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Abstract

The use of computer vision for assisting the driver dates back to first research
projects in the 80’s, but only recently the progress in vision research and the increase
in computational power have resulted in actual products. Although impressive from
the robustness point of view, these systems are optimized for specific problems and
at best perform reactive tasks like, e.g., lane keeping assistance. However, for a
better understanding of generic traffic situations and for assisting the driver in the
full range of his actions, integrated and more flexible approaches are needed. In
this contribution we propose a vision system that in important aspects is inspired
by the human visual system for organizing the different visual routines that need
to be carried out. The presented system searches for biological motivation in case
classical engineering-based approaches cannot do better or fail. Using a tunable
visual attention system and state-of-the-art perception algorithms, the system is
capable of analyzing the scenery for task-relevant information in order to provide
the driver with assistance in dangerous situations. Our main research focus is on
the design of general mechanisms (i.e., not domain or task-specific) that lead to
a certain observable behavior without being explicitly designed for this behavior.
Using this principle, we aim at developing easily extensible driver assistance systems.
The system components are evaluated on a complex inner-city scene and on further
real world data. We demonstrate the performance of the integrated vision system
in a construction site setup. A traffic jam within the construction site results in
a dangerous situation that the system has to identify in order to warn the driver.
Different from other systems the detection of the dangerous situation is based on
the vision channel alone. Radar is only used to assign distance data to visually
detected objects. The contribution represents an important intermediate stage for
future, more cognitive driver assistance systems.
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1 INTRODUCTION

Among the various possible applications of vision systems, the task of driver
assistance is highly interesting as it implicitly contains the challenge of under-
standing a dynamic scene and is at the same time of great commercial and
social importance. The goal of building such an intelligent vision system can
be approached from two directions: either searching for the best engineering
solution or taking the human as a role model. In the latter case, research
results from disciplines like, e.g., psychophysics or neurobiology can be used
to guide the vision system design. While it may be argued that the quality
of an engineered system in terms of isolated aspects like, e.g., object detec-
tion or tracking, is often sound, the solutions lack the necessary flexibility.
Small changes in the task and/or environment often lead to the necessity of
redesigning the whole system. Considering the human vision system, nature
has managed to realize a highly flexible system capable of adapting to severe
changes in the task and/or the environment. Hence one of our main design
goals is to implement a system able to accomplish new tasks without adding
modules or changing the system’s structure. Equally, we aim at getting in-
spiration from the underlying principles of the human vision system and not
directly at engineering efforts to attain its measurable abilities.

It is important to note that we do not focus on building a close ‘psychophysical
model’ of the human vision system that models all its known aspects as close
as possible. Among other things, said models are useful for predicting or ex-
plaining measurements in psychophysical studies with humans. Different from
such a global paradigm, we mimic functionality-related findings of the human
visual pathway in cases known classical approaches do not perform better, are
restricted in their flexibility, or perform less robust. Put differently, the contri-
bution aims at realizing a ‘computational model’ of the human vision system
that allows robust, real-time operation in a real-world environment (please
refer to [1] for a comprehensive discrimination between computational and
psychophysical models of the human vision system). The envisioned system
modulates and parameterizes submodules without being explicitly designed
for specific tasks of a scenario.

Aiming at going beyond standard industrial computer vision applications,
there is an increasing emphasis in the computer vision community on building
so-called cognitive vision systems [2] (i.e., systems that work according to
or get inspiration from human information processing principles) suitable for
solving complex vision tasks. One important principle in cognitive systems is
the existence of top-down links in the system, i.e., informational links from
stages of higher to lower knowledge integration. Top-down links are believed
to be a prerequisite for fast-adapting biological systems living in changing
environments (see, e.g., [3]).
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Returning to the car domain, constraints like, e.g., lane markings and traffic
rules restrict the environmental complexity and ease the driving task consid-
erably. Still, vision-based driver assistance functionalities developed up to now
are mainly capable of dealing with simple traffic situations. While this already
resulted in specialized commercial products improving driving safety (e.g., the
‘Honda Intelligent Driver Support System’ [4] which helps the driver to stay in
the lane and maintain the right distance to the preceding car), the problem of
developing a generic vision system for advanced driver assistance, i.e., capable
of operating in all kinds of challenging situations, is still unsolved.

One possible way to achieve this goal is to realize a task-dependent perception
using top-down links. In this paradigm, the same scene can be decomposed
in different ways depending on the current task. A promising approach for
decomposing the scene is to use a high-performance attention system that
can be modulated in a task-oriented way, i.e., based on the current context.
For example, while driving at high speed, the central field of the visual scene
becomes more important than the surrounding.

Aiming towards such a task-based vision system, this contribution describes
a first instance of a vision architecture that is being developed as perceptual
front-end of an Advanced Driver Assistance System (ADAS). The proposed
system provides a framework that enables the task-dependent tuning of vi-
sual processes via object-specific weighting of input features of the attention
system. The system generates an appropriate system reaction in dangerous
situations (autonomous braking). In major parts, its architecture is inspired
by findings in the human visual system and organizes the different function-
alities in a similar way. For a first proof of concept, we focus on assisting
the driver during a critical situation in a construction site. For the analysis
of the attention system, we evaluated the construction site scenario as well
as a challenging inner-city traffic scene to illustrate the performance gain of
the top-down approach in a more complex environment. Furthermore, addi-
tional images of real world traffic scenes are used to evaluate different system
modules. The overall system achieves real-time performance on a prototype
car and is evaluated offline on 10 construction site streams and online on 60
documented test drives. The obtained results demonstrate the feasibility and
benefits of top-down attention and the chosen architectural approach in a
complex ADAS.

The contribution is organized as follows: In Section 2 we relate our work
to research on visual attention systems and existing car vision architectures.
Subsequently, Section 3 provides an overview of the system architecture and
goes into the details of the visual attention processes. Evaluation results for
the most crucial system modules as well as the overall system performance
measured in an experimental setup are given in Section 4. The contribution
ends with a summary and an outlook on future work in Section 5.
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2 RELATED WORK

In the following section, an introduction and overview of existing computa-
tional attention models is given. Since the focus of this contribution is on
system-related aspects that allows for building the vision part of an Advanced
Driver Assistance System running in real-world scenarios, the remaining Sec-
tion will then focus on existing vision systems suitable for the vehicle domain.

Facilities for controlling and managing traffic are always visually conspicuous.
For example, lane markings are white on a typically dark road and traffic
signs or traffic lights have bright colors. According to that, in many countries
flashy advertisement is prohibited in the proximity of roads. The said exam-
ples exploit a key aspect of the human visual processing - the principle of early
selection. With vision being the most important sensory modality of humans
having the highest information density, the named principle significantly accel-
erates the processing of vision data. More specifically, the abundance of visual
stimuli in the world is prefiltered or preselected early to match the restricted
cognitive capacity of the human brain. In plain words, the principle of early
selection suppresses sensor data that is not relevant to the current needs or
goals of the system causing a colorful, bright traffic sign to visually pop-out in
a traffic scenario (see [5] for details). For realizing said early selection princi-
ple the human disposes of the so-called attention mechanism, which preselects
certain scene elements.

More specifically, the human vision system filters the high abundance of en-
vironmental information by attending to scene elements that either pop out
most in the scene (i.e., objects that are visually conspicuous) or match the
current task best (i.e., objects that are compliant to the current internal state
or need/task of the system), while suppressing the rest. For both attention
guiding principles psychophysical and neurological evidence exists (see [6,7]).

Furthermore, the psychophysical experiments of Simons and Chabris [8] im-
pressively showed that the task has a modulating effect on attention. The
gathered results were formalized in the concept of ‘inattentional blindness’.
In their experiments, participants did not notice unexpected events (like a
black gorilla walking through an indoor scene) when the task (counting ball
contacts of a white basketball team) involved features complementary to the
unexpected events (see Fig. 1).

Following this principle, technical vision systems have been developed that
prefilter a scene by decomposing it into its features (see [9]) and recombining
these to a saliency map that contains high activation at regions that differ
strongly from the surroundings (i.e., bottom-up (BU) attention, see [10] for
the underlying psychophysical attention model). A well-known computational
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Fig. 1. Psychophysical study conducted by [8] marking the human visual attention
as strong mediator between the world and our perception of the world.

BU attention model for saliency calculation is the approach by Itti et al.
[11] that is used in a number of implemented systems. More recent system
implementations additionally include the modulatory influence of task rele-
vance into the saliency (i.e., top-down (TD) attention), see [12] as one of the
first and [13–20] as more recent and probably most influential approaches.
Typically, the named systems apply dynamic weights to different processing
stages, with the task to find a specific object within a predominantly static
indoor scene. A more complete view on a possible architecture for a vision
system that incorporates task-dependent visual attention is given by Naval-
pakkam and Itti [14,21]. The proposed architecture combines top-down (TD)
and bottom-up (BU) influences by using TD weights on the calculated BU
features. However, there is no separation between the untuned BU-saliency
map and the calculated TD saliency maps allowing a weighted combination,
which would ensure the preservation of BU influence in all system states. The
system is evaluated mainly on static indoor scenes and a few static outdoor
scenes. There are only few attention-based vision systems that use a motion
feature (see [22–24]). Given the importance of motion in the human visual
perception, we see integrating the influence of scene dynamics on attention as
a key issue to realize robust human-like vision systems.

In these systems, instead of scanning the whole scene in search of certain
objects in a brute force way, the use of TD attention allows a full scene de-
composition despite restraints in computational resources. In principle, the
vision input data is serialized with respect to the importance to the current
task. Based on this, computationally demanding processing stages higher in
the architecture work on prefiltered data of higher relevance, which saves com-
putation time and allows complex real-time vision applications.

Endowing a vision architecture for an intelligent car with similar, task-based
attention can result in a gain of performance with minimal additional resource
requirements (see Section 4).

In [24], we chose the two related top-down attention systems of Navalpakam
[14] and Frintrop [1] for a detailed structural and functional comparison, since
these impacted our work most. In [24], we also described and tested approaches
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that make our attention system particularly appropriate for the real-world
vehicle domain.

However, numerous other psychophysical and computational attention mod-
els exist (please refer to [1,?,?,?] for a comprehensive overview of the latest
developments in attention research and [25] for an overview of related psy-
chophysical studies).

Regarding typical real-world scenarios in the vehicle domain, the robustness of
biological attention systems is difficult to achieve, given e.g., the high variabil-
ity of scene content, changes in illumination, and scene dynamics. Most com-
putational attention models do not show real-time capability and are mainly
tested in a controlled indoor environment on artificial scenes. Important as-
pects discriminating real-world scenes from indoor and artificial scenes are the
dynamics in the environment (e.g., changing lighting and weather conditions,
dynamic scene content) as well as the high scene complexity (e.g., cluttered
scenes). Dealing with such scenarios requires a strong system adaptation ca-
pability with respect to changes in the environment.

During the vision system design we aimed at a computational efficient sys-
tem implementation for online use on vehicles. The overall system should be
flexible, meaning that a new system task should not lead to the necessity of
realizing new modules or a structural redesign of the whole system. Getting
our inspiration from biology we therefore aimed at a system that exhibits spe-
cific properties without being specifically designed for these properties (e.g.,
our system is able to locate the horizon edge or detect fast moving objects
or red traffic signs without being explicitly designed for these tasks). More
specifically, the design goals of our TD attention sub-system comprised the
development of an object- and task-specific tunable saliency map suitable for
the real-world scenarios in the car domain.

In this contribution, we focus on important conceptual issues crucial for closing
the gap between artificial and natural attention systems operating on real-
world scenes. We show the feasibility of our approach on vision data from the
car domain. The described TD tunable attention system is used as front-end
of the vision system of an advanced driver assistance system (ADAS), whose
architecture is in important parts inspired by the human brain.

Coming to attention-related research in the vehicle domain, the task-dependent
nature of gazing has also been proven while steering a car. Recently, it was
shown in [26] that the performance for dangerous situation detection (a col-
ored motorcycle veering into the vehicle’s path) strongly depends on the fea-
ture match between the current distracting visual task and the unexpected
obstacle. In another example, the gaze of drivers in a virtual environment
was examined [27]. The results show that the performance in detecting stop
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signs is heavily modulated by context (i.e., top-down) factors and not only by
bottom-up visual saliency.

Turning to the domain of complete vision systems developed for ADAS, there
have been few attempts to incorporate aspects of the human visual system.
With respect to attention processing, a saliency-based traffic sign detection
and recognition system was demonstrated in [28]. In terms of complete vi-
sion systems, one of the most prominent examples is a system developed in
the group of E. Dickmanns [29]. It uses several active cameras mimicking the
active nature of gaze control in the human visual system. However, the pro-
cessing framework is not closely related to the human visual system. Without
a tunable attention system and with TD aspects that are limited to a num-
ber of object-specific approaches for classification, no dynamic preselection of
image regions is performed. A more biologically inspired approach has been
presented by Färber [30]. However, their publication as well as the recently
started German Transregional Collaborative Research Centre ’Cognitive Au-
tomobiles’ [31] address mainly human inspired behavior planning whereas our
work described here focuses more on the task-dependent perception aspects.

The only other known vision system approach that attempts to explicitly
model aspects of the human visual system is described by [32]. The system
is somewhat related to the here presented ADAS. However, published after
our work (see, e.g., [33]), the approach allows for a simple attention-based
decomposition of road scenes but without incorporating object knowledge or
pre-knowledge. Additionally, the overall system organization is not biologically
inspired and hence shows limitations in its flexibility.

In contrast to the here presented ADAS, a tendency of most large-scale re-
search projects like, e.g., the European PreVENT project [34] is the decom-
position of the overall functionality into many building blocks and combining
these blocks into subsets for solving isolated tasks. While this ‘divide and con-
quer’ approach does lead to impressive results in specific settings, we believe
the challenge of integrating all these functionalities into a coherently working
flexible system is not yet solved.

In the following Section, the implemented driver system is described in detail.
It contains the following community-related novelties:

• A driver assistance system on a prototype vehicle was implemented that
allows autonomous emergency braking on highways based on vision as the
major cue,

• The realized driver assistance system is based on a computational attention
system as generic front-end of all visual processing allowing task-dependent
scene decomposition and interpretation in real-time.

On a functional level the following novelties could be reached:
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• Computationally efficient decomposition of the Gabor filter response (a spe-
cific saliency feature described in Section 3) in on-off and off-on components,
allowing a gain in selectivity for the attention system,

• A subfeature normalization procedure that assures the comparability of BU
and TD attention without loosing information about the absolute signal
amplitude,

• A biologically motivated homeostasis approach (see Section 3) for making
diverse modalities comparable.

3 SYSTEM ARCHITECTURE

In the following, after defining our design goals, an overview of the imple-
mented vision system structure for driver assistance is given. Subsequently,
crucial system parts are described in more detail.

3.1 Design Goals

The following list gives an overview of the design goals that drove our system
development. We aimed at:

• Realizing a generic system structure whose modules and links between mod-
ules can be modulated (i.e. parameterized) online,

• A system that realizes a specific task-dependent processing without being
explicitly designed for these tasks,

• A system that explicitly takes the human as a role model on the micro level
(mimicking human signal processing principles, e.g., specific filter kernels
that were measured in the brain, retina-like color processing) and on the
macro level (mimicking the organization and combination of signal flows in
the brain),

• Searching for biological inspiration is not a global paradigm in our design
process, in the sense that we mimic functionality-related findings of the
human visual pathway only in cases known classical approaches do not
perform better.

In order to reach these goals the following cognitive principle were applied or
gave us motivation:

• Top-down links (i.e., links from higher levels of system integration that
modulate lower levels of system integration) that allow a task-dependent
modulation of lower signal processing principles,
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• The principle of Inhibition of Return, since it increases the efficiency of
visual search,

• A visual attention system, since it allows for generic, task-dependent scene
decomposition and top-down tuning,

• The principle of early selection that improves the relevancy of input data of
higher system levels based on a task-dependent preselection of input data,

• A separation into ‘what’ and ‘where’ processing pathways similar to the
assumed organization of the human brain.

3.2 Overview

The overall architecture concept to realize task-based visual processing is de-
picted in Fig. 2. It contains a distinction between a ‘what’ and a ‘where’
processing path, somewhat similar to the known properties of the human vi-
sual system where the ‘dorsal’ and ‘ventral’ pathways are typically associated
with these two functions. Among other things, the ‘where’ pathway in the
human brain is believed to perform the localization and coarse tracking of a
small number of objects that are relevant for the current task. This tracking
is performed by the human visual system without focusing the eye gaze on
individual objects to be tracked [35], i.e., tracking does not require high res-
olution. In contrast, the ‘what’ pathway considers the detailed analysis of a
single spot in the image. In the human visual system this is intimately bound
to the current eye gaze, as the human eye possesses a high resolution in the
central 2-3◦ (foveal retina area) of the visual field only.

In our vision system, the eye gaze is performed virtually as the camera mounted
in the car has a constant resolution in the complete field of view. Changing
the eye gaze is therefore equivalent to shifting the processing to another spot
of the input image. This spot is analyzed by the classifier (higher part of the
‘what’ pathway) in full resolution while the whole image is analyzed in the at-
tention sub-system (lower part of the ’what’ pathway) as well as in the ‘where’
path in lower resolution. Processing in these two pathways is believed to occur
in parallel in the human brain, but their intertwinings are as yet not known
in too much detail. We here adopt the idea of continuously tracking a small
number of objects in each image of the incoming visual stream to coarsely
represent the current scene and at the same time acquiring more detailed in-
formation on one additional object. We therefore have two analysis processes
running in parallel in our system (see Fig. 2).

The detailed organization of the two processing streams in our architecture
concept is as follows: The input image is analyzed in the ‘what’ path (de-
picted on the left in Fig. 2) for salient locations using a variety of visual
features including orientation, intensity, color, and motion. This visual atten-
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Fig. 2. Architecture concept of our vision-based driver assistance system.

tion combines bottom-up (BU) and top-down (TD) pathways and is described
in more detail in Section 3.3. The resulting saliency map Stotal is modulated
by suppressing image regions that contain known objects, i.e., that have been
detected earlier. The system stores all detected objects in a so-called Short
Term Memory (STM) that provides the position information of known objects
as top-down link. The suppression of saliency areas is also known as Inhibition
of Return (IoR) in the human visual system [36] and is included in numerous
other computational attention models to facilitate the visual attention-based
search. However, the manner how the IoR is used in computational attention
models differs in some aspects from findings in the human vision system (see
[36]). Among other things, the IoR: 1) Was found to be attached to environ-
mental locations, instead of retinal coordinates as in our attention system, 2)
Also depends on planed fixation points and scene locations, which suggests nu-
merous additional modulating influences. Still, major IoR-related properties
found in the human vision system are in accordance with the here presented
system. For instance, as stated in [36] the IoR: 1) Can last for several seconds,
2) Was demonstrated to be attached to moving objects, which suggests that
it is coupled to brain regions that support object tracking, 3) Facilitates vi-
sual foraging (i.e., visual search). The stated performance gain in visual search
caused by using the IoR approach and the influence on the STM will be shown
in Section 4.

A simple maximum search is used on the resulting saliency map to find the
currently most salient point in the scene. The Focus of Attention (FoA) is de-
termined by region growing on the overall saliency map using the most salient
point as an anchor. For the named approach, we got inspiration by [1]. The
saliency-based region growing approach is generic, meaning that it has the
advantage of being independent from the type of the TD search target. De-
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pendency of the segmentation algorithm from the search target would require
the development of object-specific segmentation approaches and would hence
restrict the approach to a limited number of objects. The drawback of said
approach is that the segmentation might fail in case a salient object back-
ground or another close and salient object is present. Since the used classifier
also supports roughly segmented input data that can contain other objects or
background, the approach is still robust enough for using it on real world data
on our prototype car (see evaluation results in Section 4). However, we plan
to integrate a so-called figure-ground segmentation approach that is based on
Learning Vector Quantization in order to solve the named challenges (see [37]
for details). The FoA (pos, RoI) is then fed to the fast feedforward object
recognition system (see Section 3.6).

The resulting object position and the image segment (pos, template) are stored
together with the object label (i.e., the object class) in the STM in order to be
coarsely tracked in subsequent images in the ‘where’ path. Before insertion,
it is checked whether the new object can be associated to a known object, in
this case the object already stored in the STM is updated. Concluding one
iteration, for all objects in the STM a distance estimation (dist) is calculated
based on fusing measurements from radar, depth from familiar object size (also
called depth from object knowledge, see [5]) and from bird’s eye view [38] using
an Extended Kalman Filter (see Section 3.7). This information is stored in a
separate egocentric representation that is directly suitable for assessing the
current danger level in the scene and generating a warning if necessary.

All objects contained in the STM are constantly tracked in the ‘where’ path
based on an appearance-based tracker that uses a second order motion model
for prediction and a local correlation step for the refinement of the new object
positions. In each iteration the position is updated in the STM and a new
object template is stored. In case the prediction does not match (no good
correlation found) the object is deleted from the STM and therefore its position
will not be inhibited any longer in the ‘what’ pathway. Consequently, the
attention will be focused on the missing object in one of the next images if
the object is still present and salient. This way, all objects being recognized
and behaving as predicted are coarsely tracked while the ‘what’ attention is
always focused on new objects and objects behaving unexpectedly. Note that
the rather simple tracking method is sufficient for many applications in the
automotive domain where most objects are rigid (e.g., a car) and therefore
the main appearance changes are caused by small translations and scaling. In
a subsequent ADAS implementation, we introduced a 3D prediction approach
that allows the simple compensation of the camera vehicle’s ego motion (see
[39]), which in turn makes the tracking more robust.

The key aspect of our architecture lies in the introduction of top-down aspects
(like, e.g., task-dependent tunable attention generation via sets of weights and,

11



in parallel, inhibiting known object positions predicted by tracking) resulting
in the ability to cope with highly dynamic traffic scenes using limited compu-
tational resources. The top-down tunable attention system is a key principle
of our ADAS, since such preprocessing leads to a considerable reduction of
scene complexity by restricting further processing steps to image regions that
are interesting according to the current system task.

3.3 Attention Sub-System

In the following, our biologically motivated attention system is described that
is one of the key aspects of the contribution at hand. The description is done
in a rather compressed fashion. More details on the design goals as well as the
five explicit novelties of the realized attention system can be found in [24].

A simplified sketch of the visual attention sub-system is depicted in Fig. 3.
It consists of a number of features that are extracted from the image on 5
scales derived from a Gaussian image pyramid starting from 256 × 256 pixels.
The Gaussian image pyramid was calculated by low pass filtering and dyadic
downsampling. The lower right half of Fig. 3 shows the bottom-up processing
of the different features to obtain bottom-up conspicuity maps that are com-
bined to form the bottom-up saliency SBU. The conspicuity maps represent
the different modalities (e.g., color, motion, edges) supported by the system.
In the upper right half the top-down processing is shown where all subfeature
maps are weighted and combined into the top-down conspicuity maps. All
top-down conspicuity maps are combined into the object-specific top-down
saliency map STD and a nonlinear operator is applied to cut off negative val-
ues. The overall saliency map Stotal is calculated by linearly combining the
normalized top-down STD and bottom-up saliency maps SBU depending on
the current task of the ADAS using parameter λ (see Eq. (1)).

Stotal = λSTD + (1 − λ)SBU (1)

The resulting saliency map Stotal is passed on to the FoA generation.

As features (modalities) we currently use odd and even Gabor filters [40] with
additional on-center/off-center separation (for details see Section 3.5) in 4 ori-
entations, Difference of Gaussians filters (DoG) as on-center/off-center, mo-
tion from differential images and the biologically motivated RGBY color space
as color opponent and double color opponent [1]. In sum we use M=7 feature
types (modalities) that in turn are composed of 136 subfeature maps. How-
ever, it is important to note that not all modalities can be applied in BU
and TD pathway (e.g., plain colors contain no BU information and are hence
not supported in the BU pathway, see Fig. 3). The feature map responses are
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Fig. 3. Simplified sketch of the visual saliency that is part of our attention sub-sys-
tem (showing for each feature only one output).

passed through a preprocessing step that consists of normalization, squaring,
and nonlinear noise suppression by a sigmoidal function (see Section 3.4 for
further details). In addition to combining these features to obtain a bottom-up
saliency map [11,10], we also compute top-down saliency maps using object-
specific feature map weights. The object-specific weights are inspired by [15,41]
in the way the weights are obtained: During a supervised training stage, the
feature map activations of an object (region of interest(RoI)) are compared
to the feature map activations in its surrounding/background (see Fig. 4 for
a visualization). From this comparison, the relative importance of a feature
(its signal-to-noise (SNR) ratio) can be determined. For each trained object
and feature channel Fi we therefore get a top-down weight wTD

i that is pro-
portional to how well the feature channel i is able to discriminate the object
from its surrounding:
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wTD
i =



























mRoI,i

mrest,i
∀

mRoI,i

mrest,i
≥ 1

−
mrest,i

mRoI,i
∀

mRoI,i

mrest,i
< 1

(2)

with m{RoI,rest},i =

∑

∀u,v∈{RoI,rest}
Fi(u, v)

size region {RoI,rest}

and Fi(u, v) =











Fi(u, v) ∀(u, v), Fi(u, v) ≥ φ

0 else

Region of interest
(RoI) for TD weight

set calculation

Background (rest)

Fig. 4. Visualization of the object training region (RoI) for TD weight calculation
against the background (rest).

According to Eq. (2) matching features are boosted (excitation) and irrelevant
features are suppressed (inhibition). As visualized in Fig. 3, the j = 1..M TD
conspicuity maps result from a weighted combination of the Nj TD subfeature
maps within a certain feature type j (see Eq. (3)).

CTD
j =

Nj
∑

i=1

wTD
i,j FTD

i,j (3)

It is important to note that the performance gain of this approach compared to
most of the attention systems described Section 2 lies in the explicit inhibition
of non-target regions combined with a high feature selectivity. The conspicu-
ity maps CTD

j are combined to an object-specific top-down saliency map STD
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by modality specific weights wCj
(conspicuity weights) that are proportional

to the confidence one can assign to the modality j in the current scene. This
is done dynamically depending on, e.g., the current weather or lighting con-
ditions (see Section 3.4). The TD saliency results from a weighted sum of 6
different conspicuity maps (even Gabor on-off, odd Gabor off-on, DoG on-
off, DoG off-on, RGBY color opponent, RGBY double color opponent), see
Eq. (4).

STD =
6

∑

j=1

wCj
CTD

j (4)

In addition, we also calculate a biased bottom-up saliency map (see Eq. (6))
by combining all feature maps weighted with their specific bottom-up weights
wBU

i resulting in the weighted sum of 6 BU modalities (Gabor and DoG as for
TD, RGBY double color opponent, motion), see Eq. (5):

CBU
j =

Nj
∑

i=1

wBU
i,j FBU

i,j (5)

SBU =
6

∑

j=1

wCj
CBU

j (6)

As wBU
i we choose a set of weights that shows good performance for most

situations in the vehicle domain. In the object-unspecific bottom-up path no
inhibition takes place, since its purpose is to evaluate the general unspecific
saliency of a scene.

The individual bottom-up feature maps FBU
i are additionally preprocessed

by a pop-out operator that globally amplifies maps with a small number of
maxima and attenuates maps with many maxima [11]. The pop-out operator
multiplies the feature maps with a dynamic factor wsparse

i computed at runtime
(see Eq. (7)). The factor is inversely proportional to the number of pixels that
are near the maximum of the feature map. Additionally, wsparse

i is increased by
a factor of 2 for each higher (i.e., smaller) scale level s in the image pyramid. As
higher levels tend to contain more pixels fulfilling the threshold defined in the
denominator of Eq. (7), the increase of the factor s maintains the comparability
of scales:

wsparse
i =

√

√

√

√

√

2s

∑

∀u,v with Fi(u,v)>ξ

Fi(u, v)
for s = [0, 4] and ξ = 0.9 · Max(Fi) (7)

By applying this operator, the bottom-up path is designed to amplify feature
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maps that show few maxima, i.e., that are sparse. In consequence, feature maps
containing image regions that pop out are boosted. It is of crucial importance
that the top-down feature maps do not pass a similar pop-out step, since
by tuning the top-down weights, we aim at finding objects based on feature
conjunctions. The individual feature map responses for the searched objects
might only reach medium values, whereas the combination of all relevant maps
leads to a strong response in the resulting saliency map. This explicit differ-
entiation is not made in other top-down attention systems, which leads to a
performance loss, as was shown in [24].

For weighting the feature maps we currently use TD weight sets for signal
boards and cars (wTD

i,sigboard and wTD
i,car) that were calculated in a supervised

training step. In a more recent version of our ADAS these weights are com-
puted dynamically at runtime (see [39]). In our current (see [42]) and future
work it is envisioned to use attention weights to track and even learn new
objects.

3.4 Feature Postprocessing, Normalization, and Homeostasis of Conspicuity
Maps

In the following the feature postprocessing is described, focusing on the used
normalization procedure (see also Fig. 6) that makes our approach different
from other attention systems. All subfeatures are normalized to the theoretical
maximum value that can be expected for the specific subfeature map (not the
current maximum on the map). For example, for DoG and Gabor this is done
by determining the filter response for the ideal input pattern, maximizing
the filter response. Figure 5 shows the ideal DoG and 0◦ even Gabor input
pattern (suitable for the filter kernels depicted in Fig. 7a and Fig. 7c). This

(b)(a)

Fig. 5. Input patterns that maximize the filter response. The maximum of this filter
response is used for normalization: (a) Ideal DoG input pattern, (b) Ideal 0◦ even
Gabor input pattern.

procedure ensures comparability between subfeatures of one modality while
preserving information about the absolute feature amplitude. Now, the signal
power is calculated by squaring, after which a sigmoid function is applied for
noise suppression. A parameter Ksupp shifts the sigmoid function horizontally,
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which influences the degree of noise suppression and the sparseness of the
resulting subfeature maps.

( )
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Fig. 6. Postprocessing of feature maps

The subfeature normalization procedure ensures intra-feature comparability,
but for the overall combination, comparability between modalities (i.e., con-
spicuity maps) is required as well. We solve the normalization problem of
the conspicuity maps by dynamically adapting the conspicuity weights wCj

for weighting the BU and TD conspicuity maps CBU
j and CTD

j . This concept
mimics the homeostasis process (see e.g., [43]), which we understand as the
property of a biological system to regulate its internal processes in order to
broaden the range of environmental conditions in which the system is able to
survive. More specifically, the w̃Cj

(t) are set to equalize the activation on all
j = 1..M BU conspicuity maps (see Equation (8)), taking only the Nj pixel
over the threshold ξ = 0.9 · Max(CBU

j ) into account. Exponential smoothing
(see Equation (9)) is used to fuse old conspicuity weights wCj

(t− 1) with the
new optimized ones w̃Cj

(t). The parameter α sets the velocity of the adaptation
and could be adapted online dependent on the gist (i.e., basic environmental
situation) via a TD link. In case of fast changes in the environment α could
be set high for a brief interval, e.g., while passing a tunnel or low in case the
car stops. Additionally, we use thresholds for all M conspicuity maps based
on a sigma interval of recorded scene statistics to avoid complete adaptation
to extreme environmental situations.

w̃Cj
(t) =

1
1

Nj

∑

∀u,v with CBU

j
(u,v)>ξ

CBU
j (u, v)

and ξ = 0.9 · Max(CBU
j ) (8)

wCj
(t) = αw̃Cj

(t) + (1 − α)wCj
(t − 1) for j = 1..M (9)

Before combining the BU and TD saliency maps using the parameter λ (see
Eq. (1)) a final normalization step takes place. Like the subfeature and con-
spicuity maps, the saliency maps are normalized to the maximum expected
value. For this we have to step back through the attention sub-system tak-
ing into account all weights (wsparse

i , wBU
i , wTD

i ) and the internal disjoint-
ness/conjointness of the features to determine the highest value (vBU

max,j and
vTD
max,j) a single pixel can achieve in each BU and TD conspicuity map j. We

17



define a feature as internally disjoint (conjoint), when the input image is de-
composed without (with) redundancy in the subfeature space. In other words
the recombination of disjoint (conjoint) subfeature maps of adjacent scales or
orientations is equal to (bigger than) the decomposed input image. Since DoG
and Gabor are designed to be internally disjoint between scales and orienta-
tions (see Chapter 2) the maximum pixel value on a conspicuity map j is equal
to the maximum of the product of all subfeature and/or sparseness weights of
the subfeatures it is composed of (wsparse

i and wBU
i for BU as well as wTD

i for
TD). Motion is conjoint between scales, therefore we sum up the products of
all subfeature motion weights wBU

i and their corresponding wsparse
i to get the

maximally expected value on the motion conspicuity map. The contribution
of the color feature to the saliency normalization weight is similar but more
complex.

Since appart from DoG and Gabor there is disjointness between conspicu-
ity maps the maximum possible pixel values for all BU and TD conspicuity
maps, calculated as described above, are multiplied with the corresponding
wCj

and added to achieve the normalization weights wTD
norm and wBU

norm for the
TD and BU attention (see Eq. (10) and Fig. 3 for the position the normaliza-
tion weights are applied). Using this approach, wTD

norm will adapt when the TD
weight set changes (see Eq. (11)).

wBU
norm =

1
∑M

j=1 kjwCj
vBU
max,j

(10)

wTD
norm =

1
∑M

j=1 kjwCj
vTD
max,j

(11)

With:

kj =











0.5 for j ∈ {DoG, Gabor}

1 for j /∈ {DoG, Gabor}

It is important to note that DoG and Gabor features are conjoint, mean-
ing that they represent the same signal characteristics. Put differently the
conspicuity maps for DoG and Gabor are not independent. As discussed in
Chapter 2 using both DoG and Gabor is still helpful, since the signal decom-
position is different for both filter types. The conjointness is taken into account
in the attention normalization procedure in Eq. (10) and (11) in the form of
the factor kj that decreases the integral influence of DoG and Gabor on the
overall attention.

Using this approach wTD
norm adapts when the TD weight set wTD

i changes,
yielding a TD saliency map STD that is comparable to SBU for all object-
specific TD weight sets.
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3.5 High Selectivity of Attention Features

In order to yield high hit rates in TD search, the features of an attention
system need high selectivity to provide as much supporting and inhibiting
maps as possible. At the same time, high efficiency is needed due to con-
straints in computational resources. An approach fulfilling these demands is
the separation of the DoG filter in on-center (called on-off in the following) and
off-center selectivity (off-on) as is emphasized in [1] (see Fig. 7a and Fig. 7b).
To realize such an on-off/off-on separation the DoG filter response is separated
into its positive and negative part, which is equivalent to the computationally
more demanding usage of the two different filter kernels depicted in Fig. 7a
and Fig. 7b. Coming to the Gabor filter, dividing the complex Gabor filter
response into its real and imaginary part allows the efficient separation into
edge and line selective responses (equivalent to separately filtering with an odd
and even Gabor kernel, depicted in Fig. 7c-f). In addition to this well-known
concept, we transfer the DoG on/off-center concept to the Gabor filter and
separate the odd and even Gabor responses into their positive and negative
parts. For example, an on-off versus off-on even Gabor separation allows for
the efficient separation of white street markings from shadows on the street
and an on-off/off-on separation for odd Gabor allows for the crisp suppression
of the sky edge present in most scenes in the car domain.

(a) DoG on−off (b) DoG off−on (c) 0° Even Gabor on−off

(d) 0° Even Gabor off−on (e) 0° Odd Gabor on−off (f) 0° Odd Gabor off−on

Fig. 7. Application of filter kernels on simple test images (negative filter response
is cut off). Both the 2 DoG features (a),(b) and the 4 Gabor features (c)-(f) are
realized with 1 filter operation each. Every image shows on the left the input test
images and on the right the respective filter response for the filter kernel in the
bottom left corner.

In sum, 4 different Gabor-based features are derived from one filtering step.
Each of these 4 Gabor features consists of 20 independently weighable sub-
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feature maps (4 orientations on 5 scales each). The well-known concept of de-
composition into scales via the usage of image pyramids allows efficient image
filtering. In contrast to other attention approaches, we weight the subfeatures
on all scales independently (e.g., no weighting on scale level [15]). In addition,
the usage of the motion feature calculated from difference images allows the
system to detect and separate between slow and fast moving objects.

3.6 Object Recognition

For object classification, we use a appearance-based approach, where we per-
form the classification only on the image segment provided by the FoA seg-
mentation. Note that for object recognition the original image resolution of
800 × 600 pixels is used, i.e., the object position and size provided by the
saliency system are transformed appropriately.

The object recognition module is based on a biologically motivated processing
architecture proposed in [44]. It uses a strategy similar to the hierarchical
processing in the ventral pathway of the human visual system by creating a
classification hierarchy. Unsupervised learning is used for the lower levels of
the hierarchy to determine general features that are suitable for representing
arbitrary objects robustly with regard to local invariance transformations like
local shift and small rotations. Only at the highest level of the hierarchy object-
specific learning is carried out, i.e., only this layer has to be trained for different
objects. This architecture can be applied to the difficult case of segmentation-
free recognition that we have to deal with, as the saliency segmentation only
provides a rectangular image segment and no object-specific segmentation.

Training is done by presenting several thousand color image segments with
changing backgrounds for back views of cars and signal boards (see also [45]).
The learning algorithm automatically extracts the relevant object structures
and neglects the clutter in the background. The output of the classifier is the
identity/class of the recognized object and a confidence value where a thresh-
old is used to reject object hypotheses with a low confidence. The threshold
is chosen so that only a small number of false positives can occur for cars,
as a wrong car detection could lead to a false emergency braking. If a car is
not recognized due to the high threshold, it is stored in the STM as unknown
and tracked rather shortly for N frames before it is removed from the STM.
Subsequently, if the car is still a salient object, a new FoA will be generated
and recognition is performed again. As now the car may be closer due to the
ego motion of our vehicle, the image patch may be larger and therefore may
have a higher confidence resulting in a correct recognition.

As described in Section 3.2, with the ‘what’ pathway, the presented system
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uses a cascade of attention-based object detection followed by an appearance-
based object classification. According to [46], object recognition in human
perception is organized in a similar way. As argued above, the central hypoth-
esis regarding the here presented attention-based preselection is that it saves
computation time and lowers the number of false positive classifications due to
the high relevancy of input data at the classifier stage. However, the question
arises if in terms of computational demands, the approach is superior to an
exhaustive classification of the whole image (e.g., by classifying overlapping
image patches). As argued in [1], in case of a complex and thereby slow clas-
sifier, the advantages of an attention system are obvious. Since in the vehicle
domain false detections might have severe consequences, with [44] a reliable
and hence complex classifier was applied in the presented system.

Even for applications that allow the usage of fast (and less reliable classifiers),
as Viola-Jones (see [47]) the usage of an attention system saves computational
resources, as was shown in [1]. The results gathered by the author show that
already in case of more than 1 object class, the computation time needed
by the attention system is compensated by the need of fewer classifier cycles.
Furthermore, based on numerous experiments, [1] could show that the number
of false classifications is reduced in case an attention system for preselecting
image regions is used as compared to applying exhaustive classification.

3.7 Depth Cues

The current ADAS uses four independent depth sources (see Fig. 9) that
are combined using weak fusion (see [48]). Weak fusion combines the depth
sources based on the reliability of the specific cues. It is realized here using an
Extended Kalman Filter (EKF) that combines the depth cues at each time step
via dynamic weights depending on static predefined sensor variances and the
current availability of the depth cues (as not every cue is available in each time
step). The EKF uses a second order process model for its prediction step that
models the relevant kinematics in the car domain (velocity and acceleration).
The resulting depth values are used to assign depth to detected objects in the
image.

Depth from radar (Radio Detecting and Ranging) is obtained from a com-
mercial standard vehicle equipment sensor, which delivers sparse point-wise
measurements of low longitudinal but higher lateral uncertainty (for an ex-
ample see Fig. 9b). Radar sensors evaluate the reflections (echoes) of bundled
micro wave beams (typically between 400 MHz and 80 GHz). More specifi-
cally, the time of flight ttof is used to determine the object distance Zradar (see
Eq. (12)). For measuring the time of flight the individual beam packages must
be marked and recognized, which can be done by modulation and demodula-
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tion of the signal amplitude, frequency or phase. The object velocity vdop is
determined based on the Doppler shift ∆f (see Eq. (13)).

Zradar =
c0 · ttof

2
(12)

With: c0 ... velocity of propagation (speed of light) ≈ 300000
km

s
ttof ... time of flight (to the object and back)

vdop =
c0 · ∆f

2f0
(13)

With: c0 ... velocity of propagation (speed of light) ≈ 300000
km

s
∆f ... measured Doppler frequency shift

f0 ... carrier frequency

Using radar sensors, the object distance and velocity can hence be measured
with independent approaches. Different from visual sensors, radar is very ro-
bust against changing weather conditions, which makes it an important cue
that increases the system robustness.

Depth from bird’s eye view: For computing the distance of objects that are
positioned on the drivable path the bird’s eye view is used. The bird’s eye view
is a metric representation of the scene as viewed from above (see Fig. 8a). The
cue is able to detect and estimate the distance of objects present on the ego
vehicle’s and neighboring lane (as opposed to the perspective image). Work-
ing on this representation for estimating object distances has the advantage
that the cumbersome non-linear projection from 3D world coordinates to the
2D image plane (see Eq. (14) and (15)) is intrinsically compensated. As such,
world position coordinates can directly be assigned to a detected object with-
out further processing. Furthermore, by this transformation, the detection of
lanes and objects can be realized easier than when working on the projected
camera image, since expectations regarding typical metric lane widths can be
integrated easily into the algorithm. The bird’s eye view is calculated on the
undistorted pixels v and u based on Eq. (14) and (15) by inverse perspective
mapping of the 3D world points X, Y , and Z (see Fig. 8b for a visualization
of the used coordinate system) to the 2D (u,v) image plane. Equation (14)
and (15) use the 3 camera angles θX , θY , and θZ , the 3 translational camera
offsets t1, t2, t3 (see Fig. 8b), the horizontal and vertical principal point u0

and v0 as well as the horizontal and vertical focal lengths fu and fv (focal
lengths that are normalized to the horizontal and vertical pixel size respec-
tively). The equations describe how to map a 3D position of the world to the
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Fig. 8. (a) Visualization of the bird’s eye view, (b) Coordinate system and position
of the camera.

2D image plane (refer to [38]). More specifically, only the image pixels (u,v)
that are needed to get the metric bird’s eye view (i.e., the XZ-plane) dense
are mapped, which also leads to low computational demands. The usage of
inverse perspective mapping makes the inversion of Eq. (14) and (15) obsolete,
when computing the bird’s eye view.

u = −fu

r11(X-t1) + r12(Y -t2) + r13(Z-t3)

r31(X-t1) + r32(Y -t2) + r33(Z-t3)
+ cu (14)

v = −fv

r21(X-t1) + r22(Y -t2) + r23(Z-t3)

r31(X-t1) + r32(Y -t2) + r33(Z-t3)
+ cv (15)
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R = RXRY RZ =















r11 r12 r13

r21 r22 r23

r31 r32 r33















, (16)

r2
11 + r2

12 + r2
13 − 1 = 0

r2
21 + r2

22 + r2
23 − 1 = 0

r2
31 + r2

32 + r2
33 − 1 = 0 (17)

r11r21 + r12r22 + r13r23 = 0

r11r31 + r12r32 + r13r33 = 0

r21r31 + r22r32 + r23r33 = 0

As can be seen in Eq. (14) and (15) the 3D world position coordinates X, Y ,
and Z of all image pixels (u,v) are needed. By using a monocular system, one
dimension (the depth Z) is lost. A solution to this dilemma is the so-called
flat plane assumption. Here, for all pixels in the image, the height Y is set to
0. Based on this, only objects in the image with Y = 0 (especially, the street
we are interested in) are mapped correctly to the bird’s eye view, while all the
other regions are stretched to infinity in the bird’s eye view (for example the
car in Fig. 9d).

Now, a vertical grow algorithm with dynamic thresholds searches for disconti-
nuities in the bird’s eye view and assigns a distance value to them (see Fig. 9d).

In the rectified image (i.e., the image is remapped to be equivalent to an image
with all 3 camera angles zero) the following direct relation between the vertical
pixel value v and the depth Zbirds exists (see Eq. (18)).

Zbirds =
fv t2

(v − v0)
(18)

With:

t2 ... camera height above the ground

v0 ... the vertical principal point

v ... vertical pixel position that shows significant contrast change

fv ... Normalized focal length

Depth from object knowledge calculates the distance of an object Zobj

(see Eq. (19)) using knowledge about the area the object covers on the im-
age chip (width Wpixel and height Hpixel), the width and height of the ob-
ject in the real world drawn from experience (Wreal and Hreal) as well as
the intrinsic parameters of the sensor (αu = focal length/pixel width and
αv = focal length/pixel height). A prerequisite for depth from object knowl-
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edge is a reliable segmentation algorithm. Currently we use histogram-based
segmentation on an image region that is pre-segmented by our region growing
algorithm working on the saliency (see Fig. 9c)

Zobj,W ≈
Wreal αu

Wpixel

and Zobj,H ≈
Hreal αv

Hpixel

(19)

Depth from Stereo Disparity: The perception of stereoscopic depth is based
on the interpretation of the differences between the projected images of both
eyes (so-called parallax). An isolated point in the 3D world is projected to
slightly different positions on the retina of both eyes, since these have a hori-
zontal distance, the so-called basic distance. The horizontal shift between the
images is called lateral disparity, see [49]. In addition to the lateral disparity,
other flavors of disparity exist (see [49]) that can also cause an impression of
depth - still the lateral disparity seems to be the most important disparity-
related depth cue and is therefore also in the focus of the following reflections.
For detecting lateral disparity (for simplification called disparity in the fol-
lowing) the detection of correspondences between the left and right eye is
necessary. Here, ambiguities are possible, due to differences in illumination
and partial occlusion between both images. Especially, local regions of low
texture can lead to the well-known aperture problem, which is also a chal-
lenge for the optical flow computation (refer to [50]). Furthermore, differences
and changes in the internal optical parameters of both eyes exist that influ-
ence the projections and hence the detected lateral disparity. Still, the human
vision system can cope with these challenges by continuous adaptation mech-
anisms. How these challenges are solved by the human vision system is largely
unknown. Designing a technical stereo system that closely mimics the pro-
cessing steps in the brain is therefore not possible up to now. However, the
engineered approaches show sound results, but have limitations also.

Based on the disparity image the 3D world position X, Y , and Z for all
image pixels can be computed using Eq. (20) (see Fig. 9a), (21), and (22).
The equations result from a transformation of Eq. (14) and (15), setting all
camera angles to zero, since the disparity computation was done on rectified
images.

25



Zstereo(u, v) =
fuB

D(u, v)
+ t3 (20)

Ystereo(u, v) =
Z(v − v0)

fv

+ t2 (21)

Xstereo(u, v) =
Z(u − u0)

fu

+ t1 (22)

With: B... basic distance between the left and right camera’s principal point

fu, fv... normalized focal length [in pixels]

D(u, v)... disparity

u0, v0... principal point

t1, t2, t3... translational camera offset

3
9

.4

1
8

.3 7
1

.5

2
5

.2

Bird’s eye view

Width in m

D
is

ta
nc

e 
(d

ep
th

) 
in

 m

−10 0 10

50

40

30

20

10

0

1
7

.8

1
6

.7

2
8

.0

1
2

.1

28
.7 9.

6

25
.8

17
.2

25
.5

14
.4

(b)(a)

(d)(c)

Fig. 9. Used depth cues: Depth from (a) Stereo disparity, (b) Radar, (c) Object
knowledge, (d) Bird’s eye view.
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4 RESULTS

4.1 Evaluation of System Modules

Normalization - Comparable TD and BU saliency maps: The used
feature normalization (described in Section 3.4) prevents noise on the saliency
maps and ensures the preservation of the absolute level of feature activation.
Using a TD weight set that supports object-specific features our normalization
hence ensures that the TD map will show high activation if and only if the
searched object is really present. Figure 12a shows based on a construction
site scenario as depicted in Fig. 11a that the maximum attention value on the
TD saliency map for cars rises when the car comes into view, which would
not be present using the normalization approach found in literature (see, e.g.
[11]).

The influence combining the now comparable TD and BU saliency maps for
cars and reflection posts (e.g., useful for unmarked road detection as done
in [51]) as trained search objects is depicted in Tab. 1, showing that TD
improves the search performance considerably. It is important to note that
besides an exchange of the training images no modification in the system
structure is required, when changing the search object. For evaluation the
measures average FoA hit number (Hit) and average detection rate (DRate)
were calculated. While DRate is the ratio of the number of found task-relevant
objects to the overall number of task-relevant objects, Hit states that the
object was found on average with the Hit ’th generated FoA. Hence the smaller
Hit the earlier an object is detected see [1] for a more detailed definition of
these measures). The choice of training images has only small influence on
the search performance as the comparable results for different sets of training
images in Tab. 1 show.

The evaluation shows highest hit numbers and detection rates for pure TD
search (λ = 1). However, it is important to note that pure TD search would
lead to a suppression of unexpected objects (inattentional blindness, see Sec-
tion 2) and would hence potentially cause dangerous situations. The default
value for λ was hence set to 0.5 for the online tests. This setting allows the si-
multaneous detection of a specific object class (in this case vehicles) and other
salient objects (as, e.g., the horizon edge, signal boards or unexpected dan-
gerous objects in the path). In an ADAS that succeeded the here presented
system, we concentrated on improving the system design in order to allow
the simultaneous detection of multiple object classes based on the presented
attention system (see [39]).

The presented results support the generic nature of the TD tunable attention
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# Test # Trai- Hit (DRate)

Target images ning im λ = 0 λ = 0.5 λ = 1

(objects) (BU) (BU & TD) (TD)

Cars 54 (self test) 1.56 (93.1%) 1.53 (100%)

Train. set 1 3 3.06 1.87 (89.7%) 1.82 (96.6%)

Train. set 2 54 (58) 2 (56.9%) 1.90 (84.5%) 1.76 (93.1%)

Train. set 3 3 1.96 (82.8%) 1.94 (93.1%)

Train. set 4 3 1.84 (86.2%) 1.74 (93.1%)

Reflect. posts 56 (self test) 1.78 (59.8%) 1.85 (66.3%)

Train. set 1 6 2.97 2.10 (51.3%) 2.25 (52.2%)

Train. set 2 56 (113) 7 (33.6%) 2.20 (51.3%) 2.28 (51.3%)

Train. set 3 7 2.07 (51.3%) 2.36 (52.2%)

Train. set 4 5 2.10 (51.3%) 2.30 (51.3%)

Table 1
Linear combination of BU and TD saliency, influence on search performance (λ = 0
equals pure BU and λ = 1 pure TD search).

sub-system during object search. Moreover, these examples visualize our un-
derstanding of the attention system as a common tunable front-end for the
various other system tasks, e.g., for lane marking detection (see [39] for details
on how the attention system can be used for lane marking detection). Follow-
ing this concept, the task-specific tunable attention system can be used for
scene decomposition and analysis, as it is shown exemplarily on two typical
German highway scenes in Fig. 10.

Comparability of modalities: The used dynamic adaptation of wCj
causes

a twofold performance gain. First, the a-priori incomparable modalities get
comparable yielding a well balanced BU and TD saliency map. Secondly, the
system adapts to the dynamics of the environment preventing varying modal-
ities from influencing the system performance (e.g., in the red evening sun the
color R channel will not be overrepresented in the saliency). Figure 12b depicts
the dynamically adapted wCj

. Table 2 shows a noticeable gain in the object’s
signal to noise ratio SNRobj on the overall saliency for 26 traffic relevant objects
of an inner-city stream (see Fig. 11d), comparing the dynamically adapted wCj

with static, locally optimized wCj
vector. More specifically, SNRobj is defined

as the ratio of the mean saliency activation within the object region to the
mean saliency activation in its surround. For system evaluation we set the
smoothing parameter α (see Eq. (9)) to 0.05 in order to get a slow modal-
ity adaptation suitable to the moderate vehicle speed in the used inner-city
stream.
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Attention-based scene decomposition: (a) Highway scene, (b) TD attention
tuned to lane markings, (c) TD attention tuned to cars, (d) Construction site, (e)
TD attention tuned to signal boards, (f) TD attention tuned to cars.

Traffic-relevant #images SNRobj using SNRobj using

objects (objects) static wCj
dynamic wCj

Inner city stream 20 (26) 2.56 2.86 (+11.7%)

Table 2
Comparability of modalities via homeostasis.

Evaluation of Classifier performance: For a proof of concept, we trained
the classifier to distinguish cars from non-cars (clutter). A set of image seg-
ments generated by our vision system during online operation was used for
training. It contains 11000 roughly square image patches scaled to a size of
64x64 pixels, and was divided into the classes ‘car’ (2952 patches), ‘signal
boards’ (2408 patches) and ‘clutter’ (5803 patches) by visual inspection. Car
segments contain complete back-views of cars (at any position) which must be
at least half as large as the patch in both dimensions. At equal false positive
and true negative rates, for cars an error of 2.8 % and for signal boards an error
of 7.1 % was obtained on an equally large test. The performance of the trained
classifier is shown in form of a ROC (Receiver-Operator-Characteristic) curve
that visualizes the trade-off between false positive (clutter recognized as ob-
jects) and false negative (objects recognized as clutter) detections when vary-
ing the classification thresholds (see Fig. 12c). The ROC was generated using
5-fold cross validation.

Evaluation of depth fusion: Figure 13 shows the EKF-based fusion of
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(d)

(c)

(f)

(a) (b)

(e)

Fig. 11. Output of attention system for construction site and inner-city streams,
(a) Unsegmented FoAs, tuned to signal boards, (b) TD saliency signal boards, (c)
TD saliency cars, (d) Unsegmented FoAs, tuned to cars, (e) BU saliency, (f) TD
saliency cars.
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Fig. 12. (a) Normalization of features preserving magnitude information, (b) Com-
parability of modalities, (c) ROC curve for cars and signal boards.
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Fig. 13. Depth from bird’s eye view, object knowledge, radar and fusion with EKF.

depth measurements from bird’s eye view, object knowledge, and radar for
a car that drives in front of our prototype vehicle through an inner-city (see
Fig. 11d). The usage of two additional monocular depth cues of high variance
fused with the low variance radar cue ensures the availability of depth cues
even for objects that are far away. Here correctly located radar measurements
seldom exist. For the EKF we used the static sensor variances σbirds = 2.8,
σobj = 2.7, and σradar = 0.3 as well as the process variance σprocess = 0.023.

4.2 Experimental Setup for System Evaluation

Scenario: In order to evaluate the proposed system in a challenging situation,
we concentrate on typical construction sites on highways. This situation is
quite frequent and a traffic jam ending exactly within a construction site is
a highly dangerous situation: Due to the S-curve in many construction sites,
the driver will notice a braking or stopping car quite late, see Fig. 14a. Our
ADAS implementation uses a 3 phase danger handling scheme depending on
the distance and relative speed of a recognized obstacle. For example, when
the ego vehicle drives around 40 km/h and an obstacle is detected in front at
less than 33 meters, a visual and acoustic warning is issued and the brakes are
prepared. In the second phase, the belt pretensioners are triggered and the
brakes are engaged with a deceleration of 0.25 g followed by hard braking of
0.6 g in the third phase.
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(a) (b)

distance of 48 m
signal boards at a
emerges behind

Stationary car

car
Stationary

Fig. 14. Scenario: (a) Schematic sketch of the construction site scenario. Stationary
car is visible from 48 meters on. (b) Real scenario.

Technical setup: For the experiments we use a Honda Legend prototype car
equipped with a mvBlueFox CCD color camera from Matrix Vision delivering
images of 800x600 pixels at 10Hz. The image data as well as the radar and
vehicle state data from the CAN bus can be recorded. The recorded data is
used during offline evaluation. For the online version, all data is transmitted
via LAN to two Toshiba Tecra A7 (2 GHz Core Duo) running our RTBOS
integration middleware [52] on top of Linux. The individual RTBOS compo-
nents are implemented in C using an optimized image processing library based
on the Intel IPP [53], allowing the overall system to run at 10Hz.

Test data for training and evaluation: In order to gain sufficient training
data, we recorded image sequences during normal highway traffic including
construction sites as well as visually complex scenes from driving in inner
cities. For evaluating the actual system performance, we recorded data in an
exemplary construction site on a private driving range.

4.3 Evaluation of System Performance

System statistics: During documented online system tests on our prototype
vehicle (showing the setting depicted in Fig. 14) driving 40 km/h in 57 of
60 cases our system detected the stationary car in time and issued the 3
warning steps as expected including autonomous braking. In the remaining
cases, either the object recognition detected a signal board as car and the
braking was performed too early or the FoA generation did not deliver a good
image segment of the stationary car so that the fusion of the image segment
with radar data failed and no braking was performed at all.

Furthermore we evaluated the warning generation offline in detail on 10 ad-
ditional construction site streams we recorded. In all streams, the ADAS was
able to recognize and track the car from a distance between 42 and 32 meters,
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while the car was fully visible from a distance of about 48 meters on. On these
recorded streams, we performed a more specific evaluation, described in the
following.

Influence of system parameters on the detection performance: In
the following it is shown how the number of objects N stored in the STM
influences the detection distance of the stationary car. Limiting the capacity
of the STM in form of the parameter N is achieved by deleting an object from
the STM after N frames. All depicted results are calculated by averaging over
the 10 recorded streams in order to lessen statistical deviations. In the first
step the car detection distance is evaluated depending on STM size N and
the TD parameter λ (setting the amount of TD influence) while using a TD
weight set trained on cars. Figure 15a shows the distance to the stationary car
when the first FoA hits the car, which is defined by hand-labeled groundtruth
on the recorded streams. It can be seen that the larger the TD influence
(search task: find cars) expressed by λ, the earlier the car is detected. Similarly,
the more objects are stored in the STM (object number N), the earlier the
car is detected. It can also be deduced that with growing N the influence
of TD is reduced since the scene coverage increases. Figure 15b shows the
distance to the stationary car when the first FoA hits the target and the
resulting image segment is recognized as car by the object classifier. Since the
used classification threshold was set far above the equal false-positive false-
negative error rate, the distance when the car is detected is smaller than in
the evaluation with groundtruth. Differing from Fig. 15a, at a certain N the
detection distance worsens again. The reason for this effect is that our system
is not using crisp object segmentation algorithms but performs segmentation
directly on the saliency map which can lead to enlarged patches suppressing
the surround of the found objects as well. In this way, the borders of the car
might be suppressed by adjacent signal board patches leading to incomplete
car FoAs that are not sufficient for the used object classifier.

Based on Fig. 15 the best choice of λ would be 1, which equals pure TD search
mode. Nevertheless such a parameterization is not appropriate as is shown in
Fig. 16a. Here we see that with growing λ the average detection distance of
signal boards drops. Stated differently, the system suffers from inattentional
blindness while searching for cars in pure TD mode (λ = 1), which might lead
to dangerous situations. The default value for λ was hence set to 0.5.

A parameter interacting with λ is the Time To Live [TTL] defining for how
many frames an object is stored in the STM before it is removed. Figure 16b
shows how the choice of the TTL influences the system performance. For an
object-unspecific TTL of 5 frames the curve is identical to Fig. 16a for N=5.
For the object-specific case we chose a TTL of 6 for signal boards, unknown
objects were stored for 3 frames and cars for 20 frames, leading on average to
N=5 objects in the STM. A clear gain in detection performance can be seen
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Fig. 15. Stationary car detection distance depending on λ=0, 0.25, 0.5, 0.75, and
1 as well as the STM size N=1,2,3,5, and 7. (a) Using groundtruth for detecting a
hit, (b) Using the classifier for detecting a hit.

while using object-dependent TTL values which is due to the fact that FoAs,
which hit the car very early are too small for a reliable classification. These
unknown scene parts should not be suppressed too long in order to soon give
the classifier a second chance to detect the car. The described object-specific
TTL parameterization was also used during our online tests.
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Fig. 16. Detection distance depending on λ=0, 0.25, 0.5, 0.75, and 1. (a) Average
detection distance of signal boards and the stationary car using the object classifier
for a STM size of N=1,2, and 5 (b) Stationary car detection distance while using
object-specific TTL values.

5 CONCLUSIONS AND FUTURE WORKS

The contribution introduced an integrated vision architecture for ADAS, which
realizes cognitive principles. Encouraging results obtained from the applica-
tion of an attention system that can be modulated in a task-oriented top-down
style were presented. The system is working online performing an autonomous

35



braking functionality on a Honda Legend prototype car. Our future work will
concentrate on the online adaptation and unsupervised training of TD weight
sets. We plan, to readapt the trained TD weight sets constantly depending
on changes in the environment and a temporal decay. TD weight sets will be
calculated offline for a limited number of traffic-relevant objects, like traffic
signs and cars. Additionally, we plan to be not bound to this pre-calculated
set and extract new TD weight sets online to track and find objects stored in
the STM.

As an extension to the here described system, the ADAS presented in [39]
contains an internal 3D representation, an unmarked road recognition system,
broader information fusion, as well as a computational attention system that
allow the online calculation of TD weights and thereby the simultaneous search
for different object classes. We currently port the there described extensions
from Matlab to C in order to integrate them in our existing online system [54]
for evaluating them on our prototype vehicle. After the successful test of the
low complexity control approach, in the next step, learning of the functional
mapping between the measured input feature space and the output control
parameter space will be in our focus. More specifically, we plan to replay
stored streams of critical traffic situations from a data base. As learn-signal
dangerous objects will be manually labeled in these streams. The system task
is to detect the objects early enough. In case the system is too slow, the
scenario is replayed by the learning algorithm while changing the functional
mapping between input and output data of the behavior control module. Also
measuring and mimicking the reactions of an experienced driver is envisioned
in the future. Our system extensions introduced in [39] and [42] contains first
approaches towards such an efficient cognitive control concept. The central
assumption is that a robust learning system requires a generic system structure
with a high number of degrees of freedom for controlling the system reaction
and measuring the system state. Therefore, if required, we plan to further
increase the input feature space as well as output control parameter space of
the there described behavior control module in order to increase the number of
possible system behaviors and prove the scalability of this extended approach.

6 ACKNOWLEDGMENTS

The authors gratefully acknowledge the support from Sven Bone, Falko Waibel,
and Dr. Jens Gayko from Automobile Advanced Technology Research, Honda
R & D Europe, for obtaining training data and demonstrating the system
online on a prototype car. Also numerous reviewers’ comments improved this
contribution significantly.

36



References

[1] S. Frintrop, Vocus: A visual attention system for object detection and goal-
directed search, Ph.D. thesis, University of Bonn Germany (2006).

[2] H. I. Christensen, H.-H. Nagel (Eds.), Cognitive Vision Systems: Sampling the
Spectrum of Approaches, LNCS, Springer-Verlag, 2006.

[3] S. Treue, Visual attention: the where, what, how and why of saliency., in:
Current Opinion in Neurobiology, Vol. 13, 2003.

[4] M. Ikegaya, N. Asanuma, S. Ishida, S. Kondo, Development of a lane following
assistance system, in: Int. Symp. on Advanced Vehicle Control, Nagoya, 1998.

[5] S. Palmer, Vision Science: Photons to Phenomenology, MIT Press, 1999.

[6] M. Corbetta, G. Shulman, Control of goal-directed and stimulus-driven
attention in the brain, Nature Reviews Neuroscience 3 (2002) 201–215.

[7] H. Egeth, S. Yantis, Visual attention: control, representation, and time course,
Annual Review of Psychology 48 (1997) 269–297.

[8] D. Simons, C. Chabris, Gorillas in our midst: Sustained inattentional blindness
for dynamic events, British Journal of Developmental Psychology 13 (1995)
113–142.

[9] J. M. Wolfe, T. S. Horowitz, What attributes guide the deployment of visual
attention and how do they do it?, Nature Reviews Neuroscience 5 (6) (2004)
495–501.

[10] C. Koch, S. Ullman, Shifts in selective visual attention: towards the underlying
neural circuitry, Human Neurobiology 4 (4) (1985) 219–227.

[11] L. Itti, C. Koch, E. Niebur, A model of saliency-based visual attention for rapid
scene analysis, IEEE Trans. Pattern Anal. Mach. Intell. 20 (11) (1998) 1254–
1259.

[12] J. Tsotsos, S. Culhane, W. Wai, Y. Lai, N. Davis, F. Nuflo, Modeling visual
attention via selective tuning, Artificial Intelligence 78 (1-2) (1995) 507–545.

[13] V. Navalpakkam, L. Itti (Eds.), A Goal Oriented Attention Guidance Model,
Springer-Verlag, 2002.

[14] V. Navalpakkam, L. Itti, Modeling the influence of task on attention, Vision
Research 45 (2) (2005) 205–231.

[15] S. Frintrop, G. Backer, E. Rome, Goal-directed search with a top-down
modulated computational attention system, in: Lecture Notes in Computer
Science, 2005, pp. 117–124.

[16] N. Hawes, J. Wyatt, Towards context-sensitive visual attention, in: Proceedings
of the Second Int. Cognitive Vision Workshop, Graz, Austria, 2006.

37



[17] C. Goerick, H. Wersing, I. Mikhailova, M. Dunn, Peripersonal space and object
recognition for humanoids, in: Proc. Int. Conf. on Humanoid Robots, 2005.

[18] Z. Aziz, B. Mertsching, Visual search in static and dynamic scenes using fine-
grain top-down visual attention, in: Lecture Notes in Computer Science, Vol.
5008, 2008, pp. 3–12.

[19] G. Backer, Modellierung visueller Aufmerksamkeit im Computer-Sehen:
Ein zweistufiges Selektionsmodell fur ein Aktives Sehsystem, Ph.D. thesis,
University of Hamburg Germany (2004).

[20] F. H. Hamker, The emergence of attention by population-based inference and
its role in distributed processing and cognitive control of vision, Vol. 100, 2005,
pp. 64–106.

[21] V. Navalpakkam, L. Itti, An integrated model of top-down and bottom-up
attention for optimal object detection, in: Proc. IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), New York, NY, 2006, pp. 2049–2056.

[22] J. Tsotsos, M. Pomplun, J. Martinez-Trujillo, K. Zhou, Attending to visual
motion: Localizing and classifying affine motion patterns, in: CRV ’04:
Proceedings of the 1st Canadian Conference on Computer and Robot Vision
(CRV’04), IEEE Computer Society, Washington, DC, USA, 2004, pp. 452–462.

[23] G. Backer, B. Mertsching, Integrating depth and motion into the attentional
control of an active vision system, in: G. Baratoff, H. Neumann, (Eds.),
Dynamische Perzeption, St. Augustin (Infix), 2000, pp. 69–74.

[24] T. Michalke, J. Fritsch, C. Goerick, Enhancing robustness of a saliency-based
attention system for driver assistance, in: The 6th International Conference on
Computer Vision Systems (ICVS), Santorini, Greece, 2008. Lecture Notes in
Computer Science, Springer, No. 5008, 2008, pp. 43–55.

[25] J. Findlay, I. Gilchrist, Active Vision: The psychology of looking and seeing,
Oxford University Press, 2003.

[26] S. Most, R. Astur, Feature-based attentional set as a cause of traffic accidents,
Visual Cognition 15 (2007) 125–132.

[27] H. Shinoda, M. M. Hayhoe, A. Shrivastava, What controls attention in natural
environments, Vision Research (41) (2001) 3535 – 3546.

[28] N. Ouerhani, Visual attention: From bio-inspired modeling to real-
time implementation, Ph.D. thesis, Université de Neuchâtel, Institute de
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