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Abstract. In large and complex aerodynamic systems the overall per-
formance of a design is mainly defined by interactions between design
areas rather than by single design regions. Therefore it is necessary to
identify these interactions in order to be able to understand and improve
the designs. However, detecting and modeling those interactive effects
between distant design areas is a very challenging task which usually re-
quires a detailed understanding of the flow patterns and dedicated expert
knowledge.
In this paper we apply the information theoretic concept of interaction
information to aerodynamic design data in order to detect and quantify
interaction effects between distant design regions. Information graphs are
suggested in order to provide the results to the aerodynamic engineer in
a graphical form. In order to show the feasibility of this approach, the
information theoretic quantities are applied to the data of a 2D wing
assembly as well as to the 3D turbine blade design data.
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1 Introduction

One of the most challenging tasks in aerodynamic systems is the understanding
of the interplay between distant parts of a 3D design related to their joint influ-
ence on the overall performance. Especially for complex aerodynamic designs it
can be observed that the influence of one part of the design on the performance
strongly depends on the shape of another part due to the dynamics of the aero-
dynamic flow. Knowledge about the interactions of the aerodynamic flow and
the highly non-linear relationship between design parts is usually captured in
expert knowledge.

This paper aims at identifying interactions between design parts using com-
puter aided methodologies. The identification is purely based on the observa-
tion of geometric changes and the change in the overall performance number.
The overall performance numbers of a design (e.g. pressure loss, drag, lift or
down-force) sums up the characteristic of the aerodynamic flow under station-
ary conditions. One can expect that different interactions between design parts
are relevant for different performance numbers.
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During the evaluation process of a design the flow around each design is
either simulated using high-fidelity CFD (computational fluid dynamic) simula-
tions, using wind tunnel experiments or by exposing the design to its real working
condition. The results are a single or multiple performance numbers which are
subject for optimization. The optimizer that drives the optimization process can
either be a human, a machine or a sensible combination of both. During the opti-
mization of an aerodynamic design a huge amount of design data with its related
performance numbers is generated. It is important to note that among different
optimization runs the parameters of the used representation or the representa-
tion itself which defines the shape of the geometry can change [12]. Different
representations raise difficulties in extracting information from all designs. This
includes the detection of interactions. A strategy to overcome this problem has
already been presented in [4].

The information theoretic concepts for the identification of interactions are
formalized in section 2. In practice highly complex designs can’t be handled by
one optimizer and thus design parts are distributed to different ones. The par-
titioning of the design is usually done based on expert knowledge. If important
interrelations are not captured by the knowledge of the expert a final super-
position of the optimized design parts might end up with unexpected results.
Applying the information theoretic concepts for the detection of interaction ef-
fects to a 2D wing assembly in section 3.1 aims at making this issue apparent
to the reader. Finally, the use for more complex aerodynamic designs given the
example of a 3D turbine blade is demonstrated in section 3.2.

2 Interaction Detection

In order to increase the understanding on how certain parts of the design interact
and how this interaction effects the flow and thus the performance number, first
the interacting design parts have to be identified. Jeong [10] applied ANOVA
techniques in order to extract information about the interaction effect of design
variables related to the performance number(s). Therefore A Kriging model has
been applied to approximate the relationship between the design variables and
the performance numbers. The explained variance of the outcome of the model
defines the importance of a single or multiple design variables. The main dis-
advantage of this approach is that the accuracy of the importance estimation
and thus the detection of important interrelations between variables strongly
depends on the reliability of the underlying Kriging model.

A different approach from statistics adds interaction terms to multiple regres-
sion models for detecting and modeling moderated causal relationships between
variables, [8]. The interaction between variables will be significant if the influ-
ence of one variable on the outcome changes as a function of another one. An
F-test can be used to test for significance. In multiple regression models a certain
functional relationship between the related variables has to be asssumed which
is usually not known.
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We suggest to apply methods from information theory for analyzing the de-
pendencies between design parameters. This approach is purely data driven and
does not need any background knowledge concerning the kind of relationship.

2.1 Interaction Information

Without loss of generality we define ∆ = {∆k|k = 1 . . .N∆} as a set of N∆ design
parameters and Φ = {Φm|m = 1 . . .NΦ} as a set of NΦ performance numbers.
Mutual information is suggested for quantifying the correlation between a design
parameter ∆k and a performance number Φm:

I(∆k; Φm) =
∑

δk∈∆k

∑

φm∈Φm

p(δk, φm) log
p(δk, φm)

p(δk)p(φm)
(1)

= H(Φm) − H(Φm|∆k), (2)

where δk and φm are discrete instances of the design and performance vari-
ables respectively, after e.g. binning has been applied, with 0 ≤ I(∆k; Φm) ≤
min(H(∆k), H(Φm)). An equivalent formulation of the mutual information in
terms of the Shannon entropy is shown in equation 2. We term I(∆k; Φm) the
marginal information gain of parameter ∆k on the performance Φm. Although
the marginal information gain of one design parameter might be vanishing, thus
the design parameter has no direct impact on the performance, the design pa-
rameter might be correlated to the performance in the context of another design
parameter ∆l.

McGill [11] has been one of the first who formalized the concept of mutual
information for more than two attributes. Jakulin [9] summarized the concepts
from the literature to the concept of interaction information. Following Jakulin,
the interaction information for three attributes in terms of marginal and joint
entropies is defined as follows:

I(∆k; ∆l; Φm) = H(∆k, ∆l) + H(∆k, Φm) + H(∆l, Φm)

−H(∆k) − H(∆l) − H(Φm) − H(∆k, ∆l, Φm) (3)

= I(∆k, ∆l; Φm) −
(

I(∆k; Φm) + I(∆l; Φm)
)

(4)

Writing the three way interaction in terms of mutual information easies
the interpretation and understanding of this quantity, see equation 4, with
I(∆k, ∆l; Φm) being the joint information gain of two design parameters ∆k

and ∆l. From equation 4 one can see that the interaction information for three
attributes (∆k, ∆l, Φm) equals the difference between the joint information gain
and the sum of the marginals. On the one hand, if the joint information gain
equals the sum of the marginal gains one can conclude that there is no interaction
between the design parameters. If on the other hand the joint information gain
is larger than the information gains from the single parameters, both parame-
ters are said to interact. Unlike mutual information, the interaction information
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can be negative. That happens when the information gain from the marginals
exceeds the joint information gain. A negative value can be interpreted as re-
dundant information that one parameter adds about the performance.

Jakulin [9] generalized the information theoretic concepts of three-way in-
teraction to the interaction information of multiple attributes. However the re-
mainder of this paper focuses on the calculation of three-way interactions.

The interaction information like it is defined here is based on discrete in-
stances of the design and performance numbers. Thus the continuous design and
performance parameters have to be discretized. The discretization can be done
e.g. using a simple binning approach. More sophisticated solutions exist where
e.g. splines have been used for the generation of the marginal and joint distribu-
tions, see [2]. In this approach instances of an attribute are assigned to multiple
bins depending on their value and on the used spline function. This approach is
especially suited for small data sets and is used here.

2.2 Interaction Visualization

Information graphs [9] are used to visualize the calculated information quantities
in order to facilitate the analysis of the interactions between variables. An in-
formation graph is an adequate tool for presenting the results of the interaction
analysis e.g. to aerodynamic engineers. The graph contains one node for each
design variable under consideration, see Fig. 1. The marginal information gain of
a design variable on the performance is assigned to each node while the informa-
tion that is gained from the interaction of two design variables is assigned to the
edge between nodes. A negative interaction information is indicated by a dotted
while a positive interaction information is indicated by a solid line between two
nodes.

Fig. 1. Visualization of the information graph for two design parameters ∆k and ∆l.

Under the assumption that the maximum information gain is the information
that we need to remove all uncertainty about predicting the performance, the
information quantities are normalized by H(Φ). Fig. 1 illustrates an interaction
graph for two design parameters.

3 Results

The information theoretic concepts have been applied to a test data set that
stems from a 2D flap-wing profile as well as to a second more advanced data
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set that captures local design deformation data from the optimization of a 3D
turbine blade.

3.1 Flap-Wing Test Case

The used test case is a 2D wing assembly which consists of two wings, a central
wing and a flap wing. The shape of the wing assembly is controlled by two design
parameters ∆ = {αwing, αflap}, the angle of the central wing and the angle of
the flap wing, see Fig. 2a. In order to generate the design data set different
wing assemblies have been generated: αflap ∈ {0.5◦, 1.0◦, 1.5◦, 2.0◦}, αwing ∈
{6.0◦, 6.5◦, 7.0◦, 7.5◦}. For each combination of the flap and central wing angle a
2D CFD mesh has been generated using Mesh2D [3]. Given the CFD mesh the
flow has been simulated by solving 2D unsteady Navier-Stokes equations. From
the resulting flow the mean drag coefficient has been calculated which determines
the performance Φ = {C̄d} of each wing assembly. The resulting performance
numbers of the generated wing assemblies are summarized in Fig. 2b that shows
the influence of αflap on the mean drag coefficient for constant angles of the
central wing αwing.

a b
0.5 1 1.5 2

7.5

8

8.5

9

9.5

10

α
flap

 [°]

M
ea

n 
dr

ag
 c

oe
ffi

ci
en

t

 

 

α
wing

 = 6.5°

α
wing

 = 7°

α
wing

 = 6°

α
wing

 = 7.5°

c

Fig. 2. a: Illustration of the wing assembly. b: The influence of the flap angle on the
mean drag coefficient for different angles of the central wing. c: Visualization of the
interaction graph for the wing-flap test case.

Assume that the wing assembly would be the target of optimization without
having any knowledge on the interaction between the angle of the central and
the angle of the flap wing. Further assume a given start design with αwing = 7.5◦

and αflap = 0.5◦. The mean drag coefficient for the start design configuration
has been calculated with C̄d = 9.75. In the following scenario, the design is
separated into two parts and distributed to two optimizers. The task of each
optimizer is to find a value for the considered angle which minimizes the mean
drag coefficient. In the described scenario the optimization of the central wing
would probably result in an optimal solution with α

opt
wing = 6◦ (19% reduction

of C̄d). The optimization of the flap wing will most likely result in an value
α

opt
flap = 2◦ (14% reduction of C̄d). As can be seen from Fig. 2b, putting both

solutions together will fail in further reducing drag. The reduction of the mean
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drag coefficient is about 14% which is less than what could be reached if both
parameters would be optimized together.

Given the already evaluated wing designs we want to see whether the calcula-
tion of the three-way interaction information can be applied to get a hint on the
relationship between both variables. Therefore the values of the angles and the
performance numbers have been discretized using 10 bins and a spline function
of order 2. The resulting information gain with respect to two- and three-way
interactions is summarized in the interaction graph shown in Fig. 2c. As can
be seen, the interaction information between both design parameters is positive.
The aggregation of both parameters lead to 12.9% reduction of the uncertainty
of the mean drag coefficient. This verifies that the assumed separation is sub-
optimal because the statistical dependency was ignored. Therefore, we conclude
that our system set-up to extract dependencies between design variables show
the expected results.

3.2 Turbine Blade

In the following application, the concepts for analyzing interactions are applied
to a data set of 3D turbine blade designs. The reference blade geometry is from a
high pressure (HP) turbine of the Honda HF118 turbofan engine. The considered
data set consist of 200 different blade designs that result from several compu-
tational optimization runs where evolutionary strategies have been applied [6],
[7]. A parallelized 3D in house Navier Stokes solver, called HSTAR3d [1] is used
to simulate the fluid dynamics of the stator blade section. Based on the flow
field the pressure loss is calculated and is used to quantify the performance of
each blade. In order to analyse local design interactions the unstructured surface
meshes of the 200 blade designs have been generated by uniformly triangulating
the bounding surface of each blade, see [5] . The cross sections of the blade have
not been triangulated because there is no flow at all. Each surface mesh com-
prises NV = 1200 vertices which are used to sample the continuous surface of
the blade. Based on the surface meshes and the related performance numbers,
all pairwise design comparisons are generated. The displacement values of the
corresponding vertices together with the performance differences between the
blade designs are calculated, as suggested in [4]. This results in a set of dis-
placements, ∆ = {∆i : ∆i = {δr,m

i,j : i, j ∈ [1 · · ·NV ]; r, m ∈ [1 · · ·NB]; r 6= m}}
(where NB = 200 defines the number of blades in the design data set) and a set
of performance differences, Φ = {ωm − ωr : r, m ∈ [1 · · ·NB]; r 6= m}} (where ω

defines the pressure loss of the blade).
The displacement values ∆ and the performance differences Φ are the basis

for the analysis of local design interactions. The set of displacement values for
each vertex ∆i as well as the performance differences are discretized using 10
bins and a spline order of 2. The brute force approach for analysing the interac-
tions between vertices is to calculate all pairwise interaction information between
all vertices. Especially for complex designs with a high number of vertices this
becomes infeasible. In [4] an algorithm is suggested for reducing the considered
vertices to a manageable number. The sensitivity of the vertices is calculated
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Fig. 3. Information graph which visualizes the two- and three-way interaction between
the identified sensitive design regions and the change in the pressure loss are shown on
the right. The cluster centers of the sensitive design regions are shown on the left.

and a pivot design has been chosen. After that, vertices are clustered based on
the x, y, z coordinates and its sensitivity. Finally, vertices are selected that are
closest to the emerged cluster centers. Given a fixed number of 10 clusters the
resulting vertices are presented in Fig. 3 on the left. Thus instead of calculating
the interactions between 1200 vertices only the 10 selected vertices are consid-
ered. The resulting interaction graph after calculating the information theoretic
quantities for two and three variables is shown in Fig. 3 on the right. In order
to increase the interpretability of the graph, weak pronounced interactions are
not drawn in the graph. Edges where the normalized interaction information is
between −6% and 2% have been removed. It can be seen that especially vertices
∆10, ∆9 and ∆8 provide mainly redundant information on the performance.
This indicates that those vertices can be removed from further optimizations.
However, positive interactions are identified between vertices of the suction and
the pressure side of the blade. Especially interesting is the interaction between
the leading edge ∆7 and the trailing edge ∆4 and the interaction between the
vertex close to the casing at the pressure side ∆3 and the vertex close to the hub
section at the suction side ∆5. These are interactions that might not be obviuos
for an aerodynamic expert. With the provided interaction graph the expert can
get interesting insights into the interaction between design parts which can be
target for a more detailed analysis with respect to fluid dynamic properties.

4 Conclusion

In this paper, we focused on the detection of interaction effects based on aerody-
namic design data. The use of the information theoretic interaction information
is suggested because no assumptions about the underlying functional relation-
ship have to be made. By applying the concept of interaction information to a
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flap-wing assembly test case, we highlighted the discussion on the importance
of interaction detection before splitting complex aerodynamic designs into parts
for distributing the optimization process. The interaction quantities have been
applied for detecting local design interactions between sensitive regions of a 3D
turbine blade. Important relationships between design regions with respect to
the overall performance have been identified as well as design regions which do
not contribute to the performance at all. It has been shown that using displace-
ment information that is calculated based on unstructured surface meshes and
combining this representation with interaction information allows to detect in-
teraction effects independent of the representation used during the optimization
process. The use of interaction graphs is suggested in order to hand over the
extracted information to aerodynamic experts.
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