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Affective Brain-Computer Interfaces: Preface

This volume contains the abstracts of ABCI 2009, Affective Brain Computer Interfaces, a workshop that was organized 
in conjunction with ACII 2009, the International Conference on Affective Computation and Intelligent Interaction, held 
in Amsterdam, The Netherlands, September 2009. The workshop took place on September 9, one day before the main 
conference in the Keizerzaal at De Rode Hoed, Amsterdam. The workshop explored the advantages and limitations of 
using neurophysiological signals as a modality for the automatic recognition of affective and cognitive states, and the 
possibilities of using this information about the user state in innovative and adaptive applications. 

Recent research in brain-computer interfaces (BCI) has shown that brain activity can be used as an active/voluntary, or 
passive/involuntary control modality in man-machine interaction. While active BCI paradigms have received a lot of 
attention in recent years, research on passive approaches to BCI still desperately needs concerted activity. More than 
once it has been shown that brain activations can carry information about the affective and cognitive state of a subject, 
and that the interaction between humans and machines can be aided by the recognition of those user states. 

To achieve robust passive BCIs, efforts from applied and basic sciences have to be combined. On the one hand, applied 
fields such as affective computing aim at the development of applications that adapt to changes in the user states and 
thereby enrich the interaction, leading to a more natural and effective usability. On the other hand, basic research in 
neuroscience advances our understanding of the neural processes associated with emotions. Furthermore, similar 
advancements are being made for more cognitive mental states, for example, attention, fatigue, and work load, which 
strongly interact with affective states. The topics we have explored in this particular workshop are:

* emotion elicitation and data collection for affective BCI 
* detection of affect and mental state via BCI and other modalities 
* adaptive interfaces and affective BCI 

In this workshop researchers from the communities of brain computer interfacing, affective computing, neuro-
ergonomics, affective and cognitive neuroscience have been asked to present state-of-the-art progress and visions on the 
various overlaps between those disciplines. In addition to the paper presentations there were demonstrations by the 
company g.tec (Guger Technologies, Graz) and by the Frauenhofer Institute FIRST (Berlin).

The proceedings of the workshop appear as part of a volume of the ACII proceedings published by IEEE Digital 
Library. We are grateful to the organizers of ACII for accepting our workshop proposal. Program Chairs for ABCI2009 
were Brendan Allison (TU Graz, Austria), Stephen Dunne (Starlab, Barcelona, Spain), and Dirk Heylen and Anton 
Nijholt, both from the University of Twente, Enschede, The Netherlands. Local chairman was Christian Muehl, also 
from the University of Twente. In the review process we were helped by the following members of the program 
committee: Anne-Marie Brouwer (TNO Human Factors, Soesterberg, The Netherlands), Peter Desain (Donders Institute 
for Brain, Cognition and Behaviour, Radboud University Nijmegen, The Netherlands), Grandjean Didier (Swiss Center 
for Affective Sciences, University Geneva, Switzerland), Stephen Fairclough (School of Psychology, John Moores 
University Liverpool, United Kingdom), Jonghwa Kim (Institut für Informatik, Universität Augsburg, Germany), Gary 
Garcia Molina (Philips Research Europe, Eindhoven, The Netherlands), Femke Nijboer (Fatronik - Tecnalia, Donostia, 
Spain), Ioannis Patras (Department of Electronic Engineering and Computer Science, Queen Mary University of 
London, United Kingdom), Gert Pfurtscheller (Institute for Knowledge Discovery, Technische Universität Graz, 
Austria), Thierry Pun (Department of Computer Science, University of Geneva, Switzerland), Egon van den Broek 
(Faculty of Behavioral Sciences, University of Twente, The Netherlands), and Thorsten Oliver Zander (Department 
Human-Machine Systems, Technische Universität Berlin, Germany). 

Christian Muehl
Dirk Heylen
Anton Nijholt



Social Signal Processing Workshop: Foreword

Social interactions are among the hottest topics in the computing community. Less than a decade after the first 
fragmented and isolated efforts, the number of researchers active in automatic analysis, understanding and synthesis of 
social behavior is constantly growing and a new, vibrant research community is forming at the border between human 
sciences (sociology, psychology, anthropology, etc.) and technology (computer vision, speech analysis and synthesis, 
etc.).
 
Social Signal Processing is the new, emerging domain at the edge of this pioneering effort. As it establishes and 
formalizes for the first time a viable interface between human sciences and technology, SSP offers an ideal framework 
for the development of truly multidisciplinary approaches aimed at making machines socially intelligent. 
 
The IEEE International Workshop on Social Signal Processing aims at gathering for the first time researchers 
approaching the problem of social intelligence in machines from all possible perspectives, namely investigation of laws 
and principles governing social interactions, automatic understanding of social phenomena in human-human and 
human-machine interactions, and synthesis of social behavior via different forms of embodiment. The goal is not only 
to foster cross-pollination between the above fields, but also to establish an extensive SSP community sharing common 
research goals and methodologies. 
 
We take this opportunity to thank all the people that have helped to make this Workshop possible, the General Chairs of 
ACII 2009, the key-not speakers, the members of the Program Committee, and the reviewers. Furthermore, we 
acknowledge the European Network of Excellence SSPNet (www.sspnet.eu) that has supported the key-note speakers as 
well as the infrastructure for video recording and diffusion of all presentations. 
 
The general chairs

Maja Pantic
Alessandro Vinciarelli
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Affective Brain-Computer Interfaces: Psychophysiological Markers of Emotion
in Healthy Persons and in Persons with Amyotrophic Lateral Sclerosis

Femke Nijboer Stefan P. Carmien Enrique Leon
Fabrice O. Morin Randal A. Koene Ulrich Hoffmann

Health and Quality of Life Unit, Fatronik - Tecnalia
Paseo Mikeletegi 7, 20009, Donostia - San Sebastián, Spain

fnijboer@fatronik.com

Abstract

Affective Brain-Computer Interfaces (BCI) are systems
that measure signals from the peripheral and central ner-
vous system, extract features related to affective states of
the user, and use these features to adapt human-computer
interaction (HCI). Affective BCIs provide new perspectives
on the applicability of BCIs. Affective BCIs may serve as
assessment tools and adaptive systems for HCI for the gen-
eral population and may prove to be especially interesting
for people with severe motor impairment. In this context,
affective BCIs will enable simultaneous expression of affect
and content, thus providing more quality of life for the pa-
tient and the caregiver. In the present paper, we will present
psychophysiological markers for affective BCIs, and dis-
cuss their usability in the day to day life of patients with
amyotrophic lateral sclerosis (ALS).

1. Toward Affective Brain-Computer Interfac-
ing

Brain-Computer Interfaces (BCI) are systems that mea-
sure brain signals (e.g. with electroencephalogram, EEG;
near-infra red spectography, NIRS; electrocorticogram,
ECoG), extract certain features from those signals and
translate these features into output signals, which are fed
back (this procedure is referred to as neurofeedback1) to
the user and/or serve as commands to control computers or
machines.

BCIs and neurofeedback were first developed for treat-
ment of medical disorders. There is substantial support for

1Neurofeedback means the voluntary self-regulation of signals from
the central nervous system, whereas biofeedback refers to the voluntary
self-regulation of signals from the peripheral nervous system (e.g. elec-
tromyogramm, EMG; heart rate, HR; galvanic skin response, GSR).

the beneficial effect of neurofeedback as a therapy for neu-
rological disorders like epilepsy [40, 83, 84] and Attention
Deficit Hyperactivity Disorder (ADHD) [2, 22, 35, 49, 78].
There is some evidence that neurofeedback is beneficial
for the treatment of stroke [3, 9, 69, 85]. Furthermore,
it has been suggested that neurofeedback might provide
therapy for migraine [41], tinnitus [10] and personality
disorders [79]. However, most neurofeedback studies (but
not all [2]) tested small sample sizes and lacked a control
group in which participants are given sham feedback to
control for placebo effects. Thus, validation studies are
needed to verify these results.

BCI research also aims to compensate for loss of motor
function in people with, for example, stroke, spinal cord
injury, head trauma or with neurodegenerative diseases like
ALS [44]. One goal is to enable brain activity to control a
robotic arm, a neuroprosthesis, or with functional electrical
stimulation (FES) to control a paralyzed arm. Research
focuses on invasive recording with monkeys and severely
paralyzed humans [26, 36, 55, 80], and on non-invasive
recording with healthy persons and those with spinal cord
injury [61]. In addition, severely paralyzed patients and
locked-in patients can use non-invasive BCI applications
for environment control [1, 37, 64, 77] or communication
programs [5,43,56,57,75,76]. Patients who are completely
locked-in (lacking even the voluntary control over eye
movements and of the sphincter) do not appear to be able
to use a BCI [42]. Possible reasons for this go beyond the
scope of this paper, but the interested reader is referred
to [4, 42, 44].

Recently, a new perspective on BCI has emerged
which suggests that not only voluntary self-regulated
signals can be used as input but also that signals might
tell us something about the state of the BCI user (e.g. the
emotional and cognitive state) [18, 58, 59]. It is assumed
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that relevant features from these involuntary signals (also
referred to as passive signals) can be extracted and used
to adapt the behavior of the HCI. Nijholt and Tan suggest
that having access to the user’s state is valuable to HCI and
that it presents at least three distinct areas of research: 1)
voluntary control over computers through brain activity,
2) evaluating interfaces and systems and 3) building
adaptive user interfaces [59]. Of particular interest to HCI
researchers are the user’s cognitive state (e.g. workload of
user, focus of attention) and the user’s affective state (e.g.
frustration, joy, boredom) [18]. Passive BCI could be used
for healthy users and thus ease the entrance of BCIs into
the market.

This notion about the passive measurement of a user’s
state has led to new BCI definitions [86]. First, an active
BCI is a system that measures brain activity, extracts
relevant features and translates these features into device
commands or provides feedback to a user. The brain
activity of the user is actively, in other words intentionally,
altered. For example, the user is actively imagining opening
and closing his right hand with the intent to alter his sen-
sorimotor rhythm. Second, a user can be actively focusing
on a certain stimulus (for example the letter ”B”) that he
intends to select from a stream of stimuli (for example
the whole alphabet). The desired stimulus may elicit a
brain potential that can be classified by a BCI. Because
the brain activity is triggered by an exogenous event this
approach may be referred to as reactive BCIs. Third, a
passive BCI (pBCI) is a system that measures ongoing,
non-intentionally altered, activity from the peripheral and
central nervous system, extracts relevant features and
uses these features to monitor and adapt human-computer
interaction. Zander and colleagues state that pBCIs are
based on reactive states of the user automatically induced
while interacting with a surrounding system [86].

For a schematic overview see figure 1. In this paper
we aim to define affective BCI and hypothesize how to
implement affective BCIs in healthy persons and persons
with motor impairments. In our opinion, the detection of
affective states begins with the discriminability of emo-
tions, which are the smallest and most objective measurable
units of affect (see section 2).

In the following paragraphs we explain the difference be-
tween emotions, feelings and moods (section 2) and intro-
duce the field of psychophysiology in relation to emotion
(section 3) and emotion theory (section 4). Furthermore, we
hypothesize which psychophysiological signals might pro-
vide sensitive, reliable, and valid markers for emotion in
healthy persons (section 5). Also, we explore several user
scenarios in which affective BCI might be valuable for per-

Figure 1. Schematic overview of an active and a passive BCI.

sons with motor impairment (section 6). Finally, we argue
that the markers of emotion in healthy persons might be dif-
ferent from the markers found in persons with ALS, who are
often considered as potential BCI users (section 7).

2. Emotions, Feelings and Moods

Some psychologists refer to emotion as a particular
kind of subjective feeling [31], however this is a rather
circular definition. In contrast, Damasio defines emotions
as ”bioregulatory reactions aimed at the promotion, directly
or indirectly, of the sort of physiological states that secure
not just survival, but... [also] well-being” [19]. Emotions
are generally thought to be universal, short-lasting and
elicited by an event, object or person. Feelings can be
defined as the mental representation of the physiological
changes that occur during an emotion or a mixture of emo-
tions [19] and do not necessarily show (direct) observable
peripheral reactions. In addition, a mood is a sustained
tendency toward certain emotions (e.g. depression). From
this point of view, for example, fear would be an emotion,
restlessness a feeling and anxiety a mood. The whole range
of emotions, feelings and moods may be called affect.
Although Damasio has received some criticism [32], the
neurobiological perspective of his definition seems to offer
the best starting point for affective Brain-Computer Inter-
facing, which aims at classifying emotional states without
verbally asking the subject about his or her subjective
feeling.

There are two important issues that are worth highlight-
ing in relation to the study of emotions in the context of BCI
and affective computing. First, to advance the modelling
of emotions by means of computing systems, researchers
should not wield or attach to a particular theory or definition
of emotion. The rationale for this is that the discussion on
the meaning of emotions is an ongoing theoretical contro-
versy that in 1981 had already yielded 92 different descrip-
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tions of emotions [39]. Instead, technologists should work
from a basis of the widespread view of emotions as a multi-
element phenomenon that involves a) appraisal of events, b)
psychophysiological changes, c) motor expressions, d) ac-
tion tendencies, e) subjective experiences, and f) emotion
regulation [27]. Affective BCI should focus on those ele-
ments of emotion that are easy to measure or to synthesize
such as motor expressions, actions or physiological activa-
tion. Second, computer systems are still highly dependent
on data acquired from a number of individuals who are sub-
jected to certain type of emotional stimulation. Thus, the
method to elicit emotions under controlled laboratory con-
ditions is as important as the techniques employed to detect,
classify or simulate affective states. Although not a single
elicitation method can guarantee that a given targeted emo-
tional state or class is experienced, some instruments have
been shown to work well under certain circumstances(e.g.
films, music, scripted interactions).

In this context, we argue that there are two main
approaches to the study of emotions that seem to fit well
with the aims of affective BCI. On the one hand Ekman’s
emotional classification or factorial approach represents a
rather balanced way to endow subjective levels to a number
of emotional states without getting into the controversy of
whether there are two, twelve or more identifiable affects.
Ekman’s work has been traditionally associated with the
use of facial expressions in emotion detection (for the
corresponding facial expressions see figure 2). Ekman
listed joy, sadness, fear, anger, surprise and disgust as
the six basic emotions [23] (for the corresponding facial
expressions see figure 2 below).

On the other hand, dimensions are very useful to
quantify elements of emotions without the need to utilize
pre-defined labels. The ”bi-phasic model of emotion”,
which was proposed by Lang and colleagues, emerges
from a motivational perspective that points to emotion
as a behavioral tendency of a subject to approach or
avoid/withdraw from a stimulus [6, 47, 72]. Emotions
can be organized as pleasant/appetitive versus unpleas-
ant/aversive and this disposition constitutes the first bipolar
dimension of the model - valence. In addition, emotions
can mobilize energy to different degrees, and therefore
the activation or the intensity can vary. The model hereby
constitutes a second bipolar dimension - arousal. An
additional bipolar dimension - dominance-submissiveness
- has been proposed to measure emotion [70]. However,
valence and arousal level explain the greater portion of
the variance in emotion [71]. For two reasons we prefer
the bi-phasic model of emotion as opposed to approaches
which describe four [27] or more dimensions [16]. First,
Lang’s two dimensions facilitate experimentation because
they are applicable to a variety of affective phenomena

Figure 2. The facial expressions belonging to each basic emotion
defined by Ekman [23]. From left to right; top: anger, joy, disgust;
bottom: surprise, sadness, fear.

and second, they are also closely linked to a very popular
elicitation method that employs a standardized set of pho-
tographs, the International Affective Picture System [46].
It is worth mentioning that the use of a factorial and/or
dimensional approach to measuring emotions has also been
suggested in the context of affective pervasive systems (see
for example [50] and [53]).

Emotions elicited by stimuli can be rated within
the valence-arousal space by using the Self Assessment
Manikin (SAM) (see figure 3) [7]. SAM is a non-verbal
graphical tool on which subjects have to rate on a nine-point
scale how they feel. Valence is depicted as a smiling happy,
figure transitioning into a frowning, unhappy figure. For
arousal SAM ranges from a sleepy figure, with eyes closed,
to an excited figure, with eyes open. Because SAM is a
language-free, culture-free measurement it is suitable for
various countries. However, before one can rate the emotion
that was elicited by a stimulus, a mental reflection on this
emotion is required. Thus, according to the strict definition
of Damasio, one would have to say that the SAM measures
feelings and not emotions. For affective BCI research how-
ever, the correlation of subjective feelings (as measured by
the SAM) to psychophysiological signals (e.g. EEG, EMG)
might result in a sensitive, reliable and valid model for af-
fective BCI applications.

3. An Illustration from History
The search for reliable and objective indicators of

emotional states stretches back as far as the period of 290 to
280 B.C. [74]. Antiochus of Apama, son of king Seleucus
I, found himself hopelessly in love with his stepmother,
a young woman by the name of Stratonic. Antiochus, an
obedient and submissive son, fought with all his might
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Figure 3. The self-Assessment Manikin (SAM). Top: valence; bot-
tom: arousal

against these feelings and never spoke a word with anyone
about the matter. He suffered so much from his love
sickness that he became seriously ill and was brought to
Eristratus, a grandson of Aristotle, who was very well
educated. Plutarch wrote: ”Eristratus, the ’medical man’,
understood without difficulty that Antiochus was in love, but
as he wanted to find out who was the object of his passion
- not an easy task - he installed himself in Antiochus’
chamber, living therein. Whenever a goodlooking girl or a
youth appeared before them, he keenly watched Antiochus’
face in order to discover signs of emotions or change of
expression. He also watched his body, looking out for
any movements of his limbs and body or alterations of
the same, which are naturally affected when the soul is
under violent states. He was thus able to establish that no
change was produced in Antiochus, excepting whenever
Stratonic appeared, either alone or in Seleucus company.
Sappho’s symptoms became then all too apparent, such as
a break in the voice, blushing and downcast eyes, sudden
perspiration and irregularity of the pulse. He also became
subject to swoons, doubts, fears, and sudden pallor. From
all these manifestations Eristratus drew the conclusion
that the king’s son loved nobody but her, and that he was
determined rather to die than to show it” [65].

Eristratus classified emotions based on their co-
occurrence with stimuli (independent variable: beautiful
women; see figure 4). He operationalized emotion with
the following dependent variables: voice quality, eye move-
ments, skin responses, and blood pressure. This may have
constituted the first documented psychophysiological study.
It illustrates how the classification of emotion is impor-
tant for understanding how emotions change our perception,
guide our behavior, and shape our memory. Emotion de-
tection and mimicry is an important requirement for main-
taining successful social relations with others. However,
whether emotions can be distinguished based on differences
in the activity of the central and autonomic nervous systems
is a highly debated topic in emotion theory [13, 38, 73]).

Figure 4. Eristratus classifies the cause of the illness in Antiochus.
A painting by Jacques-Louis David.

4. Theories of Emotion
William James and Carl Lange simultaneously and

independently hypothesized in 1890 that contrary to
common belief ”the bodily changes follow directly the
perception of the exciting fact, and that our feeling of the
same changes as they occur is the emotion” [38]. James
states for example that we do not flee because we are
afraid when we see a bear, but we are afraid because we
flee from the bear. Similarly, we do not cry because we
feel sad after bad news, but we feel sad because we are
crying. The James-Lange hypothesis, also referred to as a
a peripheral theory of emotion, implies that emotions can
be differentiated by somatovisceral responses. However,
bodily changes are not consistently associated with specific
emotions (see section 5). The hypothesis also implies that
people with quadriplegia should not show any emotional
responses, which is refuted by several studies [15].

In 1928 Walter Cannon presented a critical exami-
nation of the by then popular James-Lange notion on
emotion [13]. He postulated his own theory that the viscera
and the innervation of the muscles were not the sources for
the qualities of emotion. He held that emotions are derived
from subcortical centers (e.g. thalamus) and that peripheral
activity is not necessary for emotional experience. In other
words the sight of a bear can cause fear without fleeing.
Support for this theory comes from studies that show that
direct brain stimulation can cause emotion experience. The
Cannon’s theory is sometimes referred to as a centralistic
theory.

Another important emotion theory was proposed by
Schachter and Singer, who suggested bodily changes
qualify as emotions only when coupled with judgements
that attribute these changes to emotionally relevant objects
or events (this process is also referred to as appraisal) [73].
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When our heart beats fast in the presence of a bear, we
would attribute (appraise) that bodily change to the bear
and feel afraid. In contrast, when our heart beats fast in
the presence of an attractive person in the same room, we
would attribute that bodily change to lust or love. Thus,
Schachter and Singer state that bodily changes are essential
but not sufficient.

The above mentioned theories are but few among many
emotion theories. We refer the interested reader to [51, 60].
The debate in emotion theory is of high relevance to the
area of affective Brain-Computer Interfacing, since this
area will depend on at least some degree of distinct visceral
or brain patterns underlying different emotions. On the
other hand the technologies and methods developed by the
BCI field might contribute to new approaches for emotion
classification and might lead to a more multidisciplinary
field of emotion research. In the next section we will review
the evidence for the discriminability of various emotions
within the EEG and some peripheral measures.

5. Psychophysiological Markers of Emotions in
Healthy Persons

Emotion, defined as bioregulatory reactions [19], can
be studied through psychophysiological signals from the
central and the peripheral nervous system, through audio-
recordings of speech signals, and through video-recordings
of facial expressions. There is extensive literature about
emotion assessment from audio- and video-recordings.
However, these two modalities have the disadvantage that
they require the active participation of the user (speak,
or look into the camera) and hence cannot be measured
continuously and reliably.

A literature search shows that relatively few peer-
reviewed papers exist about the classification of emotions
based on signals from the central nervous system. This
is most probably due to the fact that it is very difficult to
reliably classify emotions from non-invasively acquired
brain signals such as the EEG. An exception to the scarcity
of literature in this area is the line of work of Davidson et
al [20] in which it is extensively argued that the prefrontal
cortex plays an important role in emotional processing. In
particular, hemispheric differences in alpha-power over the
frontal cortex are repeatedly mentioned as indicator for
emotions.
From a more practical point of view Chanel and colleagues
compared three approaches to classify 3 emotions in
10 participants [14]. The classification was performed
using data from 1) only EEG signals, 2) only peripheral
signals or 3) a combination of both types of signals. They

report classification accuracies between 50% and 65% for
classification based on either peripheral signals or EEG
signals and a classification accuracy of about 70% for
combining both modalities. The combination of signals
from the peripheral and central nervous system thus seems
promising. This is the reason why an affective BCI system
should draw not only on EEG signals but also peripheral
signals.

A vast amount of literature exists about the assessment
of emotions based on psychophysiological measures from
the peripheral nervous system. Examples of psychophys-
iological measures are electromyogram (EMG), skin
conductivity (e.g. galvanic skin response; GSR), heart rate
(HR), heart rate variability (HRV), blood pressure (BP),
and respiration (RSP). One of the first ways to measure
emotion is to instrument the muscles in the face that are re-
sponsible for facial expressions that are obvious reflections
of emotions. There is a large body of research [12, 33, 82]
attempting to tie specific muscle sets to types of emotions;
electromyogram (EMG) of the facial muscles in specific
and of others, both measuring general arousal [81] and
specific indicators [48]. Another physical measurement
that ties to emotional state is the heart rate, which is a good
measure of arousal [12]. Skin conductivity reflects the out-
puts of the eccrine sweat glands, which reside on the palms
of the hands and the soles of the feet and are particularly
responsive to emotional activation, and only minimally
responsible for thermoregulation [63, 81]. Also com-
monly used are blood pressure and respiration [11]. Less
commonly used are such measures as pupil dilation [30],
posture [21], cardiac output, diastolic blood pressure, eye
blink rate, face temperature, finger temperature, heart
rate variability, number of muscle tension peaks, oxygen
saturation of the blood, and inspiratory time [12]. All of
these can be used in combination to produce classifiers of
affective states. Cacioppo and colleagues have provided an
extensive meta-review of the literature in 1998 [12].

With a set of inputs (from some grouping of the psy-
chophysiological data described above) and a list of classes
(emotions) the next part of emotion recognition is the pro-
cess of classification. Just like any classification problem
the steps are signal acquisition, signal conditioning, feature
extraction, training and finally producing a classification
function. The raw data of the psychophysiological signals
are typically taken as a value that is part of a waveform
and then normalized and combined in various permutations
and with various feature extraction functions [63]. The
next step is to reduce the number of dimensions given to
the classification algorithm (to reduce the possibility of
overfitting the classifier to the training data) [62]. Algo-
rithms used in classifying span from sequential floating
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Figure 5. Heuristic Decision Tree based on heart rate and heart rate
variability. Taken from [68].

Figure 6. Heuristic Decision Tree based on heart rate and skin tem-
perature. Taken from [24].

forward search and Fisher projection and a permutation
of both [11] to neural networks [8] and hidden markov
models [7]. Several papers presented heuristic decision
trees for classification, one based on heart rate and heart
rate variability [68], and another on heart rate and skin
temperature [24] (see figure 5 and 6 below).

How accurately a classifier can identify an emotion
solely on the basis of psychophysiological data is depen-
dent on the selected sensors, the classification process and
several other parameters (which will be described below).
The studies referenced in this paper obtained an accuracy
range spanning 65.3 where 25 % would be chance [68]
to 76.8 % [62] and 50.62 % [82] where 12.5 %would be
chance, to 89.73 %, 63.76 % [33], and 63.4 % [25] where
50 % would be chance. The studies used both different
lists of emotions (both in number and content) as well

as psychophysiological data so this list then is of use in
confirming that emotions can be automatically recognized
with some degree of confidence. Similarly, determining the
optimal combination of sensors and features extracted that
can best classify the presence of a given basic emotion is a
goal that needs to be reached through empirical approaches
in which scientists from emotion psychology, affective neu-
roscience, brain-computer interface and neuroinformatics
should closely work together.

A review of the literature also returned several concerns
that are important to keep in mind in designing BCI
studies with respect to psychophysiological markers. In
many cases a classifier trained on a single person will not
accurately classify signals from another person, therefore
every subject may need to have an individually trained
classifier [63]. Secondly, it has been noted that ”the features
extracted from the signals are highly dependent on the day
the experiment was held” [62]. Thus, it may be necessary
to create a new classifier (or at least regenerate the features)
for each subject and each session. Thirdly, research points
out that an individual’s psychophysiological response
to a given emotion changes as they age [12]. Fourthly,
psychophysiological markers of emotion can be easily
confounded by external factors (e.g. day light, temperature,
body position, time of day), substance intake (e.g. nico-
tine, caffeine, high caloric food) and physical activities.
Technological solutions to measure these changes in the
environment may include light sensors, accelerometers or
a thermometer. Fifthly, multimodal classification methods
need to applied to these various signals and compared.
Sixthly, one will want to know whether a change in
psychophysiological signals reflects an emotion (phasic
change) or a steady state (tonic change). For example, a
low blood pressure may indicate low emotional arousal, but
it may also indicate a person is asleep. An ideal affective
BCI classifier would have knowledge of time and events
in the environment of the user (e.g. someone entered the
room, there is a storm outside, time since last shower).

6. Affective BCI for Persons with Amyotrophic
Lateral Sclerosis

ALS is a fatal motor neuron disease of unknown etiology
and cure. ALS is a neurodegenerative disorder of large
motor neurons of the cerebral cortex, brain stem, and spinal
cord that results in progressive paralysis and wasting of
muscles [17]. ALS has an incidence of 2/100.000 and
a prevalence of 6-8/100.000 [8]. Survival is limited by
respiratory insufficiency. Most patients die within 3-5
years after onset of the disease [17], unless they choose
life-sustaining treatment [34].
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Figure 7. Schematic overview of an active and a passive BCI for
people with motor impairment. Information of the user state is fed
back to the caregiver with whom the user is interacting.

As the disease progresses, people become increasingly
paralyzed. The first symptoms experienced by most
patients include weakness in arms or legs, after which the
paralysis spreads to other extremities and finally also the
neck and head areas. This form of ALS is called spinal
ALS. On the contrary, bulbar ALS starts with symptoms
of weakness and paralysis in neck and mouth regions
and then spreads to other extremities. Involuntary muscle
contractions in late-stage ALS can occur during emotional
experience.

An illustrative example is given from a visit from the
first author (FN) to HPS, the patient who was the first to
use a BCI in his daily life for communication [5]. HPS
was locked-in at the time of the visit. He could raise his eye
brow to say ’no’ and half-close his eyes to say ’yes’. During
this visit FN and HPS did not use a BCI to communicate but
instead a caregiver served as an interlocutor. First, the care-
giver read out loud the number of the rows in a letter ma-
trix until HPS selected the row containing his desired letter.
Then, the caregiver read out loud the letters in that row un-
til HPS selected his desired letter. This procedure repeated
itself until words and sentences were formed. HPS, being
German, asked how FN, being Dutch, felt about an upcom-
ing soccer match between the Netherlands and Germany in
the following week. FN replied she was certain that the
Netherlands were going to win and that ”it would be a piece
of cake”. This remark appeared to elicit two emotions in
HPS. First, he smiled involuntarily. Second, his eyes peered
attentively to FN, who interpreted these expressions as an
indication that HPS wanted to reply with a furious yet witty
remark.

However, humor, happiness and anger, are very difficult
for severely paralyzed patients to express. Even though
HPS dictated his reply, he lacked the ability to modulate the
tone of his voice or use his facial expression to add sarcasm.

From this example a first purpose of an affective BCI can
be identified: they may offer a possibility to otherwise
poker-faced patients to express their affect. Figure 7 illus-
trates how an affective BCI might not only adapt HCI for
a patient, but also provide information about the affective
state of the user to a caregiver, who is interacting with the
user. From our experience we know that caregivers often
leave the room while patients ’write’ lengthy messages
with their assistive technology, only to come back when the
whole sentence is written down. Sometimes messages go
unnoticed or the context of the message may be forgotten
by the time the message is written. Receiving nonverbal
input from a patient may provide context and constitute
an important incentive to continue interacting with the
patient, especially when content is conveyed slowly. Also,
perception of the affective state of the user may cause
mimicry of these states in the caregiver, reassuring the
patient that he or she is perceived and understood. We
hypothesize that affective BCI will improve the quality
of life and interaction of patients and caregivers, because
affect and content can be simultaneously expressed. An
application of such an affective BCI could be a monitor
attached to the patient’s wheelchair displaying a face
expressing the emotions detected by the algorithms.

Finally, an emotion detection system could also serve
as an alarm system to cue the caregiver to check on a pa-
tient. Although medical devices surrounding the patients
(e.g. artificial respiration) measure heart rate and blood oxy-
gen level and give an alarm when for example blood oxy-
gen level is too low, psychological distress does not give
an alarm. Thus, a paralyzed patient is rendered powerless
when a frightening event happens. An affective BCI might
detect from GSR and heart rate that negative emotions with
strong arousal are felt by the patient and send an alarm sig-
nal to the caregiver. However, in the next section we will
discuss how emotional markers might be different in pa-
tients with ALS compared to healthy controls.

7. Emotional Processing in Patients with Amy-
otrophic Lateral Sclerosis

There are only few studies on affect and emotional
processing in ALS. Remarkably few patients (9-11 %)
develop a major depressive disorder despite the severe
impact the disease has on a persons life [28, 45, 66, 67].
Lulé and colleagues investigated emotional processing in
ALS [52]. Twelve ALS patients and eighteen age-matched
healthy controls were (neuro)psychologically assessed.
Then, they rated their emotions with the SAM after viewing
negative, neutral and positive pictures from the Interna-
tional Affective Picture System (IAPS) [46]. In a second
experiment physiological responses to the same pictures
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were measured. Specifically, startle response and heart rate
were measures as an index of valence and galvanic skin
response as an index of arousal.

Compared to controls, patients rated positive and neutral
pictures as more positive and negative pictures as less
negative. Also, calm and neutral stimuli were rated as
more arousing, whereas most arousing pictures (especially
those with erotic content) were rated as less arousing. GSR
were significantly delayed compared to controls, while
the amplitude of GSR tended to be higher in ALS than in
healthy controls. Both ALS patients and healthy controls
showed a stronger HR deceleration after unpleasant stimuli
compared to after pleasant stimuli.

The altered rating of emotional stimuli was not corre-
lated to depression scores or frontal lobe dysfunction. Lulé
and colleagues therefore suggest that emotional processing
is altered due to coping mechanisms. None of the ALS
participants in this study was locked-in and little is known
about emotional processing in patients with late-stage ALS.

Moore and Dua provided many biofeedback training
sessions to a locked-in patient with ALS. The patient was
progressing to the complete locked-in state (no voluntary
eye movement or sphincter control) during the experiment,
which lasted over a year [54]. The patient aimed to learn
to say ’yes’ by raising his GSR level and to say ’no’ by
keeping the GSR level low. After a year the accuracy of
saying ’yes’ and ’no’ was significantly above chance level,
but probably not sufficient to reliably answer questions.
GSR differs between ALS patients and healthy persons [29]
and it remains questionable if self-regulation of GSR might
be used for communication in ALS patients and how GSR
can be used for emotion detection in ALS patients.

Furthermore, patients with motor impairment might de-
pend on life-sustaining devices, like artificial respiration or
percutaneous endoscopic gastrostomy (PEG), that may af-
fect the peripheral and central nervous system. Also, med-
ication, like antidepressants or diabetes medication, may
cause affective states in patients to be differently classified.
Finally, it must be noted that an interesting line of investi-
gation might be to study whether facial expression that is
not overtly observable might be detected by EMG measure-
ments in severely paralyzed patients patients. Few and po-
tentially inexpensive electrodes might classify the valence
of emotions in these patients.

8. Conclusion
The concept of affective and passive BCIs has lead to

a new perspective on the applicability of BCIs. Affective
BCIs may now serve as assessment tools for HCI and adap-

tive system to improve HCI with healthy people. Affective
states should be measured through a synthesis of periph-
eral and central measures although a solution of the opti-
mal parameters is still not present. Also, it may be dis-
cussed whether the term brain-computer interface is then
still appropriate or if we should find a more generic term
such as body-computer interface or even human-computer
interface.

Affective BCIs may improve the quality of life of per-
sons with motor impairment and of their caregivers, by al-
lowing the BCI user to express not only content but also
affect. However, the accurate detection of affect is not a
simple matter, and successful approaches with patients may
differ from those used in healthy persons.
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Abstract

Recently, the use of brain-computer interfaces (BCIs)
has been extended from active control to passive detection
of cognitive user states. These passive BCI systems can be
especially useful for automatic error detection in human-
machine systems by recording EEG potentials related to hu-
man error processing. Up to now, these so-called error po-
tentials have only been observed in the visual and auditory
modality. However, new interfaces making use of the tactile
sensory modality for conveying information to the user are
on the rise. The present study aims at investigating the feasi-
bility of BCI error detection during tactile human-machine
interaction. Therefore, an experiment was conducted where
EEG was measured while participants interacted with a tac-
tile interface. During this interaction, errors of the user as
well as of the interface were induced. It was shown that
EEG patterns after erroneous behavior – either of the user
or of the interface – significantly differed from patterns after
correct responses.

Keywords: passive brain-computer interface, tactile
human-machine interaction, automatic error detection,
error potential

1. Introduction
Errors occurring during human-machine interaction

(HMI) can have a negative effect on the performance of
human-machine systems. It is therefore desirable to design
interfaces that are able to detect such errors automatically
and – if possible – correct them. However, this is not a
trivial task, because in most cases the information available
to the interface is not sufficient to reliably detect errors. A

promising approach to overcome this problem is the use of
brain-computer interfaces (BCIs) that are able to directly
extract information from the user’s brain, thus providing ac-
cess to cognitive user states that are not observable from the
“outside”. In the case of error detection, passive BCIs, i.e.,
BCI systems that do not rely on conscious effort of the user
but extract information of the user’s brain without disturb-
ing his primary modes of interaction, could take advantage
of specific brain states associated with human error process-
ing [16].

Although the cognitive mechanisms underlying human
error detection processes are not yet fully understood, var-
ious EEG studies (e.g. [5, 7, 8]) have shown that human er-
ror detection is associated with typical patterns in the EEG
signal, so-called error potentials. In general, these error po-
tentials can be observed whenever the actual outcome of
an action does not match the intended outcome. The exact
structure of error potentials depends on the type of error. In
the context of human-machine interaction, two basic error
types can be distinguished. On the one hand, errors may
be committed by the interface (e.g. when it is wrongly in-
terpreting a user intention due to restricted information); on
the other hand, errors may occur due to erroneous behavior
of the user (e.g. when accidentally pressing a wrong but-
ton). In the following, the former will be termed machine
errors while the latter will be referred to as self-generated
errors.

EEG patterns related to machine errors are composed
of a negative component about 200 ms after occurrence of
the error and a positive peak after about 300 ms [6, 16].
While for the negative deflection parietal [16] as well as
fronto-central [6] regions were reported, the positive peak
is strongest at central electrode sites. In the context of BCI,
the EEG patterns related to machine errors have been suc-
cessfully detected on a single-trial basis in an online BCI

978-1-4244-4799-2/09/$25.00 c©2009 IEEE

12



application [16].
EEG patterns reflecting self-generated errors in visual

and auditory tasks were for example demonstrated in [7]
and [5]. They manifest themselves in a negative deflection
termed error-related negativity (ERN or Ne). This negativ-
ity peaks approximately 50–100 ms after the erroneous re-
sponse over fronto-central regions of the scalp with an am-
plitude of up to 10 µV. The negative peak is followed by a
later positive potential that is labeled as Pe and appears be-
tween 200–500 ms over the centro-parietal area [5,14]. Like
machine errors, self-generated errors could also be detected
on a single-trial basis in an offline study [2].

The previous studies investigated errors in the visual and
auditory domain. However, tactile interfaces have recently
attracted the attention of HMI reseachers [15]. Advantages
of these interfaces include their potential to lower cogni-
tive workload in other modalities and their ability to intu-
itively direct a user’s attention (a proverbial “tap-on-the-
shoulder”). Because of the increasing importance of tac-
tile interfaces, it is of interest to determine whether error
potentials similar to the ones found in the visual and audi-
tory domain can also be observed for tactile stimuli. Tactile
stimuli have been shown to elicit P300 event related poten-
tials [9, 13] that can be used in a BCI system [3]. To the
authors’ knowledge there exists only one study [12] that in-
dicates that self-generated error potentials can be elicited
in the tactile domain. In this study, participants performed
a time estimation task, in which they received tactile feed-
back about whether their estimation had been correct or not.
Whenever the feedback informed them about an incorrect
estimation an error potential similar to the ones observed in
the visual and auditory modality occurred.

The present study explores the EEG patterns related
to error processing in the tactile modality for both, self-
generated and machine errors. We will address the question
as to whether cognitive processing of these errors during in-
teraction with a tactile human-machine interface elicits er-
ror potentials as described for visual or auditory stimuli.

In order to tackle this question, an EEG experiment was
conducted in which participants interacted with a tactile
human-machine interface that occasionally committed er-
rors. Additionally, by varying the difficulty of the task,
user errors were induced (self-generated errors). Both, av-
eraged and single-trial EEG data was analyzed to investi-
gate the feasibility of automatic error detection during tac-
tile human-machine interaction.

2. Methods
2.1. Participants

Eleven participants (four female) took part in the exper-
iment. All of them were neurologically healthy and had
normal or corrected-to-normal vision.

2.2. EEG Recording

EEG activity was recorded at electrodes Fz, FCz, FC1,
FC2, Cz, CPz, Pz, and POz of the international 10-20-
system mounted on an electrode cap (g.tec medical engi-
neering GmbH). A ground electrode was placed on partic-
ipants’ forehead. Electrodes were referenced to the linked
mastoids and impedances of all electrodes were below 5 kΩ.
In order to detect eye artifacts, electrooculogram (EOG)
was measured via two eye electrodes referenced to each
other. Data was recorded with a sampling rate of 256 Hz
and filtered with a 50 Hz notch filter, a high-pass filter of
0.1 Hz and a low-pass filter of 60 Hz (USB Biosignal Am-
plifier, g.tec medical engineering GmbH).

2.3. Task

In one run, participants’ task was to move a tactile cur-
sor to the location of a target. To determine the direction
in which the cursor would move, visual stimuli indicating
either a clockwise or a counterclockwise movement were
presented to participants. Participants could either select or
reject the direction of movement by pressing an ‘accept’ or
a ‘reject’ button, respectively. When accepting, the cursor
moved to the next location on the tactile display in the des-
ignated direction; otherwise it stayed at the current location.
A run ended when target and cursor were at the same spot.

Figure 1. Schematic top-view of the tactor locations at one level
of the TNO tactile torso display as used in the experiment. Front
indicates position of navel. Possible target positions are colored
black. Every tactor could be a cursor position.

2.4. Stimuli

Tactile stimuli. Tactile stimuli were presented via the
TNO tactile torso display [15], a wearable vest contain-
ing five rows of twelve equally spaced, custom-built tac-
tors; they consisted of plastic cases with a contact area of
1×2 cm, containing motors vibrating at 160 Hz (TNO, The
Netherlands, model JHJ-3). The adjustable vest was worn
above the clothes and spanned the whole trunk circumfer-
ence of the participant. In the current study only the central
row of tactors was used for stimulus presentation. During
one trial, one tactor was target while another one was cursor.
Possible target and cursor locations are shown in Figure 1.
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The target continuously switched between 100 ms intervals
of vibrating and not vibrating. In contrast, the cursor only
vibrated once per trial for 400 ms before presentation of the
visual stimulus.

Visual stimuli. Visual stimuli were presented on an
LCD (Dell 20” flat panel, refresh rate 75 Hz). Every stim-
ulus consisted of eight black or grey arrows arranged in a
circle pointing either clockwise or counterclockwise (see
Figure 2). The stimuli were 1280×1024 pixels in size. For
every trial one of the stimuli was presented with a duration
of 200 ms.

Figure 2. The four different visual stimuli used in the experiment.

2.5. Conditions

Three different experimental conditions were used: ma-
chine error only, self-generated error only and mixed. The
names were given according to the type of errors that were
induced in the respective blocks of the experiment.

In the ‘machine error only’ condition, the direction of the
arrows always corresponded to the movement direction that
was to be accepted or rejected, thus making the task easy.
However, in 20 % of the cases the cursor moved opposite
to the direction intended by the participant. Note that two
errors could not occur in a row.

In the ‘self-generated error only’ condition, the color of
the arrows determined whether the cursor movement would
be congruent or incongruent with the indicated direction.
Arrows in black led to a movement in the direction indicated
by the arrows. Contrarily, arrows in grey led to a movement
in the opposite direction as indicated. Thus, when a par-
ticipant wanted the cursor to move in clockwise direction,
he or she should press the ‘accept’ button when presented
with black arrows indicating a clockwise direction, whereas
he or she should press the ‘reject’ button when presented
with grey clockwise arrows. This more difficult task was
used to induce errors in the response of the participants. No
machine errors occurred in this condition.

In the mixed condition self-generated errors and machine
errors were combined, i.e., the task was hard and machine
errors occurred with a probability of 20 %. Table 1 presents
an overview of the three conditions.

2.6. Experimental Design

Participants performed two experimental blocks per con-
dition in random order. Each block consisted of six runs. In

Condition

machine
error only

self-
generated
error only

mixed

task
difficulty

easy hard hard

machine
error rate

(in %)

20 0 20

Table 1. Overview of experimental conditions, the corresponding
task difficulty and the percentage of machine errors.

each run, the target appeared in one of the six possible tar-
get locations (see Figure 1). Each target location occurred
twice per condition; once the cursor appeared three steps
left from the target (i.e., it had to be moved clockwise) and
once it appeared three steps right (i.e., it had to be moved
counterclockwise). Order of target location was random.

2.7. Procedure

Participants were seated comfortably in front of a moni-
tor in a dimly lit, shielded room, wearing the tactile display
and the EEG electrode cap. Before the experiment the task
was explained to participants. They were told to always
press one of the buttons (‘accept’ or ‘reject’) and were in-
formed that occasionally the interface may commit errors.

The experiment started with a training session consisting
of four runs for both the easy and the hard task. During
training, no machine errors occurred. The training lasted
about eight minutes. After that, participants performed the
six experimental blocks. Between blocks, participants had
a short break. One block lasted about six minutes. During
the experiment pink noise was presented to participants to
mask the noise of the vibrating tactors.

Each run consisted of several trials repeating until the
cursor reached the target (for a schematic overview of one
trial, see Figure 3). During a trial the target vibrated as de-
scribed in section 2.4. 1100 ms after the start of a trial, the
cursor vibrated for 400 ms. After 800 ms plus a stimulus on-
set asynchrony (SOA) of 0 to 300 ms, a visual stimulus, ran-
domly picked from the set described above, was presented
to participants for 200 ms. Then, a response time of max-
imal 1500 ms followed, in which participants should press
a button. If they failed to press within this time interval,
a visual message telling them to react faster was presented
for 900 ms, starting 100 ms after the end of the maximal re-
sponse time and ending 100 ms before the start of the next
cursor vibration. If a button was pressed in time, a blank
screen was displayed instead. Upon reaching the target, a
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Figure 3. One experimental trial.

visual message ‘Target found’ was displayed.

2.8. Analysis

Artifact removal. To clean EEG data from artifacts,
sections containing data that could neither be attributed
to brain activity nor to eye movements were rejected
manually. None of the experimental trials were affected by
this. Afterwards, an independent component analysis (ICA;
as described in [11]) was computed with the open source
toolbox EEGLAB [4] in order to identify and remove
components reflecting eye activity. For this, the eight EEG
channels plus the two eye electrodes were used as input.
The ICA delivered nine independent sources. To identify
components reflecting eye artifacts, we used the following
three criteria: (1) the dipole of components reflecting eye
activity has a fronto-lateral distribution, (2) the power
spectra of eye artifacts do neither show a clear peak in the
alpha range nor a sharp decrease of power with increasing
frequency, and (3) the peaks of the component occur at the
same latencies as the ones from the EOGs. Following these
criteria, between one and two eye artifact components were
identified per participant and removed accordingly. Data
were transformed back from the remaining components
to the channel representation. Analysis of event-related
potentials (ERPs) was done on these artifact-free data.

ERP analysis. For ERP analysis, EEG from error trials
was compared to the EEG from correct trials. For machine
errors, the ERPs locked to the presentation of the erroneous
cursor move were compared to the ERPs locked to the pre-

sentation of the correct cursor move. Cursor presentations
after erroneous button presses were excluded. Machine er-
rors during the last step of the run were discarded in order to
avoid effects of the visual message ‘Target found’. For self-
generated errors, the ERPs locked to the erroneous button
press were compared to the ERPs locked to correct button
presses.

For statistical analysis the error negativity and error pos-
itivity as described in [16] and [6] for machine errors were
identified in the grand average (i.e., the averaged ERP over
all participants) and time windows representing these peaks
were defined. In the self-generated error condition, the
same was done for the Ne and Pe. Within these time win-
dows the mean of the EEG signal of each trial was cal-
culated. T-tests were used to compare the distributions of
these mean values. Significance levels for the t-tests were
lowered according to the Bonferroni method.

For machine errors, analysis was performed for elec-
trodes Fz, FCz, Cz, Pz, and POz. The first three were cho-
sen because of successful classification on similar channels
in [6], Pz and POz were added because of the classification
results in [16].

For self-generated errors, comparisons were carried out
for electrodes FCz, Cz and CPz, the regions where Ne and
Pe are supposed to peak according to [6].

In order to maximize the amount of trials for each error
type, analysis was conducted on the pooled data from the
different conditions. This means that machine error trials
were extracted from the conditions ‘machine error only’ and
‘mixed’. Likewise, self-generated error trials were taken
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Figure 4. Averaged EEG data time-locked to the beginning of the cursor vibration pooled from conditions ‘machine error’ and ‘mixed’ at
electrode CPz. Averages over trials with a machine error (dotted line, n = 122) and trials with a correct cursor movement (dashed line, n =
540) are shown separately. The solid line shows the difference between machine errors and correct cursor movements.

Fz FCz Cz
140-210 ms 360-500 ms 140-210 ms 360-500 ms 140-210 ms 360-500 ms

p 0.75 0.002* 0.69 0.001* 0.60 0.007
df 660 660 660 660 660 660
t -0.3 3.07 -0.41 3.32 -0.53 2.69

Pz POz
140-210 ms 360-500 ms 140-210 ms 360-500 ms

p 0.10 0.004* 0.09 0.04
df 660 660 660 660
t -1.62 2.92 -1.68 2.03

Table 2. Results of the t-tests for the comparison ‘machine error’ versus ‘correct cursor movement’ for the five electrodes and the different
time windows 140-210 ms and 360-500 ms. Significant differences are written in bold.

from the ‘self-generated error only’ and the ‘mixed’ condi-
tion.

2.9. Classification

Though providing a valuable tool for the investigation of
event-related potentials in human error processing, statisti-
cal analysis of averaged data is not sufficient for BCI ap-
plications. A successful BCI for error detection essentially
depends on differences in the EEG data that can be detected
on a single-trial basis.

To investigate whether single-trial detection of errors is
possible, the performance of a BCI classifier on the data

was evaluated. Therefore, epochs for correct and error tri-
als were extracted from the raw EEG signal. Based on
the results of the analysis of averaged ERP data, time win-
dows of 150 ms subdivided into three parts of 50 ms length
were defined. The resulting 24-dimensional feature space
(3 time window subparts × 8 EEG channels) was then used
for training a linear classifier (regularized linear discrimi-
nant analysis) to distinguish between correct and error trials
for machine and self-generated errors. These feature ex-
traction and classification methods were chosen because of
their performance in a study benchmarking common BCI
algorithms [10]. To avoid overfitting of the classifier, evalu-
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Figure 5. Averaged EEG data time-locked to the button presses pooled from conditions ‘self-generated error’ and ‘mixed’ at electrode FCz.
Averages over trials with a self-generated error (dotted line, n = 237) and trials with a correct cursor movement (dashed line, n = 1211) are
shown separately. The solid line shows the difference between self-generated errors and correct button presses.

FCz Cz CPz
40-110 ms 210-310 ms 40-110 ms 210-310 ms 40-110 ms 210-310 ms

p < 0.001** < 0.001** < 0.001** < 0.001** < 0.001** < 0.001**
df 1446 1446 1446 1446 1446 1446
t -7.51 4.71 -7.92 4.37 -7.46 4.12

Table 3. Results of the t-tests for the comparison ‘self-generated error’ versus ‘correct button press’ for the three electrodes and the different
time windows Ne (40-110 ms) and Pe (210-310 ms). Significant differences are written in bold.

ation of the classification process was done using a tenfold
cross-validation.

3. Results
3.1. Descriptive Results

Machine errors. On average 11.1 (standard deviation
4.4) machine errors per participant were taken into account
for analysis (machine errors on the last step and after self-
generated errors were discarded).

Figure 4 shows an example ERP at electrode CPz aver-
aged over all subjects. Visual inspection of the ERP plots
did not reveal a clear negative component. A positive de-
flection was visible around 360 to 500 ms.

Self-generated errors. The mean amount of self-

generated errors was 27.8 (standard deviation 15.2). Fig-
ure 5 shows an ERP at channel FCz. A negative component
peaked between 40 and 110 ms after the button press, while
a smaller positive component occurred at a time window
from 210 to 310 ms. Additionally, there was a large differ-
ence between the trials with erroneous and correct button
presses during the 80 ms before the button press.

3.2. ERP analysis

Machine errors. Table 2 displays the results of the t-
tests for the machine errors for different electrode sites and
time windows. Although no clear negative component was
observed, t-tests were calculated for the time window in
which the component was supposed to occur (140–210ms).
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classification accuracy in %
subject # error trials # correct trials time window 360-510 ms

error trials correct trials overall
1 19 57 69 69 69
2 11 47 63 75 69
3 12 51 60 63 62
4 7 54 44 81 77
5 5 56 18 85 80
6 10 56 50 80 74
7 6 40 50 71 68
8 14 51 29 56 50
9 12 59 41 55 53

10 9 55 67 82 80
11 17 66 52 72 68

mean 11.1 53.8 49.4 71.7 68.2

Table 4. Overall and per-class classification accuracies for machine errors in the time window 360-510 ms after onset of stimulus presen-
tation.

Since ten t-tests were calculated, the significance level was
lowered to 0.005 according to the Bonferroni method. Dif-
ferences in the early time window reflecting the negative
component are not significant. In the time window reflect-
ing the positive component, EEG differences between the
error trials and the correct cursor movements are significant
at all electrode sites except Cz and POz.

Self-generated errors. The results of the t-tests for
the self-generated errors for different electrode sites and
time windows are shown in Table 3. Again, hypotheses
were tested against a significance level of 0.005. All com-
parisons in both of these time windows yielded signifi-
cant differences. Likewise, for the time window before
the button press (−80 to 0 ms) all t-tests showed signifi-
cant results (FCz: t(1446) = −4.62, p < 0.001**, Cz:
t(1446) = −5.48, p < 0.001**, CPz: t(1446) = −5.39,
p < 0.001**).

3.3. Classification

Table 4 displays the classification results for the indi-
vidual participants in the machine error condition for the
time window 360 to 510 ms after onset of the tactile stim-
ulus. Overall classification accuracies as well as accuracies
for individual classes are reported. Mean classification rate
was 68.2 %, and none of individual classification accura-
cies was below 50 %. However, accuracy on error trials
was lower (49.4 %) than on correct trials (71.7 %). For two
participants (8 and 9) classification accuracy was consider-
ably lower than average. Table 5 presents the results for the
human error condition. Mean classification accuracy was
70.4 % (error: 52.1 %, correct: 72.6 %) for the time window
0 to 150 ms after the button press and 68.5 % (error: 45.8
%, correct: 71.4 %) for the time window 170 to 320 ms.

4. Discussion

4.1. ERP analysis

Machine errors. The comparison between machine er-
ror trials and trials with correct cursor movements yielded
significant differences that are revealed at electrode sites Fz,
FCz and Pz. To our knowledge, this is the first study show-
ing that error potentials can be elicited by machine errors in
a tactile task.

The main difference between error and correct trials was
found in a positive deflection in the range of 360 to 500 ms.
Although peaking somewhat later, this component seems to
reflect the positive peak reported in [16] and [6] for the vi-
sual domain. The increased latency of this positive deflec-
tion might be caused by longer processing times in the so-
matosensory modality. It was shown for example in an odd-
ball paradigm with visual, auditory and tactile stimulation
that P300s elicited by tactile and auditory stimuli peaked
200 ms later than for visual stimuli [1]. Contrarily, Milt-
ner, Braun and Coles [12], reported an earlier peak of the
error-related negativity after participants received feedback
in the somatosensory domain. It might therefore be possi-
ble that other stimulus and task characteristics than stimulus
modality are responsible for the variability in latencies.

Theoretically, the positive peak could be explained by
the fact that the error was accompanied by a change in cur-
sor direction. This produced a more or less rare event on a
lower level of cognitive processing than a (rare) error. Thus,
part of the effect could have been caused by processing of
a rare event which is comparable to an oddball paradigm
eliciting a P300. However, one should note that the cursor
started only three steps away from the target, and the di-
rection of cursor movement was randomly varied such that
overall, the clockwise or counterclockwise direction hap-
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classification accuracy in %
subject # error trials # correct trials time window 0-150 ms time window 170-320 ms

error trials correct trials overall error trials correct trials overall
1 39 182 59 69 67 62 74 72
2 9 151 67 83 82 11 77 73
3 41 175 59 68 67 54 70 65
4 9 160 45 81 80 33 88 75
5 46 174 41 61 57 44 59 55
6 21 171 43 80 75 47 62 66
7 8 136 50 83 81 25 82 79
8 18 164 39 69 66 61 74 73
9 40 177 43 67 63 62 68 67
10 30 167 63 65 65 50 65 63
11 45 219 64 73 71 55 66 65

mean 27.8 170.5 52.1 72.6 70.4 45.8 71.4 68.5

Table 5. Overall and per-class classification accuracy for self-generated errors in the time windows 0-150 ms and 170-320 ms after button
press.

pened equally often. Also, Ferrez and Millán [6] who used a
similar protocol, observed the positive peak with error rates
of 20 % as well as 50 %. Nevertheless, in upcoming studies
the experimental paradigm should be adapted so that possi-
ble P300 effects are excluded as far as possible. A promis-
ing approach might be to use the experimental paradigm
suggested in [16], which rules out direction effects.

In the present study, we did not find a negative com-
ponent around 200 ms after wrong cursor movements as
described for machine errors in the visual domain [6]. This
might be due to the small number of trials. Increasing
the number of trials in future studies might deliver clearer
components. Another explanation for the missing negative
component is that the probability of machine errors was too
high. Previous research found that the less likely the wrong
feedback, the more prominent the amplitude of the nega-
tivity [14]. However, [16] and [6] detected this component
with the same or an even higher error rate than we used here.

Self-generated errors. The results observed here are
well in line with the results reported in [2], i.e., both, an
early negative deflection ascribable to the Ne and a late pos-
itive deflection that can be attributed to the Pe, were ob-
served. So, it seems that self-generated errors committed
in a task where feedback is given in the tactile domain can
elicit error potentials in a similar manner as visual or audi-
tory tasks. This supports a generic and modality indepen-
dent error detection system in the human brain as proposed
in [12].

Additionally, significant differences were found in a time
window from 80 ms before the button press to the beginning
of the button press. This might be because participants real-
ize their mistake even before pressing the button, but cannot
suppress the motor action anymore.

4.2. Classification

Mean individual classification accuracies were all above
50 %. However, the individual classification accuracies for
the two classes were very different. Especially for two par-
ticipants, accuracies for both classes were lower than aver-
age. This might be attributed to the fact that the time course
of the error potential deviated from the time window cho-
sen for classification. Defining time windows for individual
participants may thus improve classification.

From the point of view of usefulness during human-
machine interaction, it is unlikely that performance can be
enhanced by our system, since in most cases there are more
false alarms and missed errors than correctly identified er-
rors. This could be due to two different reasons. First of all,
error potentials might not be elicited in tactile tasks. How-
ever, this is not supported by the results of the ERP analysis
which showed significant differences between error trials
and correct trials. So it seems more probable that the low
performance of the classifier is due to the small amount of
error trials used in this study, which makes it hard for the
classifier to estimate the underlying distributions. The ques-
tion of whether single-trial classification of tactile error po-
tentials is possible should therefore be further investigated
on a larger set of trials. Furthermore performance should
be evaluated in an online experiment, as already done in the
visual domain by Zander et al. [16].

5. Conclusion
In the present study, it was shown that errors occurring

during tactile human-machine interaction give rise to spe-
cific patterns in the EEG signal, which differ in structure
depending on the type of error that is induced. While ma-
chine errors are mainly characterized by a positive deflec-
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tion peaking at about 400 ms after the occurrence of an er-
ror, self-generated errors generally manifest themselves in
a prominent negativity at earlier times of the ERP followed
by a later positivity. The effects were clearly observable in
averaged data. Furthermore, single-trial classification accu-
racies were higher than 50 % for all subjects. However, in
order to reliably evaluate the performance of a BCI classi-
fier for error detection, the results of this study have to be
re-evaluated on a larger amount of data. For future stud-
ies it would also be interesting to investigate the spatiotem-
poral patterns of error potentials more thoroughly. There-
fore recording more EEG channels might provide further
insights.
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Abstract

We present a novel sparse dimensionality reduction ap-
proach to reconstruct biological signals for brain computer
interfaces (BCI). The proposed technique may be used in
the design of an adaptive Brain Computer Interface which
uses interaction error potentials.

1. Introduction

Interaction error potentials (IEP) are potentials detected
in the recorded EEG of a subject controlling a device, just
after the device performs an error. The error is the differ-
ence between the result of the action that the subject ex-
pected, based on his/her action, and the actual outcome.

Since the 1990’s there has been many studies related to
the presence of error potentials. They can be classified as
follows: the response error potential [3] found in speeded
reaction tasks; the feedback error potential [8] which ap-
pears in reinforcement learning tasks; the observation error
potential [12] and finally, the IEP, which can be detected in
a Brain Computer Interface (BCI) context [4].

The precise detection of an IEP after the BCI makes a
classification error can help us to construct a more robust
BCI, by either correcting the BCI output directly, or more
interestingly, by adapting the BCI classifier so that it is less
likely to make a similar mistake in the future. This idea is
illustrated in Figure 1.

From EEG studies it is well known [3, 4, 8, 12] that the
error (as we introduced above) is usually followed by what
is called event-related negativity (ERN) which is found in
the α-band in fronto-central channels. More recently, an
MEG study [7] on the detection of error fields in MEG has
shown an increase in the frontal µ-power and a decrease in
the posterior α and central β-power.
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Figure 1. Illustration of an adaptive BCI for a binary task. Each
point is labeled with the movement (class) that was intended by
the subject (left or right) and denotes a brain state encoded using
two features. Bold line indicates the decision boundary of the BCI
classifier. (Left) A new point is misclassified. The IEP recognized
by the BCI provides a mechanism to detect the misclassification.
(Right) The decision boundary is changed and the BCI is adapted
during performance.

The application of the IEP to BCI [4] requires its reliable
detection. The IEP may in principle be localized in various
channels, various frequency bands, and may be subject de-
pendent.

In this paper, we propose a novel dimensionality reduc-
tion approach which can be used to analyse the IEP. We
propose a sparse version of singular value decomposition
(SVD) that describes the high dimensional signal as a sum
of a small number of sparse templates that change through
time. The sparsity means that the number of channels that
are used in each template is small and it will greatly im-
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prove the interpretability of our findings. Our approach is
then related to works which rely on signal decomposition
using different spatio-temporal features [6, 10] and opens
new doors on how to classify the interaction error fields
(IEF, which are the MEG equivalent of the IEP) since we
do not need to focus in just a few electrodes, but we may
use all the electrodes to increase the quality of the classifi-
cation.

Our approach is presented without any preselected fre-
quency band for detection of IEF, since the aim of this work
is only to present a new method and is not specially focused
on solving the IEF classification. However, it can be ap-
plied to any specific frequency band that previous knowl-
edge might indicate is the most relevant for a particular
problem.

2. Experimental setup
We describe now the experimental framework we used

in our data acquisition. The main goal of this experimental
design is to gain insight into how error signals are encoded
in the brain. Up to now, we gathered measurements from
two subjects. Each subject performed 6 sessions composed
of 84 trials with a minute between two sessions. We plan to
acquire data from 25 more subjects.

All the data used during this work was collected using
an MEG system with 275 channels from which 273 were in
use. EOG and ECG were also recorded and trials with ocu-
lar or muscular artifacts were removed from the data using
an automatic routine.

The experiment is designed as follows:

1. First, two squares and a fixation cross appear in the
screen.

2. After 300 ms, the fixation cross becomes an arrow
(pointing to left or right). The subject is instructed to
direct the attention to the direction pointed by the ar-
row points while keeping the sight in the center of the
screen.

3. After 2000 ms, the arrow disappears and is replaced
with a text indicating the decision of the device (right
or left). This lasts for 1000 ms, and it is the period of
main interest.

4. Finally, the text disappears and the two squares remain
in the screen for 1000 ms before the new trial starts.

Note that subjects are instructed to control the device using
directed (or covert) attention, a well known paradigm for
BCI control, based on the lateralization of the power on the
α band in the posterior channels [11]. However, we could
also have used another paradigm such as, for instance, mo-
tor imagery, without any change in our protocol.

Figure 2. Experimental protocol.

In this preliminary setup, to focus in the goal of error
detection, the device returns automatically a random 20%
of error responses. We labeled as error trials those with the
wrong feedback (when the text does not correspond to the
direction pointed by the arrow) and correct trials otherwise.

The length of the trials was reduced to 1800 ms. For
that we selected the full period for IEF detection (1000 ms)
plus 800 ms of the arrow. The recording sampling rate was
1200 Hz which gave us a total of 2160 time points per trial.
This means that our data matrix for a single trial has size
n× t, where n = 273 and t = 2160.

3. Theoretical framework
In this section we present our method to obtain a recon-

struction of the data using a reduced and sparse set of fea-
tures. First, we describe how we perform dimensionality
reduction and then we focus on sparsity.

3.1. Matrix Factorization and Dimensionality Re-
duction

Lets assume that we have a data matrix Y ∈ Mn×t

where n and t indicate number of channels and time-steps
respectively. When facing the problem of matrix factoriza-
tion in a general setting, our goal is to find two matrices F
and G that minimize

||FG− Y ||22. (1)

where ||FG − Y ||2 is the Frobenius norm of the matrix
FG− Y . This can be seen as constructing a basis matrix F
for which the coefficients for the data are in matrix G.

A common first step when classifying data is to reduce
the effect of the noise and use the most informative fea-
tures. This is usually done using dimensionality reduction
techniques. In our case, we retain the most informative k
basis vectors and discard the rest.
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In this general setting, we see that for any given k ∈ N
we can find matrices F ∈Mn×k and G ∈Mk×t that min-
imize expression (1). We are interested in the case where
k ≪ n. Here appears the model selection problem, or how
to select the parameter k.

For k = n, the singular value decomposition (SVD)
can be used to factorize Y and obtain three matrices: U ∈
Mn×n, a diagonal matrix S ∈Mn×t and V ′ ∈Mt×t such
that

Y = USV ∗. (2)

where ∗ denotes conjugate transpose of a matrix, and the
singular values of Y are sorted by their absolute value in
descending order along the diagonal of S. If we define F =
U and G = SV ∗, such a factorization corresponds to the
minimization of (1) for the case of k = n.

For k ≪ n, we define the matrix F considering only
the first k columns of F and equivalently, G considering the
first k rows of G. Hence, FG is an approximation of Y ,
which becomes more accurate as k increases.

In this work, we use the Akaike information criterion
(AIC) [1] to select the value of k. In our particular case,
under the assumption that errors are normally distributed,
the AIC selects the k which minimizes

||FG− Y ||22 + k(n + t). (3)
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Figure 3. The Akaike information criterion (AIC) for model selec-
tion is used to select the number of features k in our approach.

Figure 3 shows the AIC for different trials corresponding
to the experiment described in section 2. From now on we
can assume that k is fixed.

3.2. Sparsity

Up to now we have described how to represent the ma-
trix Y using a reduced basis F of k vectors. Each of the k

vectors can be considered as a feature composed of a mix-
ture of different channels. To reconstruct the original signal
over time these features are weighted by the corresponding
coefficients in G.

In this section we explain how to make the basis F
sparse. Enforcing sparsity in F will result in features com-
posed of a reduced number of channels thus providing a
more compact and structured representation of the data and
consequently, increasing the interpretability of the recov-
ered signal.

A natural method to obtain a sparse F is an extension
to matrices of the `1-norm regularized least squares method
[2]. Given the data Y , and assuming an initial G fixed, we
are interested in the F which minimizes

||FG− Y ||22 + λ||F ||1, (4)

where the ||F ||1 is the sum of the absolute values of the
elements in the matrix F .

Instead of minimizing Equation (4) directly, we make
use of an extension of the algorithm described in [5]. Given
a matrix A and a vector y, [5] describes an interior-point
method for solving x which minimizes:

||Ax− y||22 + λ||x||1. (5)

Note first that the minimization of (4) is equivalent to the
minimization of

||GTFT − Y T||22 + λ||F ||1. (6)

Thus [5] gives a solution to our problem for n = 1.
Now denote the s-th column of Y T by Y T

s . Using [5] we
can also find a solution to

||GTx− Y T
s ||22 + λ||x||1, (7)

where x is exactly the s-th column of FT. Repeating this
procedure for every s ∈ {1 . . . n} we can find F , a solution
of (6) and consequently of (4). In other words, we have ex-
pressed the global minimization (4) as n independent mini-
mizations of the form (7), one for each channel.

Parameter λ plays the role of a trade-off between spar-
sity and quality of the reconstruction. On one hand, for a
small λ, the quality of the reconstructed signals will be high.
However, F will less sparse. On the other hand, a large λ
will result in a very sparse F , but in poor approximations of
the original signals.

After having defined a procedure to find a reduced and
sparse basis F , we can find a new G which minimizes Equa-
tion (1). Since (1) is a differentiable quadratic form in G,
the solution can be found analytically and we can write the
optimal G in closed form:

G = (FTF )−1(FTY ). (8)

23



Note that the inverse (FTF )−1 is only defined when
rank(F ) = k, and this is not generally guaranteed. In
particular, the more sparse F is, the more likely is that
rank(F ) < k. This means that there exists a maximal λ
which limits the level of sparsity that can be achieved by
our method. In practice, this limitation does not restrict our
method, as we will show in the next sections.

4. Algorithms for Sparse matrix factorization
After introducing the theoretical building blocks of our

approach, we present two possible algorithms. Both algo-
rithms take as input the BCI data Y , the regularization pa-
rameter λ and the desired sparsity of the solution (number
of zero entries in F ).

Algorithm 1 applies SVD to the original signal Y and
then uses AIC (see Section 3.1) to select k. This results in
a matrix G with k rows which is used in the `1-norm mini-
mization (step 4 of Algorithm 1) to find the sparse basis F ⋆.
After the minimization, some of the entries in F ⋆ are very
small in absolute value. We set the required entries to zero
as long as the matrix F ⋆ has full rank (in practice, we al-
ways found full rank matrices even using 50% of sparsity).

Algorithm 1
Require: x (number of zeros in F ), λ and matrix Y

1: G← SV D(Y ).
2: k ← AIC.
3: G← select k rows of G.
4: F ⋆ ← argminF ′ ||F ′G− Y ||22 + λ||F ′||1.
5: repeat
6: (i, j)← find smallest non-zero absolute value F ⋆

7: F ⋆(i, j) := 0
8: until F ⋆ has x zeros or rank(F ) < k.
9: G⋆ ← argminG||F ⋆G− Y ||22

10: return F ⋆, G⋆

Figure 4 shows the behavior of the algorithm for three
different values of λ as a function of the number of zeros.
As can be seen, the larger the λ, the more sparse can F be
made without increasing significantly the error. Note, how-
ever, that for small λ, the initial errors (those corresponding
to non-sparse solutions) are smaller than for large λ.

The interplay between λ and the level of sparsity sug-
gests a modification of the algorithm in which the matrix F
resulting from SVD, instead of F ⋆, is used as a final basis.
The latter is used only to select which entries of F must be
zero. Algorithm 2 describes this alternative approach.

Figure 5 shows a comparison of both methods for a fixed
λ = 300 as a function of the number of zero entries. As can
be seen, the alternative algorithm performs better than the
previous one as long as the solution is not very sparse.
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Figure 4. Performance of Algorithm 1 from one random trial. k is
fixed to 19 using AIC and � = {200; 300; 400}.

Algorithm 2
Require: x (number of zeros in F ), λ and matrix Y

1: F,G← SV D(Y ).
2: k ← AIC.
3: F,G← select k cols. and rows from F,G respectively.
4: F ⋆ ← argminF ′ ||F ′G− Y ||22 + λ||F ′||1
5: repeat
6: (i, j)← find smallest non-zero absolute value F ⋆

7: F (i, j) := 0
8: until F has x zeros or rank(F ) < k.
9: G⋆ ← argminG||FG− Y ||22

10: return F,G⋆
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Figure 5. Performance of Algorithm 2 (solid) versus Algorithm 1
(dashed) from one random trial. k = 19 and � = 300.

4.1. Choosing the regularization parameter λ

Given a level of sparsity, is there a λ for which the error is
minimal? If this is the case, we could choose automatically
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the λ provided the number of zero entries in the matrix F .
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Figure 6. Performance of Algorithm 2 as a function of � for dif-
ferent levels of sparsity. Results are equivalent if we consider all
the trials.

Figure 6 shows the performance of Algorithm 2 as a
function of λ for different levels of sparsity: 1000, 2000
and 2594 (50% of the entries). It shows that there exists a
optimal value of λ for any level of sparsity. This optimal
value could be easily found, for instance, using line search.

For both algorithms we found that the optimal λ, as well
as the error, are larger as we increase the level of sparsity.

4.2. Why not make sparse the SVD directly?

Another way to look at the problem would be to simply
make zeros the positions of smallest absolute values of F ,
and then updating G using (8). In Figure 7 we show that
this is not a good strategy. As we can see, the error of Algo-
rithm 2 with λ = 300 is always smaller than this alternative
approach, regardless of the level of sparsity, showing the
advantage of using the `1-norm minimization.

This can also be viewed from the perspective that the
regularization term used in step 4 of Algorithm 2 has by
definition the property to produce parameter shrinkage in
the least relevant directions of the data.

5. Results: Sparse reconstruction of signals

In this section we illustrate with an example the qual-
ity of the reconstruction made by our method. We show
results for the MEG signal acquired according the experi-
mental procedure described in Section 2.

Step 2 of Algorithm 2 gives k = 19. Since the MEG
system has 273 active channels, this result in a matrix F ∈
M273×19, so the matrix F has a total of 5187 elements.
For this example we will require Algorithm 2 to make 2000
zeros in F . For this level of sparsity, we selected λ = 300.
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Figure 7. Performance of Algorithm 2 (solid) versus sparsifying
the initial SVD (dashed). k = 19 and � = 300.

As expected, we observe that columns of F associated
with the most relevant features (leftmost columns) are less
sparse than the rightmost columns, However, it is not the
case that a column becomes totally zero, which would indi-
cate that rank(F ) < k.
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Figure 8. Example of signal reconstruction for one channel and
one trial selected randomly. (Top) Original signal (grey solid) and
the approximation (black dashed-dotted) over time. The approxi-
mation was calculated using Algorithm 2 with k = 19, � = 300
and 2000 zeros in F . The inset shows an histogram of the resid-
uals, which look normally distributed. (Bottom) Residuals as a
function of time.

Figure 8 illustrates the reconstruction obtained from a
random channel (random row of Y ) in one trial using Al-
gorithm 2. For this particular channel there are 7 zeros out
of the 19 elements in the respective row of F . The sparsity
of the whole matrix F is 38%, whereas the selected channel

25



appears as irrelevant in 37% of the features. As can be seen
from the figure, the reconstruction is very accurate.

5.1. Discussion and ongoing research

We have developed a method to decompose a space/time
signal into a small set of features and shown its applicability
in MEG signal reconstruction. The method not only leads to
a more understandable signal but, more importantly, is also
appropriate to be used in a BCI setup, such as the one pre-
sented in Section 1, where the reconstructed signal is used
in the classification of IEP. This is our current direction of
research.

We devise some possibilities to improve/extend the pro-
posed method. First, since the role of the regularizer in
our algorithms is just that to select which positions in F
should be zero, we might get similar results by using the
Tikhonov regularization, also known as `2-regularized least
squares [9]. This approach would be much more efficient
in computational terms since the regularization becomes a
a quadratic differentiable form which therefore has an ana-
lytic solution. We have promising preliminary results in this
direction.

Another extension is to perform the analysis into the
frequency domain, more often used in BCI. Notice that
the method can be easily adapted to this case: first, the
source data Y would be transformed using a selected band
of frequencies (low frequencies are more convenient in our
paradigm) and then our sparse factorization would be ap-
plied to the transformed data. The resulting basis would
constitute a set of spectral features which change over time,
the analogous counterpart to our original features.
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Abstract

In this work, we aim to find neuro-physiological indica-
tors to validate tags attached to video content. Subjects are
shown a video and a tag and we aim to determine whether
the shown tag was congruent with the presented video by
detecting the occurrence of an N400 event-related poten-
tial. Tag validation could be used in conjunction with a
vision-based recognition system as a feedback mechanism
to improve the classification accuracy for multimedia index-
ing and retrieval. An advantage of using the EEG modality
for tag validation is that it is a way of performing implicit
tagging. This means it can be performed while the user
is passively watching the video. Independent Component
Analysis and repeated measures ANOVA are used for anal-
ysis. Our experimental results show a clear occurrence of
the N400 and a significant difference in N400 activation be-
tween matching and non-matching tags.

1. Introduction

Given the enormous amount of unannotated multimedia
data available nowadays, the need for automatic categori-
sation and labelling of video material to enable efficient
indexing and retrieval is evident. So far, the predominant
method used for tagging video data is by manual annota-
tion. This is a slow, labour intensive process that cannot
keep up with the amount of newly generated multimedia
data. Lately, research has focused on finding ways to au-
tomate the annotation of this data. The use of EEG in this
process is interesting mainly because it offers the possibil-
ity of passive, implicit tagging. This means that tags can be
generated by analysing the EEG data as subjects consume
multimedia data, without active involvement or conscious
effort on their part. While at the moment the recording
of EEG measurements is still a quite cumbersome process,
recent improvements in the development of dry electrodes
may simplify the use of this modality and make it usable
outside of the laboratory environment.

The use of EEG in annotating multimedia data is a very

new research direction and so far only a few works have in-
vestigated this area. In [6], an oddball paradigm is used in
which images of a forest environment were shown to sub-
jects for 100 ms each. The goal was to detect a small subset
of target images that contained pedestrians. The target im-
ages elicit a P300 event-related potential which was then
classified using Fisher linear discriminant analysis. An-
other test was run without the EEG modality, where sub-
jects pressed a button upon seeing the target images. The
results showed no significant differences in target image de-
tection accuracy between the use of the EEG modality and
the use of buttons. In [8], categories of images are classi-
fied based on EEG measurements recorded as the images
were presented. The used categories were faces, animals
and inanimate objects. This was based on the notion that
the human visual system responds very differently to these
categories of images. The authors propose a vision-based
algorithm that uses pyramid match kernels to initially clas-
sify the images. The EEG data is then combined with the
vision-based features using a kernel-alignment method. The
combination of the two modalities outperforms the individ-
ual methods. In [3] the RAPID system is proposed. The
authors use ERP analysis in combination with eye tracking
to assist intelligence analysts in rapidly reviewing and cat-
egorizing satellite imagery. The analyst is assigned a target
category to look for in the images. When subjects see an im-
age in the target category, an ERP occurs in the EEG data
which is then classified. Eye tracking is used to determine
points of interest within the images.

All of these works are based on image annotation where
as we attempt validation of tags related to video data. Also,
in contrast to these earlier works, we perform tag valida-
tion rather than trying to assign tags directly. We show that
there are significant differences between the cases of match-
ing and non-matching tag presentations. This approach can
be used in combination with a vision-based indexing and re-
trieval system in order to validate and re-rank its output, or
for validating tags added manually by users. Such a tag val-
idation system could be especially helpful in cases were the
content to be tagged and the label categories are too com-
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plex (and only obvious from the incorporation of a wider
context) to be classified by machine learning from the me-
dia directly. In that case the human (neural) responses can
be used to indirectly classify the material. Many actions,
such as for instance greeting a person, can vary greatly (e.g.
waving, handshaking, hugging etc.) and be very difficult to
detect via machine learning techniques. However, a human
observer will have no difficulty in recognising these actions.

Another possible application is be the automatic recogni-
tion of social or affective content. In [9] an N400 response
was observed for labels presented after musical excerpts.
These words were very loosely attributed to the music in
terms of associated objects (e.g. birds, needles), musical
features, and moods. While these sub-categories were not
analysed and reported separately, it is conceivable that the
label information can entail categories of emotional content.
As emotions are subjective in nature, the N400 approach
to tag validation introduced here could in principle assess
the subjective response to media content, thereby crossinga
threshold insurmountable by a direct media analysis.

2. Methodology

We propose an approach to implicit tag validation
through the use of EEG signals. In this approach, a sub-
ject is shown a video followed by a tag, and from the
EEG signals recorded during tag display, we aim to discern
whether the tag applies to the video content or not. Our hy-
pothesis is that if the shown tag does not match the video
content a ’mismatch negativity’ will occur in the form of
an N400 event-related potential (ERP). It has been shown
that in cases of two semantically mismatching categories
an N400 event-related potential occurs at around 400 ms
after the second stimulus is presented (or better: after the
mismatch becomes obvious to the viewer). This N400 has
been observed even when the stimuli originate from dif-
ferent modalities (e.g. audio and text or images and text)
[14, 12, 9, 1]. We aim to show here that the mismatch neg-
ativity can also be observed when we combine the modali-
ties of video and text by priming the subject by the display
of video content, followed by the display of a semantically
mismatched tag. To the best of our knowledge this is the
first work combining the video and text (tag) modalities.

We collected a large dataset with 17 subjects, each
recorded for 98 trials. We use independent component anal-
ysis to remove eye blinks and other artefacts in the data
and then determine whether the signals for the two cases
(matching and non-matching tags) are significantly differ-
ent using a repeated measures ANOVA. We found that there
are indeed significant differences in the signal between the
two cases in certain areas of the brain. We will now describe
each step of our analysis in detail.

Figure 1. Subjects performing the experiment.

2.1. Experiment Setup

EEG was recorded using a Biosemi ActiveTwo sys-
tem (www.biosemi.com) on a dedicated recording PC (P4,
3.2 GHz) using the BioSemi Actiview recording soft-
ware. Stimuli were presented on a dedicated stimulus
PC (P4, 3.2GHz) that sent synchronization markers di-
rectly to the recording PC. For presentation of the stim-
uli the Presentation software by Neurobehavioral systems
(www.neurobs.com) was used. Subjects were seated in a
comfortable chair, approximately 70 cm from the presen-
tation monitor (a 20 inch Samsung Syncmaster 203B). In
order to minimise eye movements, the video stimuli were
all shown width a width of 640 pixels, filling approximately
a quarter of the screen. Each subject signed an informed
consent form and filled in a short questionnaire. They were
then instructed to try to restrict any movement to the pe-
riods between trials to minimize movement artefacts in the
EEG signal. Subjects were told they would be shown videos
followed by tags, but were not given any further specific in-
structions as to the nature of the experiment. 32 active AgCl
electrodes were used (placed according to the international
10-20 system) and the data was recorded at 512 Hz. Fig. 1
shows two subjects as they perform the experiment.

17 Subjects were each recorded for 98 consecutive trials.
12 subjects were male, 5 female. Ages ranged from 19 to
31, with a mean age of 25. All but two subjects were right-
handed and all but three subjects viewed the tags in their
native language. Each trial consisted of the following steps:

1. A fixation cross is displayed for 1000 ms (to minimise
eye movements).

2. The video is displayed (ranging in duration from 6-10
seconds).

3. A fixation cross is displayed for 500 ms.

4. The tag is displayed for 1000 ms.

5. A fixation cross is displayed for 4000 ms before the
start of the next trial.

28



Figure 2. Order and timing of the experiment.

The stimuli were presented in 3 blocks of 32-33 trials. In
between the blocks, subjects were given breaks and could
move freely, reseat themselves or have a drink of water in
order to avoid any muscle straining or fatigue. Fig. 2 illus-
trates the order and timing of the experiment.

49 Videos from seven different categories were used as
stimuli, with 7 videos in each of the 7 categories. Each
video has a duration of ten seconds or less and was shown
twice, once followed by a matching tag and once followed
by an incorrect tag. Table 1 gives an overview of the dif-
ferent video categories and their sources. The categories
were chosen according to two criteria. Firstly, the cate-
gories should encompass events which do not vary too much
in appearance within one category (to facilitate an eventual
vision-based analysis). Secondly, we selected categories
with human faces, animals and inanimate objects, follow-
ing [8], who indicate that these categories can be separated
reasonably well by analysing the EEG signals from subjects
watching the videos.

2.2. Analysis

As a preprocessing step, the data was referenced the
common average (CAR). Also, the data was bandpass-
filtered between 0.5 and 40Hz to remove DC drifts and
suppress the 60Hz power line interference. We extracted
epochs for further analysis ranging from 500 ms before tag
display to 1000 ms after. To remove interference caused
by eye blinking and other artefacts, we perform spatial fil-
tering using Independent Component Analysis (ICA). ICA
has been used before in EEG data analysis with good re-
sults (e.g. [7]). Components containing only noise were
manually selected and removed from the data. Fig. 3(a)
is an example of a component that is strongly correlated
with eye blinks. This is evident because the activation
occurs in isolated periods (blinks) that are not correlated
across trials. Also, the component is mostly active in the
frontal electrodes. Such components are removed. Fig. 3(b)
shows an example component correlated with the N100 and
P200 ERP. The activation is concentrated in the occipital
lobe (which is concerned with vision tasks), the component

shows a resemblance to a typical ERP curve and there is a
strong correlation between trials.

After removing the components that are due to blinks
and other artefacts, we perform a repeated measures
ANOVA to determine whether significant differences occur
in the recorded EEG signal between the cases of matching
and non-matching tags. For this purpose, we only consider
the period of 300-500 ms after tag display, during which the
strongest N400 response can be expected.

3. Results

Table 2 shows the results of performing the repeated
measures ANOVA. Results that have ap-value lower than
0.01 are deemed significant. Electrodes that show signifi-
cant differences (p ≤ 0.01) between the cases of matching
tags and non-matching tags are highlighted. The fourth col-
umn shows the mean signal difference between the cases
in µV (the mean signal in the case of matching tags minus
the mean signal for the case of non-matching tags). Elec-
trodes showing a significantly higher/lower negativity for
non-matching tags are shaded light red and darker blue re-
spectively.

Fig. 4 shows the location of observed differences in sig-
nal values. We can see that the differences are spatially
mainly localised in two regions. The main region is located
around the occipital and parietal lobe (covering electrodes
CP1, Pz, PO3, CP2, C4 and Cz), where a more negative
voltage deflection occurs when displaying non-matching
tags than when displaying matching tags. The occipital
lobe is concerned primarily with vision tasks and the pari-
etal lobe is, among other things, concerned with the loca-
tion of visual attention [10, 4]. The other region showing a
significant difference in signal values is located in the left
temporal lobe around electrodes AF3, FC5, T7 and F7. One
of the functions of the left temporal lobe is the recognition
of words, possibly explaining the activation there. In this
case, the observed voltage is less negative for the case of
non-matching tags than for the case of matching tags.

Fig. 5 depicts the grand average waveforms for the 9
electrodes exhibiting the most significant differences be-
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Category/Label Source
Airplane take off Plane spotter homevideos (http://www.flightlevel350.com/)
People kissing Hollywood movies dataset [11]
People getting out of cars Hollywood movies dataset [11]
Mice drinking water Mouse behaviour dataset [5]
Cats opening doors Pet homevideos (http://www.youtube.com)
Jawdrop (posed facial expression) MMI facial expression database [13]
Laughing people (spontaneous facial expression)AMI meeting corpus [2]

Table 1. The different video event categories used in the experiment and their sources.

(a) An independent component that is strongly correlated with blinks. The
component activity is concentrated in the frontal area and there is no corre-
lation between trials.

(b) An independent component that is correlated with ERPs inthe occipital
cortex related with early visual processes. We can primarily see the activa-
tion here of the N100 and P200 ERP.

Figure 3. Visualisation of two independent components. In each of the subfigures: On the left is a topoplot of the component activation. In
the top right the component activation is shown for 98 trialsof one subject. In the lower right the average component signal is displayed.

tween the two cases. The first four plotted electrodes show
less negativity for non-matching tags than for matching
tags. The remaining electrodes show the opposite behaviour
and display a higher negativity for the case of non-matching
tags than for matching tags. Clear examples of the N400
ERP can be observed. The differences are most clear in the
300-500 ms period after tag display.

From these results it is clear that the N400 occurs
when subjects are shown a combination of stimuli from the
modalities of video and text (in the form of a tag). Further-
more, significant differences are present in a considerable
number of electrodes between the cases of non-matching
and matching tags. However, the effect size (≤ 1µV ) is
smaller than that found in other studies (e.g. [12, 1]). This
can be due to the semantic categories, the stimulus material,
or other parameters of the experiment used here.

4. Conclusions

In this work, we have collected and analysed a dataset
to investigate the use of EEG for passive, implicit tag val-
idation. Data was collected for 17 subjects and each sub-
ject was shown 98 videos, 49 followed by with matching
tags and 49 followed by non-matching tags). Independent
Component Analysis was used to remove noise (including
eye blink artefacts) from the data. A repeated measures

ANOVA showed significant differences in the EEG signal
between the two cases of congruent and incongruent tags.
This implies that the two cases can be successfully distin-
guished by analysis of the EEG signal. The next step in our
research is to determine for single data trials whether the tag
matches the video content. Successful single trial analysis
would mean we can use this technique as a feedback mecha-
nism in video analysis for indexing and retrieval. Other uses
could include validating unreliable user-generated tags and
possibly determining user reactions to the content (such as
liking or disliking the content or other affective reactions).

In order to achieve a working tag validation system
several parameters will have to be studied and optimized.
Questions that need to be answered include: how long af-
ter a stimulus does a non-matching tags still elicit the ERP?
What types of categories elicit the most robust mismatches?
Does a subliminal presentation, not consciously perceived
by the viewer, also elicit N400 responses? Can we also use
a frequency analysis to judge how subjects implicitly judge
the semantic meaning of the video?

In similar P300 experiments usually the EEG signal of
several trials is averaged to increase the signal-to-noiseratio
and increase the accuracy of ERP detection. This strategy
could in principle also be used for the evaluation of label
validity. However, it has to be ensured that multiple pre-
sented tags really are associated with the media content and
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Figure 4. Left: Topoplot of Electrode locations, Middle: Topoplot of Significance of difference (F -test value), Right: Topoplot of the
Grand-average differences between 300 and 500 ms for all 17 subjects. Electrodes with significant differences are highlighted in grey.

Electrode F (1, 16) p-value MSD (µV )
CP2 19.98 0.000 0.776
Pz 17.59 0.000 0.819
CP1 11.74 0.001 0.535
Cz 08.15 0.004 0.480
PO3 07.32 0.007 0.616
C4 06.86 0.009 0.364
F7 15.25 0.000 -0.948
T7 14.15 0.000 -0.758
FC5 11.76 0.001 -0.640
AF3 07.84 0.005 -0.557
F3 06.50 0.011 -0.482
P4 06.30 0.012 0.478
P7 04.53 0.034 -0.443
F8 04.42 0.036 -0.455
Fp2 03.68 0.055 -0.417
Fp1 03.65 0.056 -0.429
FC2 02.29 0.130 0.260
Fz 01.69 0.194 -0.261
AF4 01.61 0.204 -0.250
FC6 01.57 0.210 0.203
CP6 01.33 0.249 0.236
P3 01.18 0.278 0.196
P8 01.09 0.297 0.209
O2 00.71 0.399 0.182
PO4 00.63 0.427 0.180
O1 00.63 0.428 -0.173
C3 00.43 0.514 0.094
F4 00.09 0.761 0.055
T8 00.08 0.783 0.053
Oz 00.06 0.808 0.056
CP5 00.03 0.870 -0.027
FC1 00.00 0.995 0.001

Table 2. ANOVA Results per electrode. MSD stands for Mean Sig-
nal Difference. Significant differences (p � 0.01) are highlighted.

not with previously presented labels.
Using a single trial analysis, we hope to build a tag vali-

dation system that will achieve an efficiency close to that of
manual tagging without active user involvement. However,
given the low bitrate usually achieved by BCI systems, this
task seems rather daunting. Also, mere tag validation does
not compare to a complete manual tagging. Nevertheless,
we envision a system that will be a useful addition to cur-
rent tagging methods, especially given the absence of the
requirement for active user involvement.
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Abstract 
 

Task engagement is a psychological dimension that 

describes effortful commitment to task goals.  This is a 

multidimensional concept that combines cognition, 

motivation and emotion.  This dimension may be 

important for the development of physiological 

computing systems that use real-time psychophysiology 

to monitor user state, particularly those systems seeking 

to optimise performance (e.g. adaptive automation, 

games, automatic tutoring).  Two laboratory-based 

experiments were conducted to investigate measures of 

task engagement, based on EEG, pupilometry and blood 

pressure.  The first study exposed participants to 

increased levels of memory load whereas the second 

used performance feedback to either engage (success 

feedback) or disengage (failure feedback) participants.  

EEG variables, such as frontal theta and asymmetry, 

were sensitive to disengagement due to cognitive load 

(experiment 1) whilst changes in systolic blood pressure 

were sensitive to feedback of task success.  Implications 

for the development of physiological computing systems 

are discussed. 

 

Introduction 

Physiological computing (PC) describes systems that 
capture psychophysiological changes in the user in order 
to  inform real-time software adaptation [1, 2].  PC 
systems rely on psychophysiology to create a 
representation of the psychological state of the user in 
real-time, e.g. changes in cognitive activity, positive and 
negative emotions, high vs. low task motivation.  The 
system consults this representation to select an 
appropriate category of adaptive response.  For example, 
if the user is frustrated, changes in user state should 
prompt the presentation of help information; if a player 
is bored by a computer game, the representation of user 
state should trigger an increase of game difficulty [3, 4].  
The purpose of this approach is to create real-time 
software adaptation that is both implicit and intuitive.    

The PC paradigm encompasses several existing 
strands of research/applications, from the control of 
adaptive automation [5, 6]  to the use of 
psychophysiology to represent user emotion [7].  Unlike 
BCI applications [8], the PC approach is essentially 
passive (i.e.  requiring no additional activity on the part 
of the user) and works mainly at the meta-level of the 
human-computer interaction (HCI)  (i.e. ensuring that 
negative psychological states are minimised), i.e. 

whereas BCI represent an alternative form of input 
control [9]. 

The cycle of data collection and system response 
wherein psychophysiological change is transformed into 
adaptive control may be described as a biocybernetic 
loop [10].  This category of biocybernetic system 
control creates a symmetrical form of HCI where the 
availability of system information to the user is balanced 
by data about user state being at the disposal of the 
system [11].  Making a computer system privy to 
psychophysiological states has the potential to enable 
so-called ‘smart’ technology, i.e. systems that are 
characterised by increased autonomy and adaptive 
capability [12].  If technology develops in this direction, 
there is a subtle shift in the dynamics of HCI, from the 
master-slave dyad that characterises the way we 
currently use computers towards a collaborative, 
symbiotic relationship that requires computer 
technology to extend awareness of the user in real-time 
[13, 14].  

One fundamental question surrounding the 
development of PC systems concerns how best to 
operationalise and represent the user state.  There are 
several aspects to the question that should be considered 
during the initial stage of system design.  In the first 
instance, what kind or dimension of user state is the 
most important one for a particular application domain?  
For example, physiological computing systems designed 
to control automation in the aircraft or vehicle cockpit 
have traditionally been concerned with representing the 
cognitive capability of the operator, specifically the 
prevention of Hazardous States of Awareness (HSA) 
[15].  Systems that employ psychophysiological 
measures for affective computing application emphasise 
the monitoring of negative affective states, such as 
anxiety [16]  and frustration [17].  Similarly, 
psychophysiological monitoring has been used to 
identify quasi-emotional states, such as enjoyment, for 
those investigating this approach in the context of 
computer games [18].    At the second stage of system 
design, the researcher must identify those 
psychophysiological measures that provide the best 
operationalisation of the required psychological 
dimension.  This stage may involve perusal of 
background literature followed by a series of validation 
experiments in the laboratory or the field, see [2]  for 
full description of these issues. 

This paper is concerned with how to measure the 
psychological dimension of task engagement as the 
basis for the development of PC systems.  Task 
engagement is defined as “effortful striving towards task 
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goals” [19].  This multidimensional concept 
incorporates at least three psychological dimensions: (1) 
the investment of mental effort to optimise cognitive 
performance, (2) motivation to successfully achieve task 
goals, and (3) affective changes associated with the 
likelihood of goal attainment.  This dimension is 
important because engagement has a predictive 
relationship with human performance (i.e. greater 
engagement = superior performance) and wellbeing (i.e. 
disengagement from a task is associated with negative 
psychological states such as boredom or anxiety).  

Previous research 

Research into biocybernetic control of adaptive 
automation at NASA focused on the measurement of 
spontaneous electroencelographic (EEG) activity in 
order to capture task engagement, i.e. an EEG index 
ratio measure where the ratio of mean power in the 
high-frequency beta bandwidth (13-40Hz) is divided by 
total power in lower-frequency alpha (8-12Hz) and theta 
(3-7Hz) components (β/(α+Θ)) [10].  This prototypical 
system enabled automation of a laboratory-based task 
(the Multi-Attribute Task Battery - MATB) provided 
that the operator was deemed to exhibit high task 
engagement; if EEG measures of task engagement went 
into a decline whilst automation was activated, the 
system switched the user into a manual control mode, 
i.e. to re-engage with the task and prevent automation-
induced complacency.  This programme of research is 
summarised in [20]. 

The measurement of task engagement using 
psychophysiology takes on a different complexion in the 
context of desktop-based systems.  For example, 
detection of negative user states is particularly relevant 
for computing applications designed to aid learning 
[21].  Recent work on the detection of user frustration 
[17]  demonstrated the utility of the multimodal 
approach that combined multiple measures to predict 
subjective feelings of frustration.  These authors 
measured skin conductance in combination with posture 
analysis, detection of head gestures (head shakes and 
nods), facial expression (smiling) and haptic monitoring.  
These measures were used to predict self-reported 
episodes of frustration, which was accurately detected in 
79% of all cases (chance level = 58%).  This experiment 
demonstrated how covert psychophysiology may be 
combined with overt behavioural signals in order to 
define the psychological dimension of interest.  Related 
work on affective computing has also combined 
different psychological dimensions to yield a suitable 
representation of user state.   For example, Burleson and 
Picard [22]  described a state of “stuck” that may occur 
during the learning process to the detriment of user 
motivation.  The definition of this state combines 
negative affect (e.g. anxiety) with cognitive 
characteristics (e.g. inability to focus, mental fatigue).  

Measuring task engagement via 

psychophysiology 

Task engagement can be defined with respect to 
cognitive activity (mental effort), motivational 
orientation (approach vs. avoidance) and affective 
changes (positive vs. negative valence).   

Mental effort is conceptualised as energy 
mobilisation in the service of cognitive tasks or goals.  
At the cerebral level, the electrical activity of the brain 
may be quantified via the EEG to study how different 
states of brain activation represent the level of mental 
effort investment.  The topography of EEG activation 
may provide important information about the specificity 
and distribution of activation over the cortex.  A series 
of experiments demonstrated that augmentation of theta 
activity (4-7Hz) from central frontal sites and 
suppression of alpha activity from occipital areas were 
both associated with increased mental effort in response 
to working memory load (i.e. number of items to be 
retained in memory) [23, 24].   

The pupillary response has a long association with 
the measurement of mental effort in response to 
cognitive variables [25, 26].  There is evidence that 
pupil dilation is greater during the processing of a 
complex cognitive operation relative to a simple one.  
The main problem with pupilometry is interference from 
light adaptation, i.e. for those environments where the 
level of lighting is not carefully controlled.  The Index 
of Cognitive Activity [27]represents an attempt to 
quantify small discontinuities in pupil size that are 
related to cognitive activity.  The ICA is derived in a 
selective manner that minimises the influence of lighting 
levels.   

There is an obvious link between task engagement 
and the motivation to successfully achieve a  given 
outcome.  Motivational intensity theory [28, 29]  
proposes that goal commitment (i.e. the willingness to 
invest effort into the task) is a function of perceived: (i)  
task difficulty, (ii) ability, and (iii) likelihood that 
successful performance on the task will achieve a 
desired motive (e.g. monetary incentives, prowess, 
‘feeling good’).  Therefore, if the individual assesses 
themselves to have the requisite level of skill to achieve 
success, then effort is invested into performance.  
Research into motivational intensity theory has used 
indicators of sympathetic nervous system (usually 
systolic blood pressure) to describe the “tipping point” 
where increased difficulty/reduced perception of 
ability/reduced perception that the task is worthwhile 
forces participants to switch from  effortful striving for 
goal success to disengagement and a significant 
reduction of mental effort [30, 31].  

Related research has linked changes in frontal EEG 
asymmetry to the self-regulation of affect and 
motivational orientation.  In broad terms, the experience 
of positive emotions is associated with high levels of 
relative left frontal activity, whereas negative emotions 
is related to increased relative right frontal activity [32, 
33].  There is also evidence that increased left frontal 
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activation is correlated with motivational approach 
whilst right frontal activation is linked with a motivation 
disposition in the direction of avoidance.  Research into 
the influence of reward on frontal asymmetry supports 
this connection [34-36], and higher levels of left frontal 
activation have been associated with trait measures of 
behavioural activation [37-39].  The relationship 
between motivational direction and affective valence 
encapsulated by frontal EEG asymmetry is implicit 
within a performance setting. 

Task engagement is a multidimensional description 
of user state [40]  that incorporates  psychophysiological 
measures of cognition, motivation and affect.  The 
relationship between physiology and psychology may be 
described as many-to-one [41]  as multiple indicators 
from EEG, pupilometry and cardiovascular activity are 
deployed in concert to represent this dimension of task 
engagement.  The purpose of this paper is to describe 
two laboratory experiments, both dedicated to the 
measurement of task engagement using different types 
of manipulation.  In experiment one, participants are 
exposed to five levels of task demand using a working 
memory task.  The aim of this experiment is to mentally 
overload the participants so he or she decides to 
withdraw effort from the task because it is deemed to be 
too difficult to achieve.  The second experiment 
manipulated task engagement by providing participants 
with false feedback about the quality of their 
performance.  One group was informed that 
performance was successively improving over time 
whereas the second group of participants received 
feedback of progressive performance decline.  In the 
case of the second experiment, task engagement is 
influenced by manipulating participants’ perception of 
their own ability.  

Experiment 1:  Mental Overload 

Description of Study 

21 participants (11 male) took part in the research, 
however data from 3 participants was excluded due to 
EEG artefacts and incorrect task completion. 
Participants were aged between 19 and 39 years of age.  
Cognitive effort was elicited with a verbal working 
memory task known as the n-back task. The task 
requires participants to indicate if the currently 
presented stimulus matches one shown on an earlier 
occasion.  Solid black letters (against a white 
background) were presented to participants on colour 
monitor at a distance of 80cm. The task consisted of 6 
levels of difficulty, with level 1 being the easiest and 
level 6 the most difficult. For each stimulus presentation 
participants needed to indicate if the letter matched the 
previous letter (level 1), the letter 2-previous (level 2), 
the letter 3-previous (level 3), the letter 4-previous (level 
4), the letter 5-previous (level 5) and the letter 6-
previous (level 6). Responses were given with a 
keyboard press of 1 for match and 2 for non-match, 

using the right index and middle fingers. Participants 
attended a training session of approximately 4.5 hours 
on the day before the experiment.  

EEG activity was recorded monopolarly from 32 Ag-
AgCl pin-type active electrodes mounted in a BioSemi 
stretch-lycra headcap. Electrodes were positioned 
according to the international 10-20 system and EEG 
activity recorded from the following sites: frontal pole 
(FP1, FP2), Anterior-frontal (AF3, AF4), frontal (F3, 
Fz, F4), fronto-central (FC5, FC1, FC2, FC6), central 
(C3, Cz, C4), temporal (T7, T8), parieto-central (CP5, 
CP1, CP2, CP6), parietal (P7, P3, Pz, P4, P8), occipito-
parietal (PO3, PO4) and occipital (O1, Oz, O2). 
Electrodes were also placed at earlobe sites (A1, A2) 
allowing electrodes to be referenced off line to a linked 
ears reference. EEG was recorded continuously 
throughout a 4 minute baseline prior to the task and 
continuously throughout the task.    

Systolic blood pressure measurements were taken 
using a Dinamap Vital Signs monitor (PRO100) using a 
cuff that was worn on the upper arm. Readings of 
systolic, and diastolic blood pressure along with heart 
rate and mean arterial pressure were obtained. A 
baseline reading was taken during a 4 minute period 
prior to task completion at 180s after the start of this 
period. Readings were then taken for each experimental 
trial 60s after onset giving 2 readings for each task level.  

Pupil diameter measurements were recorded 
continuously at a sample rate of 60Hz with two remote 
infrared video cameras (Seeing Machines Ltd, Canberra, 
Australia). The cameras used binocular tracking and 
were mounted on a metal frame 80-90cm in front of the 
participant, placed beneath the stimulus display monitor. 
Pupil size resolution was possible at 0.00001mm. Data 
was recorded using FaceLAB 4.6 software.  Illumination 
from the stimulus display and room lighting (8 x 36W 
ceiling mounted fluorescent tubes) was maintained 
within the range of 355-380Lux at the seated position of 
the participant to avoid a confound with the pupillary 
light reflex.  Pupil diameter was measured throughout a 
2min baseline prior to task completion during which 
participants were required to maintain their gaze at a 
fixation point (green dot) at the screen centre. 
Measurements were then made continuously throughout 
each trial. Participants were asked to keep still and 
maintain fixation at the centre of the screen minimizing 
possibility of head movement artifacts in the signal. 

All EEG analysis was performed using BESA 
software (MEGIS software GmbH, Gräfelfing, 
Germany). First a 50Hz notch filter was applied to the 
raw data along with a 0.05Hz high pass and 60Hz low 
pass filter. A linked ears montage was applied. Data was 
visually inspected for artefacts from external 
electromagnetic sources which were excluded. Data 
underwent automatic correction for blink artefacts, 
horizontal and vertical saccades based on detection 
through predefined topographies. Average power 
spectra were then computed for each experimental 
condition.  Power spectra in µV2 were Log transformed 
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(natural log) to normalise the distribution.  Frontal 
asymmetry values were obtained for all 7 experimental 
conditions using EEG power values from the following 
electrode sites: FP2, AF4, F8, F4, FC2, FC6, C4, 
T8,(right hemisphere sites) FP1, AF3, F7, F3, FC1, 
FC5, C3, T7. (left hemisphere sites).  

Power estimates for frequencies lying within 
Individual Alpha Bands were then used in the following 
formula: Ln [right total alpha power] – Ln [left total 
alpha power] to generate an asymmetry index [42]. 
Positive values indicated greater relative right alpha 
power and greater relative left frontal activity, greater 
relative right frontal activity was indicated by negative 
values.  Asymmetries were also calculated for 
homologous pairs of electrodes. 

Data from the left and right eye of 14 participants (7 
female) was pre-processed to remove erroneous 
measures of pupil diameter arising from blinks, partial 
blinks, electromagnetic noise and artefacts resulting 
from tracking failure and camera joggle. Readings of 0 
or near 0 were eliminated from the data to exclude 
blinks, partial blinks and tracking failure, and readings 
differing by more than +/- 0.1mm from the previous 
observation were excluded to reduce the influence of 
noise.  The data then underwent 1-D wavelet 
decomposition using the orthogonal wavelet ‘db4’ from 
the Daubechies family of wavelets. The decomposition 
was achieved by convolving the signal with a high and 
low pass filter followed by downsampling by a factor of 
2. Decomposition was performed using 5 iterations on 
each signal. The procedure produced a set of detail 
coefficients which were subjected to a minimax (hard) 
threshold to reduce noise, in which noise was presumed 
to be Gaussian white noise. Detail coefficients were then 
subjected to a threshold of 0.05 and coefficients above 
this value interpreted as showing high frequency 
discontinuous increases in pupil diameter. Numbers of 
these discontinuities, which have been found to correlate 
with cognitive processing [27], were used to generate an 
index consisting of the average no of discontinuities per 
second for each condition. 

Results 

EEG data were analysed with respect to two primary 
variables: frontal theta activity from the central area (Fz) 
and frontal asymmetry data.  Theta activity at Fz was 
calculated using the dominant frequency (i.e. as 
personalised to each individual).  The average power at 
the dominant theta frequency was calculated and 
submitted to analysis via ANOVA.  The results revealed 
a significant trend [F(6,12)=3.09, p<0.05].  Post-hoc 
testing revealed that theta activity was significantly 
lower at baseline, the one-back and the six-back task 
compared to all other conditions (p<0.05).   

Activity in the alpha bandwidth was also calculated 
with respect to the dominant frequency.  Alpha power at 
the dominant frequency was calculated for all 
participants and converted via natural log prior to 
analysis.  Asymmetry scores (left side minus right side) 

were calculated across three pairs of frontal sites on 
either side of the midline: AF3-AF4, F3-F4, FC3-FC4.  
Therefore, an increase of the asymmetry score is 
equated with greater activation of the left hemisphere.  
Each asymmetry score was analysed using an ANOVA 
model.  There were no significant results for those 
asymmetry scores calculated with AF3-AF4 or F3-F4; 
however, the frontal-central sites (FC3-FC4) revealed a 
significant trend [F(6,12)=2.57, p<0.05].  Post-hoc 
testing revealed greater left-hemisphere activation (i.e. 
approach motivation) during all task conditions 
compared to baseline or the six-back condition (p<0.05).  
In other words, both the baseline (resting) condition and 
the six-back task were associated with greater levels of 
right hemispheric activation, which is associated with 
avoidance motivation.  This finding is illustrated in 
Figure 1. 

 
Figure 1.  Frontal asymmetry scores (left side alpha power 

minus right side alpha power at dominant frequency) for FC3-

FC4 across all six task demand conditions (N=18). 

 
The measurement of systolic blood pressure has been 

associated with mental effort and task motivation.  The 
analysis of this variable revealed a significant trend 
[F(6,12)=13.01, p<0.01]; however, post-hoc testing 
revealed only a significant difference between resting 
baseline and task conditions, i.e. the measure failed to 
distinguish between different levels of task demand.   

An approximation of the Index of Cognitive Activity 
(ICA) was calculated for 14 participants based on 
changes in the pupil size.  Specifically, the ICA captures 
short discontinuities in pupil size related to changes in 
mental workload.  These data were subjected to 
ANOVA analysis, which revealed a significant 
difference due to experimental condition [F(6,8)=7.26, 
p<0.05].  Post-hoc testing revealed that the ICA was 
significantly lower than all working memory conditions, 
i.e. the ICA was not significantly sensitive to changes in 
working memory load (see Figure 2). 
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Figure 2.  Mean score on modified Index of Cognitive  Activity 

measure(N=14). 
 

 

 

Experiment 2:  Performance Feedback 

Description of Study 

34 participants (17 males and 17 females) formed 2 
independent groups. A positive feedback group 
completed a working memory task and received pre 
arranged performance scores indicating a gradual 
improvement in performance over time. A negative 
feedback group completed the same task but received 
scores indicating a gradual decline in performance.   

The memory task was computer based and was 
created using E-Studio software. It was developed from 
the ‘n-back task’ [24]  . The version of the task used in 
this study was a 2 back task where participants 
continuously compared a currently presented stimulus to 
one seen 2 trials previously. Participants were presented 
with a 3x3 grid. On each trial, a green square appeared 
at one of the 9 grid locations for 1.75 seconds and was 
immediately followed by the next square. Participants 
were asked to respond on every trial by pressing 1 of 2 
keyboard buttons to indicate that the location of the 
current square was either in the same location as the 
square seen 2 trials before (a match) or in a different 
location (a mis-match). The task was divided into 5 
blocks, each of which contained 90 trials. Each block 
lasted just over 2.5 minutes and matches occurred on 
approximately 35% of trials.  

In the experimental session of the study, participants 
were provided with false performance feedback as a 
percentage of overall accuracy at the end of each task 
block. Performance feedback was presented via a 
second computer placed adjacent to the memory task 
computer. Participants were misled to believe that 
performance data was being calculated in real-time by 
this second computer following each block of task 
activity. This illusion was achieved via a macro written 

in Microsoft Excel. The macro simulated a process of 
calculation and analysis and produced a chart to display 
performance accuracy.  Each chart also included 
performance levels from any previous block/s which 
provided a visual representation of a gradual decline in 
performance for the negative feedback group and a 
gradual improvement in performance for the positive 
feedback group.  Both groups received performance 
feedback of 60% after block 1 and both groups showed 
a cumulative decline or increase of 11% in total from 
block 1 to 5. For the negative feedback group, 
performance accuracy scores fell from 60% after block 
1 to 56% after block 2, to 53% after block 3, to 52% 
after block 4 and finally reached 49% after block 5.  

Blood pressure was recorded using a standard 
Dinamap with the pressure cuff placed over the brachial 
region of the participant’s left arm. Initial screen and 
baseline readings were taken at the start of the 
experiment. Whilst participants worked on the memory 
task, 2 blood pressure readings were taken after 
approximately 20 seconds and 120 seconds from which 
an average was calculated.  

EEG was recorded using active electrodes and 
sampled at 512Hz via a BioSemi system. Offline, EEG 
signals were corrected for ocular and physical artifacts 
and filtered using high and low band pass filters of 
0.16Hz and 15Hz respectively.  Artifact free epochs 
were then analysed via Fast Fourier Transform which 
yielded mean power in the alpha (8-12Hz) bandwidth.  
Alpha activity in the right hemisphere relative to 
homologous left hemisphere sites was calculated (ln 
[right] – ln [left]) to produce scores of alpha asymmetry 
for the following pairs of frontal sites: Fp2-1, Af4-3, F4-
F3, FC2-FC1 and FC6-FC5. Theta activity was 
collected from frontal, central areas (Fz) as in the 
previous experiment.   

Facial electromyographic activity (fEMG) was 
recorded to attain measures of muscle activity for the 
corrugator supercilii.  

Results 

EEG data:  Two participants were excluded from this 
analysis due to technical problems with the data 
collection (one from each Feedback Group).  The 
MANOVA analysis of EEG data revealed significant 
main effects for frontal asymmetry site, F(4,26) = 5.70, 
p < .01, and experimental condition, F(1,29) = 4.05, p < 
.05.  The effect of experimental condition for EEG 
frontal asymmetry demonstrated that frontal asymmetry 
score (across all sites) was significant higher in the 
presence of performance feedback, i.e. higher level of 
activation in left hemispheric sites during feedback 
condition.  There was no effect of feedback on levels of 
frontal theta activity. 

Systolic Blood Pressure (SBP):  The ANOVA model 
conducted on SBP data revealed a significant main 
effect for experimental condition, F(1,30) = 4.82, p < 
.05, i.e. SBP was significantly higher during Feedback 
[M = 115.78] compared to the No Feedback condition 
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[M = 112.71].  The same model also revealed significant 
interactions between Feedback Group x Task Block, 
F(4,27) = 3.55, p < .05, and Feedback Group x 
Experimental Condition x Task Block, F(4,27) = 3.20, p 
< .05.  For the positive feedback group, mean SBP was 
significantly higher at Task Block 5, t(15) = 3.26, during 
the Feedback condition compared to the No Feedback 
Condition (Figure 3).  
 

Figure 3.  Mean Systolic Blood Pressure (mm/Hg) for Positive 

Feedback Group compared across both experimental 

conditions (N=16). 

Corrugator Activity:  The corrugator data were 
subjected to ANOVA model with an eyes open baseline 
included as an additional cell in the Task Block factor.  
This analysis revealed no significant effects.  The trend 
of the data was to increase in presence of Feedback and 
this trend was particularly prominent during Task Block 
5. 

Discussion & Conclusions 

Explanation of findings 

Two experiments were conducted to identify the 
sensitivity of psychophysiological variables to the 
manipulation of task engagement.  In the first 
experiment, engagement was manipulated by 
systematically increasing task difficulty.  It was 
anticipated that the high level of working memory load 
at the 5- and 6-back versions of the task would cause 
participants to disengage.  However, there was evidence 
from subjective measures of workload (NASA-TLX) 
that a point of overload was not reached, i.e. mean TLX 
score at 6-back task = approx. 6.5 on a 10-point scale.  
A reduction of frontal theta and an increase of right 
hemispheric frontal activity (Figure 1) was observed at 
maximum task demand.  These data indicated that our 
participants were reducing levels of mental effort and 
shifting motivational orientation towards avoidance.  In 
other words, they were withdrawing from the task.  The 
pupilometry data from the ICA did not yield a 
statistically significant trend, however, a trend was 
observed of increasing cognitive demand (Figure 2).   

These findings beg a question about volitional vs. 
mandatory responses to task demand in the 
psychophysiological realm.  The positive linear 
relationship between task demand and ICA illustrated in 
Figure 2 contradicts the  quadratic pattern that 
characterised both frontal theta and EEG frontal 
asymmetry (Figure 1).  We may speculate that the ICA 
represents a response to perceived task demand, 
regardless of engagement, whereas the quadratic trend 
describes a self-regulated process of energy 
mobilisation.  With respect to the latter, the initial level 
of low task demand (e.g. 1-back task) failed to increase 
frontal theta, which increased rapidly for 2-, 3- and 4-
back versions of the task, before falling during the 
highest levels of task demand.  The trend for frontal 
asymmetry was slightly different (Figure 1); exposure to 
the task led to increased approach motivation (at the 1-
back task), which declined as task difficulty increased 
(indicating avoidance motivation) with the exception of 
a marked increase at the 5-back version of the task. 

The second experiment attempted to manipulate task 
engagement in two ways.  First, it was anticipated that 
performance feedback inevitably increases task 
engagement as the quality of one’s own performance is 
rendered more salient.   By providing repeated exposure 
to both positive and negative feedback, we anticipated 
different patterns of mental effort investment; 
specifically, we expected positive feedback to reduce 
effort investment (as participants received the 
impression that performance was consistently 
improving).   

It was hypothesised that the presentation of negative 
feedback would initially mobilise high levels of effort, 
leading to disengagement towards the latter periods of 
the task as prompted by repeated exposure to negative 
feedback.  The first hypothesis was supported by the 
frontal asymmetry data; participants exhibited higher 
left frontal activation during the feedback condition 
(regardless of whether feedback was positive or 
negative).  The only psychophysiological response to 
the direction of feedback was found with respect to 
systolic blood pressure.  This variable is associated with 
sympathetic activation of the autonomic nervous system, 
i.e. increased activation.  Whilst systolic blood pressure 
did not respond to different levels of task demand during 
the first experiment, this variable exhibited a broadly 
linear increase in response to feedback of positive 
performance (Figure 3).  This pattern was unexpected 
but was interpreted in the following way; contrary to 
expectations, positive feedback increased participants’ 
appraisal of their own capability, which motivated these 
individual to both aspire towards higher levels of 
performance and increase mental effort mobilisation.  
The absence of the opposite trend in the presence of 
negative feedback was puzzling; perhaps negative 
feedback had no impact on any psychophysiological 
indicators of effort because the task was quite abstract 
and there were no negative consequences of task failure 
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Implications for Physiological Computing 

What conclusions can be drawn from these 
laboratory studies for the development of physiological 
computing (PC) systems?  In the first instance, the 
pattern of EEG data from experiment one point to the 
feasibility of capturing task engagement as a volitional 
response to task demand.  This may be particularly 
important for applications such as computer games, 
which emphasise both autonomy and different levels of 
task demand.  It is proposed that theta activity at frontal-
central sites and frontal asymmetry are investigated as 
real-time variables to be integrated into the 
biocybernetic loop.  Both variables demonstrated a 
sufficient degree of sensitivity to justify follow-up work.  
Further research must also explore individualised 
algorithms using neural net approaches [43, 44].  

It should be noted that both EEG variables failed to 
show any sensitivity to positive vs. negative 
performance feedback during the second experiment.  
Therefore, these EEG variables seemed to respond 
primarily to engagement in the context of cognitive 
load.  On the other hand, systolic blood pressure, which 
demonstrated a sensitivity to performance feedback, 
failed to distinguish between different levels of 
cognitive load in the first experiment.  This pattern of 
results demonstrates the multidimensional nature of task 
engagement - different categories of measures may 
exhibit sensitivity to specific aspects of the concept.  In 
this case, EEG variables respond to disengagement due 
to cognitive load whilst changes in systolic blood 
pressure reacted to changes in goal-setting behaviour, 
i.e. a desire to achieve at a higher level. 

The relationship between physiology and psychology 
may be described as ‘many-to-one’ in the case of task 
engagement [41]; data from several  physiological 
sources are required to successfully capture this 
dimension.  The data from both experiments 
demonstrate the sensitivity of certain variables to 
different levels of task load or performance feedback.  
But the crucial distinction for the development of PC 
systems is the discrimination between rising 
engagement, sustained engagement and sustained 
disengagement.  Systems that are designed to adaptively 
respond to changes in engagement need to assess: (1) 
how to facilitate rising levels of task engagement, and 
(2) how to counteract periods where the user may 
become disengaged from the task.  With respect to our 
data, systolic blood pressure would appear to be a 
candidate for (1) whereas the EEG variables were 
sensitive to (2). 

From the perspective of system design, it is not 
simply a question of selecting the correct variable to 
represent engagement, there is also the issue of 
sensitivity to the specific aspect of task engagement that 
is central to the application.  For designers of adaptive 
automation applications, it is important to protect safety-
critical performance; therefore, the ability to detect  and 
predict task disengagement is a top priority.  If the PC 
approach is applied to an automatic tutoring system, 

detection of sustained or rising engagement becomes 
just as important because learning software should be 
designed to engross and inspire users, and to sustain 
these positive states via real-time adaptation.   

It is important for designers to have a clear idea about 
the level of discrimination that the system must achieve 
in order to provide appropriate levels of adaptation.  For 
some systems, detecting two categories of engagement 
will suffice (high vs. low engagement); other systems 
may require more fine-tuned levels of discrimination 
(high vs. high/med vs. med vs. med/low vs. low).  As 
the number of possible categories increases, the 
quantitative distance between each category declines, 
which will lead to higher false positives or misses, so 
the designer must consider this trade-off to optimise the 
performance of the system as a whole.  Much depends 
on the adaptive capability of the system under 
development, PC systems that are capable of only one 
kind of adaptation (e.g. present help vs. no help 
presentation) only require a two-category classification.  
Systems with several levels of adaptive capability (e.g. 
present four different categories of help information) 
will require a psychophysiological algorithm that can 
discriminate four levels of task engagement [2]. 

From the perspective of building PC systems, it is 
obvious that psychophysiological variables offer 
significant advantages for representing user states.  
These measures are covert, passive and highly sensitive, 
but this level of sensitivity is double-edged.  
Psychophysiological variables are sensitive to a wide 
range of possible influences from physical artifacts 
(moving the body) to environmental factors (room 
temperature) to diurnal influences (time of day), the 
effects of caffeine and food, exercise, personality, mood 
etc.  If system designers wish to harness the sensitivity 
of psychophysiology, this double-edged property must 
be appreciated.  One could resolve the problem by 
monitoring confounding variables in order to model and 
isolate their influence on the psycho-physiological 
inference that is central to PC systems.  Alternatively, 
designers could seek context via another route by 
considering psychophysiological changes in the same 
data space as other categories of variable, i.e. a 
multimodal approach [45].  This approach would 
combine psychophysiological changes with behavioural 
markers, such as posture [46]  and facial expression.  
Psychophysiological changes could also be assessed in 
relation to measures of task performance [47].  One 
could combine markers from several categories 
(psychophysiological, behavioural, performance) in 
order to discern the level of task engagement via a 
process of triangulation.  The danger with this approach 
is how to handle divergence/disagreement between the 
different categories of data. 

To conclude, task engagement is an important 
psychological dimension for the development of 
physiological computing systems.  It is also a complex 
dimension incorporating aspects of cognition with self-
regulatory activities such as goal-setting and motivation.  
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Laboratory experiments have been described to identify 
candidate variables such as EEG frontal asymmetry and 
systolic blood pressure.  The next step is to evaluate 
these variables in the context of a computerised task in 
the field. 
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Abstract

In the field of Affective Computing the affective expe-
rience (AX) of the user during the interaction with com-
puters is of great interest. Physiological and neurophys-
iological sensors assess the state of the peripheral and
central nervous system. Their analysis can provide infor-
mation about the state of a user. We introduce an ap-
proach to elicit emotions by audiovisual stimuli for the
exploration of (neuro-)physiological correlates of affec-
tive experience. Thereby we are able to control for the
affect-eliciting modality, enabling the study of general and
modality-specific correlates of affective responses. We
present evidence from self-reports, physiological, and neu-
rophysiological data for the successful induction of the af-
fective experiences aimed for, and thus for the validity of the
elicitation approach.

1. Introduction
Affective computing aims at an enrichment of HCI by

taking the user’s affective state into account [29]. Thereby,
applications can unfold their functions in the context of user
experience, ideally leading to the increase of the bandwidth
and naturalness of interaction.

To achieve such enhanced interactions a robust auto-
matic recognition of the user state is a necessary prereq-
uisite. In the past years the automatic analysis of affect-
related behaviours, especially those evident in facial expres-
sion or voice, yielded promising results [10, 41]. Still, the
classification of affective user state is no trivial endeavor, as
the subjective state, the experience of the user, is not nec-
essarily observable by external means as cameras or micro-
phones.

The analysis of physiological responses during affec-
tive experience offers an alternative to the analysis of be-
havioural responses [6–8,20,23,24,30,39]. However, whilst
observable behaviour as facial expressions or voice, can be
conveniently studied in the field, physiological and neuro-
physiological responses are less readily available. There-

fore the elicitation of affective experience in the laboratory
is still a necessary step to acquire physiological and neuro-
physiological databases. This data can then be analysed in
order to extract features capable of discriminating between
affective experience. These are then the basis to develop and
refine suitable classification methods using those features.

To explore the generalisation of physiological and neu-
rophysiological correlates of affective experiences we de-
veloped a cross-modal elicitation method. Specifically,
we constructed a set of audiovisual stimuli to be able to
elicit emotions either from the auditory or from the visual
modality. This study presents evidence, based on the sub-
jects’ self-assessments, and on preliminary physiological
and neurophysiological results, for the induction of differ-
ent emotions, and thereby for the validity of the approach.

Before we outline our research questions in more detail,
we will introduce the reader to the issue of the validation
of emotion elicitation approaches, and to our specific ap-
proach.

1.1. The validation of an elicitation method

One can discriminate between endogeneous and exo-
geneous elicitation methods [30]. The former require the
subject to induce affective experiences by remembering or
imagening emotional episodes [1, 6, 30, 31]. The latter
approach makes use of affective stimuli or tasks to elici-
tate corresponding experiences. A wide variety of affec-
tive stimuli has been used for this purpose, among them
pictures [5, 7, 26], naturally occurring sounds [3], music
pieces [13,22,33], films [15,19,23,39], manipulated appli-
cations [20], and computer games [8, 40]. In our approach,
outlined below, we will use affective stimuli.

A general problem accompanying the induction of af-
fective experience is the validation of the induction method
[14,38]. Fairclough [14] discusses several methods that can
be applied to ensure this concurrent validity of the elicita-
tion approach in the context of psychophysiological mea-
surements.

For the use of stimuli or tasks one has to be fairly con-
fident that they indeed induce the target states. The use of

978-1-4244-4799-2/09/$25.00 c©2009 IEEE

42



normed stimulus sets, as the IADS [4] or IAPS [25] can
make this more likely. Similarly when using tasks one can
use standardized tasks developed within the field of experi-
mental psychology. Alternatively, one might use tasks that
have known effects on the user, for example manipulated
computer games. However, as Fairclough points out, the
use of these latter approaches is close to a natural context,
but also prone to confounds due to the complexity of real-
world situations.

Another method for the labeling and validation of the
data, especially in the domain of facial expression or voice
analysis, are observer ratings of the participants behaviour.
However, the occurrence frequency of behaviour might be
low in the cases that we are considering where the partici-
pant is restrained by recording equipment.

Alternatively, one can apply self-assessment methods as
the Self-Assessment Manikin [2], to ensure the success of
the elicitation method. This, of course, comes for the price
of a possible interference with the target behaviour, and
an added risk of artifact production. Additionally, self-
assessments are not free of bias and dependent on a truthful
report.

Furthermore, one might record physiological or neu-
rophysiological data and contrast the different conditions.
Should one find a difference between conditions, this can
be taken as evidence that indeed different states were in-
duced. To ensure that the desired states were induced one
would have to measure and contrast physiological variables
that were shown before to vary with the target state or di-
mension. Those variables, for example, could be chosen
by an extensive literature review or the consultation of an
expert.

Figure 1. The relationship between stimuli, self-assessment, and
physiological data, and the elicitated affective experience.

Figure 1 illustrates the above described relationships be-
tween administered stimuli, logged self-assessments, and
physiological data. The elicited affective experience can be
validated by each of these. However, it has to be mentioned

that none of the validation methods is perfect and thus a
combination of different validation procedures might yield
the most insight into the concurrent validity of the elicita-
tion approach.

In this paper we will analyse the results of the first se-
ries of elicitation experiments that we carried out with our
approach. We look at how self-assessments relate to the
affective states that we intend to elicit and to what extent
(neuro-)physiological measures can discriminate between
the various stimuli groupings.

1.2. The cross-modal elicitation of affective experi-
ences

As already outlined above, physiological and neurophys-
iological signals carry information about the affective state
of the user. While relatively many studies explored the po-
tential of physiological features to differentiate affective ex-
periences [8,20,23,24,30,39], only few studies looked at the
suitability of neurophysiological sensors [6, 7]. Most stud-
ies were conducted under controlled circumstances. This is
especially true for the EEG studies. The tight control of ex-
perimental protocols is a necessary prerequisite to disentan-
gle the manifold physiological processes occurring in real-
world environments, and thus to avoid confounding vari-
ables. However, it is also impeding the ecological validity
of the psychophysiological inferences made on the basis of
such simple elicitation paradigms [14]. To ensure the gen-
eralisation of the feature-experience relationships found in
the controlled laboratory experiments to real-world applica-
tions, a slow increase in the complexity of the experiments
and finally the step into the field seems advisable.

Our motivation for the development of the elicitation
method introduced here is to make a modest step in this
direction, exploring the generalisation of psychophysiolog-
ical inferences over different affect elicitation modalities,
but still staying inside the laboratory. We are aiming for
the controlled induction of affective experiences via the vi-
sual or auditory stimulus modality. Specifically, we want to
manipulate experience along the valence dimension of the
dimensional emotion model according to Russel [32], that
is to elicitate negative, neutral, and positive affective expe-
riences. For this purpose we combine affective neutral and
valence-carrying stimuli from different unimodal stimulus
sets to a new multimodal stimulus set.

We chose sound (IADS) and picture (IAPS) stimulus
sets to construct new audiovisual stimuli. One advantage
of those specific sets is that they are normed by hundreds
of participants according to their effect on the participants’
affective experience. The knowledge about mean valence
and arousal responses for a given stimulus guides our com-
binations of neutral and valence-carrying unimodal stimuli
to one multimodal. However, one should take in mind the
standard deviations of the norm ratings are quite big and
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show a large spread of responses from different subjects to
a given stimulus over the arousal-valence plane. This indi-
cates a subject- and context-specific response to the stimuli.
Furthermore, to construct our stimulus set we make combi-
nations of different stimuli from the original databases. It
cannot be assumed that the combination of different affec-
tive stimuli has a linear effect on the affective response. The
combination of picture and sound might produce a different
context, changing or even inverting the original affective re-
sponse caused by the valence-carrying stimulus. Despite
our intentions to control for that by a careful choice of com-
binations of auditory and visual stimulus parts, the elicita-
tion of the target emotions has to be shown to ensure the
validity of our elicitation method. In the following section
we will describe the construction of the new multimodal
stimulus set in detail.

1.3. Stimuli construction

To study the effects that the different modalities have
on neurophysiological affective responses, 180 multimodal
stimuli were constructed from the auditory and visual affec-
tive stimuli sets IADS and IAPS.

From each stimulus set, IADS and IAPS, we chose 30
stimuli from the positive and 30 stimuli from the negative
side of the valence dimension. Additionally, we chose 60
neutral auditory and 60 neutral visual stimuli from each
modality. Note that we employed each neutral unimodal
stimulus twice (due to the low number of IAPS stimuli).
Each neutral stimulus from one data set would appear one
time in combination with another neutral stimulus from the
other data set and one time in combination with a valence-
carrying stimulus of the other data set. The three different
valence intervals, positive, neutral, and negative, were de-
fined according to the mean ratings on the valence scales.
The 9-point valence Likert scale the norm-ratings are based
on are ranging from 1(feeling unhappy) to 9 (feeling happy).
Therefore, we required positive stimuli to have a mean rat-
ing above 6.5, negative stimuli to have a mean rating below
3.5, and neutral stimuli to lie in between these two groups.

We constructed five groups of auditory-visual stimuli:
(1) auditory negative, (2) auditory positive, (3) visual neg-
ative, (4) visual positive, and (5) stimuli that were neutral
both auditory and visually, referred to as multimodal neu-
tral. An auditory negative stimulus consisted of a negative
auditory stimulus and a neutral visual stimulus. An au-
ditory positive stimulus contained a positive auditory and
neutral visual stimulus. This way the affect elicitation was
supposed to result from the auditory stimulus. Correspond-
ingly, the visual negative and positive stimuli were created
from a neutral auditory and a valence-holding visual stim-
ulus. The multimodal neutral stimuli consisted of a neutral
auditory and a neutral visual stimulus. This group was im-
portant as a control condition, which enables the analysis

of the specific effects of positive and negative stimulation,
respectively. While the grouping was based on the distribu-
tion of the stimuli on the valence axis, we tried to keep the
group differences on the arousal axis comparable to avoid
confounding effects. Specifically, we tried only to use stim-
uli that had a relatively high arousal value, i.e. higher than
3.5. Because of a bias in the original sets, we were not able
to do this.

Figure 2. The position of the selected auditory (above) and visual
(below) stimuli in the valence-arousal space.

As described above, the stimuli were constructed from
carefully selected subsets of the IADS and IAPS. Figure 2
shows the positive, neutral, and negative stimuli groups cho-
sen from the IADS and IAPS sets, and their locations in the
valence-arousal plane. The stimulus sets used for our stim-
ulus construction are not evenly distributed in the valence-
arousal plane, but describe a C-form. There are almost no
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stimuli that have low arousal and high valence values, or
high arousal and medium valence. On the other hand are
the negative stimuli in general more arousing than positive
or neutral stimuli. In consequence a selection of stimuli
that differ in valence, but not in arousal is only possible to
a limited degree. The higher the number of stimuli is, the
stronger is the selection influenced by the mentioned IAPS
and IADS characteristics. The most limiting factor is the
small size of the IADS, which makes it difficult to select
more than 30 negative and 30 positive stimuli.

Group Valence mean (std) Arousal mean (std)
A positive 7.14 (0.38) 5.51 (1.16)
A neutral 5.01 (0.67) 5.06 (0.85)
A negative 2.65 (0.55) 6.84 (0.71)
V positive 7.49 (0.38) 5.40 (0.77)
V neutral 5.08 (0.60) 4.46 (0.77)
V negative 2.27 (0.40) 5.97 (0.73)

Table 1. The mean valence and arousal ratings per modality and
stimulus group.The value in brackets is the standard deviation.

Table 1 gives an overview over the group’s valence and
arousal means according to the norm ratings from the IADS
and IAPS manuals. The valence means of the groups are all
significant different. Despite our efforts to keep the arousal
equal over the groups, also the arousal means are signifi-
cantly different. However, as the norm values of the IAPS
and IADS are already characterised by a big standard devi-
ation, it was not assumed to be able to predict the precise
effect of the stimuli on a particular group of participants. In
that respect the valence and arousal values were only used
as an initial strategy to select the optimal stimuli for our
purpose.

1.4. Research questions

To validate our elicitation approach, we are interested in
the effect that our stimulation has on the participant’s ex-
perience. As described above there are different strategies
that one can use to ensure that the affective experience of
interest was induced. Therefore, we analysed the partic-
ipants’ self-assessments according to the different stimuli
categories employed, irrespective of the elicitation modal-
ity. Furthermore, we analysed the (neuro-)physiological re-
sponses to the different stimulus categories employed. Fi-
nally, we explored the effect of the choice of an alterna-
tive ground truth, that is the (neuro-)physiological responses
to different groupings of the trials according to the self-
assessments of the subjects.

Our main question was whether the target emotion is in-
deed induced by our elicitation paradigm. We expected that
in the comparison of the self-assessments given after each
stimulus presentation, the valence judgements over stimuli

and subjects would be significantly different between con-
ditions. On the other hand, arousal should ideally be com-
parable, as we aimed for similar arousal values during the
construction of the stimulus groups.

A further expectation was that the comparison of the
physiological responses during the presentations of the dif-
ferent stimulus groups yields significant differences. Es-
pecially, we expected differences for those physiological
and neurophysiological sensors implied before in valence-
related nervous system responses. Physiological corre-
lates of valence manipulations have been found for elec-
tromyographical responses recorded from the facial mus-
cles (EMG) [5, 39], in electrocardiographical recordings
(ECG), specifically heart rate [31, 33], and for blood pres-
sure [36]. Neurophysiological correlates, specifically those
derived from electroencephalography (EEG), include the
asymmetry of alpha power between the left and right hemi-
sphere of the brain [11], and frontomedial theta power [33].

Significant differences in other (neuro-)physiological
signals not directly implied in valence-, but other affect-
related experiments might also offer evidence about differ-
ent states induced, though they could not be used as ev-
idence for the elicitation of the target states. Physiologi-
cal signals implied in arousal-related manipulation of af-
fective experiences are the galvanic skin response (GSR)
[3,9,22,26], the respiratory sinus arrhythmia (RSA) derived
from the heart rate [15], and respiration [13, 17]. Neuro-
physiological arousal-specific responses include a decrease
of the overall level of power in the alpha band [27] and an
increase of power in the gamma band [21, 28].

Finally, the question most relevant for the determina-
tion of a ground truth for later classification approaches is,
if there is a more favourable grouping (of trials into con-
ditions) possible according to the self-assessments. That
there is a significant difference between classification re-
sults achieved via a norm based and a self-assessment based
ground truth was shown by Chanel et al. [7]. There-
fore, we resorted the stimuli, and thus the trials, into
positive, neutral, and negative affect conditions accord-
ing to self-assessment. The trivial assumption was that
this regrouping would create more homogeneous condi-
tions, with condition means further apart, and smaller stan-
dard deviations. Furthermore, we expected more signifi-
cant (neuro-)physiological differences, especially for sen-
sors implied in valence manipulation before.

2. Methods

2.1. Participants

14 participants (7 men and 7 women) took part in the
experiment. Due to incomplete recordings the data of two
participants was not analysed. The participants were aged
between 19 and 53 (mean age 28) and all except one indi-
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cated their right hand as the dominant hand.

2.2. Stimuli

For the experiments the newly constructed audiovisual
stimulus set as described in section 1.3 was used. To avoid
eye-movements during the stimulus presentations the pic-
tures were decreased in size to 400 x 300 pixels. Primary
stimulus characteristics as overall loudness of sounds or
brightness of visual stimuli may have significant effects on
neurophysiological data. To minimize the risk of a con-
found by stimulus-related non-affective characteristics we
tested the group differences of mean subjective loudness
and mean luminance. No significant differences between
the visual parts of the positive, negative, and neutral group
was found in terms of mean luminance. Similarly, no sig-
nificant differences between the auditory parts of the posi-
tive, negative, and neutral group in terms of mean subjective
loudness could be detected.

2.3. Equipment and signal acquisition

2.3.1 Presentation and recording hardware

The stimuli were presented on a dedicated stimulus PC
(P4 3.2GHz), which sent markers according to stimulus
on- and offset to the EEG system (Biosemi ActiveTwo
system, www.biosemi.com). For the stimulus presen-
tation we used ”Presentation” (Neurobehavioral systems,
www.neurobs.com). The visual parts of the stimuli were
presented on a 20 inch monitor (Samsung SyncMaster
203B). The auditory parts of the stimuli were presented via
a pair of custom computer speakers (Phillips Multimedia
Speaker System). The distance between participants and
monitor/speakers was about 70 cm.

The physiological and neurophysiological signals were
recorded with 512 Hz on a dedicated recording PC (P4
3.2GHz) running Actiview software (BioSemi).

We recorded from 64 active silver-chloride electrodes
placed according to the the 10-20 system. Additionally, 4
electrodes were applied to the outer canti of the eyes and
above and below the right eye to derive horizontal EOG and
vertical EOG, respectively.

Besides recording neurophysiological signals by elec-
troencephalography we assessed also the state of the periph-
eral nervous system via several physiological sensors.

To obtain the electrocardiogram we placed an electrode
at the inner side of the left arm of the participant. A plethys-
mograph was clipped to the left index finger to assess blood
volume pulse. A temperature sensor was placed on the dis-
tal phalange of the small finger of the left hand to measure
peripheral temperature. Respiration was assessed via a res-
piration belt placed around the chest just over the stomach.
To assess the activity of the somatic nervous system we ap-
plied electrodes to two facial muscles, the right corrugator

supercilii (implied in frowning) and the left zychomatic ma-
jor (implied in smiling). The EMG sensor placement over
the zygmaticus major and the corrugator supercilii muscle
was done via two electrodes for each muscle and according
to the guidelines from [16] on the left cheek and over the
right brow, respectively.

2.4. Procedure

The Participants were seated in a comfortable chair in
front of monitor and speakers. They read an informed con-
sent form and user instructions before the experiment. After
filling in a questionnaire and signing the informed consent
the EEG cap and the physiological sensors were placed ac-
cording to the descriptions above. Before the start of the
experiment the participant was introduced to the Actiview
online view of her EEG signals to make her conscious of the
influence of movement artifacts. She was instructed to re-
strict movements to the periods between trials. Finally, the
SAM scales were explained, so that a good understanding of
the concepts of arousal and valence could be assured. Par-
ticipants were advised to give a ”gut response” to empha-
sise the importance of their subjective feeling and to avoid
a more cognitive judgement of the stimuli themselves.

2.5. Experiment Design

The stimulus presentation was done in 4 blocks with 45
stimuli each. The order of the stimuli presentation was ran-
domised for each participant. To avoid tensions or fatigue,
in the breaks the participant could correct seating position,
drink, and relax until she felt ready to continue. Figure 3
depicts the trial structure employed. Below we will outline
each of the trial periods and its functions.

Pre-stimulus phase Two seconds before a stimulus is
presented a fixation cross is blended into the middle of the
screen. This cross is supposed to limit eye movement during
stimulus presentation and will be kept on the screen until the
self-assessment phase.

Stimulus phase The stimulus is presented for six sec-
onds, which is the length of the auditory stimulus. The
visual counterpart is shown during the time the sound is
played.

Post-stimulus phase Between the stimulus offset and the
begin of the self-assessment the fixation cross is further vis-
ible on a black background for two seconds. This phase is
intended to serve as a stimulus free period in which the in-
dependence of a potential affect-related neurophysiological
response from the stimulus characteristics can be shown.
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Figure 3. Example trial with the six trial periods and their duration (arrows indicate self-paced rating phases).

Self-assessment phase The norm ratings of the IAPS and
IADS are characterised by a considerable variance per stim-
ulus. Thus a given stimulus might induce different affective
states in different subjects. To study the effectiveness of
our affective stimulation and to explore alternative group-
ings for the signal samples in positive, neutral and negative
trials, a self-report in form of the self assessment manikin
(SAM; see [2]) is employed after each stimulus presenta-
tion. The duration of the rating phases for arousal and eval-
uation is not limited. It ends as soon as the user finishes
the self-assessment. However, the subject is instructed to
answer by a fast intuitive judgement.

Resting phase The physiological response is known to be
relatively slow, peaking around five seconds after stimulus
presentation [37]. To reduce the contamination of the sam-
ples by prior samples, the rating is followed by an inter-
stimulus interval of averagely five seconds. The participants
are also instructed to blink and move preferably in this pe-
riod, to decrease the contamination of the trials by move-
ment artifacts.

2.6. Preprocessing of EEG data

We used EEGlab [12] to preprocess the EEG data. Speci-
ficly, we computed the common average reference (CAR),
downsampled the data to 256 Hz, and high passed it with
an infinite impulse response filter at 1 Hz. Then we ex-
tracted epochs of six seconds, from stimulus onset to stimu-
lus offset. We computed the absolute frequencies for the
theta (θ, 4 - 7 Hz), alpha (α, 9 - 12 Hz) via a FFT with a
sliding window length of 128 samples and 50% overlap.

Furthermore, we computed the asymmetry for each pair
of the left and right frontal channels, that is AF3 and AF4,
and F3 and F4, and F5 and F6, in the alpha frequency band
by formula 1.

Xasym =
(Xleft −Xright)
(Xleft +Xright)

(1)

As we did not remove potential artifacts from the data,
we restricted our analysis to the alpha and theta frequency
bands. Furthermore, we focused on the analysis of anterior
regions of interest, as we expected modality-related varia-
tions in EEG power in the posterior modality-specific re-
gions. Figure 4 shows the electrode layout for the frontal
cortex. We extracted the power of the alpha band for the left
and right frontal regions, and the power of the theta band for
the fronto-medial region.

Figure 4. The regions of interest for the preliminary analysis of
EEG signals.

2.7. Preprocessing of physiological data

As most physiological sensors are known to have a slow
response to stimulation and thus a long response latency,
we extracted long epochs of ten seconds for each trial. An
epoch contained the pre-stimulus period, the stimulation
period and the post-stimulus period. From the signal part
that contained the stimulus and post-stimulus period we ob-
tained several features for each of the measured biosignals,
while the pre-stimulus part of the signal was used for base-
line removal for sensors that are susceptible to stimulus-
independent long-term variations. We sampled the physio-
logical signals down to 256 Hz. Below we describe the ex-
tracted features for the cardiovascular signals, the galvanic
skin response, and the facial EMG sensors in detail.
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Cardiovascular features In Table 2 the extracted cardio-
vascular features are described. For the extraction of the
heart beats and the computation of the highest frequency
of the heart rate variability, the respiratory sinus arythmia,
the BIOSIG toolbox for Matlab was used ( [35]). To elimi-
nate the effect of stimulus-independent, low frequency fluc-
tuations in the blood volume pulse data, we subtracted the
baseline mean from each trial.

Feature Description
E{h} mean heart rate
HF highest frequency of the heart rate variability
E{b} mean of the blood volume pulse
σ{b} standard deviation of the blood volume pulse
min{b} minimum of the blood volume pulse
max{b} maximum of the blood volume pulse
δb
|1| mean of the abs. of the 1. difference of BVP
δb
|2| mean of the abs. of the 2. difference of BVP

E{t} mean T
σ{t} standard deviation of T

Table 2. The cardiovascular features derived from the electrocar-
diogram (ECG), blood volume pulse (BVP) and skin temperature
(T) sensors and their description.

Galvanic skin response To analyse the galvanic skin re-
sponse we first low-pass filtered the signal at 0.05 Hz via
an infinite impulse response filter of length 4. To further
reduce the stimulus independent variance of the data, we
de-trended each trial and subtracted the baseline mean. Ta-
ble 3 shows the features extracted from the filtered signal.

Feature Description
E{s} mean skin conductance
σ{s} standard deviation of the SC
δs
|1| mean of the abs. of the 1. difference of SC
δs
|2| mean of the abs. of the 2. difference of SC

Table 3. The features derived from skin conductance sensors (SC).

Facial electromyography According to [39] the two
electrode pairs placed over the right corrugator supercilii
and the left zychomatic major were subtracted, yielding the
EMG signals for each muscle, from which we extracted the
first four statistical moments, as enlisted in Table 4.

3. Results
In a preliminary analysis we studied the recorded data

to gain insights into the validity of our approach. Further-
more we hoped to learn which grouping method, according

Feature Description
E{c} mean CS
σ{c} standard deviation of the CS
kurt{c} kurtosis of the CS
skew{c} skewness of the CS
E{z} mean ZM
σ{z} standard deviation of the ZM
kurt{z} kurtosis of the ZM
skew{z} skewness of the ZM

Table 4. The EMG features derived from the right corrugator su-
percilii (CS) and the left zychomatic major (ZM).

to stimulus norms or according to self-assessment, would
be better suited as ground truth for future in-depth study
of the physiological and neurophysiological correlates. We
first will present the self-assessment data for the different
grouping methods. Then, we will examine the physiologi-
cal and neurophysiological differences between the 3 con-
ditions, positive, negative, and neutral emotions, for the dif-
ferent grouping methods.

3.1. Analysis of the self-assessment data

The evaluation of the self-assessment is not only a mean
to validate our emotion induction method, but also gives
us the possibility for an alternative grouping of the stim-
uli according to the individual affective response toward
each multimodal stimulus. The grouping of the stimuli es-
tablishes the ground truth in the search for physiological
and neurophysiological differences and for a later classifier
training.

The analysis of the mean stimulus valences suggested
that different stimulus groups (positive, neutral, negative)
resulted in different affective experiences. The mean values
behaved according to the group membership. However, for
many stimuli the induced emotions differed from the emo-
tions the stimuli were supposed to induce. This was also
reflected by participants informal reports after the experi-
ments. For example, a starving child on a blue blanket was
perceived by one participant as cared for and elicited a calm
and rather positive response, while it was intended to elicit
a negative reaction. Figure 5 shows the distribution of va-
lence and arousal ratings over all stimuli and subjects for the
five conditions, also taking the modality of the affect elicit-
ing stimulus into account. Despite the clear differences that
are visible between the groups, the distributions are over-
lapping to a large degree. That is, some of the stimuli had
not the intended effect on some subjects, but instead elicited
another affective state.

These deviations of the individual affective experience
from the target affective experience of the stimuli are nat-
ural taking the individual differences between participants
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Figure 5. The distributions of the SAM ratings for the original
groupings for valence (left) and arousal (right).

into account. They are already reflected in the variances that
characterise the norm ratings of the individual stimuli in the
IAPS and IADS. Therefore, the question arises, if another
sorting of the trials into the positive, neutral, and negative
experience conditions could result in more homogeneous
conditions of affective experiences. This is especially in-
teresting for a later use of the data for the identification of
physiological and neurophysiological features able to dif-
ferentiate between the affective states.

To explore the potential of alternative ways to assign the
trials to the conditions we made use of the gathered self-
assessment data. We will refer to the alternative ways of
sorted trials into conditions as grouping approaches, result-
ing in different groupings of the trials.

The most obvious grouping approach, and the one used
so far, is to sort the recorded trials according the norm rat-
ings of the affect-eliciting stimuli, coinciding with the stim-
uli conditions we constructed. In the following we will refer
to this grouping approach as NORM, or as N in the tables.

When the self-assessment values are used as the basis for
the stimuli- and thus trial-grouping, we obtain the SAM1
grouping (S1 in the tables). The deviations from the in-
tended grouping become obvious, when directly comparing
the overall number of trials per condition intended (positive:
N+, neutral: Nn, negative: N-) with those derived from the
new grouping approach (S1+, S1n, S1-) in a contingency ta-
ble 5. Due to a rating trend towards the middle, thus toward
the neutral condition, the positive and negative conditions
are underrepresented in the number of trials.

However, by assuming each rating that deviates from the
middle of the Likert scale by one scale unit towards one end
of the scale to result from a negative or positive affective
response, we obtain the SAM2 grouping (S2 in the tables).
Here the responses are equally distributed over all three con-
ditions (S2+, S2n, S2-), as the neutral condition is narrowed
down to one Likert point. The relationship between the in-

N+ Nn N- sum
S1+ 270 104 38 412
S1n 386 519 313 1218
S1- 60 97 369 526
sum 716 720 720 2156

S2+ 426 216 92 734
S2n 162 308 140 610
S2- 128 196 488 812
sum 716 720 720 2156

Table 5. The contingency table shows the relationship of the stim-
ulus grouping into the affect conditions (+ = positive, n = neutral, -
= negative stimuli) according to the IADS and IAPS stimuli norms
(N group) and to the self-assessment with normal-sized (S1 group
in upper table) and small-sized (S2 group in lower table) neutral
condition.

tended grouping, by use of IAPS and IADS norm values,
and this this less strict grouping due to self-assessment can
again be seen in table 5.

Group Valence mean (std) Arousal mean (std)
N+ 5.29 (1.58) 4.01 (1.84)
Nn 4.49 (1.35) 3.75 (1.86)
N- 3.04 (1.70) 5.02 (2.03)
S1+ 6.79 (0.64) 3.71 (1.94)
S1n 4.4 (0.74) 3.76 (1.78)
S1- 1.79 (0.75) 5.88 (1.59)
S2+ 6.22 (0.81) 3.79 (1.89)
S2n 4.47 (0.13) 3.41 (1.70)
S2- 2.37 (0.98) 5.34 (1.79)

Table 6. The mean valence and arousal ratings per group and
grouping method. The value in brackets is the standard deviation.

Table 6 enlists the means and standard deviations for the
positive, neutral, and negative conditions according to the
different grouping methods. The grouping of the stimuli
based on the self-assessment leads to a clearer distinction
of the conditions in terms of valence means and to a smaller
standard deviation. As a consequence of the SAM2 group-
ing variation, however, the differences between condition
means are decreasing again and the standard deviations of
positive and negative condition are increasing. A Wilcoxon
signed-rank test on the valence ratings revealed statistical
significant differences (p ≤ 0.001) for all emotion contrasts
within all three grouping approaches. The same was ob-
served for the arousal ratings, except for the contrasts of
positive and neutral conditions. These differences were due
to a higher arousal induced by the negative stimuli.

Summarising, the analysis of self-assessment rating
means of the conditions of the NORM suggests that in-
deed different affective experiences were elicited. Further-
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more, it was shown that the alternative grouping according
to the self-assessments, to make the conditions more homo-
geneous in terms of elicited emotion, results in an imbal-
ance of trials per conditions. This can be remedied by the
limitation of the neutral condition to those trials that were
not accompanied in a deviation from the central, and thus
most neutral bin, of the self-assessment valence scale. Fur-
thermore, we found differences in the arousal dimension,
which have to be taken into account in the further study of
the data.

To explore the effect of the different grouping methods in
terms of physiological and neurophysiological differences,
we analysed a subset of the available sensor information.

3.2. Analysis of the physiological data

We conducted a preliminary analysis of the physiolog-
ical signals according to the NORM, SAM1 and SAM2
grouping. We used the non-parametric Wilcoxon signed-
rank test to test for differences between the extracted fea-
tures, as some of the groups were not normally distributed.
The features shown in table 7 are significant with a p-value
≤ 0.05. (For this preliminary analysis we did not correct for
the multiple tests conducted.)

Contrast Significant Features
N+ vs N- HF , σ{b} , E{t}
N+ vs Nn E{h} , E{s},σ{s}
N- vs Nn E{h} , E{s} , σ{s} , E{t}
S1+ vs S1-
S1+ vs S1n σ{s}, δs

|1| , σ{z}
S1- vs S1n σ{c}
S2+ vs S2- σ{z}
S2+ vs S2n HF , δs

|1| , σ{z}
S2- vs S2n

Table 7. The significant (p ≤ 0.05) physiological features for the
contrasts of negative (-), neutral (n), and positive (+) stimulus
groups according to the NORM (N), SAM1 (S1), and SAM2 (S2)
grouping methods.

Surprisingly, the NORM grouping results in the most
significant differences between the conditions. Heart rate,
Heart rate variability, blood volume pulse, temperature, and
skin conductance are differentiating between the conditions.
Specifically heart rate and skin conductance seem to dif-
fer between the emotional and the neutral conditions, while
heart rate variability, blood volume pulse and temperature
are differentiating the two valenced conditions.

For the SAM1 and SAM2 grouping we observed only
differences in skin conductance, heart rate variability, and
muscle activity. Intriguingly, the corrugator supercilii mus-
cle (implied in frowning) is differentiating the negative con-
dition from the neutral condition in the SAM1 grouping,

while the zychomatic major muscle (implied in smiling) is
differentiating between positive and neutral condition for
both SAM groupings. Unexpectedly, two of the SAM con-
trasts could not be differentiated in terms of physiological
responses.

3.3. Analysis of the neurophysiological data

For the preliminary analysis of the neurophysiological
sensors according to the NORM, SAM1 and SAM2 group-
ing we concentrated on the alpha and theta frequency over
the lateral and medial frontal cortex. Again we used the
non-parametric Wilcoxon signed-rank test, as some of the
groups were not normally distributed. Table 8 shows the
significant (p ≤ 0.05) features. (As in the previous analysis
of physiological features we did not correct for the multiple
tests conducted.)

Contrast Left α Right α Medial Θ
N+ vs N- AF4
N+ vs Nn
N- vs Nn
S1+ vs S1- AF3
S1+ vs S1n AF3, F5 AF4, F4, F6 FCz
S1- vs S1n FCz
S2+ vs S2- F3, F5
S2+ vs S2n F3, F5
S2- vs S2n FCz

Table 8. The significant (p ≤ 0.05) EEG features for the contrasts
of negative (-), neutral (n), and positive (+) stimulus groups ac-
cording to the NORM (N), SAM1 (S1), and SAM2 (S2) grouping
methods.

The most salient finding is the lower alpha power for the
positive conditions. As there is a reciprocal relationship be-
tween alpha power and neural activity, this might indicate a
stronger processing of positive stimuli.

The tests for alpha asymmetry between the electrode
pairs AF3 and AF4, and F3 and F4, and F5 and F6 showed
no significant differences.

Higher fronto-medial power in the theta band was found
for neutral compared to negative conditions in the self-
assessment contrasts. This relates to the study of Samm-
ler et al. [33]. They found a fronto-medial increase in theta
power for normal (positive) compared to distorted (nega-
tive) musical pieces and interpreted it as an emotional re-
action associated with attentional processes. However, for
the SAM1 grouping we found a decrease of theta power for
positive compared to neutral trials, which seems to be a con-
tradiction. A reconciliation is possible if one assumes that
emotional stimuli in general might trigger these attentional
processes observed over fronto-medial cortices.

Similar to the analysis of the physiological features we
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see the biggest difference between the normed grouping
method on the one side and the two self-assessment based
groupings on the other side. However, in contrast to the pre-
vious analysis, we now see the strongest difference for the
self-assessment groupings, especially for SAM1.

4. Discussion
The analysis of the self-assessment data provided evi-

dence for the validity of our stimulus sets. However, we ob-
served a great variability in valence ratings for a given stim-
ulus over subjects. This was to a certain degree expected,
as individual differences already caused large variations in
the ratings of the original stimulus sets of IADS and IAPS.
We used multimodal stimuli, which were constructed of a
valenced and a neutral unimodal stimulus. This might have
weakened the effectiveness of the used stimuli further, lead-
ing to the observed trend of ratings towards the middle, i.e.
the neutral condition.

Furthermore, we found significantly higher mean arousal
values for the negative stimuli in the self-assessment data.
This reflected the arousal bias observed in the norm ratings
of the negative stimuli subsets. This effect has to be taken
into account, when the (neuro-)physiological correlates of
the affective experience elicited by the negative stimuli are
interpreted, as a difference solely due to the experience dif-
ference in the valence dimension cannot be ensured.

As the choice of the right ground truth, the sorting of
trials to the affective experience conditions, can have sig-
nificant consequences for later classification attempts, we
explored three ways to sort the recorded trials into positive,
neutral, and negative conditions. The grouping of the trials
according to the constructed stimuli groups (NORM group-
ing), exhibited large standard deviations, resulting from
those stimuli that did not have the expected effect on the par-
ticipants. To build more homogeneous conditions in terms
of self-assessment ratings we grouped the trials according
to those ratings (SAM1 grouping). Due to individual dif-
ferences in rating styles this led to imbalanced group sizes.
Specifically the negative and positive conditions contained
only a small number of trials relative to the neutral condi-
tion. By a limitation of the neutral condition to the most
central bin on the rating scale, we achieved a more bal-
anced distribution (SAM2 grouping). However, also the
self-assessment method is not free from biases or distor-
tions [34]. Therefore, it is not necessarily the optimal choice
for a solid ground truth construction.

A fourth sorting alternative would be a combination of
stimulus reliability across participants and individual self-
assessment. That is, to choose only those trials for an self-
assessment based analysis, in which stimuli with relative
unequivocal ratings were presented. That way we would re-
duce the overall number of trials, but could avoid the analy-
sis of responses towards stimuli which might induce mixed

emotions. These mixed emotions might have led to the vari-
ations of ratings for a given stimulus over subjects. By the
removal of those stimuli from the data sets more homoge-
neous conditions could be created.

Another possibility to find suited sets of positive, neu-
tral, and negative stimuli to build a valid ground truth is the
use of physiological responses for verification. Marosi et
al. [27] analysed only those trials in terms of EEG frequency
activity, which were accompanied by a galvanic skin re-
sponse. However, the analysis of EEG data requires a great
amount of trials due to an inherent low signal-to-noise ratio.
To explore the feasibility of such an approach the number
of those physiological responses in the physiological data
has to be determined. Furthermore, such an analysis might
only find differences between trials that would theoretically
be differentiable by physiological sensors, neglecting EEG
features that might also differ between affective experience
in the absence of physiological responses.

The preliminary analysis of physiological and neuro-
physiological sensors gave further evidence for a success-
ful elicitation of different affective experiences by our ap-
proach. However, these findings were not free of contradic-
tions. We found large differences between the NORM and
the SAM grouping methods in number and type of phys-
iological signals differing between affect conditions. We
expected to find stronger differences between the condi-
tions when grouping according to the self-assessments, as
reported by Chanel and colleagues [7]. Similar to the cur-
rent study, they elicited affective states (low, medium, and
high arousal) via the presentation of IAPS stimuli. As we
did not attempt a classification in the current analysis phase,
we cannot directly compare our observed differences with
their classification accuracy. However, while Chanel and
his colleagues findings indicate a less robust pattern for the
norm based grouping in general, we find more physiologi-
cal features differentiating between conditions in the norm
based grouping than in the self-assessment based group-
ing. For two of the SAM contrasts (S1+ vs. S1- and S2-
vs. S2n) we couldn’t show any significant effects for the
physiological sensors at all. On the other hand, our finding
that neurophysiological features do mostly differ between
the self-assessment based conditions corroborates the re-
sults of Chanel et al. Here the most differences were found
for the SAM1 grouping. Although we did not find the ex-
pected pattern in terms of alpha asymmetry, we observed
consistent decreases of left-hemispheric alpha for the posi-
tive compared to the neutral and negative conditions and of
fronto-medial theta power for the negative compared to the
neutral condition.

The higher number of differences found in the EEG data
for the SAM1 grouping could indicate that the emotional re-
sponses are more homogeneous for the groups established
in this way. However, it might also be the result of some rel-
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atively small positive or negative groups, i.e. a small num-
ber of samples for some subjects in which possible outliers
have a big effect in the statistical analysis. On the other
hand, the SAM2 grouping might lead to the inclusion of
neutral trials into the positive and negative conditions, and
thus obscure the differences between the conditions.

Furthermore, it seems that for the analysis of tempo-
rally limited processes an analysis in shorter time windows
is important. Didier et al. [18] showed that different sub-
processes associated with affective responses are unfolding
over different intervals of only few hundred milliseconds in
the EEG. However, as auditory stimuli might have big inter-
stimuli variations in the onset of affective response such a
division of the trial into subtrials could lead to the compari-
son of different, unrelated parts of the emotional responses.
These inadequate comparisons could lead to further vari-
ance in the signals and thus conceal the neural correlates of
the emotional processes.

A further exploration of the data is needed to confirm
the here presented preliminary results, resolve the contra-
dictions, and find a reliable grouping method for the ground
truth construction. The removal of artifacts will give a better
insight into the true sources of the physiological and neuro-
physiological differences between the conditions.

5. Conclusion
We presented an analysis of an emotion elicitation exper-

iment using multimodal stimuli and showed the validity of
the experimental approach used along several dimensions.
The approach will be used to study physiological and neu-
rophysiological responses associated with affective experi-
ence while controlling the emotion-eliciting modality.

The analysis of the self-assessments of the participants
emotional states in terms of valence and arousal suggested
that the approach used is suitable for the induction of
different affective states. However, it was also shown
that the variance of the individual responses to the af-
fective stimuli poses a great challenge in the search for
(neuro-)physiological correlates of affective processes and
their subsequent classification.

We studied different grouping methods to sort the ac-
quired physiological and neurophysiological signals, that is
according to the original grouping of stimuli, to the self-
assessment data from the valence dimension, and to a self-
assessment data with a more relaxed criterion for positive
and negative conditions.

The comparison of the physiological features between
the three emotion conditions for all three grouping methods
revealed a variation of differentiating features over these ap-
proaches. Especially the grouping according to the normed
values of the used stimuli differed from the two self-
assessment groupings in number and types of distinguish-
ing features. The analysis of EEG alpha and theta power

revealed a contradictory pattern, with the self-assessment
based grouping leading to the best differentiation between
conditions.

A further analysis of the neurophysiological and physi-
ological features, incorporating artifact removal and the re-
jection of particularly unreliable stimuli will yield a better
understanding of apparently contradicting phenomena ob-
served in this study. Finally, it will be the first step to an
informed choice of features for the exploration of a multi-
modal affect classification.
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Abstract

Brain-Computer Interfaces (BCIs) provide insight into
ongoing cognitive and affective processes and are com-
monly used for direct control of human-machine systems
[16]. Recently, a different type of BCI has emerged [4, 17],
which instead focuses solely on the non-intrusive recog-
nition of mental state elicited by a given primary human-
machine interaction. These so-called passive BCIs (pBCIs)
do, by their nature, not disturb the primary interaction, and
thus allow for enhancement of human-machine systems with
relatively low usage cost [12,18], especially in conjunction
with gel-free sensors. Here, we apply pBCIs to detect cogni-
tive processes containing covert user states, which are dif-
ficult to access with conventional exogenous measures. We
present two variants of a task inspired by an erroneously
adapting human-machine system, a scenario important in
automated adaptation. In this context, we derive two re-
lated, yet complementary, applications of pBCIs. First, we
show that pBCIs are capable of detecting a covert user state
related to the perception of loss of control over a system.
The detection is realized by exploiting non-stationarities in-
duced by the loss of control. Second, we show that pBCIs
can be used to detect a covert user state directly correlated
to the user’s interpretation of erroneous actions of the ma-
chine. We then demonstrate the use of this information to
enhance the interaction between the user and the machine,
in an experiment outside the laboratory.

1. Introduction
The introduction of methods from statistical machine

learning [1] to the field of brain-computer interfacing (BCI)
had a deep impact on classification accuracy and it also min-
imized the effort needed to build up the skill of controlling a
BCI system [2]. This enabled other fields to adapt methods
from BCI research for their own purposes [18]. A particu-
larly exciting development is the adoption of BCI technol-
ogy into general Human-Machine Systems (HMS), i.e. for
healthy users. In the context of HMS, a BCI constitutes a

Figure 1. The feedback cycle of Human-Machine Interaction and
its augmentation by BCI input.

new communication channel, which enables direct insight
into the cognitive and affective user states in response to the
environment and technical system (see figure 1). However,
not all types of BCIs are equally applicable in this context.

We categorize the methods commonly applied in BCI re-
search into active and reactive. By the term active BCI we
denote BCIs which utilize brain activity of direct correlates
of intended actions as input. This includes the detection of
motor imagery or execution for active control, or the control
over slow cortical potentials.
A reactive BCI is still controlled via intended actions. How-
ever, in contrast to the active BCI, features are not derived
from direct correlates to these actions, but from cognitive
reactions to exogenous stimuli, as e.g. in the P300 speller.
According to this line of thought, we now define passive
BCI [4, 17]. Passive BCIs are not used with the purpose
or ability of explicit voluntary control. Instead, they infer
cognitive states which are already present within in the pri-
mary interaction in a human-machine system. Examples are
brain states or cognitive events that are automatically and
implicitly induced by the primary interaction. Hence, the
inclusion of a passive BCI channel to an existing human-
machine system does not directly interfere with the primary
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Type of BCI Based on features from Used for
Active dedicated and intended action encoding a command direct control.

focussed on directly generating a BCI detectable signal

Reactive dedicated perception on an exogenous stimulus direct control via external stimuli,
focussed on indirectly generating a BCI detectable signal brain switch

Passive changes in cognitive states or occuring of cognitive events implicit interaction,
directly resulting from the current Human-Machine providing information on
Interaction without the necessity of any additional user effort (affective) covert user states

Table 1. Categorization of BCI systems based on type of the used features and fields of application. The classical definitions of active and
reactive BCIs are augmented by the definition of passive BCIs. These benefit from high classification rates and a low usage effort.

mode of interaction, and the passive BCI forms a secondary
communication channel (see table 1).
EEG features based on implicit brain reactions to the en-
vironment also seem to be more robust in comparison to
features utilized for active BCIs, which are often depen-
dent on intended user actions and more variable in nature.
This might be due to the fact that passive BCI features usu-
ally depend on automatic processes of cognition which are
not as easily modulated by conscious processes. For these
reasons, passive BCIs are readily applicable in the general
Human-Machine Systems context. Especially, they allow
for insights into user states, which are hard to infer from
the users behaviour or other exogenous factors. We call
these user states ’Covert User States’ (CUS) analogous to
the term covert attention (defined in [11]). CUS can refer
to the user’s interpretation of the current interaction states,
which is usually not communicated directly to the technical
system, but only conveyed indirectly by reactive user ac-
tions in response to this interpretation and task goal. This
makes an interpretation and therefore an adequate adapta-
tion for the machine to the user’s need difficult. For in-
stance, the user often expects a specific response of the ma-
chine to his behaviour. In adaptive systems this expectation
is not always fulfilled, as the adaptation mechanism usually
is based on a fixed rule system interpreting the user’s be-
haviour. Hence, a corrective action by the user is necessary,
which may disturb previous goals and strategies. The in-
formation of the user’s actual interpretation of the situation,
e.g. the CUS ’This is wrong!’, could fundamentally aug-
ment the rule system of the machine and thereby enhance
the adaptation performance.
In addition, CUS refer to cognitive and affective events or
states that might be visible in explicit behaviour but are am-
bivalent until a direct categorization is possible. Since there
is no direct communication between man and machine -
with respect to the motivational and emotional response of
the user - an adequate adaptation is difficult. Consequently,
mental parameters related to these processes are an interest-
ing addition to human-machine systems.

Affective CUS which are possibly detectable within the
passive BCI framework range from mental workload, re-
laxation, surprise, and attention to arousal, frustration and
more. Here, we are going to investigate more specific affec-
tive CUSs. In the subsequently presented scenarios, we in-
vestigate the impact on brain responses of misbehaviour of
the machine, and their detectability via passive BCIs. Two
different approaches are presented, one focusing on the la-
tent state of loss of control over a system, and the other
focusing on the immediate response following a faulty and
surprising interaction state.

2. Methods

2.1. Specifications of our BCI system and experi-
mental design

2.1.1 Recording

The EEG system has 32 channels of Ag/AgCl conventional
(EasyCap) as well as impedance optimized (ActiCap) elec-
trodes. Signals are amplified by a BrainAmp DC system
and recorded by the BrainVision Recorder (BrainProducts).
The electrodes are distributed on standard 10/20-based caps
with 128 positions. Depending on the type of experiment,
they are placed over according parts of the cortex. Ad-
ditionally, we record electrooculogram (EOG) for control-
ling feedback-induced correlated eye movements, and elec-
tromyogram (EMG) on the relevant limbs, for protocolling
correlated movements. Both are bipolarly multiplexed by a
BrainAmp (ExG) system and derived with Ag/AgCl elec-
trodes. In order to retain information on exogenous factors,
we also record ambient temperature and noise level within
the laboratory.

2.1.2 Experimental Conditions

The stimulus presentation in calibration phases before on-
line feedback is designed for providing high control over ex-
ogenous and correlating factors besides the one of interest.
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This control is relaxed in certain online feedback sessions
to allow for a more realistic mode of interaction. A realis-
tic HMS interaction mode is characterized by a distinctive
motivational component with regard to the user, whose be-
haviour is driven by a certain task goal he likes to achieve.
In this sense, the experimental paradigm can mimic real
world scenarios, where mostly the motivational aspect is
modulating the user’s mental states and actions. This can be
accomplished by putting the experimental paradigm into a
game context, as is the case for the RLR-Game (see section
2.2). This decrement of control over factors might allow
for a higher number of artifacts but does decrease the signal
to noise ratio. Subjects have been introduced to the main
factor of investigation by an instructor. Experimental tasks
have been presented in a standardized way on the screen
of the Feedback Unit. The course of the experiments con-
tained several breaks for relaxation and recovering of the
subjects. Subjects gave information on their overall state
and their impressions on different blocks of the experiment
by answering questionnaires. All subjects are from age 18
to 45 with German as primary language. The groups of sub-
jects are of mixed and approximately balanced gender. Each
subject was paid 20 Euros after completing the experiment.

2.1.3 Analyses

Classification: For offline analyses, all feature extraction
methods, including filtering and resampling, are applied in
a strictly causal way. Classifiers are chosen from several
linear (LDA, rLDA, SVM) and non-linear (kernel SVM,
RDA, GMM) methods. In all analyses presented subse-
quently, (regularized) LDA was the best performing clas-
sifier and was therefore selected. Classification accuracy
was estimated by 10x(10[x5]) [nested] crossvalidation if not
otherwise stated. Results from offline analysis are derived
from strictly separated training and test blocks. Significance
statements are substantiated by standard T-Tests and F-Tests
without assumptions on the type of underlying distributions.

Feature extractors: For the extraction of features cor-
relating to finger movements, two methods are used. First,
the Common Spatial Patterns for Slow Cortical Potentials
(CSPfSCP) algorithm [6]. CSPfSCP aims to find linear
combinations (patterns) of EEG channels such that the de-
tection of each trial projected according to these patterns
is most discriminative (i.e., differs maximally between the
two classes). This version is optimized to detect the deflec-
tion of the readiness potential (Bereitschaftspotential). This
is an SCP indicated by contralateral low-frequency changes
(1-5Hz), in this case localized over motor cortex. A slow
negativity can be observed prior to a movement, and the rel-
ative strength of this negativity in the channels over the left
versus right cortical hemisphere is typically used to infer the
laterality of the upcoming movement. And second, for the

extraction of spectral features correlating to event related
desynchronisations (ERD) we used another version of CSP,
Spectrally Weighted CSP (SpecCSP) [15]. SpecCSP itera-
tively alternates between optimizing spatial and the spectral
criteria. This way, the algorithm calculates a set of cus-
tom spatial projection together with a set of custom fre-
quency filters. These are generated for discriminating ERD
by logarithmic bandpower. For the single trial detection of
other event related potentials, in this case the EEG pattern
correlating to error responses of the brain, features have
been extracted by a derivate of the pattern matching algo-
rithm [3]. It has been extended for detection of several ex-
trema of SCPs within a given epoch. The data is resampled
at 100 Hz, epoched relative to the event marker and a FFT
band pass filter was applied using a frequency range of 0.1
- 15 Hz. Pattern matching reduces the dimensionality of
the EEG data, by partitioning trials into n time windows
according to the proposed ERP shape and calculating the
mean of each time window and single trial. This results in
an n-dimensional feature vector for each of m EEG chan-
nels. The EEG data is mapped onto an n*m dimensional
feature space, containing the class-specific features of the
EEG signal.

Dependent measures for statistical non-stationarities:
For detecting non-stationarities in movement-related fea-
tures, i.e. for executed button presses of the left and right
hand, we implemented two methods. Both measures were
calculated relative to the training data’s distribution of the
initial calibration measurement. In the first one, we explic-
itly applied a measure of statistical deviation to feature dis-
tributions. We measured the Kullback-Leibler divergence
(KLD) of the feature distributions for direct observation of
non-stationarities [14]. The second method aims at detect-
ing non-stationarities implicitly, by measuring the perfor-
mance of a movement classifier. We define pseudo online
classification rates (POC) for this purpose. POC rates were
calculated by offline analysis serving as estimation for on-
line classification results. They were determined as follow-
ing: A classifier was trained on the initial training block.
Then, this classifier was applied to every key press. An av-
erage of approx. 100 gradual classifier outputs in a one-
second window before each key press was averaged and
taken as the classifier’s decision for this key press. The
sign of this decision value (by default, left keys, on aver-
age, were assigned -1, right keys +1) was remapped accord-
ing to the key actually pressed, such that correct decisions
were assigned positive values and wrong decisions were as-
signed negative values. The result is a real number for each
key that was pressed by the subject. Therefore, positive
values would indicate overall correct classifier decisions,
while values close to zero or negative would indicate overall
wrong decisions.
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Figure 2. Example for single trial of the RLR-Design.

2.2. The RLR paradigm and its directed restriction,
the RLR-Game

For both experiments, variants of the same experi-
mental paradigm have been used, the Rotation-Left-Right
paradigm (RLR) [9] and the RLR-Game. The RLR
paradigm has been developed to mimic Human-Machine In-
teraction and to induce different mental user states by ma-
nipulating factors of interest (see figure 2). The goal of
the experimental task is to rotate a stimulus clockwise or
counter-clockwise (by a right or left key press, respectively)
until it corresponds to a given target figure. The stimulus is
either the letter ”L” or ”R”, indicating the direction of rota-
tion and left or right button press. While the colour of the
stimulus is grey, it can not be rotated. However, every 1000
ms it changes into one of three colours, indicating A) the
possibility to be rotated by a key press and B) the angle of
rotation. If the stimulus lights up in red, the stimulus will
rotate by 90 degrees, if it is yellow, by 60 degrees, and if
it is green, by 30 degrees, upon key press. Each rotation
has to be triggered, which only can be done once per colour
change. The subject has to build up an efficient strategy for
reaching the target: to rotate the starting stimulus as fast as
possible on the target stimulus without rotating too far. The
design can be played in two modes: The first was restricted
to what we will call ’Full Control Mode’ and the second,
the ’Reduced Control Mode’ included additional ’random

states’. Random states are different from standard states in
that they use a different rotation angle after key press, ran-
domly selected from 90, 60, and 30 degrees. Consequently,
in this case, the learned mapping rules do not apply any-
more.
A derivate of the RLR paradigm is the RLR-Game, which
is restricted to the colours green and red. It has also two
stages, the ”correct mode” and the ”error mode” (see figure
3). In the ”error mode”, there will appear error states with
a chance of 30%. The new angles in the error states are
chosen to be always smaller than the ones from the corre-
sponding standard case. Consequently, the colour red will
result in 30◦ rotation (opposed to 90◦), and the colour green
will result in a 0◦ rotation (opposed to 30◦). Secondly,
the RLR-Game adds a second player, competing to the first
one. Their performance is measured and fed back in form of
points. A player gets a point when hitting the target earlier
than his opponent. Hence the artificially induced machine
error has a negative valence for the user, since it decreases
his performance and might even lead to frustration.

3. Experimental Scenarios

In this section we are going to present two studies. In
both the factor of investigation is the utilization of a specific
CUS. The first study is based on the RLR design and han-
dles the CUS of perceiving loss of control within human-
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Figure 3. The RLR-Game and its two modes, correct and error. In error mode the system will react on a chance of 30% with a decreased
rotation angle. A correct classification will then switch back to the standard rotation angle. On a false positive classification the angle
would be correct and then, due to the classifiers mistake, be decreased.

machine interaction. In the second study we investigate
the user’s interpretation of automated adaptation within the
RLR-Game.

3.1. Defining a pBCI for detecting the perceived loss
of control within Human-Machine Interaction

3.1.1 Motivation

When conventional active BCI applications are transferred
from the laboratory to interactive scenarios, influence of
most interfering factors is lost, and such interference can
lead to prolonged drops in performance. In this context,
pBCIs may give insight into the underlying mental or affec-
tive user states, and related overall system states. In gen-
eral, most HMSs are lacking information about the user’s
capability of handling the technical system, or whether the
user is overwhelmed with the current task. Therefore, the
machine is unable to adapt to the users needs and cannot
supply the necessary support to avoid interaction mistakes.

3.1.2 Factor of investigation

An affective parameter that may underlie all of these situa-
tions is the loss of control (LoC), which makes conventional
active BCI applications a good candidate for the investiga-
tion of the LoC. Moreover, a sufficiently universal method
in the pBCI framework for detecting the LoC state may lend
itself well to a much broader range of applications. This ap-
plies especially to those in which the primary interaction is
performed by manual actions. As previously mentioned, ac-
cessing this state is difficult using conventional HMS chan-
nels, as LoC falls into the category of covert user states.

3.1.3 Approach

In this explorative scenario, we investigate the feasibility of
designing a pBCI to detect the CUS of the loss of control
over a task. It has been assumed that in the restricted con-
text of active BCIs, e.g. control via imagined movements,
the LoC manifests itself in non-stationarities in the under-
lying features. This leads to deviations from the feature
statistics during the BCI calibration phase, with the con-
sequence of degraded system performance [5,14]. Theoret-
ically, if present, this statistical behaviour can be detected
passively, using the same features as a basis. However, to
also allow for operation in more general HMS cases, fea-
tures must be derived from executed movements, such as
typing. Assuming that typing produces features that are
similar to those occurring during imagined movements in
conventional BCIs, we can reapply standard techniques for
movement-related features to our new situation in a passive
way. Standard feature extractors for imagined and executed
movements are compared in their sensitivity with respect to
the LoC, and thus in their predictive performance for use in
a passive LoC detector.

3.1.4 Experimental Design

By utilizing the RLR Paradigm we have been able to arti-
ficially induce phases of reduced user control (phase BUc,
see figure 5) by permuting the mapping between colours and
angles of rotation. The learned rule system would not apply
any more and therefore the user is confronted with an un-
expected behaviour of the technical system, experiencing a
loss of control of the task. In these experiments 22 subjects
participated. We tracked features representing the primary
mode of interaction, pressing a key, in the EEG data. De-
tails on this study can be found in [9].
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Figure 4. Scheme of the possible outcomes after the request for
classification.

3.1.5 Features and analyses

Loss of control is accessed by analysing feature modu-
lations of EEG patterns correlated to the executed hand
movements. The EEG features that allow left and right
hand movements to be discriminated fall into two cate-
gories: Slow Cortical Potentials (SCPs) and Event-Related
Desynchronization (ERD) features. We have chosen fea-
tures from both categories which have been extracted by
Common Spatial Patterns for SCP (CSPfSCP) and Spec-
trally Weighted CSP (as described in section 2.0.3) for ERD
from 200 ms of data prior to the button press. For the de-
tection of LoC we have calculated the KLD on a moving
window, containing the data of 10 button presses compared
to the data from the initial training phase. Also, we esti-
mated the POC for each buttonpress.

3.2. Applicability of a pBCI for enhancement of
efficiency in HMS

3.2.1 Motivation

Errors in communication are highly relevant factors regard-
ing the efficiency of HMS. Especially with regard to auto-
mated adaptation of the machine to the interaction mode of
the user [10]. The machine tries to adapt to the behaviour
and needs of the user. The currently used approaches are
based on inferences of the user’s actions or machine in-
puts. But a precise adaptation on this restricted information
is hard to accomplish, because the mental states of inter-
est are mostly CUSs. A wrong automation decision induces
effects of surprise and frustration and in this respect, adap-
tation reduces the performance and the safety in HMS [13].
Additionally it triggers a correction action which enforces a
shift in the intention focus of the user. According to this it
reduces the overall acceptance of the adaptation and of the
whole system. The goal of this scenario was to investigate
a pBCI that is capable of communicating these error-related
brain responses of the user to the technical system.

Figure 5. Grandaverage of the time course of the KLD for the CSP
feature distribution through phases of full control (A1, A2, Ba1,
Ba2) and phases of reduced control (BUc). In the first transition
phase Bt1 the control is reduced to 70% gradually, it stays at this
level in phase Bm and returns to full control in the second transi-
tion phase Bt2.

3.2.2 Factor of Investigation

The RLR-Game mimics the interaction in an HMS and al-
lows for modelling an unexpected and negative effect, the
error states. While this game is based on common interac-
tion channels, we have added a secondary and passive BCI
channel capable of automatically correcting the effects of
reduced angles in the error states (see figure 3). This correc-
tion is triggered by an event-related potential reflecting the
mental processing of an error trial. If it is correctly detected
by the pBCI during an error trial, the rotation angle was set
to the correct mapping. In case of a false positive the angle
was reduced to that of a corresponding error state. Hence,
each correct detection of an error brain response speeds the
player up and a false detection slows him down. Therefore,
if the classifier works properly, it will enhance the perfor-
mance of the player and it will reduce it otherwise. See
figure 4 for details.

3.2.3 Experimental Design

For keeping the environment as realistic as possible, we
have chosen the Open House of the TU Berlin (LNdW
2007) as the setting. Four times two different players from
the audience played the RLR game against each other (see
figure 3) for a visualisation of the rule system). Each pair
played three sessions of 50 trials. The first was for user
training, without error states. In the second session we in-
troduced the error trials. The automatic adaptation has been
applied in the last session, only for one player.
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Figure 6. Grandaverage of the time course of the POC for the CSP
features. A positive value indicates overall correct classification, a
negative value reflects, that the classification accuracy is not reli-
able (< 50%). Strongly correlated to the decrease of the controla-
bility of the system, the POC drops down.

3.2.4 Features and application

For detecting brain response relative to an erroneous rota-
tion, we epoched the data from 0 to 800 ms relative to the
stimulus rotation. On these epochs we applied the pattern
matching method with 8 windows of 50 ms length starting
at 300 ms after the event. This is resulting in a 256 dimen-
sional feature space. Based on the features extracted from
the data of the second RLR-Game session a classifier has
been trained. In the third session this classifier was applied.
On each trial a classification was requested directly after the
stimulus rotation.

4. Results
The results of the LoC study (Figures 5 and 6) show that

for the phases with full control (A1, A2, Ba1, Ba2) the vari-
ance of the averaged Kullback-Leibler divergence (KLD) is
bounded for ERD features. In contrast, the phases of re-
duced control (BUc) reveal a significant (p<0.05) increase
of the KLD, for ERD-based features. The POC drops down
in phase Bm, which correlates significantly (p<0.05) to the
course of the KLD. Hence, the KLD of this feature category
is a measure strongly related to the perception of control by
the user. Contrary there are no significant changes in the
features extracted for slow cortical potentials.
Figure 7 shows the results from the sessions from the open
house of the TU Berlin 2007, investigating the pBCI based
on error potentials. During the third session one player
was supported by the pBCI, correcting erroneous states of
the machine by detecting brain activity induced by the re-
spective machine error states. While the points have been
equally distributed between session 1 and 2, the perfor-

Figure 7. Results of the Open House of the Technical University of
Berlin. The bars indicate difference in points of Player A (up) and
Player B (down). Horizontal striped bars show the results from the
phase ”Subject Training”, in which the game was set to Correct-
Mode, allowing the user to learn the rule system. Results from the
phase ”Machine Training” are represented by the diagonal striped
bars. Here, the system executed an error-state on a chance of 30%.
On the resulting data a classifier was trained. In the third and last
phase this classifier was applied to support Player A. As it can
be seen in the orientation and magnitude of the black bars, the
supporting system was successful.

mance of all pBCI supported players has been increased
significantly. The classifier hat an accuracy of 81.2% with
error ratios equally distributed over the two classes.

5. Discussion

The results of the LoC scenario show that we have found
a possible BCI measure for an affective mental parameter,
which is sensitive with respect to loss of control in an exe-
cuted movement task, relying on oscillatory features. Fea-
tures based on the readiness potential, however, show no
sensitivity. This indicates that the corresponding mental pa-
rameter could be detected passively, using SpecCSP and
KLD as building blocks, and a technical system could be
supported by it. As the loss of control is an important CUS
to be transferred to the technical system in order to enable
an adaptation of the system to the user’s needs, this is an im-
portant route for further investigation. Especially, the online
applicability and specificity of the inference have to be fur-
ther investigated.
Erroneous system behaviour results in frustration of the user
and a deteriorated man-machine interaction. The investi-
gated pBCI online detection of brain responses to machine
errors clearly allows for an enhancement of the human-
machine interaction. Currently, a further study is being un-
dertaken to validate the pBCI based on error responses, by
investigating EEG patterns correlating to different error cat-
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egories that induce similar EEG signals. Especially the idea
of utilizing the EEG signal for sensing the subjective inter-
pretation of current interaction states within HMS seems to
be promising.

6. Conclusion

Here we gave examples of two types of pBCIs. One es-
tablishing an information flow from the human brain to the
HMS, reflecting CUS correlated to current modes of inter-
action. The other one extracting the actual interpretation of
dedicated system states from the users cognition. Both can
be applied in the context of BCI for enhancing classification
accuracy. First, for automated adaptation of BCI classifiers,
and second, for correcting errors in Human-Machine Inter-
action as proposed in [3, 7]. In the more general context,
our results show that pBCIs are suitable for an application
in the field of HMS, providing information about the men-
tal user state, which can only hardly be inferred by typical
information channels in HMS. Our experiences with pB-
CIs show that these enable new channels of information
within the interaction between man and machine. Next to
an increased efficiency of work, automation technology has
caused additional difficulties in HMS. This leads to errors
and safety risks, mainly due to maladapted man-machine
communication. pBCIs enable a direct access into CUSs,
which is not currently accomplished by any other HMS
method. Anyhow this is an important precondition for an
optimal adaptation of automated agents, to make the man-
machine interaction more efficient and less prone to errors.
Here we were able to show that pBCIs are capable of detect-
ing brain activity in response to machine errors and thereby
enhancing automation adaptation. Additionally it seems to
be fruitful to exchange experiences between the fields of
HMS and BCI research, which will hopefully be done ex-
tensively in the near future. These studies could be a starting
point for a whole series of new approaches. Currently we
are investigating pBCIs for detection of mental workload,
cognitive interpretation of the perception of human move-
ments [8] and information on driver intentions. Please see
www.phypa.org for details.
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Abstract

In this paper we describe algorithms and image features
that can be used to construct a real-time hand detector. We
present our findings using the Histogram of Oriented Gra-
dients (HOG) features in combination with two variations
of the AdaBoost algorithm. First, we compare stump and
tree weak classifier. Next, we investigate the influence of a
large training database. Furthermore, we compare the per-
formance of HOG against the Haar-like features.

1. Introduction
At the moment the typical human interface to devices or

computers are keyboards, mice or remote controls. If we
wish to �communicate� in a more natural way and possibly
give orders to smart devices and electronics, hand gestures
might be used. In order for the device to �understand�, an
automatic gesture recognition method is needed.

The recognition task is typically preceded by hand de-
tection. This is similar to the combination of the already
widely used face detection and subsequent face recognition.
Face detection and recognition are far from trivial and hands
are even more challenging. This is due to the variability of
the possible hand gestures. Hands are complex, deformable
objects that are very dif�cult to detect in dynamic environ-
ments with cluttered backgrounds and variable illumination.
Several systems for gesture recognition as well as hand de-
tection have been proposed [1, 2, 4, 5, 6, 9, 11].

Viola and Jones [13] proposed the combination of Haar-
like features and boosted classi�ers using the (cascaded)
AdaBoost machine learning algorithm to train a detector
for real-time face detection. The success of this combina-
tion for face detection has inspired researchers to employ
this particular feature and machine learning algorithm for
real-time hand detection as well [2, 5, 6, 9]. Consequent
gesture recognition might then be performed using Hidden
Markov Models [4] to link the transitions between differ-
ent poses to form a gesture. The system proposed in [6]
shows promising results, and uses face detection to provide

a Region Of Interest (ROI) for initializing skin color seg-
mentation. In [9] new speci�c Haar-like features for hand
detection have been proposed. The detector is trained us-
ing still images, which contain centered hands, with well-
de�ned gestures. In [5] an extension of [9] has been pro-
posed, where the gestures are recognized using scale-space
derived features. The reported experiments were carried out
in a dynamic environment. In [2] the Haar-like feature set is
extended with 45 ◦ tilted rectangular features. The recogni-
tion of different gestures is performed using several single
gesture detectors in parallel. The system was tested under
laboratory conditions, and its performance in dynamic en-
vironments is highly uncertain. In [11] detectors are con-
structed using Real and Discrete AdaBoost on four different
databases. One database contains faces, the other three each
contain a different hand pose. Haar-like features are com-
bined in a single weak classi�er to increase the discrimina-
tive strength. By evaluating the co-occurrence of features,
more relevant spatial structure relationships can be encoded.
The authors report a high accuracy on their databases when
exploiting the co-occurrence of three Haar-like features in
their weak classi�ers. In [1] a system is proposed to �nd
both the hand and arm positions in sign language video se-
quences. Next to other cues, HOG image feature templates
are constructed for each limb and used in a model to match
limb con�gurations to the unknown con�gurations in the
sequences. The reported accuracy is very high, however the
processing time per frame is prohibitive.

In this paper, we focus on the task of real-time hand de-
tection, without contextual information, in indoor environ-
ments with cluttered backgrounds and variable illumination,
for a target application requiring low false positive rates.
The detection task is characterized by a lack of consistent
internal contrast in the hand combined with the complex
background. We expect that a feature based on gradients
would be able to encode the relevant structures. We ver-
ify this by adopting the HOG image features. Two varia-
tions of AdaBoost are tested, together with stump and tree
weak classi�ers. As a reference, we also analyze the per-
formance of the commonly adopted Haar-like features. We

978-1-4244-4799-2/09/$25.00 c©2009 IEEE

63



Figure 1. Overview of the HOG feature vector construction

show that the HOG features detectors can be trained with
much larger databases than Haar-like features detectors, and
achieve similar or better detection performance.

The remainder of this paper is structured as follows: Sec-
tions 2 and 3 describe image features and boosting algo-
rithms used in our experiments, respectively. Section 4 dis-
cusses the acquisition of the hand database and the setup of
the experiments. Section 5 shows the results of the experi-
ments and Section 6 presents our conclusions.

2. Features
In the following sections, we will describe the HOG and

Haar-like image features, which were successfully used for
object detection in [3] and [13], respectively. We purposely
discard color information for two main reasons: skin color
is extremely unreliable in uncontrolled environments and it
cannot be use in darker conditions, where active Infra-Red
illumination is required.

2.1. Histogram of Oriented Gradients features

The Histogram of Oriented Gradients (HOG) [3] en-
codes the spatial distribution of local intensity gradients. A
hand might be well detectable in a cluttered background by
a characteristic local distribution of edges or intensity gradi-
ents. The HOG features are computed by dividing an image
into small spatial regions called cells. For each cell a local
1-D histogram of gradient directions is accumulated over
the pixels of the cell. The concatenated histogram entries of
the cells form the HOG feature vector representation.

The gradient directions in the input image are computed,
using discrete derivative masks like Sobel masks. Each cell-
level histogram divides the gradient angle range into a �xed
number of predetermined orientation bins. Each pixel in
the cell votes (weighted) for an edge orientation, based on
the orientation of the gradient element centered on it, into
the orientation bins (angle ranges) of the cell’s histogram.
The orientation bins are evenly spaced over 0 ◦ − 180 ◦

Figure 2. Set of Haar-like features

or 0 ◦ − 360 ◦. In practice for invariance to illumination
changes, a number of cells are combined to form a block
and the cells in each block are contrast-normalized by using
an accumulated measure of local histogram �energy� in the
block. The blocks can be rectangular or circular log-polar.

In Figure 1 an example overview shows how the HOG
feature vector is constructed from a sample image. Each
block histogram (B) is a concatenation of the normalized
cell histograms (HC/N ), where both are 1-D vectors. The
entire feature vector is then a concatenation of all block his-
tograms.

2.2. Haar-like features

The Haar-like type of features encodes the oriented con-
trasts between regions in an image. For ef�cient imple-
mentation these features are usually designed as rectangular
shapes with two or more non-overlapping black and white
sub-rectangle areas and an optional rotation. The value of
the feature is determined by computing the difference be-
tween the sums of pixels in the black and white area(s);

featurevalue =
X

area,white

i(x, y)−
X

area,black

i(x, y) (1)

where i(x, y) represents image intensity (pixel) value at po-
sition (x, y) in the image. Upright rectangular features can
be computed ef�ciently and fast using an intermediate rep-
resentation of an image, called integral image. This makes
Haar-like features very suitable for usage in systems requir-
ing high frame rates or high performance. In practice con-
trast stretching / normalization is used to improve robust-
ness to differing lighting conditions. The feature vector is
constructed from an example image by calculating a set of
Haar-like features in all possible locations and scales and
concatenating the (normalized) feature values into a 1-D
vector.

3. Machine learning algorithms
For classi�cation, a machine learning algorithm re-

quires an input database with N training examples, trans-
lated into labeled feature vectors using an image feature
(such as the described HOG or Haar-like features). This
yields (x1, y1), . . . , (xN , yN ) with xiε<k and yiε{−1, 1}
(or yiε{0, 1}). xi is a K-component vector (K equals the
number of features per example). yi is called the class label
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and indicates if the feature vector xi was constructed from
a �positive� or �negative� training example. In our case, a
positive training example contains a hand, while a negative
example contains anything but a hand.

In the following sections, we describe two commonly
used variations of the AdaBoost algorithm, Gentle [8] and
Discrete AdaBoost [7], and the different weak classi�ers we
used in our experiments. Furthermore, we present the cas-
caded classi�er construction approach for AdaBoost [13].

3.1. Discrete AdaBoost

The name Discrete AdaBoost is adopted from the dis-
crete classi�cation made by the weak classi�er. We de�ne
the discrete decision stump (weak classi�er) hj(x) as;

hj(x) =
� −1, if fj(x) < ϕj

1, otherwise
(2)

Where fj is a feature, ϕj a threshold, hj(x)ε{−1, 1}, also
see Figure 3. The usefulness of this de�nition becomes ap-
parent when we recall that every component of the xi in
the training examples represents a feature (fj). The weak
learning algorithm is designed to select the single feature,
which best separates the positive and negative training ex-
amples. For each feature dimension the weak learning algo-
rithm determines the optimal threshold classi�cation func-
tion, such that the weight of misclassi�ed examples is min-
imized. Therefore on each round of training, AdaBoost
will �select� the feature and thus it’s corresponding weak
classi�er, determined by the weak learning algorithm, with
the smallest error in classifying the training examples. Ad-
aBoost combines �weak� classi�ers to produce a powerful
�committee� of weak classi�ers, called a strong classi�er.
These weak classi�ers only need to be slightly better than
chance (> 50%)[7]. The strong classi�er is a weighted
combination of (different) weak classi�ers (features) plus
a threshold. The algorithm is presented in Table 1.

Figure 3. Decision stump for one feature (dimension). Samples
below the threshold ϕ will be labeled -1 and above as 1

3.2. Gentle AdaBoost

The difference between Discrete and Gentle AdaBoost is
found most notably in the employed reweighting of samples
and their respective weak classi�ers. The Gentle AdaBoost

Input:
-Training examples (x1, y1), . . . , (xN , yN ) with xiε<k and
yiε{−1, 1} for negative and positive examples respectively
-Distribution D over the N examples
-Weak learning algorithm weaklearn
-Integer T specifying the number of iterations
Initialize weights D1(i) = 1

N
Do for t = 1, . . . , T
1. Call weaklearn, which returns the weak classi�er with
ht : χ→ {0, 1} from F = {h(x)}
with minimum error εt with respect to Dt,
ht = arg minhjεF εj , εj =

P N
i=1Dt(i)[yi 6= hj(xi)]

If εt > 1
2 stop

2. Set α = 1
2 ln

1−εt
εt

3. Update the weights:

Dt+1(i) = Dt(i)e
−αtytht (xi )

Zt
Where Zt is a normalization factor chosen so that
Dt+1 is a distribution

The �nal strong classi�er:

H(x) =
�

1
P T
t=1 αtht(x) ≥ 0

0 otherwise

Table 1. Discrete AdaBoost algorithm

algorithm uses a different type of stump, called the regres-
sion stump. We de�ne the regression stump (weak classi-
�er) gj(x) as;

gj(x) =
�
a, if fj(x) < ϕj
b, otherwise

(3)

The output for this weak classi�er is continuous,
gj(x)ε[−1, 1]. a and b are determined by a weighted condi-
tional expectancy on each side of the threshold ϕj . There-
fore a and bwill be different for each constructed weak clas-
si�er. If we take the regression stump in Fig. 4 as example,
we can compute a, and b in a similar way by;

a = ED(y[x < ϕ])

=
P N
i Diyi[x<ϕ]

P N
i Di[x<ϕ]

=
P N
i Di · 1[x<ϕ] +

P N
i Di · −1[x<ϕ]

P N
i Di[x<ϕ]

(4)

Since the output of gj(x) is not �on top� of class labels,
the error in classi�cation made by the stump is calculated
by weighted least squares and not by the misclassi�cation
error, as is the case for Discrete AdaBoost. The Gentle Ad-
aBoost algorithm is presented in Table 2. Due to the out-
put of the regression stump being bounded to [−1, 1], the
reweighting performed by this algorithm is more gentle than
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Figure 4. Regression stump for one feature (dimension). Samples
below the threshold ϕ will have output �level� a and above b

Input:
-Training examples (x1, y1), . . . , (xN , yN ) with xiε<k and
yiε{−1, 1} for negative and positive examples respectively
-Distribution D over the N examples
-Weak learning algorithm weaklearn
-Integer T specifying the number of iterations
Initialize weights D1(i) = 1

N
Do for t = 1, . . . , T
1. Call weaklearn, which �ts the regression function
gt(x) by weighted least squares of yi to xi with
weights Di, the optimized gt(x) is found through
ĝt = arg minhED[(y − h(x))2|x]
2. Update H(x)← H(x) + ht(x) =
H(x) + E[e−yH(x) yi|x]

E[e−yH(x) |x] = H(x) + ED[y|x]
3. Update the weights:

Dt+1(i) = Dt(i)e
−ytht (xi )

Zt
Where Zt is a normalization factor chosen so that
Dt+1 is a distribution

The �nal strong classi�er:

H(x) =
�

1
P T
t=1 gt(x) ≥ 0

0 otherwise

Table 2. Gentle AdaBoost algorithm

is the case for Discrete AdaBoost, where the value of the α’s
(Step 2, Table 1) is unbounded and is even not de�ned when
the error is 0. Therefore Gentle AdaBoost is expected to be
more robust to noisy data containing outliers, the weight of
these examples can not increase as dramatically as is possi-
ble in Discrete AdaBoost [8].

3.3. Tree weak classifiers

Stump weak classi�ers effectively split the training sam-
ples into two partitions using a threshold, labeling sam-
ples positive (object) or negative (non-object). Each par-
tition may include a number of misclassi�cations. With a
tree [10] we can re�ne the classi�cation done by the initial
stump. See Figure 5 for a visual representation, where N
input training examples lie in a 2-D plane and a stump and
a tree weak classi�ers classify (divide) this same training
space. Table 3 describes how we construct a tree weak clas-

Figure 5. Stump and tree weak classi�er dividing N examples

Input:
-Training examples (x1, y1), . . . , (xN , yN ) with xiε<k and
yiε{−1, 1} for negative and positive examples respectively
-Distribution D over the N examples
-Weak learning algorithm weaklearn
-Integer M specifying the maximum number of splits

Call weaklearn; select best stump on all training examples
Do for m = 2, . . . ,M
1. Call weaklearn on all leafs; �tting stumps
on the training data which reaches that leaf
2. Add only one stump to the tree, select
the stump which decreases the
misclassi�cation rate the most for its branch
3. Stop if the misclassi�cation rate does not
decrease for any branch

Table 3. Tree weak classi�er construction

si�er using stumps. When the tree weak classi�er is used in
combination with Discrete Adaboost we classify the train-
ing samples using a newly constructed tree and determine
the corresponding α (Step 2. in Table 1) for the (tree) weak
classi�er in the same way as we would for a stump. How-
ever when using Gentle AdaBoost each leaf of the tree weak
classi�er is assigned an output value, determined by the
weighted conditional expectancy of the samples that reach
the leaf [8], see equation (4).

3.4. Cascaded boosting

To improve ef�ciency, often a modi�ed version of the
AdaBoost algorithm is used, known as cascaded AdaBoost
[13]. It is applicable to both Discrete and Gentle AdaBoost
or any other variation of the algorithm. Instead of construct-
ing one strong classi�er to perform classi�cation, a series or
cascade of strong classi�ers is created. These strong clas-
si�ers will have an increasing complexity (amount of weak
classi�ers). The main advantage is that early stages in the
cascade (with low complexity) are able to label many of the
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input samples already as non-object. These samples then no
longer have to be evaluated by subsequent strong classi�ers
in the cascade, in contrast to non-cascaded strong classi�ers
where each sample passes through the entire strong classi-
�er before being labeled. Hence, there is a great reduction
in the number of computations needed to process the input.

Performance goals in terms of detection rate and false
positive rate (detection which is incorrect) for the cascaded
classi�er are de�ned by respectively;

D =
LY

i=1

di (5)

F =
LY

i=1

fi (6)

Where D is the detection rate of the cascaded classi�er, L
is the number of (strong) classi�ers and di is the detection
rate of the i-th classi�er on the samples that get through to
it. F is the false positive rate, and fi is the false positive
rate of the i-th classi�er on the samples that get through to
it.

Given the set of detection and performance goals, target
rates can be determined for each cascade stage. The user se-
lects the maximum acceptable rate for fi and the minimum
acceptable rate for di. Each stage of the cascade is trained
by AdaBoost with the number of features (weak classi�ers)
being increased until the target detection and false positive
rates are met for the current stage. The rates are determined
by testing the current detector on a validation set of exam-
ples. If the overall target false positive rate is not yet met
then another stage is added to the cascade.

4. Database & experiment setup
4.1. Database acquisition

To create our database we acquired clips using an HD
video camera. We recorded four different persons perform-
ing an �open hand� pose on different backgrounds. The
hand pose and the illumination conditions were varied dur-
ing the recordings, as shown in Figure 7. The hand and
�ngers were moved unconstrained, but with the palm gen-
erally facing the camera. We also recorded clips of �back-
ground�, both indoor and outdoor. To create our positive
examples we cropped the frames from the movies to the
area around the hand, therefore there is only limited varia-
tion in scale.The negative examples were obtained by taking
patches in random locations and different sizes in the frames
of background movies.

Given this set of images, we constructed three databases.
They contain the same examples in different sizes; 30x30
pixels, 60x60 pixels and 90x90 pixels. The databases con-
tain over 140000 examples, the ratio between positive and

negative examples is roughly 2
5 . Figure 6 shows the average

image[12] of the positive examples in the database. It indi-
cates there is a good amount of variation in the examples,
because only a colored blob is visible, with nearly no visi-
ble remaining structure. As already mentioned, we discard
color information.

4.2. Experiments

We separated 1
3 of the databases for testing classi�er per-

formance (testing set). For training we used the remaining
2
3 of the database examples, this is the total set of examples
available for training (full training set). Using these sets we
performed four experiments:

• Search of optimal HOG parameters. We trained detec-
tors on half of the training set and veri�ed performance
on the testing set, for different HOG parameters.

• In�uence of database size. We decrease the amount of
training examples in the full training set in steps and
train detectors for each training set size. The examples
for each training subset are selected randomly from the
full training set. To reduce the effect of random sub-
sets, we repeat the training for a given set size multiple
times and average the results.

• In�uence of the database example size. Performance
of the HOG features are compared when used for train-
ing with the three different image size databases.

• Comparison of HOG and Haar-like features. We train
detectors using Haar-like features on the 30x30 exam-
ple size database, for decreasing amount of training ex-
amples.

For all sets in the above experiments, we preserved the ra-
tio between negative and positive examples present in the

Figure 6. Average positive example image

Figure 7. Database positive and negative examples
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complete databases. The same examples were selected for
each database, the only difference is in the example image
size. Furthermore, we dedicated 1

4 of training examples to
validation, as required for cascaded boosting.

The results of the experiments can be found in Sections
5.2, 5.3 and 5.4 respectively.

5. Results
5.1. HOG parameters

In our experiments we have empirically determined the
�optimal� parameters for the HOG features by performing
an extensive parameter search on the databases. Perfor-
mance for a combination of parameters was determined on
the testing set. The most important parameters are the com-
bination of block size, block stride and cell size and the
number of angle bins and full angle range. These two com-
binations greatly determine the amount of detail that can be
captured by the HOG feature and were the main focus of the
parameter searches. To give an indication of the in�uence
of the parameters, a selection of results, from a part of the
searches on the 30x30 pixel example size database, is pre-
sented in Tables 4, 5 and 6. The best performing parameters
and the corresponding feature vector length are presented
in Table 7. Shorter vector lengths are preferable as they can
be calculated faster. The other optimal parameters which
are not mentioned in the Table 7 are: we use, no normaliza-
tion over blocks, the gradient magnitude for the weighted
vote into the histogram bins and a diagonal �lter kernel to
compute the gradients.

Gradient computation Performance
1D mask 0.9404
1D cubic corrected 0.9289
Diagonal �lters 0.9438
Sobel �lters 0.9422
Prewitt �lters 0.9408

Table 4. The effect of different gradient computation on classi�ca-
tion performance, for a �xed set of parameters for block size, cell
size, block stride, normalization type, voting method, angle range
and number of bins, as shown in Table 7.

Voting method Performance
Magnitude 0.9438

Magnitude Square 0.9438
Magnitude Square Root 0.9413

Binary voting 0.8930

Table 5. The effect of different voting methods on classi�cation
performance, for a �xed set of parameters for block size, cell size,
block stride, normalization type, gradient �lter, angle range and
number of bins, as shown in Table 7.

Cell Size 2×2 3×3 5×5 6×6 10×10
(pixels) cells cells cells cells cells

3×3 - 0.9170 - - -
6×6 0.9194 0.9296 - 0.9276 -

10×10 0.9249 - 0.9426 - 0.8732
15×15 - 0.9346 0.9438 - -

Table 6. The effect of the cell and block sizes on classi�cation
performance, for the block stride equal to the cell size and a �xed
set of parameters for normalization type, voting method, gradient
�lter, angle range and number of bins, as shown in Table 7.

Database bins bl.sz. cl.sz. bl.str. or. length
30x30 9 15x15 5x5 5 180◦ 1296
60x60 9 20x20 10x10 10 180◦ 900
90x90 18 30x30 15x15 15 360◦ 1800

Table 7. HOG parameters per database; number of angle bins,
block size (pixel), cell size (pixel), block stride (pixel), full angle
range and the corresponding feature vector length

5.2. Database size

We investigated the in�uence of the amount of examples
available for training, on the detector performance. Fig-
ure 8 shows that the differences in average error rates be-
tween different combinations of AdaBoost and weak clas-
si�ers decreases when the amount of training examples in-
creases (approaches the full database size), for the presented
database. This behavior is seen for all three databases. Al-
though the performance increase levels off for increasing
database size, Figure 8 shows that more examples for train-
ing will increase the performance on the testing set. There
is no great advantage of using one particular combination
of weak classi�er and boosting algorithm over another, if
only the average testing error is considered. It also indicates
that Discrete AdaBoost in combination with discrete deci-
sion stumps over�ts on the training data, for small database
sizes. There the average testing increases (detection rate
and false positive rate both increase). This degradation in
performance for small database sizes can be attributed to
this algorithm’s sensitivity to outlying or noisy data [8].

Database Mean avg. testing error
30x30 2.88% ± 0.36%
60x60 2.19% ± 0.19%
90x90 1.94% ± 0.20%

Table 8. Mean average testing error of the different boosted weak
classi�ers on the full size databases

5.3. Example size

We compared the performance of detectors trained with
the same examples, but of different image size. On the
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Figure 8. (1 - Average testing error) versus database size for dif-
ferent combinations of learning algorithms and weak classi�ers,
30x30 pixel examples

whole, the lowest average error using HOG features is
achieved on the database with the largest example size, see
Table 8. However, the lowest average error for examples
of 60x60 pixels is similar. In a practical implementation it
would therefore make sense to use 60x60 pixel examples
over 90x90 pixel examples. As this will allow the detection
of smaller hands when using a sliding window method on
multiple scales and faster computation of the feature vector,
as the vector for 60x60 is half the length of the vector for
90x90 pixel examples (see Table 7).

5.4. Comparison between HOG and Haar-like fea-
tures

To be able to judge our experimental results on, the de-
tection rate, false positive rate and testing error, we deter-
mined classi�er performance for classi�ers using normal-
ized Haar-like features on the 30x30 pixel example size
database. The classi�ers were trained with Discrete or Gen-
tle AdaBoost and stump weak classi�ers. We used the Haar-
like feature set shown in Figure 2, computed for every pos-
sible scale and location, these features combine to a vector
of 29415 elements. We use stump weak classi�ers and Gen-
tle AdaBoost. This combination consistently performs well
and using a more complex tree weak classi�er offers practi-
cally no gain in our case (see Figure 8).

Training the Haar-like feature detector is more demand-
ing, since the Haar-like features have a feature vector length
of over 30 times that of the optimal parameter HOG fea-
ture vector. During the experiments a great amount of extra
memory was needed for the Haar-like feature training com-
pared to the HOG feature. Therefore, only half the training
set was used for training, in order to cope with the memory
requirements and increased training time. We trained the
HOG classi�ers on half the database and used the same par-

titions of the training and testing sets and AdaBoost param-
eters to train the Haar classi�ers, to ensure a fair evaluation.

Figures 9 and 10 show a comparison between the detec-
tors using HOG features and Haar-like feature detectors on
the 30x30 pixel example size database. The performance in
terms of average testing error and average detection rate on
the largest database size is roughly the same. However, Fig-
ures 10 and 9 show the HOG feature consistently achieving
lower average false positive rates and lower average testing
errors respectively for smaller training sets when combined
with Gentle AdaBoost.
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Figure 9. (1 - Average testing error), comparison between HOG
and Haar-like image features on the 30x30 pixel example size
database
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Figure 10. Average false positive rate, comparison between HOG
and Haar-like image features on the 30x30 pixel example size
database

In a hand detection system, Haar-like feature values can
be determined in real-time by calculating one integral im-
age per frame and a number of lookups in this image. For
the HOG feature, when using integral histograms [14], as
many integral images as there are angle bins need to be
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calculated and histograms constructed for every (normal-
ized) cell. HOG implementations can be sped up by fast
approximations of the gradients, smart indexing into his-
tograms in memory and using normalization factors from
lookup tables. The short feature vector length of HOG fea-
tures is an advantage. It reduces both memory requirements
for training and training time. This is signi�cant, since by
expanding training databases with more examples, greater
generalization can be achieved and detection accuracy im-
proved. HOG features detectors can be trained with larger
databases, due to the short vector length. The main disad-
vantage of the HOG feature is that optimal parameters need
to be found for a given database.

We measured the detection speed, for an implementation
of the hand detector using the scanning window method
and, either the Haar-like, or HOG feature classi�ers. We
used integral images [13] for calculation of the Haar-like
feature values and integral histograms [14] to calculate the
HOG features, and no other optimizations. The measure-
ments were performed for a 320 x 240 pixel video, on a
Pentium 4. The Haar-like feature detector is around two
times faster for this implementation, results are presented
in Table

Classi�er Detection speed (FPS)
Gentle AdaBoost, Haar 5.9
Gentle AdaBoost, HOG 3.15

Table 9. Comparison of the detection speed (Frames Per Second)
of the HOG and Haar-like feature classi�ers.

6. Conclusions

We have presented an overview of the (cascaded) Gen-
tle and Discrete AdaBoost algorithms, stump and tree weak
classi�ers and the HOG and Haar-like image features,
which we used to construct a real-time hand detector. In
the experiments, when presented with a large amount of
training examples, AdaBoost with stump weak classi�ers
is able to construct a detector with similar performance as
more complex tree weak classi�ers are able to. The lowest
average testing errors were achieved on the databases with
large(r) example sizes, 60x60 and 90x90 pixel examples.

The experiments show a real-time hand detector using
HOG image features can achieve similar performance to a
detector using Haar-like features on the created databases,
although Haar-like feature detectors can perform the detec-
tion roughly twice as fast. The HOG features have the ad-
vantage of having a much smaller feature vector than the
Haar-like features, so HOG can be used in conjunction with
much larger databases. The HOG features detectors consis-
tently achieve better average false positive rates than Haar-
like features detectors.
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Abstract 
 

Individual differences have been reported in the 

literature on nonverbal communication. Recent 

development in the collection and evaluation of 

audiovisual databases of social behaviors brings new 

insight on these matters by exploring other types of 

social behaviors and other approaches to individual 

differences. This paper summarizes two experimental 

studies about personality differences in the audiovisual 

perception and expression of social affects. We conclude 

on the potential of such audiovisual database and 

experimental approaches for the design of personalized 

affective computing systems. 

 

1. Introduction 

Individual differences in non-verbal behaviors have 

already been reported in the literature (e.g. cultural 

differences with respect to rules for displaying emotions 

in public vs. private settings ; impact of introversion of 

the encoding on nonverbal behaviors) [1, 9].  

Recent development in the collection and evaluation 

of multimodal databases of social behaviors [6, 10] 

enables to bring new insight on these matters by 

exploring other types of social behaviors and other 

approaches to individual differences.  

This paper summarizes two experimental studies 

about personality differences [3] in the audiovisual 

perception and expression of culturally encoded social 

affects.  

The study described in section 2 illustrates how the 

perception of audiovisual expressions of controlled 

attitudes depends on Japanese and French culture. We 

also introduce new analyses about the impact of 

personality traits on the perception of such behaviors.  

The study described in section 3 considers another 

approach to personality (cognitive style) and studies its 

relation with multimodal expressions of emotions. We 

conclude on the potential of such database and 

experimental approaches for the design of personalized 

affective computing systems. 

2. Study #1: Cultural and personality traits 

differences in social affects 

Social affects, or attitudes, are expressions encoded in 

a language and a culture. As socially encoded tools, they 

are learned by children during developmental phase and 

have to be learned by foreign language students if such 

attitudes are not shared by the two languages [5]. They 

are thus quite relevant for the study of cultural 

differences in social behaviors. 

2.1. Social affects in Japanese and French 

Rilliard et al. [13] have described the production and 

the perception of respectively 12 and 6 audio-visual 

prosodic attitudes in Japanese and French, produced on 

an affectively neutral sentence. The 12 Japanese 

attitudes are: doubt-incredulity (DO), obviousness (EV), 

surprise exclamation (SU), authority (AU), irritation 

(IR), arrogance (AR), sincerity-politeness (SIN), 

admiration (AD), kyoshuku (KYO), simple-politeness 

(PO), declaration (DC), and interrogation (IN). Three 

politeness expressions are presented: simple-politeness, 

the sincerity-politeness, used when the speaker is 

socially inferior to its interlocutor, and kyoshuku, a 

typically Japanese expression described by Sadanobu 

([15], p. 34) as “a mixture of suffering ashamedness and 

embarrassment, [which] comes from the speaker’s 

consciousness of the fact that his/her utterance of 

request imposes a burden to the hearer.”  The 6 French 

attitudes are: declaration (DC), interrogation (IN), 

obviousness (EV), surprise exclamation (SU), doubt-

incredulity (DO), suspicious-irony (SC). Shochi [17] 

provides complete definitions for the attitudes. 

All attitudes, performed by two speakers for each 

language and filmed in a sound proof room, were then 

perceptually evaluated by native listeners of each 

language. Both the audio and visual modalities were 

presented alone to listeners, before an audio-visual 

presentation. For each utterance, listeners had to rate the 

perceived attitudes out of the 12 (or 6) possible attitudes. 

Recognition scores for each attitude, as well as 

confusions between attitudes were analyzed for each 

modality.  
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Figure 2: Hierarchical clustering of the 6 (for French, left) and 12 (for Japanese, right) attitudes, as perceived by native listeners 

in the audiovisual modality. Note that the Japanese admiration is not well recognized. Reproduced from [13]. 

 

2.2. Inter-speaker differences 

The performances of the two speakers of each 

language have then been compared in order to rate the 

effect of the individual strategy and their ability to 

express attitudes. Their relative performances for each 

attitude are represented in figure 1.  

 

 
 

 
 

Figure 1: percentage of recognition obtained by each attitude, 

all modalities averaged, for each speaker of French (top) and 

Japanese (bottom). 

In each language the first speaker (SF1 for French and 

SJ1 for Japanese) was a trained teacher, used to express 

himself in front of an audience, while the second was an 

untrained speaker (SF2 for French, SJ2 for Japanese). 

Results clearly show that listeners can recognize all 

attitudes with a higher (or similar) score from the trained 

speaker of both languages, and this is true for each 

modality. Such inter-individual differences in the 

performance are relevant for the study of social affects. 

As social affects are encoded in a language and a 

culture, they are shared by all speakers of the language. 

But the ability to express them outside of an ecological 

communication context seems highly linked to the 

speaker’s communicative skills.  

2.3. Perception of social affects  

Due to the important differences between speakers, 

the perception results obtained from native listeners for 

both languages have been analyzed only from the trained 

speakers. The analysis was performed in order to 

visualize the main perceptive confusions and differences 

between each pair of attitudes, via a hierarchical 

clustering. The complete analysis of these perception 

results was presented by Rilliard et al. [13]; here is only 

a short summary of the main trends. Figure 2 presents 

the classification of the attitudes for Japanese and 

French sets of attitudes. 

Both Japanese and French social affects are grouped 

together into three main clusters, that may be related to 

the assertive and dubitative speech acts described by 

Brandt [2], plus a dimension of dominance described by 

Shochi et al. [18] as “express[ing] the imposition of the 

speaker’s opinion” on his interlocutor. The Assertive 

cluster groups the Declaration and Obviousness 

expressions for French, and for Japanese the Declaration 
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plus the three levels of Japanese Politeness (simple-

politeness, sincerity-politeness and kyoshuku). The 

Dubitative cluster groups for French and for Japanese 

the expressions of Surprise, Doubt and Question. The 

Dominance expressions are represented for French by 

the suspicious-irony and in Japanese by irritation, 

authority, obviousness and arrogance. The Japanese 

expression of admiration was not recognized efficiently 

by listeners, but was mixed with dominance expressions. 

2.4. The Five Factor Model 

One of the definitions of Personality is “a set of 

organized, stable and individualized behaviors” ; the 

goal of personality research is to try to describe, to 

explain and to predict this set [12]. In psychology, three 

types of different approaches study personality. The 

lexical approach to personality is the most developed. 

This approach proposes to classify the terms of natural 

language that are used to describe and understand human 

qualities. It enables to define constructs that have a 

relative temporal stability, a good predictive value, that 

are applicable to different cultures and that are socially 

important. These constructs correspond to “personality 

traits”. Rolland [14] defines traits as “coherent sets of 

cognitions, emotions and behaviors that demonstrate a 

temporal stability and cross situational consistency”. 

Such traits result from inferences and not from a directly 

observable reality. Different models and psychometric 

tools based on the lexical approach have been 

developed: the Eysenck Personality Inventory, 16PF, 

and NEOPI R. This tool is currently the most used. It is 

based on the five factor model. 

This model proposed by Costa and McCrae [4] 

describes personality with two levels. The facets propose 

a fine and accurate description of personality. A domain 

corresponds to a group of facets. The big five model 

identifies 5 basic dimensions through factorial analysis. 

&euroticism is defined as a system regulating 

avoidance behaviors. Its role is to preserve the organism 

of pain by anticipating and by activating monitoring 

behaviors. A subject with a high neuroticism score 

presents a very critical vision of himself. He also has the 

tendency to feel frequently and intensively a wide range 

of negative emotions. The 6 facets of neuroticism are: 

Anxiety, Angry, Hostility, Depression, Self-

Consciousness, Impulsiveness, and Vulnerability.  

Extraversion is characterized as a system of 

regulation of approach behaviors. A high score on this 

trait reveals a strong sensitivity to pleasant stimuli and a 

tendency to feel frequently and intensively positive 

emotions. The 6 facets of Extraversion are: Warmth, 

Gregariousness, Assertiveness, Activity, Excitement-

Seeking, and Positive Emotions.  

Openness to Experience results in broad and varied 

interests, a capacity to search for and to live new and 

unusual experiences. It is a system of regulation of 

reactions to novelty. The 6 facets of Openness to 

Experience are: Fantasy, Aesthetics, Feelings, Actions, 

Ideas, and Values.  

Agreeableness refers to interactions with others and 

especially to the tone of relationship with others. The 6 

facets of Agreeableness are: Trust, Straightforwardness, 

Altruism, Compliance, Modesty, and Tender-

Mindedness.  

Conscientiousness relates to motivation, organization 

and perseverance in the conducts oriented towards a 

goal. A high score corresponds to a person who tends to 

set long-term goals, to organize her action and accepts 

the constraints bound to the satisfaction differed of the 

needs and desires. The 6 facets of Conscientiousness 

are: Competence, Order, Dutifulness, Achievement 

Striving, Self-Discipline, and Deliberation. 

2.5. Relations between social affects and 

personality traits 

We have already seen that the individuality of speaker 

has a main impact in the expression of affects. In order 

to study the influence of personality traits of listeners on 

their ability to recognize social affects, the listeners of 

the perception test of both Japanese and French social 

affect have been asked to fill in a questionnaire to rate 

their big 5 coefficients according to the Five Factor 

Model (FFM).  

30 subjects for French and 46 subjects for Japanese 

have completed both the questionnaire and the 

perception test. 

In order to analyze a possible link between personality 

traits and recognition scores, the subjects with the most 

extreme score for each personality traits have been 

selected. The mean value for each trait for all subjects 

was calculated. Subjects selected for a personality trait 

should have received a score with a distance from the 

mean superior or equal to two times the standard 

deviation. The comparison was made between the 

recognition scores for the four speakers of Japanese and 

French and each personality trait. The two speakers with 

the lowest performances are studied here because a 

possible relation between the personality of listeners and 

their ability to decode less prominent cues is interesting. 

For each of the four personality traits (Agreeableness, 

which is not supposed to be linked with perception of 

affects, was not studied here), an ANOVA was 

performed on the recognition scores for each language, 

with two following fixed factors: (1) the 12 or 6 attitudes 

and (2) the subject’s ranking for the considered 

personality trait (i.e. on which end of the traits’ scale is 

the subject – for example subjects with high or Low 

neuroticism). The attitudes have no main effect on the 

results. The detailed interaction between attitudes and 

personality traits are detailed hereafter, with their 

significance rated thanks to T-tests.  

The comparison of recognition scores and personality 

profiles of the listeners for the 6 French attitudes shows 

only effects for both speakers with the suspicious irony 
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attitude. Best recognitions scores are received by SF1, 

and subject with a high Openness performed even better 

for this speaker (T(8)=4.00, p<0.01). The SF2 speaker, 

which achieve lower performances, tend to be perceived 

with a similar accuracy than SF1 by listeners with a high 

degree of Neuroticism (T(11)=-2.05, p=0.065). This 

personality trait is linked to the perception of negative 

emotions. For the other expressions, the effects of 

personality traits concerns only speaker SF2. This 

observation shows the importance of personality profile 

for the detection of the weakest cues: some of SF2’s 

attitudes, that receive low recognitions scores, are 

perceived by listeners with a high level on one 

personality trait relevant to the considered expression. 

For the dubitative attitudes, the figure is as follow. For 

surprise, listeners with a high level of Openness (i.e. 

people who appreciate new experience) have higher 

recognition scores (T(8)=3.46, p<0.01). Conversely for 

doubt, people with a low level of Openness (i.e. socially 

conservative) performed better (T(8)=-2.68, p<0.05). 

This show the subtle differences that exist between the 

different attitudes regrouped into the three large clusters 

by the analysis of perception results: perception of 

surprise is linked with openness to novelty, whereas 

doubt is linked with a tendency to established things. 

The obviousness expressed by SF2 is better perceived by 

listeners with a high level of Conscientiousness (T(10), 

p<0.05) (linked to the perception of rules). As we will 

see for Japanese subjects, it could be linked with the 

ability to perceived conventionalized expressions. The 

perception of the two other French attitudes (declaration 

and interrogation) does not change according to the 

personality traits. 

Amongst the 12 Japanese attitudes, the expressions of 

arrogance and irritation (expression of imposition of the 

speaker) are both better recognized when listeners have 

a high level of Conscientiousness (significant effect for 

the not very expressive speaker SJ2 for AR – 

T(16)=2.26, p<0.05, and an increase for SJ1 for IR – 

T(16)=1.84, p=0.08). High Conscientiousness refers to a 

focus on rules and conventions. Amongst the dubitative 

expressions, both SJ2 interrogation (T(16)=2.17, 

p<0.05) and surprise (performed by the expressive 

speaker SJ1 – T(16)=1.92, p=0.07) are better perceived 

by subject with a low Neuroticism. Amongst the 

assertive expressions of Japanese, the simple-politeness 

for both speakers (T(16)=2.21, p<0.05) as well as the 

sincerity-politeness for SJ1 (T(16)=2.77, p<0.05), both 

perceptually very close, received higher scores for 

listeners with a low Openness (i.e. people sensitive to 

conventions). Declaration performed by SJ1 receives 

higher score from listeners with high Conscientiousness 

(sensitivity to rules – T(16)=2.56, p<0.05), whereas the 

recognition of the very typical expression of kyoshuku 

does not change with personality traits. Finally, 

admiration, misperceived and mixed up with 

expressions of imposition, received lowest scores when 

listeners have a high Neuroticism (sensitivity to negative 

emotions – T(16)=2.47, p<0.05). 

The observations made on the Japanese social affects 

can be put together with the results presented by Shochi 

et al. [7]. They asked both adults and children to rate the 

degree of politeness of 5 Japanese social affects: simple-

politeness, sincerity-politeness, kyoshuku, declaration 

and arrogance (an impolite expression). Their results 

show the complexity of politeness expression in 

Japanese, which children around 10 years old have 

difficulties to judge adequately. The high level of social 

encoding of such expression may explain why listeners 

more sensitive to rules or conventionalized situations are 

more efficient to perceive them, when their expression is 

not straightforward for adults (as it is the case for audio-

visual kyoshuku).  

Influence of listener’s personality traits on their 

perception of social affect may take several forms, 

according to stimuli. Subject with a higher sensitivity to 

a given expression may be able to understand a stimuli 

performed by a less expressive speaker, whereas other 

listeners might not get the expression from such a 

stimuli. In other cases, only the most sensitive listeners 

might understand an expression, when it is difficult to 

induce this expression outside any communicative 

context. These results stress the importance of both the 

cultural and the individual factors in the expression and 

perception of expressive speech. 

3. Study #2: Cognitive style differences in 

the multimodal expression of emotion  

3.1. Cognitive style in Psychology 

In Psychology, cognitive styles characterize the 

mental activity rather than its content. They describe 

one’s cognitive functioning but also certain aspects of 

one’s social behaviors [8]. They relate to characteristic 

ways to perceive, remember, think and solve problems 

[11, 19]. They are deduced from our stable individual 

differences in the way of organizing and of dealing with 

information. 

One of the most studied cognitive styles in 

psychology is the field-dependency dimension (FID). 

This cognitive style relates to the usual and favorite way 

of perceiving the information. People that are 

independent from the field (FI) have an analytical vision; 

they transform the information at their disposal to 

organize it according to their own criteria. Their 

conducts are rather directed toward objects and they 

tend to take the lead in social interactions. In contrast, 

people that are depending on the field (FD) are more 

sensitive to the perceptive and conceptual organization 

of the information. They are very attentive to 

interpersonal relations and tend to ask for information 

from others. 

We suppose that such properties of mental activity 

might participate in the multimodal expression of 

emotion. Indeed, one goal of multimodal expressions of 
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emotion is to inform others of the way we process the 

current situation.  

In this study, we explain how we collected a TV series 

corpus which is relevant for the study of the emotional 

multimodal perception and of the cognitive style 

perception. Our hypothesis is that cognitive style can be 

perceived in the multimodal expression of emotions. For 

example “FI” people do not consider much the point of 

view of others and tend to dictate their opinion. Thus 

they might not try to control their anger and might adopt 

broader and quicker movements than “FD” people. 

3.2. A TV series video corpus 

To explore the multimodal emotional expressions 

related to each pole of the cognitive style (FID), we 

applied a corpus-based approach. We selected several 

TV series. Such acted data provide recurrent behaviors 

displayed by a variety of characters over time when 

faced with different emotional situations. They enable to 

consider the role of various situations in the emergence 

of the emotional process and are informative on the 

stability of the emotional expression in the course of 

time according to the stable personality of the 

characters.  

We designed a questionnaire for assessing the various 

parameters of the FID (orientation of the behaviors, type 

of interaction and type of perception). 50 subjects had to 

estimate the cognitive style of seven television series 

characters using this questionnaire. This enabled us to 

select five female characters recognized by the subjects 

either as being strongly FI or either being strongly FD. 

Video samples featuring emotional behaviors of these 

characters were collected. Five characters were selected 

and five emotion families were considered (happiness, 

anger, surprise, fear and sadness). 100 sequences have 

been selected, for a total duration of 2568 seconds.  

3.3. Studying relations between cognitive style 

and emotion 

299 students in Social Sciences participated in this 

study. Each subject viewed a sequence of the corpus 

without any sound so that his attention would be 

concentrated primarily on the non-verbal expression and 

not influenced by the semantic meaning of the situation. 

Subjects could watch each clip as many times as they 

wanted. Subjects had to respond to a questionnaire 

evaluating different aspects of the situation and of the 

character. 50 video sequences have been proposed to the 

participants. 

The questionnaire is composed of four parts, each of 

them offering a list of claims. For each of them, the 

subject must estimate the degree of agreement according 

to a five points Likert scale. The first part of the 

questionnaire concerns the evaluation of the emotional 

situation. It refers to the model proposed by Scherer [16] 

and to the action tendencies defined by Frijda [7]. The 

second section of the questionnaire relates to the 

assessment of the cognitive style of the character. Three 

items relate to the orientation of conduct (towards other 

people vs. toward objects), three others to the type of 

perception (analytic vs. holistic), and five items concern 

the type of interaction (collaborative vs. dominant). The 

third set of items concerns the multimodal 

expressiveness and aims to assess the temporality of the 

expression, the quality of movement and the facial 

expressions. Finally, the last part of the questionnaire 

tries to define the emotion expressed by the character. 

The subjects had to select one or several labels among 

Anger, Surprise, Sadness, Fear, Stress, Joy or Neutral. 

From the assessment of emotional information 

realized, three clusters were made. The clustering is a 

statistical approach that aims at regrouping data in 

several homogeneous groups. Here, the three built 

clusters define three distinct ways to approach the 

situation according to the various components proposed 

by Scherer. Cluster #1 is about to situations eliciting joy. 

Cluster #2 relates to fear and stress. Cluster #3 is related 

to mixed situation involving both positive and negative 

emotions. Therefore, we have two contrasted clusters 

and an intermediate cluster. Thus, we have an evaluation 

of the perceived cognitive style of the characters (via 

answers to the first questionnaire to determine the 

cognitive style of the characters) and the emotional 

characteristics of the situations (clusters refer to a type 

of assessment of the emotional situation). 

An analysis of variance was performed in order to 

evaluate the impact of the cognitive style and the 

emotional context (represented by clusters) on the 

perception of multimodal expression and cognitive 

assessment. Results showed that the perceived action 

tendencies, the facial expressions displayed by 

characters, and the perceived movement quality vary 

according to the cognitive style and the emotional 

context. 

For example, some action tendencies features of the 

submissiveness and inattention were more attributed to 

the "FD" character that is in context of stress and less 

assigned this character in a context evaluated as joyful. 

This is especially true for the item "x wanted to cry" (F 

(2, 265) = 5.75, p = 0.004). The same results was also 

observed for the action tendencies relating to avoidance 

as "x desires to stay away" (F (2, 265) = 3.80, p = 

0.023). Concerning action tendencies relating to 

behaviors of approach, we noted that subjects assign 

these action tendencies more when the context is joyful 

and it is even truer if the character is "FD". Figure 3 

shows the perceived “x wanted to dance” action 

tendency according to the emotional context and the 

character's cognitive style (F (2, 266) = 4.20 p = 0.016). 
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Figure 3: Level of perception of the action tendency according 

to cognitive style and type of cluster. 

 

Such a video corpus of acted behaviors enables 1) to 

study non verbal communication in various situations,   

and 2) to explore the impact of personality on nonverbal 

behaviors. Thus, the perception of the multimodal 

emotional expression depends on the perceived 

emotional context and on the perceived cognitive style.  

4. Conclusions 

In this paper we described two experiments 

illustrating cultural and personality differences in the 

non-verbal perception and expression of two types of 

social affects (attitudes and emotions). These studies 

provide additional knowledge to the literature in 

nonverbal communication.  

There is a great deal of variation in nonverbal 

communication between different social situations, and 

there are interactions between persons and situations [1].  

Multimodal databases and experimental evaluations, 

as the ones described in this paper, enable to study these 

interaction effects and can be used to inform the design 

of personalized affective computing systems such as 

individual expressive virtual agents. 
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Abstract 
 

Studies of the processing of social signals and 
behaviour tend to focus intuitively on a few variables, 
without a framework to guide selection. Here, we 
attempt to provide a broad overview of the relevant 
variables, describing both signs and what they signify. 
Those are matched by systematic consideration of how 
the variables relate.  Variables interact not only on an 
intrapersonal level but also on an interpersonal level.  It 
is also recognised explicitly that a comprehensive 
framework needs to embrace the role of context and 
individual differences in personality and culture. 

1. Introduction 
A landmark review of psychology concluded that, 

after a century of research, it had reached the stage of 
trying systematically to identify the relevant variables 
[1]. It was not a nihilistic conclusion. The point was that 
a great deal of effort had been expended discovering that 
the relevant variables were not obvious.  

 Social Signal Processing should not need to spend a 
century reaching the same stage, because several 
disciplines – psychology being one – have worked to 
identify relevant variables. However, because the 
literature is large and diverse, it is easy to drift 
unintentionally into assuming that the variables are 
obvious. The aim of this paper is to offer the emerging 
computational discipline of Social Signal Processing a 
structured overview which helps to offset that tendency, 
and highlights some potentially relevant variables.  

It is obviously not possible to review all that is known 
about social signal processing in a short paper. But it 
seems possible to provide a broad layout of the relevant 
literatures, and that is what the paper aims to do. 

2. Alternative frameworks & models 
 Research from various disciplines has focused on 

determining how humans detect, interpret, and classify 
social signals, and consequently how this information 
affects behaviour during social interactions, and has 
proposed models and frameworks to explain and 

represent the processes involved in human-human 
interactions. These models are discipline-specific in the 
sense that they are produced by a methodology that 
lends itself to exploring some of the relevant variables 
and relationships involved in human social behaviour, 
but not all. Hence they tend to highlight one or two 
aspects of social behaviour and social cognition, and 
gloss over other relevant aspects. A key challenge for 
Social Signal Processing is to incorporate their different 
strengths into a comprehensive framework. 

Experimental psychologists have worked extensively 
on the non-verbal signals that humans display and 
perceive signals during interactions, with particular 
emphasis on the face and the emotions that it conveys. 
Seminal work by Paul Ekman proposed 6 basic 
emotions (i.e. happiness, sadness, anger, fear, disgust, 
and surprise), each of which has a corresponding and 
universal facial expression [2, 3].  That has generated a 
large body of work on how humans can accurately 
detect emotional states by picking up on facial signals 
commonly associated with the basic emotions (e.g. a 
dropped jaw with relaxed lips and raised eyebrows 
associated with surprise [4, 5]. From there, research has 
diverged into topics from the ability of individuals with 
psychological disorders (e.g. autism [6], schizophrenia 
[7]) to identify emotional expressions, to sex differences 
[8], to developmental pathways [9]. Methods that 
promise objective measurement, from physiology to 
eye-tracking, have been eagerly embraced.  

Linguists and psycholinguists, on the other hand, 
have focused on issues such as the structure implicit in 
dialogue.  Some ideas, such as the pragmatic analyses 
associated with Grice and his colleagues, have become 
very well known. Others, particularly the analyses that 
deal explicitly with exchanges between two parties, are 
less familiar. For example, it is widely accepted that 
conversations occur on two tracks [10].  The first and 
main track represents the dialogue dedicated to the 
exchange of information.  The second track represents 
the dialogue dedicated to the clarification and grounding 
of the main track’s information.  

Sociolinguists, in contrast, have focussed on the way 
speech encodes information about the social affiliations 
and aspirations of speakers, and relationships between 
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them. Features such as dialect and lexical selection play 
important, and quite complex roles here.        

 Anthropologists, like linguists, rely heavily on 
verbal data when developing models.  They have 
proposed that there are universals in language that 
influence the foundation of social interactions.  For 
example, an assumption of   Brown and Levinson’s 
model of politeness [11] is that all individual enter 
social interactions with the mutual understanding that 
both parties want to protect their ‘face’ and avoid 
harming the other person’s ‘face’.  Face, the individual’s 
public self-image which they do not want compromised 
by humiliation, has a positive and a negative subtype. 
Positive face represents the desire for approval by 
others, whereas negative face is the desire for freedom 
of action.  All adult individuals know that they and 
everyone else has these desires.  

One of the factors that distinguishes different 
approaches is that they are associated with different 
applications. From that point of view, Social Signal 
Processing is a discipline whose applications are very 
different from, for instance, language teaching, or 
psychological therapy. Hence it is appropriate that it 
should attempt to develop its own framework.     

3. Towards a comprehensive framework 
To achieve a framework that suits Social Signal 

Processing, a new model should strive to incorporate 
lessons from all the approaches outlined above. That 
cannot be done simply by adding together ideas from the 
various disciplines: the result would be an amorphous 
mass. To avoid that, a framework is needed that is 
capable of giving the relevant pieces a meaningful place. 
A first step towards that is to enumerate all the relevant 
elements – the potentially relevant signals, and the 
things they may signify; and to consider the ways in 
which the elements may relate.    

3.1. Broad categories of variables 
A social signal, as defined by Grammer et al.,[12] is a 
messenger carrying information between a sender and a 
recipient. The sender encodes information into the 
signal, which is then detected and decoded by the 
receiver. The signal is transferred over a communication 
channel which can take many forms. A description of 
the possible forms of signals follows.     
 
3.1.1 Verbal characteristics.   

Spoken language needs to be part of a comprehensive 
framework to understand social interactions.  Not only is 
the content of the exchange important, individuals can 
also gather information based on the sentence structure, 
vocabulary, and purpose of the statements (e.g. self-
disclosure, question, and request)[13, 14]. Additionally, 
many features of the way people speak are carry 
information not provided in the verbal content [14].  For 
instance, intonation plays an essential role in projecting 
and determining sarcasm or sincerity, nervousness or 

confidence, and approval or disgust, to name a few. The 
absence of that information has made computer-
mediated communication more likely to lead to 
misunderstandings. When emailing and instant 
messaging first became popular, individuals did not 
know how to properly project or interpret tone (e.g. 
sarcasm) from the written exchange [16].  To help with 
that, emoticons and net lingo (e.g. writing ‘lol’ to 
signify ‘laugh out loud’ to project humorous tone) have 
arisen to inject tone into written exchanges.   

 
3.1.2 Facial characteristics.  

During social interaction, people extract a substantial 
amount of information about emotional states from 
facial expression rather than from verbal content [17, 
18]. Recent research emphasises that in natural data, the 
signs are not simply archetypal ‘snapshots’: they are 
distributed over time [19] and linked to body 
movements [20].  

It is also important not to focus exclusively on the 
facial surface. In particular, the eyes have been 
identified as a salient feature for conveying not only 
emotional states, but also determining intent [21]. Some 
functions are inherently interpersonal, such as 
establishing joint attention via eye gaze [22]. Joint 
attention refers to when two individuals are focused on 
the same event, object, or person.  For example, if John 
makes a flattering comment about a third party who is 
standing near him to his friend Bill. Bill can identify 
who John is talking about by tracking John’s eye gaze, 
and can then provide his own opinion.  John does not 
have to state who he is talking about, his eyes gives that 
information. Channels of that kind are complex, but 
would pose real difficulties for an artificial system that 
could not use them.       

 
3.1.3 Body characteristics.  

In addition to the face, the body provides other 
relevant signals. Body posture (e.g. standing straight up, 
being slouched over, arms crossed) are useful social 
signals that have inspired the idea of body language 
[23]. Physical gestures also contribute to the information 
conveyed by the body. Many gestures can easily be 
identified and interpreted during social interactions (e.g. 
hand waving to say hello), which can indicate 
politeness, friendliness, aggression, and so on.  
Furthermore, the physical distance between both 
individuals can signal intent. For example, if a woman 
stands in very close proximity to a man, it could indicate 
attraction. If the woman keeps a noticeable distance 
between her and the man, it could suggest that she is not 
interested in his advances [24].  

  
3.1.4 Physiological characteristics.   

Physiological reactions can provide useful social and 
emotional information [25]. Some physiological 
reactions are undetectable without the aid of machines. 
For example, detecting someone’s frontal EEG patterns 
is not possible unless they have electrodes on their head.  
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However, other physiological reactions are not only 
noticeable, but important social signals. For example, 
blushing, blinking rate, and sweating are signals that are 
detectable and may indicate being nervous, aroused, or 
embarrassed.   

 
3.1.5 Other physical characteristics.  

Other physical characteristics can influence social 
behaviour and signals, and provide useful information.  
The most salient of these observable physical 
characteristics related to gender. For example, short 
hair, a beard, an Adam’s apple, and a flat chest are clear 
indications that the person is a man. These 
characteristics will influence the interpretation and the 
production of social behaviour.  For example, a man is 
more likely to make emotional self-disclosures to a 
woman rather than another man [26]. 

Height and especially weight [27] are also social 
signals that can convey, but not always accurately so, 
useful information about the other person. A man who is 
physically fit is more likely to be asked questions about 
how to get involved with the local sports team than a 
man who is overweight.   

Signals relating to age (apparent or chronological) 
also come into play.  Apparent age is a social signal that 
the other person may detect and consequently affect 
their behaviour. Chronological age will influence the 
person’s own behaviour and interpretation of the other 
person’s signals.  A 60 year old man and a 20 year old 
man may have different criteria for determining what 
signals of politeness.   
 
3.1.6 High order characteristics 

Information is also carried by what can be described 
as high order characteristics. These do not represent 
distinct variables, but instead refer to the quality of the 
other variable sets.  

One such quality is the intensity of the signals and 
behaviour. The velocity and magnitude of a gesture, or 
the intensity of a facial expression, can be fundamental 
to the information that it provides.  

Voluntary control over the signals can also be 
indicative of the person’s intentions.  A simple example 
is that of a smile.  A child asks her father if he likes her 
art work. Smiling automatically would suggest that he 
genuinely liked the art; a forced smile could be read as 
concealing negative less positive opinion. 

Patterning over time takes a wide range of forms. As 
a relatively simple example, recognising that an 
individual always speaks quickly or blushes easily and 
frequently affects their significance as social signals. At 
a much higher level, the pattern of interchanges between 
individuals in a group may indicate which has the role 
of chairperson, or acknowledged leader. 

3.2. What variables may signify  
Identifying the variables is one of two parallel tasks. 

The second is to establish what the variables may 
signify.  

The most obvious is that the signals or behaviour are 
providing an explicit message that one person is trying 
to convey to the other.  That is the natural way to think 
about linguistic communication, and it transfers to many 
kinds of non-linguistic communication too. However, 
that is only one possible kind of significance.   

A second kind of communicative significance 
involves implicit meanings which the person may not 
consciously be trying to project. A clear example is that 
signs and behaviours can indicate the person’s cognitive 
and affective states. For example, facial expressions are 
usually presumed to signify affective states.  A smiling 
face is supposed to represent a happy affective state. 
Note, though, that there are other interpretations – a 
smile may be more analogous to a speech act.  

A related set of possibilities, with strong links to 
philosophy and AI, is that variables may serve to convey 
a person’s beliefs, desires, intentions, and attitudes. 
These may be conveyed in part or in whole by language, 
but many systems can contribute.  

Various kinds of social position and relationship may 
also be signalled. Gender, age and fitness were 
mentioned in section 3.1.5.  A wide variety of signals 
may be used to project dominance, authority, respect, or 
affinity. People’s impressions of these attributes have a 
major impact on the form and success of social 
interactions with others. 

More abstract analyses have been developed, and 
have a great deal to offer the field. There have been 
sophisticated attempts to operationalise the nature of a 
goal of a communication, invoking both proximal and 
distal explanations. Theories in ethology imply that 
there tend to be strong evolutionary pressures towards 
manipulation in social signals [28]. In contrast in 
theories concerning the evolution of human language 
there have been attempts to explain how cooperative 
goals can lead to cooperative social signals [29, 30]. 
More proximal intentions are perhaps easier to 
incorporate within a framework by acknowledging that 
signallers have goals even if it is as straightforward as a 
desire to sustain an interaction.   

Behind each term in this section is a huge set of 
descriptive issues. For instance, affective states 
adequately is a research field in itself [30]. The options 
at this level are harder to articulate simply than the 
options for signals, and it is clear that Social Signal 
Processing needs systematic work on the problem.  

3.3. Relationships among variables 
3.3.1 Isolated & Combined Intrapersonal Effects. 

A common paradigm in older research is to focus on a 
few selected variables and provide an explanation on 
how they convey information, how they are interpreted, 
and ultimately how they influence social behaviour.  
The resulting models focus on the isolated contributions 
of a variable.  However, those isolated contributions are 
only simplified pieces of the overarching model. To 
compare the framework to the English language, each 
variable is like a letter. On its own, the contribution of 

79



 

each letter (or variable) to the English language is 
minimal. The power of the system derives from the way 
letters can be combined to form words and sentences. 
Similarly, each variable (or category of variable) is 
important, but not to the exclusion of the others. To 
properly model how humans perceive and produce 
social behaviour, each of the variables must be 
accounted for, individually and interactively.   

During communicative episodes, individuals do not 
isolate only one variable or category. Instead, 
information is gathered from all available social signals 
and is processed, analysed, and interpreted. For 
example, when having a conversation, nobody focuses 
only on the other person’s facial expression because that 
information could be misleading. If the other person is 
smiling, it could indicate that they are happy. But if that 
smile is combined with blushing, stuttering, and gazing 
at their feet, the person is most likely not happy at all, 
but is trying to mask embarrassment. To properly 
understand the significance of the variables, a person 
cannot simply rely on another person’s facial 
expression, but must also attend to all the relevant 
signals including the verbal information, the body 
posture, physiological reactions and so forth. All of 
these variables are individual and collective signals that 
humans attend to and process.   

A comprehensive computation model would need to 
address the complexity of the relationship between the 
variables. Additionally, the variables do not all interact 
on the same level. Some variables function as a signal 
and others primarily function as behaviours. Signals and 
behaviours interact to influence the conceptual level 
which is the perception and interpretation of the signals 
and behaviours.  

These integrative qualities of the variables have 
important practical ramifications. In a worst case 
scenario a signal may be embedded in a minimal 
increase in intensity of lots of variables. This means 
each of these variables would need to be assessed if a 
signal is to be detected. The reality for research projects 
with limited resources is a selection of a set of variables 
has to be made, usually guided by practical or historical 
and discipline related contingencies. As a consequence 
there may be certain signals that may not be detectable 
without a broad and inclusive set of variables.  

 
3.3.2 Bidirectional Interpersonal Effects. 
 To complicate matters further, the bidirectional 
influence between the individuals engaged in the social 
interaction must be addressed by the model. While one 
person is detecting and interpreting the social signals 
conveyed by the other person, their own social signals 
are also being detected and interpreted. Social signals 
emitted are constantly being modified based on these 
interpretations. The social signals of Person A are 
influenced by the interpretations of the social signals of 
Person B, and vice versa [32]. Consequently, a 
comprehensive model must take into account all the 
potential social signals of Person A, their interactive 

relationships, the social signals of Person B, their 
interactive relationships, and the interactive 
relationships between Person A’s and Person B’s social 
signals. With the addition of further people to an 
interaction, greater sets of social signals and interactive 
relationships have to be accounted for by a model.   

The interdependence of the Person A and Person B’s 
signals and behaviours not only influence the conceptual 
mapping, but also the statistical analysis of the 
framework. The analysis of these interacting variables 
can be challenging with traditional experimental 
statistical techniques, and therefore is not appropriate 
for the analysis of dyadic communication. Instead, other 
types of statistics (e.g. multilevel modeling) must be 
applied [32]. 
 Furthermore, a proper model needs to incorporate the 
ability to attend, perceive, and interpret multimodal 
signals.  Communication is not solely auditory, nor is it 
solely visual; there are tactile and even olfactory 
elements. The signals available during communication 
cross over and interact between modalities.  
Consequently, the model must account for multimodal 
perception and attention. Fortunately, multimodal 
perception and attention is a growing area of research. 
 
3.3.3 Logical relationships 

It is tempting to assume that the logical nature of the 
relationships among variables is a simple conditional – 
if sign S, then condition C. However, much more 
complex types of relationship are common, if not the 
norm.  Relationships often abductive (i.e. the best 
explanation for sign S is that condition C is present) or 
cancellable (i.e this is my inference about sign S, but 
new evidence may shows that it is wrong).  

Sometimes the logical relationship can be reduced to 
a simple conditional by considering a complex of 
signals rather than one in isolation (not only a smile, but 
one with a particular time course, accompanied by 
movements of the head and shoulders). It is a key 
question how far that strategy can be taken.  
 
3.3.4 Computing relationships. 

Running through the discussion of relationships is a 
familiar computational issue. It is standard to contrast 
two approaches to constructing an internal 
representation of a relationship, conceptually-driven and 
statistically driven. Conceptually-driven models are 
based on theoretically proposed structures and 
relationships.  These models have traditionally been 
fragile.  Statistically-driven models involve models 
derived via machine learning by developing statistical 
relationships between the structures. These tend to be 
more robust, but at the expense of conceptual 
significance, and hence of generalisability.  It is not 
obvious how Social Signal Processing should regard the 
two options. Some of the disciplines on which it draws 
are deeply sceptical of statistically-driven analyses, for 
non-trivial reasons. However, there are obvious practical 
reasons to use them in many applications. 
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3.4. Context of communication 
3.4.1 Medium.   

A framework that includes and models the 
relationships between all the possible variables needs to 
be flexible. Some modalities and corresponding 
variables may not be available during every 
communicative episode. The medium is a strong 
determinant of which modalities are present.  In a face-
to-face conversation, all modalities are usually 
available. The technologically-mediated means of 
communication occurs primarily in one modality at the 
expense of the others.  For example, during telephone 
conversations, verbal exchange and voice tone are 
present. However, some modalities (e.g. visual system) 
are no longer providing social signals.   

 
3.4.2 Setting.   

The setting refers to the physical characteristics of the 
surrounding area.  This includes the lighting, the space, 
and the scenery. Being in a darkly lit room results in a 
degradation of the social signals that are detectable, and 
this reduction in signal quality can consequently 
influence behaviour and the interpretation of the 
communicative episode.   

 
3.4.3 Situation.  

This relates to the purpose of the communicative 
episode instead of its setting.  For example, social 
signals and behaviour will be different during a job 
interview compared to being in a cinema.   

 
3.4.4 Person by Context Interactions.   

Individual and cultural differences affect 
communicative episodes in two important ways.  Firstly, 
an individual’s ability to accurately detect and interpret 
social signals is influenced by their personality and their 
culture. For example, research has shown that individual 
differences in personality can influence children’s 
accuracy in the categorisation of emotions [33].  
Furthermore, individual and cultural differences will 
influence the social signals and behaviour emitted by a 
person.  For example, an extremely shy person will 
produce signals of discomfort during social interactions, 
whereas his non-shy peer is less likely to do so [34]. 

The effects of individual differences are also highly 
dependent on the context.  As proposed by Bem & Allen 
[35], some individuals are more strongly influenced by 
context, whereas others remain fairly consistent. Recent 
research in computer-mediated communication (CMC) 
has highlighted the person by context interaction by 
demonstrating that some individuals remain consistent 
in their behaviour across conditions with reduced social 
signals [36], whereas other can actually benefit from the 
reduction.     

Another major factor is the familiarity and the nature 
of the relationship between two people.  Fewer and 
subtler social signals can be detected by two people who 
have a close relationship [37]. For example, siblings can 
transmit more information with a look or one word than 

strangers can with an entire conversation.  

3.5. Whose interpretation? 
A final consideration when developing a 

computational analysis model is whose interpretation of 
the signals and behaviour the model is representing.  
The first consideration is whether the model should 
reflect how an observer would interpret the signals or 
should reflect the meaning that the person giving the 
signals and doing the behaviour intended. Linked to that 
is the concern that models should be able to adapt to the 
individual and cultural differences that influence the 
interpretation.  For example, for a British person, a 
raised index and middle finger with the palm facing in is 
a vulgar hand gesture.  The same gesture for a North 
American simply represents the number 2.  

4. Conclusion 
 This paper has tried to indicate the range of 

variables, modalities, relationships, levels, interpersonal 
differences, contextual effects and interactions that a 
comprehensive framework needs to accommodate. The 
next important step is to develop a model that can 
inform computational analysis the human process of 
detecting, interpreting and producing social signals and 
behaviour. The most sensible way to do this is by 
applying the model to a specific social phenomenon like 
politeness. By doing so, a model that is both 
conceptually and statistically driven can be adapted to 
explain the communicative process of politeness, and 
then generalized to other communicative processes. 
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Abstract

Social signal processing is an emerging field that gains
more and more attention. As a key element in the field,
visual perception of human motion is important for un-
derstanding human behavior in social intelligence. Moti-
vated by the hypothesis of muscle synergies, we proposed
action synergies for automatically partitioning human mo-
tion into individual action segments in videos. Assuming the
size of the human subject is reasonable and the background
changes smoothly, the video sequence is represented by six
latent variables, which we obtain using Gaussian Process
Dynamical Models (GPDM). For each variable, the third
order derivative and its local maxima are computed. Then
by finding the consistent local maxima in all variables, the
video is partitioned into action segments. We demonstrate
the usefulness of the algorithm for periodic motion patterns
as well as non-periodic ones, using videos of various qual-
ities. Results show that the proposed algorithm partitions
videos into meaningful action segments.

1. Introduction
Social signal processing has a promising potential for ex-

ploring the basic problems in social intelligence. By try-
ing to discover the structures of the signals widely available
from visual space to motor space, it is possible to unveil
how humans react and interact. Language is naturally in-
volved as the description to the signals in these two spaces.
Altogether, these three spaces create a powerful triangle for
understanding the social intelligence (Fig. 1).

By understanding the problems in each space individ-
ually and the mapping from one space to the other, we
clearly define and address the fundamentals in social sig-
nal processing. For example, mirror neuron suggested that
the visual-motor primitives are important in understanding
the cognitive issues in the field. If one can interpret the sig-
nals in visual space (video) using the control signal in motor
space, a much better humanoid robot will have the power of
mining reality in the society. Take the mapping between

the language space and the motor space as another exam-
ple. This mapping gives us the potential to investigate the
underlying principles of the body language.

Primitives serve as the bridge between the low level sig-
nal and the high level description in social intelligence. To
discover the primitives in any space, our point of view is
that the social signal should be decomposed into building
blocks. Based on these building blocks, one can further
study the primitives in visual/motor space, and parse hu-
man actions in a symbolic way [12]. In this paper, we focus
on automatically partitioning human motion in video space
into small yet meaningful action segments. This makes it
possible to further reveal the primitives in visual space and
map them to the motion control signal.

Figure 1. Three spaces in social signal processing. Clockwise from
upper left, the signals in the spaces are videos, motion capture
(MoCap) data, and discrete symbols, respectively.

A natural “by product” of the segments are the first and
the last pose of the action. We name them “representative
poses” because in many scenarios they are also good for
action recognition using pose estimation techniques. Note,
it is not clear how human defines representative poses in
actions, but it is very clear that between two representative
actions there should be one complete action (e.g., moving
from one bar to another in Fig. 2). Such a representation
can serve as basis for further action analysis using both the
video segments and the representative poses. In addition,
this representation makes it possible to study non-periodic
motion patterns as well as periodic ones.

978-1-4244-4799-2/09/$25.00 c©2009 IEEE
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Figure 2. Representative poses of the video “girl on the monkey
bar”. The video is available at Youtube. The frame numbers
are displayed below. Note that the length of each action instance
varies even when the action is periodic.

How can we find these segments? d’Avella et al. [8]
discovered the concept of muscle synergies which suggests
that groups of muscles are coherently activated. This indi-
cates that a motion sequence can be partitioned to segments
at the time when body parts have a consistent change in ac-
celeration.

The idea extends to vision. Certainly we cannot measure
the muscle signal from video, but empirically we are able
to transfer the above idea to the visual domain and use them
to segment actions by performing dimensionality reduction.
Most probably because of the underlying muscle synergies,
the extrema in the change of acceleration of the signals in
the reduced space are happening about at the same time.
This suggests that a motion sequence can be partitioned
to segments at the time when body parts have a consistent
change in acceleration. In addition, the poses at these break-
ing points can be considered as the representative poses for
the segments. We call this the “action synergies”.

The paper is organized as follows. Sec. 2 discusses the
related work. Sec. 3 presents the algorithm for partitioning
human motion video. Sec. 4 shows the experiments and
comparisons, and Sec. 5 concludes the paper.

2. Related work

Actions exist both in motor space (actions we do) and in
visual space (actions we see). We describe here prior art in
both spaces.

Finding primitives of human actions in motor space is
the basic topic in different fields, where stick-figure models
(skeleton) are used. The temporal segmentation, manual or
automatic, of joint motion is typically the first step. Jenkins
and Mataric [13] used KCS, a heuristic algorithm, to par-
tition the motion. Lu and Ferrier [16] assumed that joint
motion is an autoregressive process and partitioned the data
based on different process parameters. A comparison of
some partitioning algorithms in motor space can be found
in [5], but only periodic motion patterns or a small number
of actions [18] are considered. Alternatively, Guerra-Filho
and Aloimonos [12] used the sequences of consecutive joint
angles which have the same sign of velocity and acceler-
ation as the primitives in motor space. Zhou et al. [30]
used k-mean clustering and the Component Analysis tech-

nique to partition the joint angle series into different action
groups.

There is a large body of work on recognizing actions in
visual space ( [4,11,14,15,22,23]). 2D features from image
sequences, such as optical flow, silhouette, and similarities
between frames, are computed and mapped directly to se-
mantic concepts such as walking [2], running [9] and danc-
ing [20]. Alternatively, 2D features from image sequences
are mapped to the 2D joint space [21]. The body joints
can be further analyzed in the 2D joint space [17]. Sigal
and Black [24] built a human motion dataset for evaluation,
tracking, and pose estimation.

Partitioning actions in video has not been addressed in
the study of action recognition. Video temporal segmenta-
tion has been mainly used for shot boundary detection, key
frame extraction [1], video content analysis [27], and video
synopsis [19]. Such segmentations are helpful for retriev-
ing useful information from a large collection of videos, but
these techniques do not aim at partitioning human motion
into action segments. Action synopsis [3] is related to our
work but the joint locations need to be labeled using a semi-
automatic software called Icarus prior to the analysis.

Dimension reduction techniques have been used to ana-
lyze human motion both in motor space [7, 25] and in vi-
sual space [10,26]. Silhouettes of periodic patterns, such as
walking and running, are extracted and embedded in a la-
tent space. Studies show closed curves for periodic patterns
in latent spaces, but the partitioning is not addressed.

In related work, neuroscientists also study human motion
in a physically meaningful way. Velocity, acceleration, and
jolt are the measurements for input motion streams [29].

3. Partitioning human motion in visual space

We present the action partitioning algorithm in this sec-
tion. A human motion video is represented by the GPDM
variables in a low dimensional latent space. The time se-
ries of each latent variable implicitly encodes the process
that generates the human motion. The third order derivative
of the time series, which we called “action synergies” in
the paper, is computed for each latent variable. We observe
that the local maxima of the action synergies approximately
correspond to the representative poses. By finding the con-
sistent local maxima in the action synergies of the different
variables, we partition the video.

3.1. Representing video in the GPDM latent space

The Gaussian Process Dynamical Models (GPDM) [25]
assumes that the data in high dimension can be compressed
to a latent space using Gaussian priors for both stochastic
dynamical process and mapping. In [25], the GPDM maps
the joint angles in human MoCap data to a 3D latent space.
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The relation between the latent variables X and the orig-
inal data Y is as follows:

p(X,Y, α, β,W ) = p(Y|X, β,W )p(X|α)p(α)p(β)p(W )
(1)

where α, β, and W are the parameters. Given Y, one esti-
mates the embedding X in the reduced space.

GPDM models the uncertainty and sparsity in Y using
Gaussian priors, learns the effective representation of the
nonlinear dynamics in high dimensional spaces, and uses
a small number of variables X as the representation of the
original signal in the reduced space. X can be further inter-
preted as the underlying variables that govern the signal in
the high dimensional space. Refer to [25] for details.

In the proposed algorithm, we apply the GPDM directly
on the images. A high dimensional vector of image inten-
sities is formed by concatenating the pixel value from left
to right and then from top to bottom in each image. The
GPDM embeds the sequence of intensity vectors in a low
dimensional latent space.

In our experiment, we expect to use a minimal number of
variables that can capture the human motion dynamics with-
out losing much information. We tested various number of
latent dimension, and experimentally selected 6D because
it generally sufficient in our experiments.

As an example, Fig. 3 visualizes the trajectory of the la-
tent variables for the video shown in Fig. 2 in the GPDM
dimensions 1-3 and 4-6, respectively. The latent variables in
the reduced space might not have concrete physical mean-
ings but they are indirectly linked to the underlying muscle
signals that generate the videos.

Figure 3. The embedded frames (red) and the trajectory of the la-
tent variables (blue) in the GPDM dimensions 1-3 (left) and 4-6
(right), respectively. The input is the video shown in Fig. 2 (186
frames in total).

3.2. The action synergies

We compute the action synergies for each latent variable.
The latent variables, X(t), represent the embedded frame at

time t in the 6D GPDM space

X(t) = [x1(t), x2(t), ..., x6(t)]T (2)

Each latent variable, xi(t) where i = [1...6], is a 1D time
series (Fig. 4a). The jolt of xi(t) is computed as

Ji(t) =
d3(xi(t))
dt3

(3)

To minimize the computational error, we use the 7 point
algorithm followed by low pass filtering to smooth the data.

To measure the jolt in a better way, we compute the jolt
envelope (Fig. 4b) as

Envi(t) = ||Hilbert(Ji(t))|| (4)

for i = [1...6], where Hilbert(·) is the Hilbert transform
and || · || is the L2 norm. This is a standard approach to
computing signal envelope [6]. Then we use a Butterworth
filter as a low pass filter to process Envi(t), and compute
the envelope peaks (local maxima) of the filtered Envi(t)
for i = [1...6] (Fig. 4d).

We observe that the envelope maxima of different latent
variables cluster. Each row in Fig. 5 (shown from a perspec-
tive viewpoint) indicates the locations of the envelope peaks
in Fig. 4b for each latent variable. The frames correspond-
ing to the centers of the clusters across different dimensions
are shown on top. One can see that the locations of enve-
lope peaks approximately correspond to similar poses for
repetitive actions.

This observation indicates the “breaking points” in the
motion stream can be found by selecting the consistent en-
velope peaks of different latent variables (e.g., the blue bars
in Fig 5). This can be solved as an optimization problem.

For comparison, we also use the Principal Component
Analysis to process the video. Results are shown in Fig.
4c and 4d, respectively. They show that the clusters of the
envelope peaks of the GPDM latent variables (Fig. 4b) are
more consistent than those of the PCA variables (Fig. 4d).

In our method, only local maxima of the change in accel-
eration need to be finally computed. Therefore, the above
observation is visible for a reasonable range of smoothing
parameters’ values. Consequently, the optimization proce-
dure in Sec. 3.3 is loosely coupled with these parameters.

3.3. Partitioning videos by finding consistent enve-
lope peaks in different latent variables

A consistent envelope peaks is the collection of the enve-
lope peaks in different latent variables with the minimal sum
of the pairwise distances. The video is partitioned into two
halves at the location of the center of the envelope peaks.
This procedure is iteratively applied on each half, and in
this way the video is partitioned into action segments.
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Figure 4. The embedded frames (a and c) and the action synergies
(b and d) in the 6D GPDM latent space and in the PCA space,
respectively. Different colors represent the time series for different
latent variables. The input video is the “Lena on the monkey bar”
(Fig. 5a).

We formulate this procedure as an optimization problem.
The goal is to choose one of the envelope peaks from each
latent variable such that the sum of the pairwise distances is
minimal. Therefore, we use an indicator function δim for the
location of the ith envelope peak of the mth latent variable
Iim such that

δim =

{
1, if Iim is selected
0, otherwise

(5)

for all possible i, and ∑
i

δim = 1 (6)

for m = [1, ..., 6].
The distance between the locations of two envelope

peaks Iim and Ijn (m 6= n) is defined as

d(Iim, I
j
n) = exp(

1
σ
|Iim − Ijn|)− 1 (7)

where σ is the parameter for the distance measurement.
Then, the cost of the consistency between a set of en-

velope peaks in different latent variables is the sum of the
pairwise distances,

c =
∑
m

∑
n,n6=m

∑
i

∑
j

δimδ
j
nd(I

i
m, I

j
n). (8)

Now, the optimization problem is to find δim which min-
imize c,

δ∗ = arg min
δ
c (9)

Figure 5. Illustration of the algorithm. Each row of the graphics
in (a) shows the locations of the envelope peaks in Fig. 4b for
each latent variable. The frames, which correspond to the centers
of the clusters, are shown on top. By selecting the envelope peaks
in different variables with minimal sum of the pairwise distances
(blue bars), the video is partitioned into two halves. (a) “Lena
on the monkey bar” sequence; (b) a “walking” sequence from the
Weizmann dataset.

subject to Eq. 6.
Each iteration gives two segments, then the partitioning

algorithm is iteratively applied on each segment until the
value of C is smaller than a threshold κ.

4. Experimental demonstration of the useful-
ness of the segmentation algorithm

We use six videos from four different categories in the
experiments: 1) three videos from public datasets (one
“walking” and one “jumping” from the Weizmann dataset,
one “jogging” from the KTH dataset, respectively). The
backgrounds of these videos are (almost) static; 2) two pub-
lic accessible videos from Youtube. One is an indoor se-
quence “man in exercise”1, and the other is an outdoor se-
quence “girl on the monkey bar” (Fig. 2). These videos are
taken with moving cameras; 3) one black and white histori-
cal video clip from a slowly moving camera2. A part of the
video is used for this experiment;

In all the experiments, consecutive frames containing
representative poses are shown. We resize all the images
to have the same height (50 pixels) while preserving the
height/width ratio. The parameters for filtering and the min-
imal threshold for consistency depend on the frame rate.

4.1. Results

First we present the results for the sequences from public
datasets. Three videos, “walking”, “jogging”, and “jump-

1www.youtube.com/watch?v=57I4-QXCtRA
2www.youtube.com/watch?v=iv6p9XbIhtA
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Figure 6. Results for the action videos from public datasets. (a)
“walking”; (b) “jogging”; (c) “jumping”. For each action se-
quence, the trajectory of the latent variables and the representative
poses are shown in the GPDM dimension 1-3. Frame numbers are
displayed below the representative poses. The blue arrow denotes
the time direction.

ing” are used for demonstration. Fig. 6 shows the trajectory
of the embedded frames in the GPDM dimension 1-3, as
well as the estimated representative poses. The blue arrow
denotes the time direction. In other approaches, silhouettes
are extracted first. We do not require the image segmenta-
tion. Nevertheless, the representative poses in test videos
are correctly identified. Each segment between two repre-

Figure 7. Results for the action videos from Youtube (with per-
mission from the video owners). (a) “man in exercise”; (b) “girl
on the monkey bar”. For each action sequence, the trajectory of
the latent variables is shown in the GPDM dimension 1-2. Frame
numbers are displayed under the representative poses as well as in
the GPDM space. The blue arrow denotes the time direction.

sentative poses was found exactly one action, i.e., “one step
forward” in Fig. 6a and 6b, and “one jump” in Fig. 6c.

The static background in Fig. 6 makes the GPDM easy to
learn the parameters. In the second experiment, we used the
video “man in exercise”, which was captured with a moving
camera in a gymnastic room (Fig. 7a). Representative poses
are correctly identified even though the viewpoint changes
and the background changes smoothly as well.

The motions in the previous four videos are periodic and
the time differences between two representative poses are
similar. Fig. 7b (“girl on the monkey bar”), taken with a
moving camera, shows a more challenging situation where
the time the girl moves from one bar to another varies, and
the variation between action segments is large. The parti-
tioning result shows that we capture the poses when the girl
moves from left to right and vice versa. Frame 151 and 166
in Fig. 7b show that we captured the “landing” on the plat-
form correctly.

An even more challenging situation is the historical
black and white video of a martial artist captured with
a slightly moving camera (Fig. 8). The human motion
is non-periodic, and the quality of this video is very low
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Figure 8. Result for a low quality black and white video from Youtube. The master practices “Wing Chun”, a martial arts style. The
trajectory of the latent variables in the GPDM dimensions 1-2 are shown in the left. The color represents the value of the latent variable in
the GPDM dimension 3. The first frame (“start”) and the last frame (“end”) are indicated in the latent space.

(e.g., the shadow could impair the performance of the fore-
ground/background segmentation). Nevertheless, Fig. 8
shows that the representative poses are clearly identified as
the final poses of separate movements.

The current algorithm shows very promising results on
these challenging situations. Results for videos of various
qualities demonstrate that each segment contains one com-
plete action and the representative poses are useful for un-
derstanding the actions.

4.2. Preliminary evaluation result

We present our preliminary evaluation result in this sec-
tion. We manually labeled all the videos shown in Fig. 6,
Fig. 7, and Fig. 8. In each video, we labeled the frame
where the human subject changed from one action to an-
other as the “breaking points”. Then we used the Hungar-
ian algorithm to evaluate the performance of different algo-
rithms compared to the ground truth.

First, we compute the optimal one-to-one-mapping be-
tween the estimated intervals and the ground truth inter-
vals. Then the partitioning accuracy is defined as the sum
of the overlap between the corresponding pairs divided by
the total length of the intervals. This “assignment” prob-
lem can be solved by the Hungarian algorithm (see [28] for
details). Table 1 shows that the GPDM has a better assign-
ment score than all other algorithms when compared to the
ground truth.

Table 1. Accuracy of the partitioning using different dimension re-
duction algorithms. We manually labeled the videos in Fig. 6, Fig.
7, and Fig. 8 as the ground truth. The accuracy rate is computed
using the Hungarian algorithm.

Algo GPDM Isomap Kernel PCA Laplacian LLE
Rate 0.94 0.90 0.85 0.86 0.84

5. Conclusion
We proposed an algorithm for partitioning human mo-

tion video into action segments, one action per segment.
Our basic idea is the action synergies and the consistent oc-
curance of local maxima in the third order derivatives along
the dimensions of a latent space. Experiments demonstrate
that our algorithm is useful for partitioning the video into
meaningful action segments. Our future work includes find-
ing the primitives from common actions in visual space us-
ing the action segments.
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Abstract
In developmental research, tutoring behavior has been

identified as scaffolding infants’ learning processes. In-
fants seem sensitive to tutoring situations and they detect
these by ostensive cues [4]. Some social signals such as
eye-gaze, child-directed speech (Motherese), child-directed
motion (Motionese), and contingency have been shown to
serve as ostensive cues. The concept of contingency de-
scribes exchanges in which two agents interact with each
other reciprocally. Csibra and Gergely argued that con-
tingency is a characteristic ostensive stimulus of a tutoring
situation [4]. In order for a robot to be treated similar to an
infant, it has to both, be sensitive to the ostensive stimuli on
the one hand and induce tutoring behavior by its feedback
about its capabilities on the other hand.
In this paper, we raise the question whether a robot can be
treated similar to an infant in an interaction. We present
results concerning the acceptance of a robotic agent in a
social learning scenario, which we obtained via compari-
son to interactions with 8-11 months old infants and adults
in equal conditions. We applied measurements for motion
modifications (Motionese) and eye-gaze behavior. Our re-
sults reveal significant differences between Adult-Child In-
teraction (ACI), Adult-Adult Interaction (AAI) and Adult-
Robot Interaction (ARI) suggesting that in ARI, robot-
directed tutoring behavior is even more accentuated in
terms of Motionese, but contingent responsivity is impaired.
Our results confirm previous findings [14] concerning the
differences between ACI, AAI, and ARI and constitute an
important empirical basis for making use of ostensive stim-
uli as social signals for tutoring behavior in social robotics.

1. Introduction
In social learning, infants bene�t from the behavior of

their tutors. The modi�ed behavior seems to help infants

to �lter the information that is crucial for learning. Csibra
and Gergely [4] highlight the importance of this pedagogic
behavior that is crucial for the understanding of some ac-
tions: �pedagogy essentially created a new way of informa-
tion transfer among individuals through the use of osten-
sive communication�. In their work, they give the exam-
ple of peeling a hard fruit or carve away pieces of wood
with a tool. The movement and the tool in both actions are
the same, but the goal and reason for the action are very
different. Where it is easy to infer the goal of the action
when peeling a fruit, i.e. getting to the edible parts, it is
not obvious what is intended in the case of the wood carv-
ing. Therefore, tutoring is crucial in order for a learner to
understand the goal correctly. Csibra and Gergely [4] ar-
gue that economical reasons account for tutoring, because
otherwise learning would not be feasible. Tutoring situ-
ations thus are created by the tutor via ostensive stimuli,
which are �originally evolved to assist pedagogy�. The ef-
fect of pedagogy seems to rely on the bidirectionality. Csi-
bra and Gergely (2005) explain the contribution achieved
by the learner, who has to send signals during the course of
tutoring telling the tutor when s/he is attentive and receptive
and possibly showing understanding. Furthermore, infants
seem sensitive to tutoring situations and ostensive cues help
them to detect these [13]. The term �ostensive cues� refers
to social signals such as eye-gaze, child-directed speech
(Motherese) [5], child-directed motion (Motionese) [2,6,7],
and contingency [4]. While the phenomenon of multimodal
child-directed speech (Motherese) or action (Motionese) is
widely known, the concept of contingency is less popular.
It describes exchanges in which two agents interact with
each other reciprocally. Csibra and Gergely ( [4], p.8) ar-
gue that contingent responsivity is a characteristic ostensive
stimulus of a tutoring situation: �If a source repeatedly ap-
pears to remain silent during your actions but starts to emit
signals as soon as you have stopped your actions, it gives
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you the strong impression that the source is communicating
with you�. The idea of creating a robot that actively �lters
the information from the environment and manages to at-
tend to certain sources of information while ignoring others
has to be supported by the robot’s sensitivity to the osten-
sive stimuli on the one hand and induce tutoring behavior
by its feedback about its capabilities on the other hand. A
robot which has the appearance of an infant should hence
be able to pro�t from these behavior modi�cations as well.
Recently, Vollmer et al. found that adults modify their
behavior when interacting with children (ACI) and robots
(ARI) as opposed to adult-directed interaction (AAI) [14].
Modi�cations were found with respect to Motionese mea-
surements, indicating that in ACI and ARI movements were
slower, less round and had a slower pace than in AAI indi-
cating that subjects behave similar towards robots and in-
fants. However, number and length of eye-gaze bouts dif-
fered signi�cantly between ACI and ARI with less eye-gaze
bouts and less long eye-gaze bouts directed towards the in-
teraction partner in ARI. This indicates that contingency
was impaired in the ARI condition. In this paper, we re-
port on results from a task with a similar structure based
on a more �ne grained analysis of the eye-gaze behavior in
order to

• show how far the �ndings by Vollmer et al. hold for a
different task

• analyze the structure of eye-gaze behavior over time
and

• discuss these results with respect to the question in
how far the observed modi�cations of behavior can be
interpreted as ostensive signals in human-robot inter-
action.

2. Experiment
Two experiments were carried out to obtain data from

parent-infant and adult-robot interactions [14]. The data on
adult-child interaction is based on the same setting as in [12]
and [10]. The data on human-robot interaction was obtained
in a second experiment as described in [14]. From the over-
all set of items that were presented we selected the �Mini-
hausen� task. This task is similar to the stacking-cups task
as it is a rather goal-directed action with three sub-goals to
be reached. Results from analyses of motionese and contin-
gency features in parent-infant and adult-robot interaction
have shown that while motionese features of infant-directed
and robot-directed interactions are similar, they diverge for
contingency measures, indicating that contingency is im-
paired in human- robot-interaction, [14]. In this paper we
ask the question in how far these results are decisive for
the statement that motionese as well as contingency features
serve the function of ostensive signals.

2.1. Motionese Experiment (ME)

2.1.1 Subjects

The Motionese Corpus consists of infant- and adult-directed
interactions. We selected the younger group comprising 12
families of 8 to 11 months old children. Both parents were
asked to demonstrate functions of 10 different objects to
their children as well as to their partners or another adult. In
the following, we focus on the analysis of the �Minihausen�
task, because it offers good comparability in motion per-
formance. We further selected a subgroup of 8 parents (4
fathers and 4 mothers) for the ACI and a subgroup of 12
parents (7 fathers and 5 mothers) for the AAI, because of
the quality of the video, sound and due to the way in which
the action was performed. More speci�cally, the order in
which the blocks of the considered �Minihausen� task are
put onto the wooden base poles can vary: We selected only
those parents, who started the task by putting the �rst block
-the one closest to the body- onto the respective pole which
means putting the blue block onto the rightmost pole. (see
Fig. 3 a1).

2.1.2 Setting

Parents were instructed to demonstrate a �Minihausen� task
to an interaction partner. The interaction partner was �rst
their infant and then an adult. Fig. 1 illustrates the top-view
of the experimental setup. The �Minihausen� task was to
sequentially pick up the blue (a1), the yellow (a2), and the
green (a3) block and put them onto the wooden base with
three poles on the white tray.

Figure 1. Motionese Setting, there are two cameras which are
recording the scene. The interaction partners are seated across
from each other and the object is laid on the table in front of the
tutor.

2.2. Robot-Directed Interaction Experiment
(RDIE)

2.2.1 Subjects

31 adults (14 females and 17 male) participated in this ex-
periment 7 out of which were parents as well. Out of this
group, we selected 12 participants (8 female and 4 male),
who performed the task in a comparable manner.
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2.2.2 Setting

The participants were instructed to demonstrate several ob-
jects to an interaction partner, while explaining him/her how
to do it (Fig. 2). Again we chose the �Minihausen� task for
analysis. The interaction partner was an infant-like look-
ing virtual robot with a saliency-based visual attention sys-
tem [10]. The robot-eyes will follow the most salient point
in the scene, which is computed by color, movement, and
other features (see [10]).

Figure 2. The robot simulation presented on the screen can be seen
on the left picture. The rigth picture shows the Robot-directed
Interaction Setting, there are four cameras which are recording the
scene. The subject is seated across from the robot and the object
is laid on the table in front of the tutor.

3. Data Analysis
The goal of this paper was to analyze those cues, that we

hypothesize to serve as social signals in tutoring behavior.
These can be grouped into two groups, one that measures
Motionese and another one that that may be used to measure
Contingency. We coded the videos semi-automatically to
obtain data for the 2D hand trajectories and the eye gaze
directions.

Figure 3. The action was devided into movment and pause parts
and into subactions. This graphic shows an example for the struc-
ture of an ’Action’, ’Subaction’(intro = Introduction and sum =
summary), and ’Movement’.

3.1. Annotations

For all annotations, we used the video captured by cam-
era (cam) 1, see Fig. 1 and 2. It shows the front view on the
demonstrator and is therefore best suited for action, move-
ment, and gaze annotations, which are discussed in detail
below.

3.1.1 Motionese

Action Segmentation: For analyzing the data, the action of
the �Minihausen� task and additionally, the sub-actions (a1-

a3) of grasping one block until releasing it onto the end po-
sition (Fig. 3) were marked in the video. We de�ned

1. action as the whole process of transporting all objects
to their goal positions.

2. subaction as the process of transporting one object to
its goal position.

3. movement as phases where the velocity of the hand is
above a certain threshold. All other phases are de�ned
as pauses.

Hand Trajectories: The videos of the two experiments were
analyzed via a semiautomatic hand tracker system (Fig. 4).
The system is written as a plug-in for a graphical plug in
shell, iceWing [8], and makes it possible to track both hands
with an Optical Flow based algorithm, Lucas & Kanade [9].
It allows manual adjustment in case of tracking deviation.
We used this tracking system instead of a previously used
3D body model system, [12], since 3D results in [12] were
not signi�cant, we focused on 2D analyses which provide
to show more stable results. Additionally, the new system
is easily accessible for non-expert users.

Figure 4. Example frame for hand tracker system annotation. The
red and violet circles depict the tracking regions. The points in
the middle of the circles are the resulting 2D points for the hand
trajectory.

3.1.2 Contingency

Eye Gaze: In annotating the eye gaze directions with the
program Interact [1], we distinguished between looking at
the interaction partner, looking at the object and looking
anywhere else.

3.2. Measures

For quantifying Motionese and Contingency, we com-
puted �ve variables related to the 2D hand trajectories de-
rived from the videos and the eye gaze bout annotations pro-
duced with Interact.

3.2.1 Motionese

We measured Motionese in terms of velocity and range as
de�ned in [14].

Velocity was computed using the derivative of the 2-
dimensional hand coordinates of the hand which performed
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the action per frame as the average velocity for subactions
a1, a2, and a3 each.

Range was de�ned for each subaction separately as the
covered motion path divided by the distance between mo-
tion, i.e. subaction, on- and offset.

3.2.2 Contingency

The Contingency of the interactions was quanti�ed in terms
of variables related to eye gaze, as de�ned in [3] for mea-
suring interactiveness.

The total length of eye-gaze bouts to interaction partner
de�ned as the percentage of time of the action spent gaz-
ing at the interaction partner was computed. Brand et al.
found that the total length of eye-gaze bouts to the interac-
tion partner in their study was signi�cantly greater in ACI
than in AAI [3]. Also the total length of eye-gaze bouts to
object and the total length of eye-gaze bouts elsewhere were
calculated as the percentage of time of the action spent gaz-
ing at the object and somewhere else, as for example at the
table or the experimentor.

4. Results
A non-parametric test (Mann-Whitney U test) was run

for all pairs of samples, ACI vs. AAI, ACI vs. ARI, and
AAI vs. ARI. Table 1 depicts the results of the study.

4.1. Motionese

For the Motionese measures, our results revealed the fol-
lowing:
For the velocity measure, which is computed for each subac-
tion and takes into account the hand movement during the
transportation of the respective block, the results showed
signi�cant differences for all three subactions for all pairs
of conditions. These results clearly show that in AAI hand
movements are faster than in ACI and ARI and additionally
that hand movement is slowest in the ARI condition. Also
note that for all conditions the mean values increase for the
consecutive subactions: velocity in subaction a1 < velocity
in a2 < velocity in a3. In ARI, the rate in which the mean
values increase is lowest and in AAI the rate is highest. The
latter is specially noticable for the last subaction a3.
The range measure suggests that ARI exhibits the greatest
range for each subaction and therefore movement is most
exaggerated. Also, range is greater in ACI than in AAI. For
ACI vs. AAI results revealed no signi�cance, but a trend
for subactions a2 and a3. For ACI vs. ARI solely results for
subaction a3 showed signi�cance, for a1 and a2 they show
a trend. For AAI vs. ARI subactions a2 and a3 revealed
signi�cance, whereas a1 again shows a trend. Again we
can state that in ARI the �rst subaction a1 has the highest
range value of all subactions over all conditions. Looking at

this measure over time, range decreases rapidly to about one
half for subaction a2 and some more for the last subaction
a3. For the other conditions however the rate of change, i.e.
the decrease, is not as drastical.

Figure 5. This graph shows the range of hand movement in the
three different subactions on the left. On the right, the mean veloc-
ity of hand movement in the three different subactions can be seen
for the �Minihausen�-task (y-axis) in every condition (x-axis).

4.2. Contingency

Most interestingly, the results for eye gaze show a com-
pletely different picture. For total length of eye-gaze bouts
to interaction partner they show that in ACI signi�cantly
more time was spent gazing at the interaction partner than
in AAI and ARI. Differences between AAI and ARI are not
signi�cant. Looking at this measure over time, it is inter-
esting to notice that in all three conditions the most time of
gazing at the interaction partner was spent in the summary
part of the action, sum.
For the measure total length of eye-gaze bouts to object,
values are signi�cantly lower in ACI than in AAI and ARI,
where differences between AAI and ARI exhibit that values
are signi�cantly lower in ARI.
The total length of eye-gaze bouts elsewhere, which mea-
sures the percentage of time gazed neither to interaction
partner nor object, reveals that most time gazing somewhere
else is spent in the ARI condition, followed by ACI. The
differences between ACI and AAI could be a result of the
design of the study, because the AAI follows the ACI, so
that instructions and experimentor are not anymore needed
to turn to for help in the demonstration of the task, because
it has already been shown once. Additionally, in all con-
ditions it is gazed elsewhere mostly in p1 and p2 and not
during the transportation of the cups in a1, a2 and a3.

5. Conclusion
To conclude, we did �nd ostensive signals in tutoring sit-

uations in adult-robot interaction. On the one hand, our re-
sults for range and velocity show signi�cantly exaggerated

93



Variable ACI AAI ARI ACI vs AAI ACI vs ARI AAI vs ARI
M SD M SD M SD Z Z Z

velocity a1 3.58 0.81 4.72 1.39 2.08 0.86 −2.394** −3.668*** −3.747***
velocity a2 4.19 1.84 6.39 1.71 2.59 0.87 −2.535** −2.792** −3.982***
velocity a3 6.62 2.43 11.78 2.95 3.73 1.51 −3.098*** −2.956** −3.982***
range a1 4.22 2.49 3.41 0.72 6.29 5.53 −0.211 −1.369+ −1.288+
range a2 2.19 0.48 1.88 0.25 2.72 0.97 −1.549+ −1.314+ −2.635**
range a3 1.57 0.37 1.35 0.09 2 0.56 −1.479+ −2.409** −3.396***

total length eye-gaze to i.p. in 10.86 14.52 6.65 7.15 6.65 7.15 −0.833 −1.419+ −0.76
total length eye-gaze to i.p. a1 27.81 25.02 9.01 16.92 9.25 11.38 −2.2* −1.882* −0.97
total length eye-gaze to i.p. p1 24.19 28.17 3.7 9.71 7.35 8.78 −1.853* −1.03 −1.634+
total length eye-gaze to i.p. a2 15.39 16.67 2.42 4.44 3.16 4.81 −2.054* −2.066* −0.244
total length eye-gaze to i.p. p2 33.73 24.63 2.61 7.09 2.69 5.9 −3.055*** −3.306*** −0.082
total length eye-gaze to i.p. a3 23.05 23.09 4.37 8.71 6.2 10.48 −2.273* −2.292* −0.384
total length eye-gaze to i.p. su 43.8 23.81 27.55 7.43 19.66 13.65 −0.493 −2.793** −1.878+
total length eye-gaze to o. in 69.29 29.43 82.32 22.47 62.65 8.7 −1.353+ −1.15 −2.817**
total length eye-gaze to o. a1 70.94 22.72 89.52 16.69 83.21 13.46 −2.1* −1.213 −1.155
total length eye-gaze to o. p1 60.95 26.97 88.99 23.87 68.36 25.95 −2.273* −0.714 −2.097*
total length eye-gaze to o. a2 82.68 18.18 96.2 8.19 92.43 7.85 −2.198* −1.308+ −1.533+
total length eye-gaze to o. p2 65.02 25.55 97.39 7.09 80.23 22.36 −3.055*** −1.503+ −2.092*
total length eye-gaze to o. a3 76.95 23.25 95.63 8.71 87.23 13.77 −2.273* −1.252 −1.721*
total length eye-gaze to o. su 55.79 22.63 52.71 31.88 57.92 17.94 −0.352 −0.109 −0.527
total length eye-gaze e. in 20.89 29.12 11.03 18.15 34.93 9 −0.624 −1.984* −3.127***
total length eye-gaze e. a1 1.91 4.75 1.48 4.67 7.53 10.61 −0.52 −1.625+ −1.919*
total length eye-gaze e. p1 16.09 19.93 7.32 23.14 24.29 26.94 −1.501+ −0.812 −1.952*
total length eye-gaze e. a2 2.51 3.9 1.37 4.34 4.41 7.42 −1.178 −0.371 −1.604+
total length eye-gaze e. p2 2.38 5.35 0 0 17.08 20.59 −1.382+ −1.879* −2.551**
total length eye-gaze e. a3 0.74 1.67 0 0 6.57 12.94 −1.382+ −0.877 −1.803*
total length eye-gaze e. su 1.09 2.31 7.65 11.74 22.42 15.92 −1.091 −3.507*** −2.267*

Table 1. Results of Mean, Standard deviation, Mann-Whitney U test, +p <0.1, ∗p <0.05, ∗ ∗ p <0.01, ∗ ∗ ∗p <0.001, interaction partner
(i.p.), object (o.)., else (e.). su = sum = summary, in = intro = introduction

Figure 6. This graph shows the total length of eye-gaze bouts to the
interaction partner, the object and somewhere else (y-axis) over
time: all seven action parts are displayed (x-axis) for ACI (left),
AAI (middle) and ARI (right) condition.

hand movements which are clearly distinguishable from
those observable in adult-adult interactions and which are
even more accentuated than the hand movements in child-

directed tutoring. Thus, ostensive stimuli are present in
robot tutoring. These however change over time as we have
seen: range of motion decreases drastically, whereas veloc-
ity increases slowly. We therefore hypothesize that the re-
son for this lies in the behavior of the learner which shapes
the behavior of the tutor as stated for eye gaze behavior and
hand movements by Pitsch et al. [11]. This process could
be interpreted as an alignment process where the tutor starts
of by clearly signaling his intention of tutoring the infant.
This signal decreases during the ongoing interaction while
the tutor captures the infant’s attention and while observ-
ing an understanding process in the infant. The �nal be-
havior may thus be described as consisting of fragmentary
cues rather than the complete and exaggerated signal. On
the other hand, our results reveal that in order to create a
contingent interaction with the partner, the learner needs to
produce a suitable feedback. This means that although the
tutor’s hand movements in robot-directed tutoring seem to
be even slower and less round than in child-directed tutor-
ing, the tutor’s eyegazing behavior in robot-directed tutor-
ing is suggestive of a lack of appropriate social signals on
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the recipient’s side: The percentage of time the interaction
partner is viewed by the tutor is much lower in ARI than in
ACI.
The ostensive signals considered here appear practical for
the robot to detect situations in which it is being tutored,
but we argue that a robot cannot make use of an important
ostensive stimulus such as contingency without providing
the �right� signals for the interactional construct. In detail,
we �nd that already from the introduction on: the eye-gaze
behavior in the ARI situation is rather similar to that of the
AAI situation, with less time of the eye-gaze being spent
on the interaction partner. This is congruent with previous
�ndings from [14]. If we hypothesize that eye-gaze is also
being used in order to check for understanding of the part-
ner, the eye-gaze behavior directly after the end of a subac-
tion becomes relevant. Indeed, we can see that the eye-gaze
lengths in both pauses p1 and p2 are signi�cantly longer in
ACI as opposed to AAI. Thus, the parents appear to look for
understanding in their infants. Interestingly, the behavior in
ARI tends to be similar to the one in AAI indicating that
adults behave differently towards robots. However, in p1
we see a trend for the eye-gaze lengths to be signi�cantly
longer in ARI as opposed to AAI. This might indicate that
the subjects are looking out for signs of understanding in the
robot as well. Yet, this behavior dramatically changes in p2
where the eye-gaze length is again decreased to the level
of AAI, whereas it is even slightly increased in ACI. This
may be interpreted as a reaction to missing signals of under-
standing from the robot. In the summary part of the action
(sum), �nally, the overall eye-gaze length towards the robot
becomes signi�cantly shorter than in both, ACI and AAI.
In order to con�rm these results and our interpretation we
are planning to carry out analyses of the joint eye-gaze be-
havior. We hypothesize that the robot is not able to establish
mutual gaze especially in the pauses which then leads to the
increase of eye-gaze towards the robot.

6. Outlook
These �ndings suggest that ostensive signals are present

in human-robot tutoring situations and may be used for the
robot to learn. However, in order for the robot to elicit a
contingent interaction, it needs to provide ostensive signals
that indicate its understanding. Based on our observations
of the infants’ behavior, these ostensive signals have to per-
tain to attention. That is, the robot has to provide eye gaze
that signals attention and establishes joint attention as well
as shared attention. Another behavior of the infants that
was not modeled in the ARI condition was their attempts
to reach and grasp the demonstrated objects. Further anal-
yses need to be carried out in order to reveal the pattern of
these reaching gestures - �rst impressions of the data sug-
gest that they are far from random but only appear at the
end of the demonstrated actions. If this is true, the reach-

ing gestures could be interpreted as a signal that the infant
has understood the goal of the action, or at least, the end
of the action. Further signals which can be observed from
the infants are facial expressions. Again, systematic analy-
ses need to be carried out, but �rst impressions suggest that
emotional feedback indicates affective reactions to the ob-
jects themselves, but also to the attention grabbing behavior
of the tutor, and the reaching of the goal.
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Abstract

Automatic analysis of social interactions attracts major
attention in the computing community, but relatively few
benchmarks are available to researchers active in the do-
main. This paper presents a new, publicly available, corpus
of political debates including not only raw data, but a rich
set of socially relevant annotations such as turn-taking (who
speaks when and how much), agreement and disagreement
between participants, and role played by people involved in
each debate. The collection includes 70 debates for a total
of 43 hours and 10 minutes of material.

1. Introduction
As automatic analysis of social interactions attracts in-

creasingly more attention in the computing community [3]
[8], publicly available benchmarks become a crucial ele-
ment for the progress of the domain. Benchmarks allow
different researchers to apply the same experimental proto-
cols over the same data and this is the only way to perform
rigorous comparisons between results achieved by different
researchers and using different techniques.

This paper presents a corpus of political debates allow-
ing the analysis of important social phenomena like roles
(functional and social), conflicts, dominance, agreement
and disagreement, status display, communication effective-
ness, personality, persuasion, etc. From a social interaction
analysis point of view, political debates represent an excel-
lent resource for two important reasons:

• Realism. In contrast with most benchmarks (for ex-
ample [1] [5]), political debates are real-world data.
Debate participants do not act in a simulated social
context, but participate in an event that has a major im-
pact on their real life (for example, in terms of results
at the elections). Thus, even if the debate format im-
poses some constraints, the participants are moved by
real motivations leading to highly spontaneous social
behavior.

• Privacy issues. Social interaction recordings are col-
lected, in general, applying the Informed Consent prin-
ciple [2]: subjects must know that they are recorded
and must have the right of destroying, partially or to-
tally, the data where they are portrayed. The result
is that the subjects tend to be less spontaneous and
to eliminate data showing attitudes they do not con-
sider appropriate. As debates are public events, par-
ticipants know that they are recorded (the principle is
respected), but at the same time they are encouraged to
be fully spontaneous because this is the only way to be
successful in the debates. Furthermore, they cannot de-
stroy the data because these are typically broadcasted
live.

The corpus presented in this work includes 70 recordings
for a total of 43 hours and 10 minutes of material. Each de-
bate revolves around a yes/no question like “Are you favor-
able to new laws on scientific research?”. The participants
state their answer (yes or no) at the beginning of the debate
and do not change it during the discussion. Each debate in-
volves a moderator that tries to give the same space to all
participants (or at least to the two fronts corresponding to
yes and no supporters). Furthermore, the moderator tends
to reduce tensions when the discussion becomes too heated.

While including a rich set of annotations, the current ver-
sion of the dataset is only a first release that will be further
enriched in the years to come. Indeed, the Canal9 database
is currently used in the core activities of the Social Signal
Processing Network (SSPNet), a European Network of Ex-
cellence aimed at studying Social Signal Processing, and
further socially relevant annotations will be added in the
framework of this project. The database (including the an-
notations) will be made publicly available through the web-
portal of the SSPNet, at http://www.sspnet.eu. The
data will be available to any academic and research insti-
tution upon signature of a End User Licence Agreement
(EULA).

The rest of this article describes the data in terms of me-
dia format (Section 2), group composition (Section 3), du-
ration statistics (Section 4), and available annotations (Sec-
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Figure 1. Most frequent camera views.

tion 5).

2. Format and Structure

The recordings are available as high-quality full-frame
(720 × 576 pixels) DV compressed PAL recordings, along
with an uncompressed audio stream sampled at 48 kHz.
They have been live edited and, in contrast with corpora col-
lected in laboratory settings, not all the participants are vis-
ible all the time. All debates took place in the same record-
ing studio (with no audience) and Figure 1 shows some of
the most frequent camera views: full group (19.7% of data
time), personal shots (66.1% of data time), and multiple
participants (11.0% of data time). The remaining 3.2% cor-
responds to short reports (typically at the beginning of the
debate) and credits shown at both beginning and end of each
debate1.

3. Group Composition

One of the most important aspects in any group of in-
teracting individuals is the composition, that is number and
type of people involved [4]. Political debates include two
main roles: moderator and participant.

3.1. The Participants

Each debate revolves around a central question with a
yes/no answer like “Are you favorable to the new laws on
scientific research?”. Debate participants state explicitly
their answer (yes or no) at the beginning of the discussion
and this determines two factions expected to oppose one an-
other during the entire discussion. The spatial arrangement
of the participants reflects this situation (see full group view
in Figure 1). The two factions physically oppose one an-
other in a spatial arrangement that has been shown to elicit

1The statistics have been extracted from a sample of 10 randomly se-
lected debates.

Figure 2. Length Distribution.

agreement between people on the same side and disagree-
ment between people on opposite sides [6]. Overall there
are 190 unique participants, 154 participate only in one de-
bate, 25 participate in two debates, and the remaining 11
participate in three. In terms of gender, the set of the partic-
ipants includes 25 women and 165 men.

3.2. The Moderator

All debates include one moderator expected to ensure
that all participants have at disposition the same amount of
time for expressing their opinion. Furthermore, the mod-
erator intervenes whenever the debate becomes too heated
and people tend to interrupt one another or to talk together.
Overall, there are five different moderators, 1 woman and
4 men. The woman moderates 28 debates, while the men
moderate 24, 9, 8 and 1 debates, respectively.
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Figure 3. Annotations. The figure shows how the audio channel (a) is annotated in terms of manual speaker segmentation (b), role
(c), agreement and disagreement (d), automatic speaker segmentation (e). Furthermore, the figure shows how the video channel (f) is
annotated in terms of manual shot segmentation (g), automatic shot segmentation (h), manual shot classification (i), manual identification
of participants in personal shots (j).

4. Duration Distribution
In total, the 70 debates of the corpus correspond to 43

hours, 10 minutes and 48 seconds. Of these, 41 hours 50
minutes and 40 seconds (96.9% of the total) correspond to
actual discussions, while the remaining time includes re-
ports and credits shown at beginning and end of each de-
bate. The duration changes at each debate and the corre-
sponding distribution is available in Figure 2.

5. Annotations
The political debates are corredated with a wide spec-

trum of annotations:

• Manual Speaker Segmentation. The audio of each
debate (see Figure 3a) has been manually segmented
into single speaker intervals (see Figure 3b). Speakers

are identified with a label that does not correspond to
their names, and all the turns (single speaker segments)
where the same person talks hold the same label. The
segmentations are stored as trs files, an XML format
used by the publicly available transcriber annotation
tool2.

• Role. The annotations report the role played by each
person involved in the debates (see Figure 3c), i.e.
moderator (the journalist expected to guarantee that all
persons have enough time to express their opinion and
that tries to inhibit aggressive and impolite behaviors)
or participant (the persons that support one of the two
answers to the question around which the debate re-
volves).

2Available at trans.sourceforge.net/en/presentation.php.
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• Agreement and Disagreement. The participants (see
point Role) are labeled in terms of group-1 and group-
2 according to how they answer to the central question
of the debate (see Figure 3d). Participants belonging to
the same group agree with one another, while partici-
pants belonging to different groups disagree with one
another.

• Automatic Speaker Segmentation. The output of an
automatic speaker diarization system (see Figure 3e) is
available for the audio channel of each debate. This al-
lows one to perform experiments where the speker seg-
mentation is supposed to be performed automatically.
Furthermore, the availability of both manual and au-
tomatic speaker segmentations allows one to estimate
the effect of speaker segmentation errors. The segmen-
tations are available as trs files (see Manual Speaker
Segmentation point).

• Manual Shot Segmentation. The video channel of
each debate (see Figure 3f) is manually segmented into
shots (see Figure 3g), i.e. time intervals between two
changes of camera. The shot segmentation is available
as a list of shot boundaries, i.e. time instants where the
camera changes. The boundaries are stored in ASCII
files.

• Automatic Shot Segmentation. The output of an au-
tomatic shot segmentation system is available for the
video channel of each debate (see Figure 3h). This
allows one to perform experiments where the shot seg-
mentation is expected to be performed automatically.
The availability of both manual and automatic shot
segmentations allows one to assess the effect of shot
segmentation errors. The format of the automatic shot
segmentations is the same as the one of the manual
ones.

• Manual Shot Classification. Each shot is annotated
in terms of two classes (see Figure 3i): personal shot
(see Figure 1) and other. This allows one to identify
those segments that are particularly suitable for behav-
ior analysis as they clearly show a single person. No
automatic classification is available.

• Manual Identification of Participants in Personal
Shots. All personal shots showing a given participant
are annotated with her/his identity (see Figure 3j). This
allows one to select only those personal shots where a
given participant appears. No automatic version of this
annotation is available.

6. Conclusions
This paper has described the first release of the Canal9

collection of political debates, a corpus aimed at the anal-

ysis of social phenomena taking place in competitive dis-
cussions. The corpus includes more than 40 hours of videos
fully annotated in terms of a rich set of socially relevant fea-
tures (turn-taking, agreement-disagreement, role) as well as
low level descriptors (speaker segmentation, shot segmen-
tation, identity of people appearing in personal shots, shot
classes).

The corpus is publicly available through the web-
portal of the Social Signal Processing Network
(www.sspnet.eu) upon signature of an appropriate
End User Licence Agreement. In its present form, the
collection has been used in at least two works recently
published in the literature [7] [9]. Further relesases will be
available in the next years and will include benchmarking
procedures allowing rigorous comparisons of different
results.
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Abstract 
 This paper presents a novel indoor and outdoor 
monitoring system based on sound cues that can be used 
for the automatic creation of a Life-Log, health care 
monitoring and/or ambient communication with virtual 
worlds. Basically, the system detects daily life activities 
(e.g., laughing, talking, traveling, cooking, sleeping, etc.) 
and situational references (e.g., inside a train, at a park, 
at home, at school, etc.) by processing environmental 
sounds, creates a Life-Log and recreates those activities 
into a virtual-world. It is easily extensible, portable, 
feasible to implement and reveals advantages and 
originality compared with other life-sensing systems. The 
results of the perceptual tests are encouraging and the 
system performed satisfactorily in a noisy environment, 
attracting the attention and curiosity of the subjects. 

1. Introduction 
 Speech is regarded as the most meaningful acoustic 
event but other types of sounds also convey meaningful 
information. In a typical environment the human activity 
is characterized by a multitude of sounds, either produced 
by humans or by their interaction with objects and 
devices. Consequently the processing and identification 
of these acoustic events can be of primordial importance 
to describe the human and social activities that take place 
in a certain environment. For example, the jingling sound 
of cooking utensils (like cooking pan, spoon, knife, etc.) 
may lead to infer that someone is cooking, the sound of 
vehicles passing may suggest that someone is on the road, 
the sound of people speaking mixed with the sound of 
cutleries may lead us to think that people are in a 
restaurant, and so on. Such context awareness based on 
environmental sound cues is the focus of Acoustic Event 
Detection (AED) that is a recent sub-area of 
Computational Auditory Scene Analysis (CASA). AED 
processes acoustic signals and converts them into 
symbolic descriptions corresponding to a listener's 
perception of the different events included in those 
acoustic signals. Several approaches to sense the 
environment are available [1, 2, 3] and, in the advent of 
an ubiquitous society, we perceive here a huge potential 
to combine Virtual Living with context awareness based 

on environmental sensing. Virtual living is the concept of 
living and interacting in a virtual-world where each 
person is represented by an avatar. Thus a user can 
recreate real-world activities into the virtual-world and 
interact with other users through avatars. For example, in 
some contexts (e.g. health care), Virtual Living could be 
applied to monitor the user's well-being or behavioral 
abnormalities by someone (e.g. relatives, nurses or 
care-givers). By nourishing such vision in mind we apply 
the AED's concept to automatically create a Life-Log that 
can be represented in the virtual world. We envision that 
in the future, with the proliferation of the computing 
power of hand held devices (HHD), availability of 
internet connectivity and improvements in 
communication technologies such ambient 
communication to the virtual world will be common 
practice in our daily life and will allow us to create vivid 
and intelligent online social networks. To clarify our 
motivation let's consider the following scenario: Sami, 
Anny, Harry and Silvia became friends in a virtual-world 
but in real life they live in different parts of the world. 
They often login to a virtual-world and frequently update 
their status to let others know what they are doing. They 
use Second Life (SL) [4] to interact with each other in the 
virtual-world. They are looking forward to use a HHD 
(e.g. iPhone) that can automate the process of updating 
their status. Let's assume that they have installed our 
system in a HDD. In that case the system can capture and 
process the environmental sounds with a certain interval 
of time. The processed sound cues can be used together 
with common sense knowledge to infer the present 
activity and automatically reflect that activity into the 
virtual-world. For example, if Silvia is cooking in 
real-world (i.e., the sound cues are like cutting onions on 
a chopping board, water falling on a sink, cooking pan 
and arranging plates), her friends see her moving around 
the kitchen in SL performing similar activities.  
 In this paper, we compare the activity's recognition 
performance of the system with that of human subjects. 
The second main concern of this paper deals with the 
automatic generation of virtual-world activities. Since we 
are dealing with highly varying acoustic sources where 
practically any imaginable sounds can occur, we have 
limited our scope in terms of location and activities to be 
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recognized to a particular location (a kitchen). The paper 
is organized as follows: Section 2 reviews the 
background studies related to this research. Our approach, 
in terms of system architecture and description of the 
system components is explained in section 3. Section 4 
refers to the experimental setup, tests and evaluation. 
Conclusions are presented in Section 5. 

2. Background 
 A number of researchers have investigated the 
inference of Activities of Daily Living (ADL). In [5], the 
authors have successfully used cameras and a bracelet to 
infer hand washing. The authors of [6] used 
audio-frequency-identification (RFID) tags functionally 
as contact switches to infer when the users took their 
medication. The system discussed in [7] used contact 
switches, temperature switches and pressure sensors to 
infer meal preparation. The authors of [8] used cameras 
to infer meal preparation and in [9], the authors used 
motion and contact sensors, combined with a 
custom-built medication pad to get a rough inference of 
meal preparation, toileting and medication consumption. 
A custom wearable computer with accelerometers, 
temperature sensors and conductivity sensors to infer 
activity level is used in [10].  The author of [11] used 13 
sensors to infer energy usage in a house, focusing on the 
use of the heating system. Motion detectors to infer rough 
location were used in [12] and several sensors like 
motion sensors, pressure pads, door latch sensors and 
toilet flush sensors were used in the system described in 
[13]. The authors of [1] have monitored bathroom 
activities based on sounds and the system referred in [2] 
utilized RFID tags to detect objects and thereby infers 
activities based on the interaction with the detected 
objects. The research on MIT's house project [14] places 
a single type of object-based adhesive sensors that 
provide data that later can be used for kitchen design, 
context sampling and ADL monitoring. All of these 
systems perform high-level inference by coarse sensor 
data and their analysis, and some have added special 
pieces of hardware to improve their performance, but 
even so, progress towards accurate ADL detection is still 
far from desirable. Furthermore, very few researchers 
reported results of any preliminary user testing [5, 9, 12, 
13]. The level of inference using sensors has often been 
limited, for example, to acknowledge that a person 
entered the living room and had spent time there. 
Research that aims at detecting hand washing or tooth 
brushing almost do not have common synergy, each of 
them using its own set of idiosyncratic sensors and 
algorithms. Furthermore a home deployment kit designed 
to support all these ADLs would be a mass of 
incompatible and non-communicative widgets. Our 
approach does not need all these paraphernalia and it's 
focused on a general inference engine that infers 
activities from the sound cues that abound in many 
environments. A similar approach to automatic virtual 
living is automatic Life-Logging. The idea of a Life-Log 
can be traced back at least 60 years [15]. Since then a 

variety of modern projects have spawned such as the 
Remembrance Agent [16], the Familiar [17, 18], 
myLifeBits [19], Memories for Life [20] and What Was I 
Thinking [21]. In [22] the authors evaluated the user's 
context in real time and then used variables like current 
location, activity and social interaction to predict 
moments of interest.  
 A Life-Log includes people's experiences that are 
collected from several sensors and stored in a mass 
storage device. It is used to support user's memory and 
satisfy needs for personal information. If someone wants 
to inform other people about his experiences, he can 
easily share them by providing his Life-Log. However, a 
user cannot automatically mirror/reflect his current 
movements, activities or surrounding environment (e.g., 
park, shopping mall, etc.) to the virtual life of his avatar. 
Only very recently [23], the mapping of real-world 
activities to virtual worlds has been attempted by 
processing data collected from multiple sensors along 
with inference logic for real-world activities, but 
inferring human activity using such data is often 
inaccurate and insufficient. Furthermore, deploying a 
sophisticated ubiquitous sensor network in an outdoor 
environment is expensive and difficult to implement. Our 
work differs from others in four key ways: 

1. instead sensors or video cameras, we use 
microphones and environmental sound cues to infer 
location and interaction with objects; 

2. due to its portability and simplicity of usage, by 
using a microphone to capture environmental sounds, 
it is possible to monitor outdoor environments (e.g. 
the road, a park, a train station etc.) that previous 
research almost could not perform; 

3. in our model it is easy to incorporate a new set of 
activities for further needs by just adding more 
appropriate annotated sound clips and re-training the 
Hidden Markov Model (HMM) based recognizer; 

4. the system can be used as a Life-Log or bridging 
someone's real-world and his virtual world. 

 

 Second Life is a 3D virtual world developed by the 
Linden Lab in 2003 that allows its users to interact with 
each other (through avatars or agents) and even trade 
virtual properties and services [4]. SL's interface is based 
on a SL client. Its objects are created using the Linden 
Scripting and in 2007 an alternative product called Open 
Simulator [24] was released, that aims at developing 
open source server software for SL clients. 
 

 MPML3D is the acronym of Multimodal Presentation 
Markup Language 3D and it is a XML-scripting language 
that describes the behavior of agents controlled by 
computer [25]. These agents are virtual characters (e.g. 
an avatar in SL) that can emulate human behavior. These 
presentations are described by the MPML3D script file 
and currently are supported by SL and Open Simulator. 
Basically, MPML3D can be used to manipulate avatars 
that perform presentations in SL or in Open Simulator 
(these presentations can include sounds, gestures and 
movement). In order to be able to communicate and 
perform presentations with the virtual-world using 
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MPML3D, it's necessary to use the MPML3D Front-End 
and, in some cases, a Speech Cube and/or Gesture Pack. 
The MPML3D Front-End receives instructions and 
communicates them to SL, where they will be executed 
into animations, scenes and gestures. The virtual agents 
are SL avatars and, by default, these avatars do not have 
voices and/or certain gestures capabilities. Thus, in order 
for them to speak and perform some specific animations, 
they need to possess the Speech Cube and/or the Gesture 
Pack that is available in [26]. A MPML3D Back-End and 
a MPML3D Front-End are available for download at [27]. 
For more information please refer to [26]. 
 
 
 
<-- EXAMPLE OF THE CODE HERE! --> 

2.1. Second Life 
 
 
 
 
 
 
 
 
Figure 1: An example of a MPML3D script 

3. The System 
 The goal of our system is to detect daily life activities 
(e.g., laughing, talking, traveling, cooking, sleeping, etc.) 
and situational references (e.g., inside a train, at a park, at 
home, at school, etc.) by processing environmental 
sounds, creating a Life-Log and recreating those 
activities into a virtual-world. For example, while the 
system identifies cooking pan's jingling and chopping 
board sound as consecutive cues and if the system's local 
time indicates evening, then from common-sense 
database the system infers this activity as “cooking” and 
an avatar would perform this activity in the virtual-world. 
 
 
 
 
 
 
Figure 2: The system’s architecture. 
 

 The system is based on a pipeline structure and its 
components are described as follows: 

3.1. Activity Event Detection System 
Because of their ubiquity we plan to use hand held 

devices (e.g., a portable computer or a smart phone) to 
deploy this application. According to the system’s 
architecture (as it can be seen in Figure 3), environmental 
sound signals are processed and the input is recognized as 
a set of object labels by a HMM based label recognizer. 
The detected object list, some common-sense knowledge 

regarding human activity, object interaction and temporal 
information (e.g., morning, noon, etc.) are used by the 
inference agent to infer the activity and the location of the 
user. Then, the activity and the location are mapped to the 
virtual world by a scripting language. In the following 
sections the system’s components are described. 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.1.1 Sound Corpus 

Sound patterns are a function of many environmental 
variables like size and layout or the indoor environment, 
material of the floors and walls, type of objects (e.g., 
electrical or mechanical), background noise, etc. The 
system corpus was designed having in mind the 
environments where it is going to be used. An analogous 
way is followed in speech recognition where the system 
is trained individually on each user for speaker dependent 
recognition. Therefore, we collected sound samples from 
different outdoor and indoor places in Tokyo. For a clear 
audio-temporal delineation during the system training, 
capturing the sound for each activity was carried out 
separately. Several subjects were used to collect the 
corpus sounds. We used a digital SANYO sound recorder 
(model number: ICR-PS380RM) and the signals were 
recorded as Stereo, 44.1 KHz, .wav formatted files. 
Background sounds were recorded simultaneously and 
the variability of the captured sounds for each activity 
provides a realistic input for the system training, and 
increases the robustness and predictive power of the 
resultant classifier. Some sounds (e.g., water falling, 
vacuum cleaning machine sounds, etc.) are generally 
loud and fairly consistent but, on the other side, hands 
washing, drinking and eating exhibited a high degree of 
variability. We collected 114 types of sounds and each 
sound type has 15 samples with length varying from 10 to 
25 seconds. 
3.1.2 HMM-based trainer 
Sound Clip Annotation: We listed 63 objects to assess 
the objects’ interaction in a given sound sample. An 
annotator opened a sample sound file with WaveSurfer 
and set the annotation configuration as “HTK 
Transcription”, selected a particular portion of a sound 
sample and annotated it accordingly to a list of 63 objects. 
Sometimes a sound sample contains a mixture of sounds 
produced by different objects. Then, if several sounds 

<MPML3D version="1.0"> 
  <Head> 
    <Entities> 
   <Entity type="human" name="avatar1" resourcePath="girl"> 
     <Property name="agent_name">Your Second Life avatar’s 
name here</Property> 
        </Entity> 
 </Entities> 
  </Head> 
 
  <Body startImmediately="task1"> 
    <Task name="task1" priority="0"> 
 <Action>avatar1.write("Hello World!” </Action> 
 </Task> 
  </Body> 
</MPML3D> 

Figure 3: The AED’s system architecture 
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overlap, the annotator would be allowed to tag a 
maximum of 2 objects to annotate such complex sound.  
 

Training Features: A simple frequency characterization 
would not be robust enough to produce good 
classification results. To find representative features, a 
previous study [28] carried out a comparative study on 
various transformation schemes, including Fourier 
Transform (FT), Homomorphic Cepstral Coefficients 
(HCC), Short Time Fourier Transform (STFT), Fast 
Wavelet Transform (FWT), Continuous Wavelet 
Transform (CWT) and Mel-Frequency Cepstral 
Coefficient (MFCC). It was concluded that MFCC might 
be the best transformation for non-speech environmental 
sound recognition. A similar opinion can be also found at 
[29, 30]. These findings motivated us to use MFCC for 
extracting the features for the sound classification.  

The input signal is first pre-emphasized with an 
Impulse Response filter 1-0.97z^(-1) and MFCC analysis 
is performed in 25 ms windowed frames advanced every 
10 ms. A 39 coefficient vector is extracted from each 
signal frame window and for each one, the following 
coefficients are extracted as a feature vector: 

 The 12 first MFCC coefficients [c1,…, c12]; 
 The “null” MFCC coefficient c0, which is 

proportional to the total energy in the frame; 
 13 “Delta coefficients”, estimating the first order 

derivative of [c0, c1,…, c12];  
 13 “Acceleration coefficients”, estimating the 

second order derivative of [c0, c1,…, c12]. 
 

3.1.3 Label Recognizer 
Training is performed in the training set (recordings 

and their associated object labels). The HMM parameters 
are iteratively optimized with the Baum-Welch algorithm 
to find a local maximum of the maximum likelihood 
objective function. We modeled (using the HTK Toolkit 
[31]) each sound using a left-to-right 88-state (63 for 
simple object tag + 25 for complex object tag). Each 
HMM state was composed of two Gaussian mixture 
components. After that a model initialization stage was 
done, all the HMM models were trained in eight iterative 
cycles. For classification, continuous HMM recognition 
is used and the grammar was chosen in a way that there is 
no predefined sequence for the activities and each label 

may be repeated many times in any sequence. 
 

3.1.4 Common-sense Knowledgebase 
Once we get the list of objects involved in the 

recognized sound samples, we must define the object 
probabilities with respect to the activities of our interest. 
Requiring humans to specify these probabilities is time 
consuming and, instead that, the system utilizes a 
technique adopted from Semantic Orientation (SO) [32, 
33] employing the NEAR search operator of the 
web-search results of the AltaVista Search Engine. 
List of objects, O = {O1, O2, …, OK} (K=63) 
List of locations, L = {L1, L2, …, LM} (M=9) 
List of activities, A = {A1, A2, …, AN} (N=17) 
WLi = {WL1, WL2, …, WLP}. For example, L1= 
“kitchen” and it is represented by Wkitchen = {“kitchen”, 
“cookhouse”, “canteen”, “cuisine”} 
SA(Oi|Lj) = Semantic Associative value representing the 
object Oi to be associated with location Lj 
SA(Oi|Aj) = Semantic Associative value representing the 
object Oi to be associated with activity Aj 
The formulas to get the SA values are, 
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3.1.5 Inference Agent 
The system continuously listens to the environment 

and records sounds for 2.5 seconds with an interval of 2.5 
seconds between two recordings. Then an 
object-mapping module provides a list of objects 
pertaining to the recognized sound classes and the system 
gathers a list of objects that is compared with the 
Semantic Associative (SA) value of the activities and 
with the locations stored in the common-sense 
knowledgebase. 

3.2. AED Client 
 The AED client connects to the AED server, receives 
its output and sends this information to the Activity 
Mapping and Animation Generator block. All the system 
components were implemented in Java [34] and the 
system was designed to support several clients. 

3.3. Activity Mapping and Animation Generator 
 This module is the responsible for logging the avatars, 
mapping the real-world activities with the activities in the 
virtual-world and defining the presentation. The mapping 
is pre-defined by the developers in an xml file and, for 
each activity received as input, a certain sequence of 
animations, gestures and sounds will be activated and 
sent to the MPML3D FrontEnd. 

location Activities 

Living Room Listening Music, Watching TV, Talking, 
Sitting Idle, Cleaning (vacuum-cleaning)  

Work Place Sitting idle, Working with PC, Drinking 
Kitchen Cleaning, Drinking, Eating, Cooking 
Toilet Washing, Urinating 
Gym Exercising 

Train Station Waiting for Train 

Inside Train Travelling by Train 
Public Place Shopping, Travelling on Road 

On the Road Traveling on Road 

 Table 1: A list of locations and activities of interest to our study.
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3.4. MPML3D FrontEnd 
 The MPML3D FrontEnd transforms the sequence of 
desired gestures, movements and sounds into MPML3D 
scripts that can be interpreted and executed by SL. 

4. Test, evaluation and Online Demo 
 Perceptual tests were carried out, the system was 
implemented and tested in a noisy real-world 
environment and an Online Demo was made to illustrate 
our concept and system. 

4.1. Tests and Evaluation 
The system was trained and tested to recognize the 17 

activities referred in table 1. We developed a perceptual 
testing methodology to evaluate the system’s 
performance under the effect of continuous sound 
streams. Four hundred twenty test signals were created 
and each one contained a mixture of three sound clips 
chosen from the 114 sound types.  These 420 test signals 
are representative sound cues for the 63 objects that 
represent the 17 activities. Thus, we grouped these 420 
test signals into 17 groups according to their expected 
affinity to a particular activity and location. Ten human 
(i.e., five male, five female) judges listened to the test 
signals and inferred the activity from the given list of 17 
activities and 9 possible locations (i.e., forced choice 
judgment). Each judge was given all the 17 groups of 
signals to listen and assess (each group had 3 to 6 signals 
of the same sound type). Since human judges judged each 
signal individually, in order to compare the result with 
the system, a generalization on the human assessment 
was done, i.e., a group of signals had at least more than 3 
signals and each signal was assigned a location and 
activity label by the judges. Thus a group of signals 
obtained a list of locations and activities. We counted the 
frequencies of the location and activity labels per group 
assigned by each judge and took the maximum of the 
respective labels to assign activity and location for that 
group. Recognition results for activity and location are 
presented in Figure 4 and 5 respectively. 

The recognition accuracy for activity and location is 
encouraging (66% and 64%, respectively).  From Figure 
4 and 5, we notice that humans are skillful in recognizing 
the activity and location from sounds. It is also evident 
that the system receives the highest accuracy (85% and 
81%, respectively) to detect “traveling on road” and 
being on the “road” respectively, which is a great 
achievement and pioneer effort for this research because 
no previous research attempted to infer outdoor activities 
with sound cues. The correct classification of sounds 
related to activity “working with pc” and location “work 
place” performed poorly due to the sounds’ shortness in 
duration and weakness in strength. 
 The system was developed in Java and tested in a real 
and noisy challenging scenario (Open House of the 
Japanese National Institute of Informatics).  A small set 
of activities (greeting, clapping, stirring liquids, 
chopping vegetables and arranging the cutlery), that 

could be performed in a kitchen scenario, were carried 
out by the visitors and the avatar recreated those activities 
in a virtual kitchen in SL. The system performed robustly 
and satisfactorily under a very noisy environment, 
attracting the attention and curiosity of the visitors. 

 
Figure 4: Comparison of the recognition rates for 17 

activities, with respect to human judges. 
 

 
Figure 5: Comparison of the recognition rates for 9 locations, 

with respect to human judges. 

5. Conclusion 
This paper describes a novel monitoring system for 

indoor and outdoor environments. Currently it classifies 
17 activities that usually occur in daily life and performs 
robust activity and location identification by using HMM 
parameters with MFCC features and a common-sense 
knowledgebase. The Life-Log of a person can be created 
automatically and those activities recreated in Second 
Life. We performed experiments that validate the utility 
of the system (with an accuracy rate for recognizing 
activity and location of 66% and 64%, respectively) and 
tested its robustness in a noisy and challenging 
real-world environment. The tests performed 
satisfactorily and we believe that this system contributes 
positively towards an increased understanding of 
personal behavioral problems and health monitoring. 
Soon we plan to test the system in some homes of elderly 
people living alone in Tokyo. Representing real world 
activities to a virtual world is surely a source of 
excitement for the youth but also possesses potential 
usages related with product or service advertisement, 
collaborative and e-learning, health care monitoring, etc. 
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Abstract 
 
The paper explores the action – cognition loop by 
investigating the relation between overhelp and 
evaluation. It presents a study on the helping and 
overhelping behaviors of teachers with students of 
their own vs. of a stigmatized culture, and analyses 
them in terms of a taxonomy of helping behavior, and 
adopting an annotation scheme to assess the 
multimodal behavior of teachers and pupils. Results 
show that overhelping teachers induce more negative 
evaluations, more often concerning general capacities, 
and frequently expressed indirectly. This seems to 
show that the overhelp offered blocks a child’s striving 
for autonomy since it generates a negative evaluation, 
in particular the belief of an inability of the receiver. 

1. Introduction 
In Social Signals research, an intriguing subject is the 
action – cognition loop. In humans social action is 
mediated by cognition [2]. We decide to do things or 
to relate to persons on the basis of our conscious or 
unconscious beliefs; even our emotions, that are a 
crucial determinant of behaviour, are triggered – either 
in a reactive or in a reflective way – by beliefs. But at 
the same time our actions and relations backfire onto 
our beliefs. A particular case of this action – cognition 
loop is the relation between help and evaluation. Help 
is a social action aimed at fulfilling the goals of 
another person, while evaluation is a set of beliefs 
concerning how much things, events or persons may 
favour or thwart our goals. In this work we show how 
actions and beliefs, help and evaluation may determine 
each other in a teacher – student relation, and how this 
link can be assessed by studying their social signals.  
 
2. Evaluation 
 
Evaluating is a cognitive activity of utmost importance 
in both individual action and social interaction. In 
every action of our life we form evaluations of objects, 
persons, events; and at the same time we continuously 
evaluate other people. 
In the goal-and-belief model of mind and social action 
that we adopt [1, 2, 9], an evaluation is defined as a 
belief about whether and how much some object, 
event, person have or provide the power to achieve 

some goals. The evaluation is positive when they 
allow and negative when they prevent from achieving 
a goal, and we evaluate with respect to any kind of 
goal,  utilitarian, ethical, aesthetical; we judge 
everything as good or bad, ugly or beautiful, useful or 
unuseful. Evaluating is necessary to action: we 
evaluate at every moment of our action planning: to 
decide which goals to pursue, to assess the right 
actions to do and the tools to use, to check if our goals 
are achieved. 
Yet, beside things or facts we also evaluate persons: 
we make up an “image” of the persons we meet, that 
is, a set of evaluative (and non-evaluative) beliefs 
about them – that person is handsome or ugly, selfish 
or altruistic, just or unjust, smart or silly; and this 
determines the social relation we want to have with 
them. Further, there are two kinds of negative 
evaluations: one for inadequacy, if someone lacks the 
power necessary to achieve some goal, and one of 
noxiousness, if one is actually endowed with power, 
but a negative power that risks of thwarting someone’s 
goals. A knife is a bad knife if it does not cut well; but 
it is dangerous if it is too sharp. At school, a teacher 
may form an evaluation of inadequacy about a boy 
who is not clever, and an evaluation of noxiousness 
about one who bothers other children. Moreover, when 
someone does not succeed in performing some task, 
one may evaluate negatively either the single 
performance or – through a process of generalization – 
the person’s general traits or capacities; and the latter 
is a heavier judgment than the former. 
We do not only evaluate others, but also ourselves, 
thus  making up our self-image, a set of evaluative 
(and non-evaluative) beliefs about ourselves. Our self-
image is at least in part determined by our image – 
how others judge us [8].  But  from self image the 
degree of autonomy of a person depends: if one has a 
positive evaluation of his own capacities and efficacy, 
he will pursue his goals in an autonomous and self-
confident way. At school, for example, negative 
evaluations may have a serious impact on a pupil’s self 
image, sense of efficacy, and learning: they tend to 
dis-able him, to make him less active, and possibly 
induce him to refrain from action.  

3. Help and overhelp  
According to the model above, help is a case of goal 
adoption [2]. An Agent A adopts Agent B’s goal when 

Social Signals and the action – cognition loop.  
The case of overhelp and evaluation 
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A puts its resources to the service of B’s goal, taking it 
as one’s own, and doing actions in order to it. Several 
types of adoption may be distinguished according to 
whether they are instrumental to a further goal of the 
adopter, like in exchange or cooperation, or whether 
the adopter fulfils the other’s goals in a completely 
disinterested way, like in help and altruism.  
Within research on altruistic behaviour, an intriguing 
issue is the role of helping in social relationships. Help 
conveys a prosocial intention of the helper, but may 
also have a negative effect [7], both because the helped 
person may feel in debt with the helper, and because 
being helped in itself may perpetuate the dependence 
of the helped one and possibly the asymmetry of the 
relationship. This is even clearer with overhelp, that is, 
when the helper offers his action even if the other 
could do by himself.  
Benevolent overhelp has not been studied in depth so 
far [7], except for Gilbert and Silvera [6]., who focus 
on malevolent intentions of the helper to damage the 
helpee’s image in working contexts; furthermore in the 
few studies on overhelp there’s no particular 
consideration of the helped person . In previous works 
D’Errico & Leone [3, 4] studied overhelping 
behaviour in mothers of normal children and of 
children with a chronic disease, and in teachers with 
pupils of their own vs. another, stygmatized, culture 
[5]. In both cases it was found that overhelped children 
tend to refrain from action, thus failing to achieve 
autonomy. The reason for this may be that the negative 
self-evaluation stemming from being overhelped may 
result in a blow to the image of the helped person, and 
this in turn may affect her self-image by inducing a 
lowered aspiration level and a general tendency to de-
activation. Further, if this occurs during the learning 
process, since learning and autonomy are typically 
made possible by active experience, no activation 
leads to less learning, more dependence, and less 
autonomy. 
Thus, what evaluations are conveyed, and how, during 
the learning process, is relevant to predict possible 
outcomes in the achievement of autonomy. 

4. Conveying evaluation  
Evaluation and its communication is crucial in social 
life, and studying the ways in which evaluations are 
conveyed is a central topic in research on Social 
Signals. 
Evaluations can be communicated by the evaluator, 
both to the person evaluated and to other persons, 
either in a direct or an indirect way. Cases of direct 
evaluation are, for example, praise, criticism or insult, 
which typically contain an evaluative belief within 
their very meaning, and typically may affect a person’s 
image. But people care other people’s evaluation to 
such an extent that they may be sensitive to it whatever 
the channel and the level of explicitness through which 
they perceive it. 

A person may come to believe she is evaluated in 
some way by someone else in the following ways: 
1. direct communication of evaluation, expressed 

either by verbal or nonverbal communicative 
signals, e.g. praise, blame, criticism, insult, whether 
displayed by words, sentences, gestures, grimaces… 

2. indirect communication of evaluation. For 
example, if I tell you this orange is sour,  and it is an 
orange you bought, I may be implying a criticism to 
your shopping skills 

3. bare presupposition of someone’s action. If I help 
you to complete a very easy puzzle, you may infer I 
think you are not able to do it by yourself. 

An important distinction to keep in mind is one 
between communicated and inferred information. We 
can define communication [11] as a process in which 
an Agent S produces a signal in order to a conscious, 
unconscious or biological goal of having another 
Agent A come to believe some belief B. On the other 
hand, inference is a process through which an Agent 
A, on the basis of some beliefs obtained through 
perception and/or retrieved from long term memory, 
and through application of some rules of reasoning, 
can create a new belief. So it is important to 
distinguish information that people acquire through 
communication from one they extract by themselves 
from the world and from other people’s non-
communicative behaviour. If I see a person opening 
his umbrella, I can infer he believes it is raining, even 
though he did not perform that action in order to let 
me know it’s raining.  Nonetheless, I can treat that 
belief just as I treat other information acquired through 
communication: I can believe it or not, I can myself 
behave while taking it or not taking it into account – 
for instance I can decide to open my umbrella too… 
Other people’s assumptions can be understood, used, 
taken into account irrespective of whether they want to 
communicate them to us or not, and even whether they 
themselves are aware or not of their own assumptions. 
When a person is helping another, the assumption of 
an inability of the helped person may “leak” from the 
helper’s behaviour. This assumption may be either 
indirectly communicated by indirect speech acts  (have 
you ever made a puzzle?), or by the direct meaning of  
nonverbal behaviours (no, this doesn’t go there), or 
simply implied by non-communicative actions (“the 
teacher places the pieces of the puzzle that the pupil 
could place herself”). It is important to specify that the 
helper may be in total good faith: she may not be 
aware at all that a negative evaluation is inadvertently 
conveyed by her behaviour. Nonetheless, the leaking 
information may have its effect on the other’s image 
and self-image.  

5. The action – cognition loop: overhelp 
and evaluation  

Our hypothesis about the action – cognition loop in 
helping behaviour is that there is a cognitive mediation 
between the helper’s and the helped person’s 
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behaviour. More specifically, we claim that overhelp 
may induce an assumption of inability in the helped 
person and that such  assumption may induce less 
autonomous behaviour and hence, again, a need for 
help. This may be an undesirable effect, at least in 
those cases and cultures where individual autonomy is 
seen as important. In this work we test the first part of 
the hypothesis – that overhelp induces negative 
evaluation, by focusing on the behaviours of teachers 
and pupils in dyadic interactions. In subsequent works, 
we will test the second part of the hypothesis by 
showing how pupils tend to act less just in 
correspondence with teachers’ overhelp.  

6. An observational study on teachers’ 
help  

To investigate the relation between overhelp and 
evaluation, we based our analysis on a previous study 
which explored the helping interaction between 
teachers and their pupils of their own culture or of 
another, stygmatized, culture [3]. 
Our study explored whether helping and overhelping 
behaviour conveys evaluation, and which type it, 
whether (1) positive or negative evaluation; (2) 
evaluation on performance or capacity (3) direct or 
indirect evaluation.  
D’Errico et al. [5] carried on a study to analyse the 
interactions of Italian teachers with their Italian and 
Rumanian pupils. 21 teacher-pupil dyads of an Italian 
Primary school  (9 with a Rumanian and 12 with an 
Italian child, all children being between 6 and 8 years 
old, balanced for gender) were videotaped during a 
game simulation, designed to possibly imply some 
crucial  helping behaviours of the teacher, but where 
the teacher could choose either to help the pupil or not.  
The Scenario of the game was the Primitive village of 
the Flintstones family: the pupil played the role of 
Bam Bam or Pebbles (the Flintstones’ little boy and 
little girl), and the teacher the role of Wilma, the guide 
who knows all the secrets of the village. After 
introducing the scenario, the master of the game told 
the plot and explained that the village was threatened 
by a magic spell that could be broken by a magic 
formula. To gain the table with the magic formula the 
child had to solve a riddle and then, thanks to the 
solution, could complete the formula by solving a 
puzzle containing a simple sentence. Both while 
solving the riddle and completing the puzzle Wilma 
(the teacher) could choose to help (e.g. simply provide 
some hints), to overhelp (e.g. tell how to make the 
complete picture) or not to help at all. Finally, the 
pupil repeated the magic formula aloud and the master 
declared the end of the mission because the island was 
safe.  
D’Errico et al. [5] measured how much teachers help 
Rumanian vs. Italian pupils. In general, data showed 
that they tend to overhelp, that is, to intrude into the 
child’s autonomous problem solving, more with 
Rumanian pupils than with Italian ones. Yet, there are 

large differences between teachers in the amount  of 
overhelp given, and the study distinguished “high 
intrusive” versus “low intrusive” teachers, depending 
on the level of overhelp they provided.  
In this work we are concerned more on a qualitative 
than on a quantitative analysis of the teachers’ 
behaviour. Since our hypothesis is that overhelp 
indirectly conveys a negative evaluation of the helped 
pupil, we need to assess cases of overhelp and see if 
evaluative beliefs are contained in the manner it is 
provided,. So we do not extensively analyse all the 
teachers of the study, but only two extreme 
representatives of them: a “high intrusive” and  “low 
intrusive” teacher.  
To test our hypothesis that overhelp entails a risk of 
transmitting a negative evaluation, we need to  
- describe and analyse the behaviours of teachers and 

pupils  
- detect which of them imply a goal to help  
- quantify the amount of help given, and  
- assess whether the teacher’s behaviour implies some 

kind of evaluation, and which one. 
To measure the type and amount of help given is a 
relevant task for research on Social Signals. In fact, 
since a large part of Social Signals are  those that 
convey information about social relationships, and 
helping behaviour is a determinant of various social 
relationships, it is important to have clear in how many 
ways people can help others. To do so, we built a 
taxonomy of a teacher’s helping behaviours (Sect. 7). 
Further, to understand which kind of help is offered in 
a given interaction, we built an annotation scheme for 
the analysis of the teacher’s behaviour (Sect. 8). A 
similar scheme will be used in subsequent works to 
assess the pupil’s behaviour). 
 
7. A taxonomy of helping behaviours 
 
According to a view of learning as an active process, 
teaching can be conceived of as a series of behaviours 
aimed at providing a person with permanent capacities 
that make her autonomous, that is, potentially able to 
solve her own problems, to achieve her goals, by 
herself. This means that a teacher, when helping a 
pupil to complete some task, provides adequate help if 
she takes advantage of task execution to teach him 
general principles he could eventually transfer to 
future tasks, while if she does the pupil’s job herself,  
or if she provides help that is not necessary because he 
could achieve the solution himself, she is overhelping 
him. More generally, a teacher is overhelping when 
she definitely tells the pupil what to do, while she is 
adequately helping when she puts the conditions for 
the pupil to understand what to do. From this point of 
view, a teacher’s behaviours can be classified as to the 
extent to which they help the student. Of course, from 
help to overhelp there is a continuum, but it is 
possible, in our view, to single out extreme cases. 
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Table 1 (see below) shows various possible types of 
helping and overhelping behaviours. Both help and 
overhelp can be performed through communication, 
non-communicative action, or finally even by non-
action, or better, “deliberate non-action”: cases in 
which a teacher could have done something, but 
apparently decided not to do what she could have 
done. Within all three cases we can distinguish 
technical, cognitive and affective help or overhelp. 
The former distinction – communication, action, non-
action – refers to the teacher’s behaviour, while the 
latter refers to the processes, in the pupil’s mind, to 
which the teacher’s action or non-action is aimed: 
those which, if favoured by the teacher’s intervention, 
should have an impact over task performance.  
Technical help/overhelp is any action or deliberate 
non-action that directly allows or induces the pupil to 
perform some moves; cognitive help/overhelp is what 
provides information or cognitive strategies useful for 
task completion; affective help/overhelp is what 
induces affective states that may have an impact over 
task performance.  
Starting from COMMUNICATIVE ACTIONS, typical cases 
of technical help are the communicative actions of 
providing information, hints, suggestions, but also 
criticism. Criticising may be seen as a form of 
adequate help to the extent to which, at least indirectly, 
it provides positive information as to how to do 
something. On the other hand, orders, directions, 
prohibitions can be seen as technical overhelp. In 
fact, we count as overhelp those cases in which the 
helper is intruding into the helped person’s free choice 
and autonomy. If I tell you: “there is a nice piece 
here”, I give you a chance to decide whether or not to 
place it into the puzzle, while if I tell you “put this 
there”, I do not.  
Cognitive help includes the communicative actions 
that do not provide specific solutions but rather 
reasoning strategies, like when the teacher puts general 
questions to make the pupil reason, or when she 
explains processes or proposes doubts while the pupil 
is making mistakes. Moreover, if a teacher does not 
only correct the pupil’s move, but explains why it is 
incorrect, making him reflect over his mistaken 
process of thought, we have a good example of 
cognitive help. On the other hand, we consider 
cognitive overhelp cases of communication in which 
the teacher reveals specific moves or strategies the 
pupil could discover by himself. Again, one may 
provide both help and overhelp through “affective” 
communication, that is, communicative acts inducing 
or preventing emotions that could either favour or 
hinder the helped person’s action. Cases of helping 
affective communication are  the communicative 
actions of encouraging, inciting, praising, confirming, 
reassuring, sharing emotions with the pupil, and finally 
minimising his possible negative emotions; while a 
case of overhelping affective communication occurs, 
for example, if the teacher expresses compassion, or if 

she hurries the pupils, or simply induces stress in the 
pupils through leaking of her own anxiety. 
Within NON-COMMUNICATIVE ACTIONS, some of the   
teacher’s movements while assisting a pupil are not 
aimed at communicating but may be  nonetheless 
helping or overhelping actions. Some can be seen as 
technical helping behaviours in that they fulfil the 
physical conditions for the pupil to do things well: e.g., 
the teacher preparing the game table, or placing a lamp 
in the right place to let him see better. But the teacher 
performs technical overhelping through non-
communicative actions when she replaces the pupil by 
making the moves the pupil should do, say, by handing 
the right piece of the puzzle or placing it herself. She is 
overhelping also if she undoes his incorrect move, or 
corrects the pupil’s move, by taking away a piece he 
put into the wrong slot, without telling him why it is 
wrong. A cognitive helping non-communicative 
action occurs when the teacher does something to put 
the condition for some cognitive process to take place 
in the pupil’s mind. A typical case is the teacher 
turning the pieces of the puzzle in the right direction, 
so the pupil can better see how to place them. In this 
case, she is not communicating anything, but simply 
does something that in the pupil might trigger the 
insight for his problem solving.  A non-
communicative cognitive overhelp occurs if the 
teacher prevents the pupil from making a mistake, for 
instance by taking the piece away from his hand, or 
else if she undoes the pupil’s error – say,  by removing 
a piece placed by him – without an explanation. In an 
active view of learning that aims at developing the 
learner’s autonomy, errors are an important step 
towards competence. So if the teacher, after the pupil 
has made a mistake, corrects his move and explains 
why it is an incorrect move, this is adequate help; but 
if she prevents him from making errors, or in any other 
way, she does not give him the chance of 
understanding why an error is an error, this is overhelp 
(or, possibly – bad help!). Finally, the teacher’s action 
may fulfil the affective conditions of the pupil’s work, 
by influencing the pupil’s emotional state. Thus, it 
provides affective help if it makes the environment 
warm, motivating or relaxing. Strangely enough, 
though, it is difficult to find examples of the 
corresponding affective overhelp in the domain of 
non-communicative action. If for example the teacher 
inadvertently expresses her anxiety, thus inducing 
stress in the pupil, this is a case of communication, 
albeit unconscious [11]. On the other side, if anxiety 
simply leads the teacher to do the pupil’s moves 
herself, we see this as technical overhelp, albeit caused 
by the teacher’s emotional state. In such case, her 
emotion is not communicated but directly acted out by 
performing intruding and overhelping actions. 
Sometimes a right way to help is non-action. Should 
the teacher hurry the pupil, she might transmit anxiety 
and make him perform worse: the opposite of this 
communicative affective overhelp, and sometimes the 
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best kind of help, is waiting, i.e., refraining from 
action. Here it is clear how non-action implies a 
deliberate decision not to act: the teacher is moving 
her hand toward the puzzle, but then she refrains and 
puts it behind her hip. This a case of affective help 
through non-action. On the contrary, if the teacher 
stays there doing nothing while the pupil actually 
would need her help, this is lack of help, to be clearly 
distinguished from deliberate non action. So it is just 
when you detect movements of inhibition that you can 
speak of deliberate non-action. Another non intruding 
way to help are the teacher’s epistemic actions, i.e., 
cognitive actions aimed at acquiring knowledge about 
how the task is being performed. A typical epistemic 
action is observing the pupil’s behaviour attentively to 
check if he is performing well. Checking and 
controlling can be defined epistemic actions of 
acquiring knowledge about how some process is 
proceeding, in order to be able to re-direct it if 
something is going wrong. Thus epistemic action may 
be considered, though indirectly, a case of help, 
because it is a step before possibly deciding whether to 
help, and whether to provide technical, cognitive or 
affective help. Epistemic action may precede, and 
hence be indirectly, either technical or cognitive or 
affective help.  For instance, if observing the pupil I 
see he is almost having the insight, but lacks a crucial 
information, I can provide it, thus giving cognitive 
help; if I see him discouraged, I can encourage him, 
providing affective help. On the other hand, the non-
action of refraining from doing is most typically a case 
of affective help, being a way to leave the pupil reflect 
without hurry or anxiety.   

8. An annotation scheme of the teacher’s 
multimodal behaviour  

The taxonomy presented so far may help to classify 
general categories of actions. But to analyze our 
videos we need to assess the single concrete 
behaviours performed by teachers and pupils, and 
classify them as belonging to one or the other of the 
categories above. So we devised an annotation scheme 
to analyze teachers’ and pupils’ multimodal behaviour. 
The focus of the scheme was to assess the type of 
social action of the teacher – her possible helping or 
overhelping behaviour, its possible evaluative import, 
and its effects over the pupil’s reaction.  
The annotation scheme is divided into 8 columns (see 
Tables 1 and 2).  

- Column 1 contains the time in the video of the 
behaviour under analysis.  

- In columns 2 and 3, respectively, we describe the 
teacher’s verbal and nonverbal behaviour. 

- In col. 4 we write the communicative or non-
communicative goal of the behaviours in columns 2 
and / or 3. For the verbal behaviour written in col. 2, 
its goal is by definition a communicative goal, while 
for the action written in col. 3 the goal to write in 
col. 4 may be either a communicative goal (for non-

verbal communicative signals) or not (for those 
behaviours that are not intended to provide 
information). 

- Further, since an action – either communicative or 
not – beside its direct goal may aim at one or more 
supergoals – other goals for which the direct goal is a 
means [11] – in col. 5 we write the possible 
supergoals of the actions in 2 or 3. For a non-
communicative action a supergoal is some further 
effect the agent wants to bring about through goal of 
col.4: e.g, if a teacher turns the pieces of the puzzle 
on the right side, she may do so to check the place of 
the pieces better, and then to know herself where the 
pieces should go. For a communicative act, the 
supergoal is an inference the Sender wants the 
Addressee to draw from that communicative act: if 
the teacher points at the place in the puzzle where the 
piece belongs, her communicative supergoal is to 
suggest the pupil to put it there. 

- In col. 6 we classify the goal of col. 4 (or the 
supergoal written in col 5., when there is one) in 
terms of the above taxonomy of the teacher’s helping 
or overhelping behaviours (Table 1). 

- In col. 7 we write – if there are some – the plausible 
inferences that one could easily draw from the 
teacher’s actions (columns 2 and 3) and their goals (4 
and 5), but that the teacher  presumably did not have 
the goal to be drawn by the Interlocutor. We call 
them “unwanted inferences” since they are beliefs 
that may have caused the Agent’s action, and since 
often from the effect we infer the cause, they can be 
inferred from the Agent’s action. Typically, for 
instance, if the teacher overhelps the pupil by placing 
some pieces, you may think the teacher doubts s/he 
is not able to do it. 

- In  col. 8 we write whether some of the beliefs of 
columns 4,5 or 7 convey some kind of evaluation, 
and what kind. 

Table 2 (see below) shows three fragments of our 
analysis. At line 1, time 7.09 (Col.1), the teacher 
places the two posts of the game in front of the child 
and orients them toward her (col. 3). Her direct goal, a 
communicative goal pursued through a nonverbal 
action, is for the child to pay attention and concentrate 
to start the game (col.4). This is  (col. 6) a 
Communicative action (C) providing technical help. 
Immediately after, at line 2, time 7.10, the teacher 
bends her head in a head canting posture (col. 3), a 
posture of welcome, of non-dominance, which means: 
”I put myself at your level” (4): a Communicative 
action  providing the affective help of making the 
other feel welcome (6). But this is the typical posture 
of a mother with her child: a posture of welcome, but 
marking an asymmetrical relation. So it may have an 
unintended effect of letting the child infer “your level 
is low” (7): a negative evaluation (8) inadvertently 
conveyed by this action.  
At line 3., time 7.11, the teacher asks the Rumanian 
child: “Have you ever done a puzzle?” (col. 2). The 
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direct goal of this question is to check whether the 
prerequisites are fulfilled for the child to do the game 
well (col. 4). The reason that may have motivated this 
check – then the supergoal of this communicative 
action – is to be certain that the child is not being 
evaluated (for instance by the experimenter) for a skill 
in which she has not been trained before (col. 5): then 
a Communicative Action providing technical help (6). 
But the presupposition of the question (if I ask you if 
you have ever done this, I take into account the 
hypothesis that you have never done this) possibly 
unmasks an unwanted inference: in your culture such 
game might not be used as an educational tool (7). 
This might sound as a possible negative evaluation not 
simply of the child, but of the whole culture the child 
comes from (8). Of course, as it can be seen, this kind 
of analysis leaves room, at least to some extent, to 
different interpretations. But this is typical of 
qualitative research, which on the other hand has the 
advantage of a qualitative and more in depth insight 
into human cognition and action. 
Yet, one might finally decide among different 
interpretations by taking into account the effects of 
teachers’ different behaviours on pupils. And in fact, 
as will be clear later, the pupil helped by the high 
intrusive teacher tended to refrain from action more 
frequently than the one helped by the low intrusive 
one. 
  
9. Results 
As is clear from the taxonomy of helping behaviours 
presented above, there are many different ways of 
helping and overhelping. Our study aimed to explore 
the evaluative effects of help and overhelp in the 
classroom, trying to focus on the different types of 
teacher’s evaluation that can be directly assumed or 
indirectly inferred even starting from a benevolent 
intention to help a pupil.  
Since our hypothesis is that help may communicate a 
feedback about a person’s self-image, in the analysis 
of the teachers’ evaluation we distinguished not only 
positive vs. negative evaluations but also evaluation of 
performance vs. one of capacity..  
A chi-square [χ² (1, 111)= 33,28; p<0.000] test 
revealed a significant difference between the low and 
the high intrusive teacher as to their types of 
evaluation: as shown in Figure 1., negative evaluation 
is prevailing in the high intrusive teacher compared to 
the low intrusive teacher (76% vs 41%); moreover the 
high intrusive teacher negatively evaluates the 
children’s capacity to solve the problem in 38% of all 
evaluations. So when she overhelps she sends a 
negative feedback to the children about himself and his 
possibilities. The low intrusive teacher negatively 
evaluates only the child’s performance, thus taking 
care of his self-image, while she provides a good 
percentage of positive evaluations of the child’s 
capacity (22%).  

 

Figure 1. Types of teachers’ evaluation 

  
We attributed progressive scores to the different types 
of evaluation (1 = negative evaluation of capacity, 2 = 
negative evaluation of performance, 3 = positive 
evaluation of performance, 4 = positive evaluation of 
capacity), to consider a general index of positive 
evaluation. A t-test shows that the low intrusive 
teacher generally evaluates significantly in a more 
positive manner [(t(109):3,951, p<0.000)] as compared 
to the high intrusive teacher (4.9  vs 8.5). 
The results on the different types of evaluation have to 
be further refined by considering two different ways of 
communication, direct and indirect.  
In computing negative evaluations we took into 
account the ease of the task to be completed by the 
children, so any kind of intervention that tended to 
replace e the child in completing the puzzle was 
labelled as negative evaluation. The high intrusive 
teacher’s evaluations were mainly indirect (67%, vs. 
33% direct ones), while the low intrusive teacher used 
a higher amount of direct evaluations [75% vs 25%; χ² 
(1, 110)= 19,65; p<0.000].  
From these results we may conclude that: 
- the high intrusive teacher tends to leak more negative 

evaluations, and more evaluations on  the child’s 
capacities than the low intrusive does; 

- the low intrusive teacher gives more “constructive” 
evaluations (that is, more often positive, and less 
frequently about capacities); 

- the low intrusive teacher tends to provide evaluations 
more in a direct than in an indirect way. 

This pattern of evaluative behaviour by the low and 
high intrusive teachers show that overhelp indirectly 
lets the pupil infer negative evaluations about 
him/herself, mainly concerning his/her capacities. This 
could well account for the subsequent de-
activation.found in the previous study. At the same 
time, that the negative evaluation is mainly indirect 
especially on the part of the high intrusive teacher 
might let us think that the more explicitly evaluations 
are expressed, the better. 
 
Figure 2. Evaluation in high and low intrusive 
teachers 
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Figure 3. Direct vs. indirect evaluation 
  
10. Conclusion 
 
Evaluation is everywhere. Since evaluating things, 
events, persons, is of utmost importance in planning to 
achieve our goals, we tend to evaluate anything and 
anybody, and exploit any possible chance to evaluate. 
But evaluation is also food for our image, and to 
understand how others evaluate us we do not only rely 
on what they tell us; we try to infer this from their 
indirect messages, from their action, even from their 
non-action; and not only when others want to 
communicate how they value us, but even – possibly, 
more frequently – if they simply act with us as if they 
should value that way. We have presented a study on 
the helping and overhelping behaviour of teachers with 
pupils from their own and from other cultures, and we 
have seen how the teacher who overhelps more – the 
high intrusive one – often leaks a negative evaluation 
of the child: one that insists on the whole capacity 
more than on the single performance, and that more 
often is only indirectly – possibly inadvertently – 
expressed. This may invest the pupil with a heavier 
load of negative evaluation, thus possibly leading to 
refrain from action. In subsequent works we aim to 
assess the effects of this evaluation load in children’s 
behaviour, to see how much the induction of 
dependence may be attributed to a blow to image and 
self-image, thus making it clearer the action – 
cognition loop. 
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Table 1. 
 

Teacher’s 
behaviour 

Pupil’s 
process 

 

Help Overhelp 
 

    
   

 C
O

M
M

U
N

IC
A

TI
O

N
 

Technical provides or reminds information, suggestion, hints, 
soft criticism 

orders, directs, forbids 

Cognitive puts general questions to make the pupil reason and 
find the solution, explains the process, how one 
should do, proposes doubts in case of likely mistakes; 
explains errors 

reveals specific moves or strategies 

Affective encourages, incites, reinforces, confirms, reassures, 
share and model emotions, minimizes child’s 
negative emotions 

expresses compassion,  insists in 
hurrying up, shows anxiety 

    
   

   
   

  A
C

TI
O

N
 

   

Technical fulfils technical conditions: prepares game table, put 
light in the right place  

makes pupil’s moves  
substitutes herself for the child 

Cognitive fulfils cognitive conditions: performs actions to 
induce insight (turns pieces) 

prevent pupil’s errors (takes a piece 
away from the child’s hand) 
or undo pupil’s errors (takes pieces 
put by the child away) without 
explanation  

Affective fulfils affective conditions: makes the environment 
motivating: relaxation, amusement, empowerment, 
gratification 

 

    
N

O
N

 
A

C
TI

O
N

 Technical 
Cognitive 
Affective 

refrain from action: 
waits, inhibits own action 
 

 

 
 
Table 2.  
 

1. 
Time 

2.  
Speech 

3.  
Action 

4.  
Goal 

5.  
Intended 

Supergoal 

6.  
Type of 
Action 

7.  
Unwanted 
Inference 

8.  
Evaluation 

1 
7.09 

 Places both 
posts and 
orients them 
toward the 
child 

Pay attention 
here and 
concentrate, 
let’s start the 
game 

 C, 
Technical 
Help  

  

2 
7.10 

 Head canting I put myself at 
your level. 
I welcome you 
as a mother 
with her child 

 C, Affective 
Help 

Your level is 
low  

Neg, 
Capacity 

3. 
7.11 

L’hai mai fatto 
un puzzle? 
 
Have you ever 
done a puzzle?  
 

 I ask you to 
confirm if the 
prerequisites 
are fulfilled for 
you to do this 
game 

I do not want 
you to be 
evaluated for 
something no 
one has taught 
you 

C,
Technical 
Help  

May be in 
your culture 
these 
educational 
tools are not 
used 

Neg,  
Capacity  
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Abstract

Embodied Conversational Agents can be viewed as spo-
ken dialogue systems with a graphical representation of a
human body. But the embodiment is not the only differ-
ence. Whereas Spoken Dialogue Systems are mostly focused
on computing the linguistic dimensions of communication,
conversational agents are conceived as intelligent agents
that have an identity, a persona. Thus, cognitive modeling
is often more involved in ECAs including the modeling of
emotion. Whereas spoken dialogue systems are focused on
the task, virtual humans are also equipped with social skills
involved in interaction. This can take various forms. In
this paper we review some of the approaches that have been
taken in the first decade of ECA research, by presenting the
social signaling skills of three agents we have developed in
our group.

1. Introduction
In traditional spoken dialogue systems, the

kinds of information services such as TRAINS
(http://www.cs.rochester.edu/research/trains/) from the
nineties [1], the focus was on getting a speci�c task
performed by natural language dialogue. The power of a
spoken dialogue system is made possible by constraining
the domain; which helps semantic processing. Having a
clear task, makes it possible to simplify pragmatic process-
ing as well, as the scenario - getting information about a
train journey, for instance - is quite well structured, follow-
ing a simple script. The strategy of such a dialogue system
consists in asking a series of questions with restrained
options. When the system takes the initiative - starting
the conversation with �You are talking to the X-system.
You can book tickets to destinations from anywhere in
Europe. From which city do you want to leave?� - this
constrains the input suf�ciently for speech recognition to
perform reasonably well. The spoken dialogue system is
thus able to �ll in the slots that are needed to formulate
a query on its database and provide the user with the

information wanted. Besides these information gathering
and information providing actions, an important part of the
dialogue actions consist in checking whether the system
has correctly understood the user - a process referred to
in some systems as grounding - and instantiating repair
dialogues if this appears not to be the case. A spoken
dialogue system is mainly concerned with content and
control dimensions of interaction, less with what Goffman
has termed the �ritual� dimension of interaction [10].

To give an idea of the dimensions involved in conversa-
tions which have also been found relevant for spoken di-
alogue systems, Figure 1, shows the major dimensions of
conversational activity that are distinguished in the DIT++
taxonomy (http://dit.uvt.nl).

Although the DIT++ scheme provides a slot for �social
obligation management functions�, these are mainly related
to formulaic elements of interaction. Spoken dialogue sys-
tems such as TRAINS have a similarly limited view on the
social aspects. For instance, the choice of wordings may
re�ect a certain element of formality or politeness and the
system will greet the user and present itself.

The virtual humans that have been developed since the
start of this century (and perhaps slightly before that), on
the other hand, have been endowed with more elaborate so-
cial skills. In the following sections we will discuss three
embodied conversational agents that have been developed
by the Human Media Interaction group, illustrating some
of the approaches to equip embodied dialogue systems with
social skills. In the �nal section we will discuss the ap-
proaches and sketch some future developments.

2. The Virtual Receptionist
The virtual agent Karin (Figure 3) was one of the �rst

embodied dialogue systems that we used to carry out some
user experiments. Karin is a virtual receptionist who re-
sides behind the information desk at the lobby of the Vir-
tual Music Center (VMC) - a virtual replica of the theater
in Enschede. The dialogue skills of Karin were based on an
earlier non-embodied dialogue system that interfaced to a
database containing the information on the performances in

978-1-4244-4799-2/09/$25.00 c©2009 IEEE
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Information transfer functions:
information seeking
information providing functions

Action discussion functions:
commissives and directives

Dialogue Control functions:
feedback

Interaction management:
turn, time and contact management
own/partner communication management
discourse structure management

Social Obligations Management functions:
salutation, self-introduction, apologizing,
gratitude expression, valediction

Figure 1. Dialogue involves several dimensions of activity. Basic
information transfer one of these: the dimension of content. Be-
sides information exchange this also involves getting people to do
things or committing oneself to do things. On a meta-level, peo-
ple take actions that ensure that the dialogue goes well: providing
feedback on reception of messages or eliciting feedback, for in-
stance. Taking care that the interaction goes well also means that
one undertakes actions that make it clear whose turn it is to speak.
Besides the level of content/task and control, there is a third level,
which is always involved when two or more people interact, the
�ritual�, or social dimension.

[K] Hello, I am Karin. How can I help you?
[U] Is there anything on this evening.
[K] There are no performances on the 24th

of December 1999.
[U] What about the first of January?
[K] On the first of January there is only the

New Years Concert of Orkest van het Oosten.
[U] Are there other performances in January?
[K] There are 42 performances in the period

from January 1, 2000 to January 31, 2000.
Please take a look at the table.

Figure 2. Karin: example dialogue

the actual theater. The dialogue system allowed people to
query the information about performances and also to order
tickets. A short dialogue is presented in Figure 2.

To develop the dialogue system a Wizard of Oz study
was conducted in order to get a sense of the kinds of ques-
tions people would ask and a sense of how they would ask
them. On the basis of this corpus, a parser was developed
that uses pattern matching to analyze the user’s input. The
Karin agent will, as other spoken dialogue system, ask the
user questions that will allow it to �ll the slots it needs to
query the database ( [20]).

The introduction of an embodied version of the dialogue
system raised questions about the proper way to have the
agent behave with its body. What kinds of actions should

Figure 3. Karin: the virtual receptionist.

it perform? What kinds of nonverbal behaviour should it
display and how should this be related to the verbal expres-
sions? In our main study on Karin’s nonverbal behaviour
we focussed on gaze. Where should the agent be looking at
during the course of the interaction?

From the literature on gaze behaviours in interaction, we
know that it is involved in several dialogue control func-
tion and in interaction management. In a basic sense, gaze
is closely related to attention. As a listener, looking at the
speaker signals some form of attention which clearly ful-
�ls a contact management role. For a speaker, seeing that
the listener is looking, ful�lls a typical positive feedback-
function. At the end of a turn speakers frequently look to
the interlocutor, which can function as an indication that the
turn is about to end (turn management). Besides these con-
trol functions, gaze can also function as a deictic, pointing
device.

The gaze behaviour that we implemented in our agent
was related to these conversation regulation aspects and de-
ictic functions. While the user was typing, Karin would
look towards the user, as a display of attention. When Karin
spoke short sentences she would continue looking at the
user, but at the beginning of somewhat longer utterances,
we had Karin look away; turning her eyes and head upwards
and sidewards. At a certain point she would resume look-
ing at the user. This is similar to the algorithm used in [8].
We also had her look at the table of performances that ap-
pears in the screen as a result of a query to direct the user’s
attention to it.

In an experiment we looked at the effectiveness of this
behaviour by comparing three versions of the system. Be-
sides the version that implemented the behaviours men-
tioned above, we had a version in which Karin looked at the
user most of the time and one in which she would change
her gaze behaviour in a more or less random way. We had
48 people interact with one of the versions of Karin (16
per condition). They were instructed to make two reser-
vations for a performance. It appeared that subjects who
interacted with the system that implemented the gaze algo-
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rithm needed signi�cantly less time to complete the task.
This would indicate that the gaze behaviour had an impor-
tant part in interaction management, making the conversa-
tion go smoother.

Besides keeping track of the time it took the partici-
pants to make the reservations, we also asked them to �ll
out a questionnaire that consisted of several judgements on
a �ve point Likert scale related to the impression they got
from the agent. The factors that we were interested in were
ease of use, satisfaction, involvement, efficiency, personal-
ity and the perceived naturalness of the behaviours. It is
well-known that gaze behaviours also play an important role
on the social and affective dimensions of conversations, i.e.
gaze plays an important role in social signalling (see [14]
for an overview of functions of gaze). It is therefore not
surprising that simple differences in the gaze pattern have
an effect on the social perception of an agent.

Although we did not �nd any signi�cant differences be-
tween the conditions with respect to judgement of natural-
ness of eye movements, there were signi�cant differences
between the conditions on several of the other factors. The
version that implemented the algorithm performed the best
on the factors ease of use (with judgements on statements
such as �It is easy to get the right information�, �It took a lot
of trouble to order tickets�,...), personality (�I trust Karin�,
�Karin is a friendly person�,...), and satisfaction (�I liked
talking to Karin�, �I like ordering tickets this way�,...).

What this indicates is that the nonverbal behaviours that
may be taken as having primarily an interaction manage-
ment function also have an effect on the social-affective di-
mensions. As Goffman already noted, the system (control)
functions and the ritual functions cannot be separated, in the
sense that whatever behaviour is performed, this may have
effects on each of the dimensions1.

Discussion One should note that the Karin agent, is basi-
cally a plain dialogue system with an embodiment added to
it. The agent does not have a dedicated reasoning compo-
nent that deals with the ritual functions of components. The
nonverbal gaze behaviours are more or less hard-coded, so
to speak, on top of the task-oriented dialogue system. The
dialogue system does not provide special variables or mod-
ules for personality or friendliness. However, the experi-
ment shows that varying the basic behaviours of an agent
has clear effects on how it is being perceived as a social
agent.

In the Karin study, users interacted with a real working
version of the dialogue system. It showed how certain be-
haviours have effects on the conversation and the percep-
tion of the agent on the social/affective dimension. Agents

1The interaction of interaction management and social dimensions is
also explored in our current work on the perception of different turn-taking
behaviours on the perception of the social skills of an agent [24].

have been used to learn more about the mapping between
social signals and their meanings or effects in other types
of studies as well. These may take the form of perception
studies, in which subjects are asked to rate the behaviour of
an agent on dimensions related to social skills by showing
a short video clip. The goal of these studies is to establish
some kind of dictionary (or gestionary) of social signals and
their meanings. In the context of the SEMAINE project, we
have carried out several of such studies ( [4], [15], [16], for
instance). Although, such studies solve part of the puzzle
of associating social signals with their possible meanings,
they have several shortcomings. The main problem is that
they abstract away the context of the interaction. Showing
a video of an agent making a particular gesture, head move-
ment or gaze pattern, does not show the context in which
this takes place. In a different context the same signal will
often have a different effect as well.

3. The Virtual Tutor
The example of Karin shows that it is practically impos-

sible to dissociate the various dimensions of conversation:
content, control and social-emotional factors and that sig-
nals for interaction control will also work in part as social
signals. In the case of a virtual receptionist, the task as
such does not involve very complicated social skills, except
perhaps for maintaining some level of politeness. In other
kinds of interactions for which virtual agents have been em-
ployed, social skills are much more important for the task
as such. Consider, for instance, the case of a tutor2.

A tutor engages in interaction with a student to teach him
or her certain knowledge or skills. Typical acts of the tutor
include setting speci�c objectives for the student, motivat-
ing the student, giving instructions, setting a speci�c task,
asking or answering questions, explaining, providing sup-
port, hinting, pumping for more information, giving exam-
ples, providing positive or negative feedback and evaluating
the student. A tutor does not just need to provide informa-
tion on an appropriate level in a way that the students can
learn optimally, but also has to perform actions that moti-
vate and challenge students. For this, tutors may need to
praise or criticize students. A tutor should therefore not just
pay attention to how well a student is understanding instruc-
tions but also to how the student is feeling.

Lepper ( [19]) identi�ed four main goals in motivating
learners: challenge them, give them con�dence, raise their
curiosity and make them feel in control. The skills of a
good tutor does incorporate social skills. The four motivat-
ing goals identi�ed by Lepper can be achieved by varying
the teaching tactic. Also for a given task, there may be dif-

2In the ECA literature tutors or coaches are popular tasks to study rela-
tional aspects of virtual humans ( [5], and [12], and [18], are just three early
examples), though one of the �rst important studies on relational aspects
involved a Real-Estate Agent ( [7]).
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ferent strategies that a tutor can use to reach the learning
objective. For instance, the tutor can choose the Socratic
method which mainly involves asking questions to the stu-
dent. This can raise the student’s curiosity. This method
should be chosen only if the student is quite con�dent and
has some mastery over the subject. The kind of praise or
negative feedback given can provide con�dence. The tutor
will chose its actions based on how the student feels.

INES is an intelligent tutoring system that was primar-
ily designed to help students practice nursing tasks using a
haptic device within a virtual environment ( [17]). We paid
special attention to affect control in the tutoring dialogues
by selecting the appropriate feedback. Also the kind of
teaching action, the affective language used, and the overall
teaching tactics are adjusted to the presumed mental state
of the student. For this, INES takes into account elements
of the student’s character, his or her con�dence level, and
an appraisal of the student’s actions: did the student make
many mistakes, how harmful are the errors that were made,
how was the overall performance so far, how active is the
student etc. Also taken into account when calculating these
values are the dif�culty of the task, for instance. This is
used to estimated the affective and motivational state of the
student (anxious-con�dent, dispirited-enthusiastic) as well
as the performance on the task.

The tutoring situation is primarily a dialogue, and INES
is a combination of an intelligent tutor system and a dia-
logue manager. The social-affective dimensions affect both
the nature of the tutoring and the nature of the dialogue.
Affective parameters will affect the style of the feedback.
Compare, for instance, �It was quite a dif�cult task. Try
again, but put the needle in more slowly.� versus �You put
the needle in too fast. Try again.� This difference in formu-
lations shows the kinds of verbal adaptations the agent is
able to make.

Discussion Compared to the Karin agent, INES has mod-
ules built in that keep track of the user’s mental state and
modules that reason about the appropriate action to take,
taking this mental state into account. This is re�ected in the
behaviours that also involve the execution of the task level.
In this case different learning strategies may be chosen and
actions that differ with respect to presumed con�dence. The
socio-affective dimension is not only expressed through the
choice of learning strategy, but also in the verbal (and to
a limited extent nonverbal) expressions that are chosen by
the agent. The dialogue acts merge both affective and task
dimensions. INES thus shows a different sort of agent com-
pared to Karin, with the social skills intricately mixed in
with the task and expressed through strategy and choice of
words.

Another important difference relates to the user model-
ing. In the case of the virtual receptionist, the agent tries to

Figure 4. The Virtual Guide

guide the user in providing the information that is needed
to make the reservation but is not further concerned with
analysing the user’s input. INES, on the other hand tries to
get a sense of the affective state of the user by interpreting
the actions taken and estimating the impact the performance
in the exercise might have on the motivational state of the
student. Moreover, the INES tutoring agent has an emo-
tional model of its own in which emotional variables such
as happy-for or sorry-for are kept track of (for more details
see the paper cited).

In the next section we present a third virtual human in
which social skills are manifested again in a different way.
We return to the Virtual Music Center.

4. The Virtual Guide

The Virtual Guide3 is an embodied conversational agent
that also resides in the Virtual Music Center, just as Karin.
This agent is able to give directions. Visitors can ask the
Guide for information using spoken or typed language as
input, in combination with mouse clicks on a map of the en-
vironment (see Figure 4). The Virtual Guide responds using
spoken language and gestures, and can also show things on
the map. In this section we focus on the Guide’s verbal be-
haviour, discussing how the Virtual Guide aligns her level
of politeness to that of the user, so as to make her appear
more socially intelligent.

Evidence from psycholinguistics has shown that the lin-
guistic representations in social interactions automatically
become aligned at many levels [21]. In other words, di-
alogue partners tend to copy aspects of each other’s lan-
guage. Following Bateman and Paris [3], our notion of
alignment includes affective style, focusing on the verbal
expression of politeness. We have equipped the Virtual

3Online demo at http://wwwhome.ewi.utwente.nl/∼hofs/dialogue/
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Table 1. Some sentence structures that can be handled by the Vir-
tual Guide (translated from Dutch) and their politeness values (P).

Form Example sentences P
IMP Show me the hall. -3

DECL
You have to tell me where the hall is. -2
I have to go to the hall. -1
I am looking for the hall. 0

INT
Where is the hall? 0
Where can I �nd the hall? 1
Would you show me the hall? 2
Do you know where the hall is? 3

Guide with an adaptive politeness model that dynamically
determines the user’s level of politeness during the dialogue
and lets the Virtual Guide adapt the politeness of her utter-
ances accordingly: a politely worded request for informa-
tion will result in a polite answer, while a rudely phrased
question will result in a less polite reaction.

Like most previous work, we build on Brown and Levin-
son’s politeness theory [6], which is based on the idea that
speakers are polite in order to save the hearer’s face: a pub-
lic self-image that every person wants to pursue. The con-
cept of face is divided in positive face, the social need for
a person to be approved of by others, and negative face,
the need for autonomy from others. Whenever a speech
act goes against either of these needs, this is called a Face
Threatening Act (FTA). Brown and Levinson discuss vari-
ous linguistic strategies to express an FTA at different levels
of politeness. The off-record strategy is an indirect way of
phrasing an FTA so that it allows for a non-face threaten-
ing interpretation. For instance, when someone says �This
weather always makes me thirsty� this is probably a hint
that he would like a drink. However, for the hearer it is easy
to ignore the indirect request and treat the utterance only as
an informing act instead.

A dialogue with the Virtual Guide is always initiated by
the user, whose �rst utterance is then immediately analysed
to determine its level of politeness. To this end, we asso-
ciated the grammar used to parse user utterances with tags
indicating their level of politeness on a scale from -5 (least
polite) to 5 (most polite). The politeness level depends both
on sentence structure, as illustrated in Table 1, and on the
use of modal particles such as �perhaps� or �possibly�, as in
�Could you perhaps show me the hall?�4 A detailed account
of how user politeness is computed can be found in [9]. The
system also determines whether the user chooses formal (u)
or informal pronouns (je) to address the Virtual Guide. In
its replies, the Guide will use the same choice of pronouns.

4Note that the language spoken by the Virtual Guide is Dutch, and the
English translations provided in this paper may differ slightly in politeness
from their Dutch counterparts.

After having analysed the user’s utterance, the Virtual
Guide determines the affective style of its reaction. Its de-
gree of alignment to the user can be changed, with the guide
adapting its style immediately or only over a series of inter-
changes.

The �rst step in output generation is the selection of a
sentence template with the desired level of politeness, com-
puted from the politeness of the preceding user utterance
and modi�ed by the value of α. Currently the Guide has 21
different politeness tactics at its disposal, including those
from Table 1; for a full overview see [9]. The tactics are
grouped in clusters of sentence templates with an associated
politeness range (e.g, from 4 to 5). During generation, the
Virtual Guide randomly selects a template from the appro-
priate range. This way, a �tting template is guaranteed to be
found, and some output variation is achieved even when po-
liteness stays at the same level during the dialogue. Finally,
gaps in the templates are �lled in with formal or informal
second person pronouns depending on the user’s pronoun
choice.

We evaluated the politeness model using both interac-
tive experiments and quantitative evaluations where human
judges had to rate the politeness level of the verbal strate-
gies of the Virtual Guide. The main quantitative results are
that indirect tactics (e.g., �Someone should try again�) were
generally rated as much less polite than predicted. Also,
a frequent comment made by our judges was that subjects
found more polite phrasings such as �If you don’t mind� out
of place in the context of a request to look at the map. They
said �Why would I mind?�, indicating the absence of any
threat to autonomy. See [9] for more details.

In a �rst interactive experiment, we let 4 naive partici-
pants (students from our department, 2 male and 2 female)
carry out three dialogues with the Virtual Guide. In dia-
logue 1, the Guide showed no alignment (α = 1), and in
dialogues 2 and 3 the Guide was set at full alignment (α =
0). For dialogue 2 we asked the participants to be polite to
the Guide, and for dialogue 3 we asked them to be impolite.
They were free to determine the content of the dialogues
(while staying within the direction giving domain).

The participants reported that they clearly noticed the
effect of alignment in dialogues 2 and 3. Most of them
said they liked the Guide’s linguistic style adaptation in the
polite dialogue 2, but they found it less appropriate in the
impolite dialogue 3, due to the nature of the application: it
is the Guide’s ‘job’ to provide a service to the user, and the
participants felt that in this role the Guide should always
be polite, even to impolite ‘customers’. Though the users
found an impolite guide somewhat inappropriate, they
still thought it was ‘fun’ to see how the Guide adapted its
language to theirs, resulting in exchanges such as:

U: How do I get from here to the exposition, pal?
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S: I didn’t understand what you said, mate.

The participants also commented on speci�c politeness
tactics used by the Guide. For example, they thought that
system utterances such as �It looks like I have been able
to indicate the exposition on the map�, intended to be po-
lite, made the system sound insecure instead. The users also
noted that when the Guide was overly polite this could be
interpreted as sarcasm. On the other hand, the Guide also
sometimes misinterpreted the user’s level of politeness. The
most striking example is when one user said �Help!� after
the Guide had repeatedly failed to understand him. The sys-
tem interpreted this utterance as impolite due to the imper-
ative sentence structure, and promptly reacted by also using
an imperative: �Say it differently.�

Discussion Like the virtual tutor, the guide is able to show
its social skills through adapting its verbal utterances. The
behaviour is changed based on the behaviour of the user
and can thus change dynamically. The examples in the user
studies point out again, that it is not always easy to asso-
ciate speci�c behaviours with speci�c functions. For in-
stance, associating imperative sentences with directness or
impoliteness. Content and context remain very important.

Politeness is a social skill that has been studied in sev-
eral conversational agents. Presumably the �rst attempt at
implementing politeness strategies was made by Walker et
al. [25], with a recent follow-up in [13]. In their approach,
the desired level of politeness of an utterance depends on the
social distance between the dialogue participants, the power
one has over the other, and the estimated face threat posed
by the speech act. Other related work is that of [2,18,22] on
the generation of tutoring responses, also based on Brown
and Levinson’s theory. All these systems perform polite-
ness generation based on static input parameters, rather than
a dynamic user model that is updated during interaction.5

Aspects that are taken into account in other work but not by
our model include social distance and the face threat level
of system dialogue acts.

5. General Discussion
In the previous sections we have presented three em-

bodied conversational agents that we have been working on
over the course of the last decade. They illustrate a range of
ways in which agents can become social interactants. Our
aim has not been to provide the full range of possibilities
that have been explored in the �eld. By way of summary,
we would like to point out some major aspects in the design
of social agents.

5The politeness model proposed by Andr·e et al. [2] includes the user’s
emotional state, to be measured using physiological sensors. However, it
seems this approach to user modelling has never been implemented.

We hope to have made the point clear that conversational
agents are not one-dimensional, but are engaged in interac-
tions on different dimensions which we referred to by such
names as task and content, control and social-affective. A
single behaviour may work on many dimensions in paral-
lel. This is one aspect that makes the mapping between
signal/behaviour and meaning/function less straightforward
than is sometimes assumed. A better understanding of how
signals work together in different conditions is needed but
not so easy to achieve. Perception studies tend to decon-
textualise the signals and offer only limited insight. On the
other hand, current video recordings of interactions that are
available for analyse are often too particular, or too arti-
�cial. More and better methods and data collections will
need to be developed and made available.

Behaviours displayed by conversational agents are un-
avoidably interpreted by the human interlocutor on multiple
dimensions so that agents that are designed for simple dia-
logue will not escape judgements about their social skills,
even though there are no components in the agent that are
concerned with social interaction processing. Social skills
are not only displayed through nonverbal signals, but also
to what is being said and how it is said. Besides that, the
way a task is performed may show interpersonal attitudes
as well.

The examples we presented in this paper concerned so-
cial skills such as displaying friendliness, being able to mo-
tivate people and give con�dence, and being polite. Other
social skills that have been explored in the literature are
showing rapport, empathy, or engagement, amongst others
(see for instance, [11] and [23]).

The examples have shown that there can be considerable
variation in the complexity of modeling social skills. In two
of the agents that we presented, some sort of sensitivity to
the social-affective state of the human interlocutor has been
implemented. Social skills seem to require some under-
standing of the needs, desires, goals and emotional state of
the other, by de�nition. Some of the agents that are around
have more intricate user models6 than the agents we have
presented. However, in general, the affect and social sig-
nal reading capabilities of most agents are rather limited.
Not a lot of work on affective computing technology has
been integrated in the ECA systems. This is one of the ar-
eas where next generations of social agents could improve
upon. Undoubtedly, the next generations of social agents
will become more versatile in their social skills with new
projects dedicated to studying social signalling in human(-
machine) interaction.
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Abstract

While detecting and interpreting temporal patterns of
non–verbal behavioral cues in a given context is a natu-
ral and often unconscious process for humans, it remains
a rather difficult task for computer systems. Nevertheless,
it is an important one to achieve if the goal is to realise a
naturalistic communication between humans and machines.
Machines that are able to sense social attitudes like agree-
ment and disagreement and respond to them in a mean-
ingful way are likely to be welcomed by users due to the
more natural, efficient and human–centered interaction they
are bound to experience. This paper surveys the nonverbal
cues that could be present during agreement and disagree-
ment behavioural displays and lists a number of tools that
could be useful in detecting them, as well as a few publicly
available databases that could be used to train these tools
for analysis of spontaneous, audiovisual instances of agree-
ment and disagreement.

1. Introduction
Agreements and disagreements occur daily in human–

human interaction, and are inevitable in a variety of every-
day situations. These could be as simple as finding a loca-
tion to dine and as complex as discussing about notoriously
controversial topics, like politics or religion. Agreement
and disagreement are frequently expressed verbally, but the
nonverbal behavioral cues that occur during these expres-
sions play a crucial role in their interpretation [13]. That is
naturally the case not only for agreement and disagreement,
but for all facets of human social behavior, including polite-
ness, flirting, social relations, and other social attitudes [78].

Machine analysis of nonverbal behavioral cues (e.g.
blinks, smiles, nods, crossed arms, etc.), have recently been
the focus of intensive research, as surveyed by Pantic et
al. in [56, 58]. Similarly, significant advances have been

made in the area of affect recognition (for exhaustive sur-
veys, see [29, 82]). However, research efforts on the ma-
chine analysis of social attitudes are still at a rather early
stage [56, 78].

There is no overview available, to the best of our knowl-
edge, of nonverbal behavioral cues exhibited during agree-
ment and disagreement. This paper attempts to fill this gap
and to be the first step towards our eventual objective: cre-
ating a system that can automatically detect the relevant be-
havioral cues, and spot agreement or disagreement based on
both their presence and temporal dynamics.

In this paper we list (a) different nonverbal behavioral
cues relevant to detecting agreement and disagreement, (b)
a number of tools that can detect these cues, and (c) a list
of databases that can prove useful in the development of an
automated system for (dis)agreement detection.

Note that we are interested only in those cues that can be
detected using a monocular audiovisual data capture sys-
tem. The main reason for this choice is the fact that the av-
erage user has a monocular camera connected to their com-
puter system and hence, any output from this research will
be directly applicable in standard user applications, without
the need for additional and expensive equipment (such as
biosensors, thermal cameras, etc.). Furthermore, it will be
possible to directly apply the research findings for automat-
ically analyzing and detecting agreement and disagreement
in television data, such as televised political debates.

2. Agreement and Disagreement
Distinguishing between different kinds of agreement and

disagreement is difficult, mainly because of the lack of
a widely accepted definition of (dis)agreement [13]. Ek-
man [18] talked about listener’s expressions of agreement
and disagreement, distinguishing them from the relevant
speaker’s expressions. Argyle [1] specifically discussed the
fact that speakers attend to listeners for nonverbal signals
that not only serve as feedback to the process of the conver-
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sation, but also as an expression of the listener’s opinion.
Seiter et al. [67–69] have specifically discussed the impor-
tance of listener’s expressions of disagreement.

Based on the findings reported by Poggi [62], we can
distinguish among at least three ways one could express
(dis)agreement with:

Direct Speaker’s (Dis)Agreement: A speaker uses spe-
cific words that convey direct (dis)agreement, e.g. “I
(dis)agree with what you have just said”.

Indirect Speaker’s (Dis)Agreement: A speaker does not
explicitly state his or her (dis)agreement, but expresses
an opinion that is congruent (agreement) or contradic-
tory (disagreement) to an opinion that was expressed
earlier in the conversation.

Nonverbal Listener’s (Dis)Agreement: A listener ex-
presses non-verbally her (dis)agreement to an opinion
that was just expressed. This could be via auditory
cues like “mm hmm” or visual cues like a head nod or
a smile. (For a full list of the nonverbal cues that can
be displayed during (dis)agreement, see Tables 1 and
2.)

Moreover, displays of agreement, and especially dis-
agreement, can often be accompanied by expressions of
emotions like anger, boredom, disgust or frustration as is
the case for disagreement [27, 28, 68]. Hence, if the aim is
to develop an automated system for (dis)agreement detec-
tion, automatic recognition of these affective states should
be a part of the system as well.

In addition, Pomerantz [63, 64] describes disagreement
as a dispreferred activity, and states that a weak agreement
could actually be a preface to an act of disagreement. This
makes the problem of (dis)agreement analysis truly com-
plex. In this paper, we leave this aspect out of discussion.

3. Cues of Agreement and Disagreement
3.1. Cues of Agreement

Table 1 contains a list of all cues that can possibly be
present during an agreement act. The most prevalent cue
seems to be the Head Nod which is believed to be a nearly–
universal indication of agreement [14,50]. Listener Smiles
are also rather indicative. However, both cues could have
different meanings [7, 30], as further explained in Section
3.3.

When it comes to Eyebrow Raise, it is believed that it
occurs in combination with other agreement–relevant cues
particularly during an act of Nonverbal Listener’s Agree-
ment [18, 66]. Cohen [13] states that Laughter could also
increase the reliability of any reasoning about detecting
agreement, however there is no statistically grounded work

on that, as far as we know. Finally, although Sideways
Leaning, e.g., leaning on a wall due to relaxation is re-
ferred to as an agreement cue by Bull [9] and reiterated by
Argyle [1]. However, it is specifically discredited by Bull
himself [10] as a weaker sign of agreement.

Human’s communication system is fairly complex and it
is unlikely that receivers will form intricate representations
of attitude on the basis of a single cue. In fact, people most
probably infer attitudes like agreement by using a combi-
nation of such cues, or through the perception of second
order dynamic processes that involve these cues. For exam-
ple Mimicry is a mutual imitation of the interlocutor’s non-
verbal behaviour and is believed to foster affiliation, agree-
ment, and liking [12]. Mimicking the other person’s posi-
tive behaviour such as nod or smile could therefore be in-
terpreted as agreement; while the presence of the cue on its
own might just signal something else, like submissiveness
or interest.

3.2. Cues of Disagreement

When it comes to disagreement, it seems that a head
shake is the most common cue. A Head Shake could
specifically mean the refusal or reluctance to believe what
is being said [18]. However, much like the head nod and
the smile, this signal can have different purposes (look at
Section 3.3 below).

Ironic smiles are a result of a conflict between two set
of muscles and therefore are not as naturally occurring as
benign smiles [1, 65]. Similar to the ironic smile is the
Cheek Crease, during which a lip corner is pulled back
strongly, deliberately distorting a smile to convey sarcasm
[50]. These cues seem to be present in expressions of spon-
taneous and posed disagreement [50, 68].

Ekman [18] specifies that the Eyebrow Raise, or “scowl-
ing”, as referred to by Seiter et al. [67], may indicate lack of
understanding. However, it can also indicate, like the head
shake, a listener’s inability to believe what the speaker is
saying or has just said. It can even express a “mock aston-
ishment”, when combined with a raised upper eyelid and/or
a jaw drop.

Morris [50] mentions a number of disagreement–related
cues. One of them is the Nose Flare, a result of the con-
traction of the muscles on either side of the nose, which
is often accompanied by a sharp intake of air. Morris also
mentions the Head Roll, which is the action of repeatedly
tilting the head left and right expressing doubt. The Sudden
‘Cut Off’ is a gaze avoidance in which the head is turned
fully away from the speaker. The Leg Clamp, though not
specifically linked to disagreement, signifies stubbornness,
as if the conversation participant was saying: “My ideas,
like my body, are clamped firmly in position and will not
budge an inch” [50]. The Forefinger and Hand Wag, dur-
ing which an erect forefinger or a hand with the palm out-
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CUE KIND REFERENCES
Head Nod Head Gesture [1, 14, 25, 30, 41, 50, 66]
Listener Smile/Lip Corner Pull (AU12, AU13) Facial Action [1, 7, 50]
Eyebrow Raise (AU1, AU2) + other agreement cues Facial Action [66]
AU1 + AU2 + Head Nod Facial Action, Head Gesture [16, 18]
AU1 + AU2 + Smile (AU12, AU13) Facial Action [16, 18]
AU1 + AU2 + Agreement Word Facial Action, Verbal Cue [16, 18]
Sideways Leaning Body Posture [1, 9, 30]
Laughter Audiovisual Cue [13]
Mimicry Second–order Vocal and/or Gestural Cue [1, 30, 35]

Table 1. Cues of Agreement. For relevant descriptions of AUs, see FACS [19].

wards, respectively, is wagged from side–to–side has a dis-
senting meaning. The Neck Clamp, the Lip Bite accom-
panied by a vigorous head shake, and the Clenched Fist
signal anger with what is being said. The Hand Cross is
simply a two–handed version of the hand wag. The Hand
Chop is the action during which a hand imitates an axe, and
the Hand Scissor is the action during which the hands im-
itate the blades of a pair of scissors. Morris mentions that
both are often used unconsciously during a heated discus-
sion. Arm Folding is widely known as signifying a defen-
sive attitude and could also signify disagreement, e.g., in
situations where one participants is being verbally attacked
in a strong disagreement [9, 25, 50].

Another very interesting cue is the Throat Clearing.
Givens [25] states that disagreement and uncertainty can
act like chemicals or food irritants and cause this signal.
Givens also mentions that Self–manipulation, e.g., a fin-
ger on the lips, massaging a hand, or a chin rub, can pro-
vide self–comfort when politeness prevents a listener from
expressing disbelief and disagreement. Moreover, Givens
argues that a sudden appearance of Slightly Parted Lips is
a strong signal of nonverbal listener’s disagreement. This
is in agreement with Ekman’s [18] finding that a listener’s
preparatory–to–speech mouth movement signals a desire to
take the floor. Givens also considers a Lip Pucker to be the
first sign of disagreement.

Disagreement could also be inferred by second order
cues such as interruption, delay in responding, or utterance
length. For example, Greatbach et al [28] argued that dis-
agreement can be stronger if an Interruption and overlap-
ping speech occur. Similarly, Delays in responding could be
characteristics of a dispreferred activity, such as a disagree-
ment act [63, 64]. In these two examples, it is not the act
of speaking or not speaking per se that conveys disagree-
ment but the act of violating implicit rules of turn-taking in
a conversation. Note, however, that there are certain cases
where disagreement becomes the preferred activity, as is the
case with responses to compliments [53]. Finally, Utter-
ance Length has been shown to be particularly longer in

disagreement than in agreement acts [13, 24].

Table 2 shows a complete list of cues associated with
disagreement.

3.3. Backchannel Signals: Nods, shakes and smiles

Ekman [18] states that although emotional expressions
during conversations are a reaction to the “affective con-
tent”, they can also relate to the participants’ feelings re-
garding the nature and progress of the conversation itself,
i.e., they can serve as backchannel signals. Brunner [7]
specifies that there are three levels of meaning a feed-
back backchannel could have, with the higher level imply-
ing and containing the lower ones. These are: Level 1—
Involvement, Level 2—Level of understanding, Level 3—
Actual response, e.g., (dis)agreement.

Argyle [1] supports this by stating that backchannel
signals may indicate attention and understanding, provide
feedback like agreement, or be a part of mimicry, which in
turn could signify agreement.

So, agreement and disagreement could be conveyed us-
ing backchannel signals and it could be argued that most
of the implicit nonverbal cues of (dis)agreement are of this
sort. For example, nods and shakes are two of the most
common backchannel gestures. Nods usually have an affir-
mative meaning, especially if they’re repeated and their am-
plitude is large. Smaller, one–way nods usually serve as sig-
nals of involvement in the conversation [1, 66]. However, it
should be noted that head nods could also be negative [66].
Brunner [7] states that listener smiles can also be backchan-
nels and are used in the same way as head nods. Brunner
also argues that smiles act on the third level, i.e., they pro-
vide a positive response to what is being said, they provide
acknowledgment of understanding, and keep the listener in-
volved in the conversation.

Head shakes are less common, and although they can
have a dissenting meaning [1], they could also be part of
a question or laughter [1, 30].
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CUE KIND REFERENCES
Head Shake Head Gesture [1, 18, 30, 41, 50, 67, 69]
Head Roll Head Gesture [50]
Sudden ’cut off’ (of they eye contact) Head Gesture [25]
Eye Roll Facial Action [41, 67–69]
Ironic Smile/Smirking [AU12 L/R (+AU14)] Facial Action [18, 67]
AU1 + AU2 + Raised Upper Lid (AU5)/. . . Facial Action [18]
. . . /Open Jaw Drop (AU26) with abrupt onset
Barely noticeable lip–clenching (AU23, AU24) Facial Action [25]
Cheek Crease (AU14) Facial Action [50]
Lowered Eyebrow/Frowning (AU4) Facial Action [25, 69]
Lip Bite (AU32) Facial Action [50]
Lip Pucker (AU18) Facial Action [25]
Slightly Parted Lips (AU25) Facial Action [25]
Mouth Movement (Preparatory for Speech) (AU25/AU26) Facial Action [18]
Nose Flare (AU38) Facial Action [50]
Nose Twist (AU9 L/R and/or AU10 L/R and/or AU11 L/R) Facial Action [50]
Tongue Show (AU19) Facial Action [25]
Suddenly Narrowed/Slitted Eyes (fast AU7) Facial Action [25]
Arm Folding Body Posture [9, 25, 50]
Head/Chin Support on Hand Body/Head Posture [9, 25, 50]
Large Body Shift Body Action [25]
Leg Clamp (the crossed leg is clamped by the hands) Body Posture [50]
Sighing Auditory Cue [68]
Throat Clearing Auditory Cue [25]
Delays:Delayed Turn Initiation, Pauses, Filled Pauses Second–order Auditory Cue [13, 24, 28, 32, 63, 64]
Utterance Length Second–order Auditory Cue [13, 24]
Interruption Second–order Auditory Cue [28]
Clenched Fist Hand Action [25, 50]
Forefinger Raise Hand Action [50]
Forefinger Wag Hand Action [50]
Hand Chop Hand Action [50]
Hand Cross Hand Action [50]
Hand Wag Hand Action [50]
Hands Scissor Hand Action [50]
Neck Clamp Hand/Head Action [50]
Self–manipulation Hand/Facial Action [25, 50]
Head Scratch Head/Hand Action [50]
Gaze Aversion Gaze [66]

Table 2. Cues for Disagreement. For relevant descriptions of AUs, see FACS [19]

4. Detection Tools

Although in some cases detecting the cues in Tables 1
and 2 is rather straightforward, as is the case with cues that
correspond to Action Units, there are cues that are known
to be hard to detect. Two such examples are Arm Folding
and Head and Chin Support on a Hand. [58]

However, there are known techniques that would be able
to detect most of the cues listed in Tables 1 and 2. For ex-
ample, most of the current head pose estimation computer–

vision systems (for an exhaustive survey refer to [51]) can
be adjusted for detection of Head Nods and Shakes, proba-
bly the most important cues for our objective. A system that
can detect nods and shakes particularly well is the work of
Morency et al. [47, 48].

There are a few attempts to automatically detect
Mimicry, one of which is by Meservy et al. [45]. Keller et
al. [35] also mention the possibility of using Motion Energy
Analysis [6] to analyze the synchrony between the move-
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ments of the participants in a dyadic conversation. Pentland
[59] measures mimicry (or “mirroring”, as called in [59]) in
conversational audio patterns, by using auditory backchan-
nels and short words.

The hand and body actions of Forefinger Wag, Hand
Wag, Hand Cross and Hands Scissor could be detected
with adapted versions of human activity detection methods
such as the work of Oikonomopoulos et al. [54], Marszałek
et al. [42], Mikolajczyk et al. [46], Laptev et al. [37],
Niebles et al. [52] and Shechtman et al. [70]. Actions like
Leg or Neck Clamp and Arm Folding could also be de-
tected with adaptions of these methods, but with more dif-
ficulty, and both dynamic and static features would have to
be used for better results. Motion History Images [6] could
also be used for such actions, but they have proven to be
particularly sensitive to, e.g., different clothing. The latter
actions could also be detected by the arm and hand tracker
of Buehler et al. [8]. Most of the other hand actions, and
especially Hand Chop, Hands Scissor, Hand Wag and
Cross could also be detected by adapting the latter work.
Clenched Fist and Forefinger Raise and Wag seem to be
able to be detected by adapting the hand gesture interface
system implemented by Ike et al. [33]. Most of the afore-
mentioned hand gestures and some self–manipulation ges-
tures like face/lips touching can be detected by sign lan-
guage recognition methods such as that by Ding and Mar-
tinez [15].

When it comes to automatically detecting facial actions,
significant advances have been made over the past ten years.
Table 4 lists examples of the state–of–the–art systems, omit-
ting older ones that cannot detect Action Units (AUs) in
combinations, as discussed and surveyed by Tian et al. [72].
AUs are atomic facial signals, the smallest visually dis-
cernible facial movements. FACS [19] defines 9 upper face
AUs, 18 lower face AUs, and 5 miscellaneous AUs. The
most comprehensive works in automatic AU detection are
those of Koelstra and Pantic [36] and Vural et al. [79], as
they detect most of the AUs defined in FACS [19], including
those that could be cues of (dis)agreement. The former also
enables analysis of temporal dynamics of AUs, which could
prove very important when distinguishing, for example, a
smile(slow symmetric action) from a smirk (fast asymmet-
ric action). However, these methods will not work partic-
ularly well if rigid head movements are not properly dealt
with, which is usually a problem with naturalistic, sponta-
neous data. The work of Valstar and Pantic [76] can also
detect many of the AUs listed in tables 1 and 2, includ-
ing their temporal dynamics, while handling problems with
head movement registration rather well. For exhaustive sur-
veys on the topic, see Pantic et al. [55, 58].

Smiles relate to AU12 and AU13, which can be recog-
nized by many AU detection systems, as one can see in
Table 4. However, the work done by Valstar et al. [75] is

CUE REFERENCES
Head Nod/Shake [20, 22, 34, 47, 71]
Mimicry [35, 45, 59]
Smiles vs Smirks [75]
Utterance Length [32]
Laughter [60, 61, 74]
Eye Roll [20]
Head Roll [20]
Filled Pause [2, 23, 26, 80]
Pause [4, 43]
Interruption [38, 40]
Throat Clearing [44]
Tongue [21, 83]
Sudden ‘Cut Off’ [3]
Hand Scissor/Wag/Cross [8, 37, 42, 46, 52, 54, 70]
Clenched Fist/Forefinger Raise [33]
Forefinger Wag [33, 37, 42, 46, 52, 54, 70]

Table 3. Tools for detecting cues for agreement and disagreement

able to distinguish between spontaneous and posed smiles,
which could prove particularly useful in differentiating be-
tween genuine, benign smiles and ironic ones (e.g., smirks).

Sudden ‘Cut Off’ can be detected by adapting methods
aimed at detecting the focus of one’s attention such as the
recent work of Ba and Odobez [3]. Other works on head
tracking [51] and on gaze tracking [49] can be adapted for
this purpose as well. Recent work can also detect Laughter
and distinguish it from speech, using auditory cues [74] or
a fusion of auditory and visual cues [60, 61]. Finally, the
work of Matos et al. in [44] can detect Throat Clearing as
a sub–goal to cough detection.

Tables 3 and 4 list some of the discussed, recently pro-
posed tools that could be used/adapted to detect the cues
relevant to agreement and disagreement, as those listed in
Tables 1 and 2. Yet, in spite of this obvious progress
in automatic analysis of various behavioural cues, no ef-
fort has been reported so far towards automatic analysis of
(dis)agreement in naturalistic data. The only work in the
field is that by el Kaliouby and Robinson [20], which at-
tempted (dis)agreement classification of acted behavioural
displays based on head and facial movements. Detection of
these signals in naturalistic data is yet to be attempted.

5. Databases of Relevant Naturalistic Data
To develop and evaluate automatic analyzers capable of

dealing with naturalistic occurrences of agreement and dis-
agreement as defined earlier in this paper, large collections
of training and test data, recorded in naturalistic settings,
are needed.

Televised political debates provide an interesting plat-
form for analyzing agreement and disagreement–related
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System AUs Detected
1 2 4 5 9 10 11 12 13 14 18 19 23 24 25 26 32 38

Tian et al. (2001) [72]
√ √ √ √ √ √ √ √ √

el Kaliouby et al. (2005) [20]
√ √ √ √ √ √ √ √

Pantic et al. (2005) [57]
√ √ √ √ √ √ √ √ √ √ √ √ √

Bartlett et al. (2006) [5]
√ √ √ √ √ √ √ √ √ √ √ √ √

Littlewort et al. (2006) [39]
√ √ √ √ √

Yang et al. (2007) [81]
√ √ √ √ √ √

Valstar et al. (2007) [76]
√ √ √ √ √ √ √ √ √ √ √ √

Koelstra et al. (2008) [36]
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Vural et al. (2008) [79]
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Tong et al. (2009) [73]
√ √ √ √ √ √ √ √

Table 4. AU detection systems

cues. Since the first televised political debates of the 1960’s,
debates have become more common, and the audience ac-
tually expects the participation of political figures in them.
[68] At the same time, the presentation of such debates
has evolved from a single–screen approach to multiple split
screens, where every reaction each participant makes is
available for examination, regardless of who the speaker
is. [67] Even if only a single screen is used, the director
of the debate will often use close–ups of the speaker or
the listeners to give access to the nonverbal aspect of their
behavior. [31] Research has suggested that those watching
the debates perceive as less likable the participants who at-
tempt to belittle a debate opponent via cues of nonverbal lis-
tener’s disagreement. Interestingly enough, political figures
are still prepped to display certain cues for that purpose,
and hence this is an interesting case of acted agreement and
disagreement.

Canal9 1 [77] is an example of a database of political de-
bates. The database contains a total of over 42 hours of
real televised debates on Canal 9, a Swiss television net-
work. There is always a moderator and two sides that argue,
with one or more participants on each side. Although this
is a “political” debates database, the subjects are not always
politicians, and the public opinion does not matter as much.
Hence, instances of masked or acted (dis)agreement men-
tioned above, are rare. The debates are pre–edited in one
feed and more than one camera angles are used.

Roma Tre Political Debates1 is another such database. It
contains ten political talk shows and pre–election debates
aired on Italian television networks. The number of partic-
ipants ranges from two to six and each video lasts from 60
to 90 minutes.

The Green Persuasive Dataset1 is a database of 8
recorded instances of attempts by strong pro–green individ-
uals to convince others to adopt a ‘greener’ lifestyle. There
are many instances of agreement and disagreement. Each
discussion is a dyadic interaction and lasts from 25 to 48

minutes.
Other databases that could be useful for training and

testing automated tools for (dis)agreement detection would
be those capturing the instances of human–human or
human–computer interaction, in which occurrences of
(dis)agreement are very common. Such databases are
group meetings recordings like the AMI Dataset1 [11]
and human–virtual character interaction recordings like the
SAL Dataset1 [17]. For an exhaustive overview of such
databases, see [29, 82].

6. Conclusion

This paper has attempted to provide an overview of the
cues useful for detecting agreement and disagreement. It
has also attempted to provide a list of the state–of–the–art
tools that can be used/adapted to detect these cues. Finally,
a list of databases that could be used to train and test au-
tomated tools for (dis)agreement detection is also provided.
Hence, we hope that the paper can serve as an introductory
reading to al researchers interested in the problem of auto-
matic detection of agreement and disagreement.
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