. Finally, the
obtained solution will be either A or B.

In the following, a new explanation for this problem
is suggested. In our opinion, whether CWA is able
to converge to a Pareto-optimal solution depends on
the stability of the Pareto solution corresponding to
the given weight combination. If the Pareto solution
corresponding to a given weight combination is a sta-
ble minimum, then it can be obtained with CWA. To
explain this further, let us have a look at the prob-
lem from another point of view. We first discuss a
convex Pareto front. For a two-objective problem,
if the Pareto front is presented in the conventional
way, as shown in Fig. 5 (a), then point B is the sta-
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Figure 4: Conventional weighted aggregation for
MOO. (a) Convex Pareto front, (b) Concave Pareto
front.
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Figure 5: Convex Pareto front. All Pareto solutions
are stable minimum when the coordinate system ro-
tates. (a) 0 degree; (b) 45 degree; (c) 90 degree.

ble minimum on the Pareto front. That is to say,
point B will be the solution obtained by CWA given
the weight combination of (w1, w2) = (0, 1). If the
weight combination is changed in optimization, it is
equivalent to rotating the coordinate system together
with the Pareto front. Thus, when w1 decreases and
w2 increases, it is equal to rotate the coordinate sys-
tem counter-clockwise. If f?

1 = f?
2 , then for a given

weight combination of (w1, w2) = (0.5, 0.5), the co-
ordinate system rotates 45 degrees. In this case, C
is the stable minimum of the Pareto front that will
be obtained using CWA with (w1, w2) = (0.5, 0.5), as
shown in Fig. 5 (b). Obviously, for a weight combina-
tion of (w1, w2) = (1, 0), A is the stable minimum and
the coordinate system rotates 90 degrees. Therefore,
different Pareto solutions will be obtained using the
conventional weight aggregation with different weight
combinations if the Pareto front is convex. Since the
weights are always non-negative, the maximal rotation
angle is 90 degree. Without considering the time con-
sumption, the whole Pareto front can be obtained by
running the optimizer as many times as possible.

Now let us have a look at a concave Pareto front.
As illustrated in Fig. 6, all solutions located in the
concave region of the Pareto front are unstable when
the weight combination changes. As explained above,
Fig. 6 (a) corresponds to a weight combination of
(w1, w2) = (0, 1) and the solution will be point B. For
all weight combinations that corresponds to a rotation
angle between 0 and 45 degrees, the solution to be ob-
tained will be B, whereas for all weight combinations
that correspond to a rotation angle between 45 and 90
degrees, the solution to be obtained will be A. The
weight combination that corresponds to a rotation an-
gle of 45 degree (if f?

1 = f?
2 ) is a dividing point (Point

C). If the weight combination exactly corresponds to
this dividing point, the result of the optimization can
either be A or B, depending on the initial condition
and dynamics of the optimizer. As a conclusion, only
point A and B are stable minima on the Pareto front
no matter how the weight combination changes.
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Figure 6: Concave Pareto front. All Pareto solutions
are unstable minimum except the two points on both
ends when the coordinate system rotates. (a) 0 degree;
(b) 45 degree; (c) 90 degree.

According to the above discussions, we can draw the
following conclusions:

• For a convex Pareto front, each weight combi-
nation corresponds to a stable minimum on the
Pareto front.

• For a concave Pareto front, all solutions with ex-
ception to the two points on the two ends are
unstable when the conventional weighted aggre-
gation is used. Therefore, an optimizer is unable
to converge to the Pareto solution corresponding
to the weight combination.

• When the Pareto front is rotated slowly from 0 de-
gree to 90 degree, the optimizer will go along the
Pareto front from one stable minimum to another,
once it reaches any point of the Pareto front. If
the Pareto front is convex, the moving speed is de-
termined by the change of weights. If the Pareto
font is concave, the optimizer will stay on one sta-
ble minimum until this point becomes unstable.
In this case, the optimizer will move along the

Pareto front to the next stable minimum.

3 Evolutionary Dynamic Weighted

Aggregation

As it is pointed out in the last section, if we rotate the
Pareto front 90 degree, the optimizer will go from one
stable optimum to another. This can be done in two
ways:

• After the optimizer has converged to one stable
minimum, the Pareto front is rotated 90 degrees
abruptly. In the two-objective case, this corre-
sponds to the situation where w1 is changed from
0 to 1 and w2 from 1 to 0. We call it Bang-bang
Weighted Aggregation (BWA).

• The Pareto front is rotated gently, that is, the
weights are changed gradually. In this case, the

A

B

shortest path

f

f
2

A

B

1

2
f

f
1

(a) Convex Pareto front (b) Concave Pareto front

shortest path

Figure 7: For a convex Pareto front (a), it is not the
shortest path between two points, whereas for a con-
cave Pareto front (b), it is the shortest.

optimizer will traverse the whole Pareto front and
all the solutions on the front will be obtained.
This was denoted as Generation-based Periodical
Variation of the Weights in [1]. In this paper, it
is called Dynamic Weighted Aggregation (DWA).

In both cases, the weights are changed periodically.
This may be helpful if the Pareto front is not uniform.
By uniform, we mean that if the distance in the weight
space is the same, then the distance on the Pareto front
is also the same.

3.1 Bang-bang Weighted Aggregation

Bang-bang weighted aggregation (BWA) can be seen
as a test of our theory proposed in the last section.
According to our theory, it is also possible to obtain
the whole Pareto front when we rotate it 90 degrees
abruptly, no matter whether it is convex or concave.
However, we expect that the optimizer may not nec-
essarily keep moving along the Pareto front if it is
convex, because the Pareto front is not the shortest
feasible path from one stable point to another, refer
to Fig. 7 (a). Very interestingly, if the Pareto front is
concave, the optimizer should keep moving along the
Pareto front because it provides the shortest feasible
path from one stable point to another, as illustrated
in Fig. 7 (b).

A bang-bang change of weights can be realized in the
following way for a two-objective minimization prob-
lem:

w1(t) = sign(sin(2πt/F )) (5)

w2(t) = 1.0− w1, (6)

where t is the generation index and F is the frequency
of the weight change. It is clear that F should be large
enough to allow the optimizer to move from one stable
point to another.



3.2 Dynamic Weighted Aggregation

In dynamic weighted aggregation (DWA), the weights
are changed gradually. This slow change of the weights
will force the optimizer to keep moving on the Pareto
front if it is convex. If it is concave, the performance
of DWA may not have much difference from that of
the BWA. This can be realized as follows:

w1(t) = |sin(2πt/F )|, (7)

w2(t) = 1.0− w1(t), (8)

where t is the number of generation. It is noticed that
w1(t) changes from 0 to 1 periodically. The change fre-
quency can be adjusted by F . The frequency should
not be too high so that the algorithm is able to con-
verge to a minimum. On the other hand, it seems
reasonable to let the weight change from 0 to 1 twice
during the whole optimization. In the simulation de-
scribed in Section 5.3 and 5.4, F is set to 100 for BWA
and 200 for DWA, so that for both methods, the Pareto
front rotates three times in 150 generations.

3.3 An Archive of Pareto Solutions

In both BWA and DWA, the population is not able to
keep all the found Pareto solutions, although it is able
to traverse the Pareto front dynamically. Therefore, it
is necessary to record the Pareto solutions that have
been found so far. To this end, it is necessary to main-
tain an archive of the Pareto-optimal solutions. The
pseudo-code for building the archive is listed in Algo-
rithm 1. The similarity is measured by the Euclidean
distance in the fitness space.

4 Test Functions

To evaluate our theory and to demonstrate the ef-
fectiveness of our methods, simulations are carried
out on five test functions. The first three test func-
tions are taken from [7, 8] and the fourth test func-
tion is adapted from test functions F2 and F3 so that
its Pareto front is partially convex and partially con-
cave. F5 has a discontinuous Pareto front, which is
used to test how the methods behave when the Pareto
front is discontinuous. Note that for all test functions,
xi ∈ [0, 1].

• The first test function (F1) used here is the sec-
ond function in [8] and we extend it to an n-
dimensional. The Pareto front of this function

Algorithm 1 Pseudo-code for maintaining an archive
of Pareto solutions.

for each individual o in offspring population do

if (o dominates an individual in parent population
p) and (o is not dominated by any solutions in the
archive) and (o is not similar to any solutions in
the archive) then

if archive is not full then

add o to the archive
else if o dominates any solution a in the archive
then

replace a with o

else if any solution a1 in the archive dominates an-
other solution a2 then

replace a2 with o

else

discard o

end if

else

discard o

end if

end for

for each solution in the archive do

if solution a1 dominates a2 then

remove a2

end if

end for

is uniform.

f1 =
1

n

n
∑

i=1

x2
i (9)

f2 =
1

n

n
∑

i=1

(xi − 2.0)2 (10)

• The second test function (F2) is the first function
in [7], which has a convex but non-uniform Pareto
front:

f1 = x1 (11)

g(x2, ..., xn) = 1.0 +
9

n− 1

n
∑

i=2

xi (12)

f2 = g × (1.0−
√

f1/g). (13)

• The third test function (F3) is the second function
in [7], which has a concave Pareto front:

f1 = x1 (14)

g(x2, ..., xn) = 1.0 +
9

n− 1

n
∑

i=2

xi (15)

f2 = g × (1.0− (f1/g)
2). (16)

• The fourth test function (F4) adapted from F2

and F3, which has a Pareto front that is neither



purely convex nor purely concave:

f1 = x1 (17)

g(x2, ..., xn) = 1.0 +
9

n− 1

n
∑

i=2

xi (18)

f2 = g × (1.0− 4

√

f1/g − (f1/g)
4).

(19)

• The fifth test function (F5) is the third function
in [7], whose Pareto front consists of a number of
separated convex parts:

f1 = x1 (20)

g(x2, ..., xn) = 1.0 +
9

n− 1

n
∑

i=2

xi (21)

f2 = g × (1.0−
√

f1/g − (f1/g)

sin(10πf1)). (22)

5 Simulation Studies

5.1 The Evolution Strategies

In the standard evolution strategy, the mutation of
the objective parameters is carried out by adding an
N(0, σ2

i ) distributed random number. The step size σi

is also encoded in the genotype and subject to muta-
tions. A standard evolution strategy can be described
as follows:

σi(t) = σi(t− 1)exp(τ ′z)exp(τzi) (23)

x(t) = x(t− 1) + z̃ (24)

where x is an n-dimensional parameter vector to be
optimized, z̃ is an n-dimensional random number vec-
tor with z̃ ∼ N(0,σ(t)2), z and zi are normally dis-
tributed random numbers with z, zi ∼ N(0, 1). Pa-
rameters τ , τ ′ and σi are the strategy parameters,
where σi is mutated as in equation (24) and τ , τ ′ are
constants as follows:

τ =

(

√

2
√
n

)−1

; τ ′ =
(√
2n
)−1

(25)

There are several extensions to the above standard ES.
In this work, the standard (µ, λ)-ES [9] is employed.

5.2 Conventional Weighted Aggregation

We first employ CWA to obtain the Pareto front. As
we mentioned above, we have to run the optimizer
more than once if we attempt to obtain more than
one solution. In this work, the algorithm is run for 20

times for test functions F1, F2 and F3, and 40 times
for test function F4. Since the Pareto solutions are
not uniformly distributed on the Pareto front corre-
sponding to a uniformly distributed weight combina-
tions, smaller weight change is needed to obtain the
solutions in the convex region of the Pareto front in
function F4. In all the simulations, the dimension n is
set to 2.
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Figure 8: CWA for F1 and F2. The results are col-
lected from 20 runs of the optimization.

The results on F1 and F2 are given in Fig. 8. Since
both functions are convex, the CWA based approach is
able to obtain different Pareto solutions with different
weights. We see that the distribution of the solutions
from F2 is not uniform, although the distribution of
the weights is uniform.
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Figure 9: CWA for F3 and F4. 20 runs are carried out
for F3 and 40 runs are carried for F4.

Fig. 9 provides the results on F3 and F4. Since the
Pareto front of F3 is concave, we can only obtain two
solutions, whereas for F4, the solutions in the convex
region are obtained and those in the concave region are
not obtained, which is expected from our discussion in
Section 3.

5.3 Bang-bang Weighted Aggregation and

Dynamic Weighted Aggregation

In this part, we intend to empirically support our the-
ory on multi-objective optimization by showing that
bang-bang weighted aggregation is able to obtain the
Pareto set, in particular for concave Pareto fronts. At



the same time, the performance of both BWA and
DWA are compared for different situations. For both
methods, 150 generations are run so that the weight
can switch three times during optimization, as men-
tioned in Section 3.2.
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Figure 10: Results on F1: (a) BWA and (b) DWA.

According to our theory, BWA may perform worse
than DWA for convex Pareto fronts, because the
Pareto front between two stable points is not the short-
est feasible path. This can be seen from the results
on F1, which are shown in Fig. 10. However, when
the Pareto front is concave, the performances of BWA
and DWA are similar, as shown in Fig. 11. This is
consistent with our theory.
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Figure 11: Results on F3: (a) BWA and (b) DWA.

Test function F4 has a partially convex and partially
concave Pareto front. Since its convex part is relatively
small, there is no essential discrepancy between the
results from BWA and DWA, see Fig. 12.
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Figure 12: Results on F4: (a) BWA and (b) DWA.

All the above test functions, F1, F3 and F4 have a
continuous Pareto front. It is desirable to investigate

how our methods work for discontinuous Pareto fronts,
particularly when BWA is used. In Fig. 13 (a), we see
that BWA has successfully obtained the discontinuous
Pareto front. Amazingly, the algorithm is able to move
from one part of the Pareto front to another through
a bridge that connects the different parts of the Pareto
front, which is shown in Fig. 13 (b) caught by a snap-
shot during optimization.
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Figure 13: BWA for a discontinuous Pareto front (F5):
(a) The obtained Pareto front; (b) A snapshot showing
how the BWA moves between different parts of the
Pareto front.

Similar results have been obtained on F5 using DWA.

5.4 Discussions

From the simulation results, we can make the following
observations:
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Figure 14: DWA for F4: The optimizer starts to move
along a concave Pareto front only when the rotation
angle reaches a dividing point. (a) w1 = 0.0; (b) w1 =
0.9; (c) w1 = 0.92 and (d) w1 = 1.0.

• For convex Pareto fronts, DWA exhibits better
performance than BWA. The reason is that the



optimizer will not necessarily keep moving along
the Pareto front if BWA is used.

• For concave Pareto fronts, BWA and DWA show
similar performance. However, BWA may be
more efficient than DWA when the Pareto front
is concave. This is due to the fact that when the
Pareto front rotates, the optimizer stays at one
stable solution until a rotation angle correspond-
ing to the dividing point has been reached, as dis-
cussed in Section 2.2. Let us have a look at the
results from applying the DWA to F4. In gener-
ation 100, w1 = 0.0 and the optimizer is around
the stable point A, see Fig. 14 (a). When the evo-
lution proceeds, the optimizer remains on point
A until in generation 135, when w1 = 0.90, see
Fig. 14 (b). In generation 137, the optimizer has
moved through the most part of the concave re-
gion (Fig. 14 (c)), where w1 = 0.92. Finally, in
generation 150, the optimizer is around the other
stable point of the concave region, i.e., point B in
Fig. 14 (d). It should be noticed that the solutions
in the archive are not shown in Fig. 14.

In application, if one does not know in advance if
the Pareto front is convex or concave, DWA is recom-
mended to ensure that the optimizer will move along
the Pareto front to obtain the whole set of Pareto so-
lutions. However, if one knows that the Pareto front is
concave, the BWA may need less time to achieve the
whole Pareto set.

6 Conclusion

Multi-objective optimization using weighted aggrega-
tion based approaches is revisited. The problem of
concave Pareto fronts in MOO is discussed and a the-
ory why CWA based approaches are unable to obtain
the solutions in the concave region of the Pareto front
is proposed. An evolutionary dynamic weighted aggre-
gation (EDWA) is proposed to obtain Pareto solutions
in one run, no matter whether they are located in the
convex or concave region of the Pareto front. The
proposed method is shown to be not only efficient,
meaning it is able to obtain Pareto solutions in one
run of the optimization, but is also able to obtain the
solutions located in the concave region of the Pareto
front. This is very encouraging because the EDWA is
computationally efficient and all existing evolutionary
algorithms can be employed with minor modifications
to change the weight dynamically during optimization.

However, theoretic work may be necessary to ascer-
tain that when the weights changes and the optimizer
moves from one stable minimum to another stable min-

imum, all the solutions in the concave region between
the two minima are reached. The conclusion that local
optima are concentrated in a very small region of the
solution space [10] may be one support for the EDWA
and vice versa, the successful of the EDWA is also a
support for this conclusion.
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Z. Michalewicz, editors, Evolutionary Computation,
volume 2, pages 25–37. Institute of Physics Publish-
ing, Bristol, 2000.

[6] P. Hajela and C. Y. Lin. Genetic search strategies in
multicriteria optimal design. Structural Optimization,
4:99–107, 1992.

[7] E. Zitzler, K. Deb, and L. Thiele. Comparison of mul-
tiobjective evolution algorithms: empirical results.
Evolutionary Computation, 8(2):173–195, 2000.

[8] J. D. Knowles and D. W. Corne. Approximating the
nondominated front using the Pareto archived evolu-
tion strategies. Evolutionary Computation, 8(2):149–
172, 2000.

[9] H.-P. Schwefel. Evolution and Optimum Seeking.
Sixth-Generation Computer Technologies Series. John
Wiley & Sons, Inc., 1994.

[10] P.C. Borges and M.P. Hansen. A basis for future suc-
cesses in multiobjective combinatorial optimization.
Technical Report IMM-REP-1998-8, Department of
mathematical Modeling, Technical University of Den-
mark, 1998.




