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Abstract. This paper’s intention is to adapt prediction 
algorithms well known in the field of time series analysis 
to problems being faced in the field of mobile robotics and 
Human-Robot-Interaction (HRI). The idea is to predict 
movement data by understanding it as time series. The 
prediction takes place with a black box model, which 
means that no further knowledge on motion dynamics is 
used then the past of the trajectory itself. This means, the 
suggested approaches are able to adapt to different 
situations. Several state-of-the-art algorithms such as 
Local Modeling, Cluster Weighted Modeling, Echo State 
Networks and Autoregressive Models are evaluated and 
compared. For experiments, real movement trajectories of 
a human are used. Since mobile robots highly depend on 
real-time application, computing time is also considered. 
Experiments show that Echo State Networks and Local 
Models show impressive results for long term motion 
prediction with a prediction horizon of up to eight seconds. 

1 Introduction 
For autonomous social robots, like SCITOS [3], it is 
important to predict their own movement as well as the 
motion of people and other robots in their environment, for 
example to avoid collisions or to interact with moving 
people. Hence, further actions can be planned more 
efficiently. Most approaches in this field focus on optimal 
navigation strategies [6], [5]. This paper suggests spending 
more effort into prediction of the motion of the moving 
objects instead. Often, only linear approximations or linear 
combinations are used to solve this problem. 
First of all, to be able to perform an adequate navigation, it 
is necessary to know the past motion trajectories of the 
surrounding dynamic objects. For simplification, a tracker 
is assumed, which is able to provide such trajectories in 
real-time. Scheidig [7] , for example, presents a person 
tracker, which provides the person’s position and her 
motion trajectory projected onto the ground plane. 
Furthermore, it is possible to use a system tracking each of 
the person’s limbs. This results in a complex trajectory in 
3D space as it is shown in Figure 2. In both cases, the 
given trajectory of the motion can be interpreted as a time 
series T with values ssssi for time steps i=0,1,...,n-1: T = 
(ssss0,ssss1,…,ssssn-1). 
For predicting the data coming from the tracker, an 
assortment of time series analysis algorithms has been 
implemented and comparatively tested. 

For applying these approaches with the described scenario, 
it is necessary that the algorithms fulfill some constraints 
for online application. First of all, calculation time is an 
important criterion. But, since most of the approaches rely 
on the trajectories’ past, it has also to be considered, how 
much data is needed to generate a useful prediction. 
Observing a person for several seconds before being able 
to predict her motion, doesn’t seem to be applicable. This 
problem is also discussed in the experiments, but the focus 
is to the prediction qualitiy. 
The next section introduces our time series analysis 
approach to mobile robotics and HRI. Furthermore, the 
techniques are discussed, which are chosen to be tested. 
Section 2.1 discusses Echo State networks, which build 
their prediction by use of a randomly connected hidden 
layer, which is iteratively fed by the past trajectory points. 
Autoregressive Models from section 2.2 assume a linear 
relation in the time series which means that any time series 
value can be determined by using a linear combination of p 
previous values. Local Models try to find similar states of 
the observed trajectory (see Section 2.4). Similar to Local 
Models are Cluster Weighted Models (Section 2.5). 
However, for this approach the state space is clustered. In 
section 3 the comparing experiments with their conditions 
and results are presented, while the paper is concluded in 
Section 4. 

2 Time Series Prediction 
Our approach aims at the interpretation of movement data 
as time series to perform a long-term prediction. Within 
the field of time series analysis, a variety of algorithms 

 
Figure 1: The observed trajectory (green) is to be 
predicted (red) for up to 500 time steps (about 8.3 sec. at 
60 Hz). This is achieved only by exploiting the past 
trajectory's characteristics using a window (yellow) of D 
points equally spaced with interval T. 



does exist, coming from multiple applications with 
different backgrounds. Their fields of application reach 
from prediction of economic data to climate and biologic 
data, such as neural activities [1]. To provide a significant 
survey, state-of-the-art neural networks, probabilistic and 
deterministic approaches are selected for evaluation 
The algorithms presented in this paper are intended to be 
used for motion prediction to enable a mobile robot a more 
anticipative navigation in dynamic environment. In such 
an environment the robots has to avoid collision with 
moving objects (humans, balls) or has to interact with 
them. For this purpose, the robot needs to predict the 
future movement of these dynamic objects. Basically, for 
all presented algorithms the prediction for each future 
point on the trajectory is done iteratively for up to 500 
time steps (this corresponds to about 8.3 seconds of motion 
if using a sampling frequency of 60 Hz) (Figure 1). This is 
far beyond the abilities of a usual motion tracker, which 
only has to gap missing frames or deal with noisy sensor 
data. 
The prediction in general takes place with the so-called 
black box model which means that no further background 
information is used than the past trajectory itself. The 
aspired prediction shall follow the trajectory’s 
characteristics, which can be found in their past. 
Furthermore, no explicit trajectory models are given, to be 
able to freely adapt to completely new situations. 
The output of the tracker is given as described in section 1. 
Hence, the ssssi can be assumed as the tracked object’s 
position, e.g. in a three dimensional Cartesian state space 
ssssi=(xi,yi,zi)

T (see Figure 2) 

2.1 Echo State Networks 
It is commonly known, that Neural Networks are well 
suited for function approximation tasks. For the specific 
task of predicting time series, Echo State Networks (ESNs) 
are often used in the recent years [4], [9]. 

2.1.1 Basic Idea 
ESNs have some specific features which differ from 
“standard” neural networks: The hidden layer consists of 
neurons which are randomly connected (see Figure 3). If 
the connectivity is low, this layer provides independent 
output trajectories. For this reason, the hidden layer is also 
called reservoir. Furthermore, there are neurons which are 
connected to circles in the reservoir, so that past states 

“echo” in the reservoir. That is the reason why only the 
current time series value ssssn is needed as input. 
The weights of the reservoir determine the matrix rW . In 
[4], it is mentioned that the spectral radius spec of this 
matrix1 is an important parameter and must not have 
values above 1.0 to guarantee stable networks. The 
randomly initialized reservoir matrix rW  can easily be 
adapted to a matrix with a desired spectral radius. 
However, [9] argued that networks with a spectral radius 
close or slightly above 1.0 may lead to better results. Both 
possibilities are evaluated for their suitability for motion 
prediction. 
Furthermore, the sparseness of the reservoir matrix plays 
an important role. A sparse reservoir matrix means that 
most of the weights in the reservoir are set to zero. This 
can be interpreted as the reservoir being decomposed into 
subsets, which are responsible for basic signals being 
overlaid by the output layer. As suggested in [4] and [9], 
about 80% of the weights are set to zero. 
Another characteristic of ESNs is that only the output 
weights wwwwout are adapted and learned. All other weights 
(input, reservoir, feedback) are chosen randomly and stay 
static. 

2.1.2 Training and Application 
For training, the network is initialized randomly, and the 
training time series is used as network input step by step. 
The internal states rrrrn are calculated by using the following 
recursive equation: 

 

rrrrn describes the internal state at time step n. rW  stand for 
the reservoir matrix, while wwwwin and wwwwback are the weights at 
the respective edges (see Figure 3), while f is the transfer 
function of the reservoir neurons, which can be the Fermi-
function or the hyperbolic tangent. 
From a predefined starting point, the internal states rrrrn can 
be combined to a matrix RRRR. The adaptation step for the 
output weights wwwwout is a linear regression using this matrix 
and the vector of the related output values oooo: 

 

After weight adaptation, the network can be applied for 
prediction. Thereto, the network is fed again with the 
whole trajectory data as input, this time step by step. If the 

                                                           
1 The spectral radius of a matrix equals to the largest Eigenvalue. 

 
 

Figure 2: Example of movement data from the University of Glasgow. Shown are the body points from which data is 
available (a) and an exemplary trajectory of the movement of the left ankle while walking in circles (b). 



prediction is taking place (i.e. reaching the last known 
point in time) the output is fed back to the input. So, the 
last network output is used as the next input to be able to 
generate more than one prediction step. In our 
experiments, up to 800 prediction steps are generated. 

2.1.3 Enhancements 
In [9] a few additional Echo State Network features are 
introduced, like an online adapting rule and a plasticity 
rule to adapt the Fermi transfer function parameters in the 
reservoir (intrinsic plasticity). Furthermore, additional 
weights such as a direct input-output (wwwwdir) weight and a 
loop at the output neuron (wwwwrec) are suggested. Apart from 
the online rule, all other of those enhancements were 
evaluated and tested. 
Intrinsic plasticity is performed online. It helps to adjust 
the reservoir transfer functions for better adapting to the 
current prediction task. It takes place before starting the 
learning of the output weights and shouldn’t last longer 
than 200 time steps, otherwise predictions could get 
instable. Unfortunately, intrinsic plasticity has the effect 
that the eigenvalues and thus the spectral radius of the 
reservoir matrix increases. 
Since in Echo State Networks a huge number of 
parameters can be adjusted, a more automated process 
would be reasonable, especially, for those network 
weights, which are not changed during the regular training 
process, i. e. the wwwwin, wwwwback, and rW . We suggest to use 
multiple instances of the network, as a kind of simple 
stochastical search in the parameter space. All instances 
are trained using the same input data after initializing the 
fixed weights differently (in a random manner). During the 
training process, the output of each network is compared 
with the corresponding values of the training trajectory. 
The network showing the best prediction results for the yet 
unknown training data is then selected for further 
application. 

2.2 Autoregressive Models 
The next type of time series analysis algorithms introduced 
here are Autoregressive Models (AR). These models 
assume a linear relation in the time series which means 
that any time series value can be determined by using a 

linear combination of p previous values. The parameter p 
is the only one that needs to be defined. The general 
equation for calculation is as follows: 

 

The vi are the AR coefficients of the previous values and 
have to be calculated to predict future values. There are 
several possibilities to determine these coefficients. Three 
of them are discussed in the following. 

2.2.1 Wiener Filter 
The Wiener Filter simply does a linear regression with all 
points in the training time series [10]. In the literature 
usually the last p points are used. A matrix EEEE with all 
points of the training time series and a vector oooo with the 
output values for each embedding point are generated. The 
AR coefficients arise from the linear regression: 

 

Unlike as it is suggested in [10] to use only the last p 
values, the embedding discussed in section 2.3 is presented 
as input for the Wiener Filter. Experiments show that using 
the embedding leads to better results.  
Note that this algorithm has similarities to the Local 
Modeling described in section 2.4 with the used regular 
embedding. However, the nearest neighbor search, needed 
for the Local Modeling algorithm, does not take place 
here. 

2.2.2 Durbin-Levinson 
This algorithm is based on the autocorrelation function 
(ACF) ρ(h) which has to be determined before [8]. The 
ACF describes to some extend the self similarity of the 
given time series, by specifying the correlation of all 
possible delays between points on the time series. Then the 
AR coefficients can be calculated recursively to a defined 
AR depth p. Values around p=100 often lead to the best 
results. 
 
In recursion step n the n-th coefficient n

nv  is computed. 
The upper index stands for the recursion step, while the 
lower specifies the coefficient. 

 

All existing coefficients 1n
1n

1n
1 ,v,v −

−
−
K from the last 

recursion step are adapted as follows: 

 

2.2.3 Yule-Walker 
The last method for determining the coefficients uses the 
Yule-Walker equations [8]. For this approach, the ACF is 
needed again, but this time in its unnormalized version, as 
auto-covariance function γ(h). Afterwards, the following 
equation system can be solved to get the AR coefficients: 

Figure 3: The design of Echo State Networks has some 
characteristic features. In addition to the randomly 
connected reservoir rn, the training algorithm is pretty 
simple for neural networks: Only the output weights wout 
are adapted. 



 

Unlike the Durbin-Levinson algorithm, now all 
coefficients are determined at once. 

2.3 Embedding Space 
For applying the approaches introduced in sections 2.4 and 
2.5, an embedding in a higher dimensional space is 
necessary. The resulting trajectory can not be directly used 
as input for most of the discussed algorithms. Therefore, it 
has to undergo several preprocessing steps. 
On the one hand, time series literature states that the mean 
has to be removed from the time series, and, therefore, 
from the trajectories. On the other hand, a higher 
dimensional embedding for the time series is generated. 
The well known sliding window approach can also be 
regarded an embedding. An observation window with size 
T ·D is put on the trajectory (Figure 1). From this window, 
each T-th time step is used to generate the embedding. 
This kind of embedding is called regular embedding and 
two parameters are needed: the embedding delay T and the 
embedding dimension D. Such an embedding can be 
generated for each point of the trajectory from time step T 
·D on. The following equation shows the regular 
embedding eeeet at time step t for time series values ssssi. 

 

So, the time series is transformed into a D-dimensional 
space – the embedding space. To each embedding belongs 
an output oooot, which stands for the successor sssst+1 of the 
selected window. 
The two introduced parameters T and D don’t need to be 
defined by hand. Time series analysis offers techniques to 
automatically determine these parameters. For the 
calculation of the embedding delay T, the average mutual 
information function I(T) is typically used. It is sufficient 
to search the first minimum in this function and to choose 
the right value for T as embedding delay [1]. 

 

Discretized histograms from the observed time series are 
needed to calculate the probabilities P(st,st−T), P(st), and 
P(st−T). Proper values for the number of histogram bins 
are between 15 and 30. In most cases, the smaller value is 
used to keep the calculation time low.  
For the calculation of the embedding dimension D the 
embedding delay T is needed. Afterwards, so called true 
and false neighbors in embedding space need to be found. 
The idea behind the approaches for prediction is to find 
parts of the trajectory in their past, which are similar to the 
one from which prediction needs to approximated. Hence, 
a true neighbor is a real state space neighbor and qualified 
for a prediction. False neighbors only seem to be neighbors 
because of a too low embedding dimension. If the 
dimension is increased, what is equivalent with a further 
look into the past, different behavior will be observed from 
such false neighbors. To speed up the whole embedding 
procedure, not every embedding point is used for the 

classification in true and false neighbors, but a random 
selection of around 5% to 10% of the time series 
embedding points. 
To find neighbors, in general a distance measure is 
necessary. In this paper, the Euclidian distance is used to 
separate true and false neighbors. The embedding 
dimension D is increased step by step starting with D=1. 
If a significant difference in a point’s distance between D 
and D + 1 is observed, then this point is detected as a 
false neighbor. Otherwise this point seems to be a true 
neighbor. If the proportion of false neighbors falls below a 
certain value, then the associated value of D is used as 
embedding dimension. 
To avoid this extensive search for parameters T and D, 
we, furthermore, used genetic algorithms instead. During 
the training phase, the best combinations of embedding 
dimension and embedding delay at a time are mutated. The 
prediction results from the subsequent algorithm (Local 
Modeling or Cluster Weighted Modeling) are used to 
determine which mutation works best. 

2.4 Local Modeling 
Local Modeling [2] is based on the aforementioned regular 
embedding. The principle idea is a simple nearest neighbor 
search in the embedding space of the last point in the time 
series eeeen−1 for which the prediction needs to be calculated. 
With the found nearest neighbors eeeei and their 
corresponding outputs ooooi the prediction is generated. 
“Near” means again a low distance in Euclidean space, but 
also other distance measures are possible. 
In the general case, a polynomial is estimated for the 
prediction describing the relationship between embedding 
eeeei and output ooooi. The nearest neighbors are used to define 
the polynomial’s coefficients v applying linear regression. 
The influence of each neighbor can be controlled by a 
weight wwwwi depending on the distance to the embedding of 
the last point in time eeeen−1: 

 

Though, the weighted polynomial for each neighbor is 
represented in matrix PPPPW by putting the polynomial’s 
monomials2 into the matrix elements. ooooW is the weighted 
vector of the neighbors outputs. 
In practice, the polynomial degree g is usually low. Often 
its enough to use g=0 (Local Averaging Model) or g=1 
(Local Linear Model). 
In the first case, the polynomial simplifies to a constant 
and the linear regression to a weighted mean of the 
neighbors outputs: 

 

Where pred
ns  is the prediction in time step n. The weights 

of the neighbors wwwwi can be determined in manifold ways. 
One example can be found in [2]. The basic idea is to rank 
the neighbors according to their distance. This means, that 
neighbors, which are far away, i.e. which belong to a less 
similar trajectory, have less influence. 

                                                           
2 elementary part of the polynomial, consisting of only one term 



If the Local Linear Model is used, then the matrix PPPP is 
filled with the embeddings of all N neighbors and with 
ones in the first column for the constant part of the 
polynomials. The polynomial is now a linear function 
depending on the embedding. 

 

After determining the coefficients v the prediction is 
calculated as follows: 

 

Here v0 stands for the constant of the polynomial. 
To get good prediction results, it is crucial to choose 
proper parameters, such as the embedding parameters T 
and D and the number of the nearest neighbors N. 
Especially with higher polynomial degrees, the algorithm 
is extremely sensitive to the choice of these parameters. 
Therefore, an evolutionary algorithm was implemented 
which often leads to good results as recommended in [2]. 

2.5 Cluster Weighted Modeling 
The Cluster Weighted Modeling, which is described also 
in [2], is operating in the embedding space, too. The 
viewpoint lies not on single embedding points like in the 
Local Modeling. Now the embedding space is clustered 
and covered with Gaussian representation. Each cluster cm 
has a Gaussian representation P(eeee|ccccm) in the embedding 
space and another one in the output space P(oooo|eeee,cm). 
The so-called Input Domain P(eeee|cm) specifies the 
membership from each cluster to the embedding for the 
last point in the time series which is to be predicted. 

 

Note that the dimensions assumed to be independent to 
simplify the equation given above especially in high-

dimensional spaces. Otherwise, a covariance matrix would 
be necessary [2]. 
The output terms P(oooo|eeee,cm) determine the membership in 
the output space which is assumed to be one-dimensional, 
i.e. the next time step of the time series. 

 

The so called cluster function f(eeee,βm) represents the mean 
of the Gaussians. This function can be understood as 
similar to the polynomial in the Local Modeling (see 
section 2.4). 
The following fraction can be understood as a weighted 
mean of the cluster function values f(eeeen,βm) of all clusters. 
The weighting takes place with the product from Input 
Domain P(eeeen|cm) and the general cluster weight P(cm). 

 

In these equations a lot of parameters need to be chosen: 
For each cluster, the mean and variance for the Gaussians 
in embedding space and output space is needed. 
Furthermore, the cluster function f(eeeen,βm) and the cluster 
weight P(cm) must be determined. 
Typically an Expectation-Maximation-algorithm (EM-
algorithm) is  used to optimize most of the algorithm’s 
parameters. This subroutine calculates in the E-step a a-
posteriori distribution P(cm|oooo,eeee) of the existing data as 
follows: 

 

In the following M-step the parameters are updated. The 
algorithm can be found in detail in [2]. After several 
iterations, the EM-algorithm leads to a local minimum in 
the parameter space. 
Only the number of clusters and the cluster function 
remain to be chosen manually. All other parameters are 
initialized randomly and adapted using the EM-algorithm. 
As cluster function, similar functions like the Local 
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Figure 4: Prediction of the 3D movement trajectory from Figure 2 using Local Average Model. The prediction starts at 
time step 1000 and is calculated for 500 steps. No information about the actual trajectory is provided to the prediction 
algorithm from time step 1000 on. On the left side (a), the three dimensions are plotted over time. The right plot (b) shows 
a visualization in 3D space. The original trajectory is plotted in blue, while the prediction is in red color. 



Modeling polynomials can be used. Since, calculation time 
strongly depends on the number of clusters, the value of 
these parameter should not be too high for an online 
application. 

3 Motion Prediction 
The algorithms presented in this paper are intended to be 
used for motion prediction to enable a mobile robot to 
navigate and to interact with humans in a dynamic 
environment. To be comparable and reproducible, 
movement data taken from the University of Glasgow3 is 
used. This benchmark data is available as 3D coordinate 
representation for each limb of a human performing a 
certain action, e.g. walking (see Figure 2). Using this data 
is even more challenging, because several basic motions 
are combined (i.e. intrinsic movement, e.g. of the foot 
combined with the walking direction). The data set 
consists of 25 trajectories containing 1,500 up to 2,500 
sampled points in Cartesian space. An example of a 
prediction of the 3D movement data using Local Linear 
Models (see Section 2.4), is shown in Figure 4.  

                                                           
3 http://paco.psy.gla.ac.uk/data ptd.php 
 

Besides the movement data coming from the University of 
Glasgow, periodical and “standard” chaotic time series are 
used. As chaotic time series the Lorenz-Attractor is used. 
It is a simple system of differential equations where the 
single dimensions are not independent. This time series is 
a typically chaotic one, so small changes in a state leads to 
huge differences after a short time period. 
The periodical trajectories consist of up to three added sine 
waves, where each dimension is independent from the 
others. 

3.1 Test Conditions 
The movement data has a resolution of 60 time steps per 
second, so that an average prediction horizon of about 500 
steps corresponds to a prediction of 8.3 seconds into the 
future. Most movement prediction techniques, as they are 
used for tracking, are designed to predict an objects 
position for the next time frame or at least to gap a loss of 
the object during a only a few frames. 

3.1.1 Quality Measures  
For comparing the prediction results, some kind of quality 
measures for comparison are necessary. The used quality 
measures are based on the normalized mean square error 
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Figure 5: The graphs shows the STE (a), (c) and LTE (b), (d) plotted for each of the investigated algorithms tested with 
sine (a). Lorenz-attractor (b), and movement data (c), (d). The ordinate is scaled logarithmically. Hence, lower values mean 
a better prediction. The error bars represent the standard deviation from the mean. For the STE, all results lie relatively 
close together while the simple reference algorithm (red line), which is explained in section 3.1.2,  can only be beaten 
clearly by the Echo State Networks. Longer predictions show more differences in the results of the algorithms. Also the 
mean errors are higher than STE, as being expected in longer predictions. The reference is beaten more clearly in general. 
Local Average Models (LAM) and Echo State Networks show the best results. 



NMSE. Hence, the standard mean square error is 
normalized using the variance σ2 of the time series. 

 

Since the trajectories are three-dimensional and 
dimensions with greater difference are supposed to be 
more important, the highest variance of all dimensions is 
used as normalization.  
Two different kinds of the defined measure are used. The 
first one, the short term error (STE), is responsible for 
evaluating a short period of the prediction. It uses the first 
N = 75 prediction steps (which means 1.25 sec) with a 
weighting of 1/f of the f-th prediction step. On the other 
hand, the performance is evaluated using the long term 
error LTE, which uses all prediction steps with a weighting 
of f1 , since some of the algorithm show the tendency to 
drift away 

3.1.2 Reference Algorithms  
Additional simple reference algorithms were used which 
should be outperformed clearly to get a useful prediction. 
The first algorithm is a simple repetition of the last time 
series value. Also a linear approximation is used as 
reference, which simply does a linear approximation using 
the last two points of the time series. Both algorithms are 
tested on each data set. For a clear presentation of the 
experimental results in Figure 5 and Figure 6 the reference 
algorithm performing best is plotted as reference. 

3.2 Results and Comparison 
The following tests show the advantages and 
disadvantages of the different algorithms presented here. 
For the application, a number of parameters had to be 
decided to be able to apply the algorithms. The values used 
are chosen after extensive tests, which are not discussed 
here in detail. 
The results for the experiments on the sine and Lorenz-
Attractor data set are discussed at first. The purpose of 
these tests is the intention to stay comparable with time 

series analysis literature. Afterwards the results from the 
motion data set are presented. 

3.2.1 Sine and Lorenz-Attractor trajectories 
In the prediction of sine trajectories, the Wiener Filter 
shows the best results in the mean for STE and LTE (see 
Figure 5(a)). Note that Autoregressive Models can build 
up to high values, so that the standard deviation in this 
case is very high. 
With worse mean errors the standard deviation is also 
lower. The Local Model and Echo State Networks lead 
also to quite good prediction results, while the reference is 
beaten clearly by all prediction algorithms, as expected. 
Predicting the chaotic Lorenz-Attractor (see Figure 5(b)) 
the Local Linear Models leads to the best results. Echo 
State Networks perform also well – especially with higher 
numbers of neurons. Here, the reference algorithms are 
outperformed clearly, as well. The standard deviation in 
the prediction quality is relatively high. 

3.2.2 Real-world movement data 
In the prediction of movement data, the Echo State 
Networks lead to the best results for the STE as it is shown 
in Figure 5(c), while for long term prediction Local 
Models have slightly better results (Figure 5(d)). The 
Autoregressive Models perform barely better than the 
reference. Here the Durbin-Levinson algorithm achieves 
the best prediction quality. Cluster Weighted Models show 
the worst performance and their mean errors stay even 
behind the simple reference algorithms. The best 
algorithms still beat the simple references clearly and are 
able to predict movements for several seconds (about 100 
prediction steps) very well. 
In general, the difference between each of the algorithms 
and the reference is much smaller than for the predictions 
of the sine or Lorenz-Attractor trajectories. Nevertheless, 
the best algorithms still beat the simple references clearly 
and are able to predict movements for several seconds 
(about 100 prediction steps) very well. 
It can be assumed that the prediction of movement data is 
a harder problem than predicting standard chaotic 
trajectories, such as the Lorenz-Attractor. This is caused 
by unique unexpected and unpredictable behavior, which 
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Figure 6: The graphs show the STE (a) and LTE (b) plotted for each of the Echo State Network version tested on 1D and 
3D movement data. The ordinate uses a logarithmic scale. Hence, lower values mean a better prediction. The error bars 
represent the standard deviation from the mean. The different tests are labeled with “Jaeger” and “Steil” using the networks 
presented in [4] and [9] respectively. For Jaeger networks, two versions are tested. On the one hand, parameters, like 
number of neurons, spectral radius, and sparseness of the reservoir, where set to fixed values. On the other hand, those 
parameters are obtained randomly. For Steil networks, the number of neurons is increased (25, 100, 250). Additionally, 
version 3 of Steil network uses input sn−1 and sn−2 as input (not only sn−1 as for all other tests) 



can be observed in the movement data. Therefore, the 
choice of the number of neurons in the Echo State 
Network reservoir for example has only a minor effect. In 
tests the difference in the prediction results of movement 
data between 25 and 250 neurons were insignificant. It can 
be presumed that the structure of the movement data does 
not allow a higher accuracy in the prediction unlike other 
chaotic time series [4]. 

3.2.3 A closer look on Echo State Networks 
Since, Echo State Networks performed as one of the best 
algorithms for motion prediction, this section provides a 
closer look at different versions. The literature provides 
slightly different variants of Echo State Networks, two 
different ones are evaluated here. On the one hand, 
networks with a structure from [4], called in the following 
Jaeger networks and on the other hand, networks with a 
structure from [9] (Steil networks). For both networks, the 
spectral radius is set differently. While Jaeger [4] uses 
spec=0.8, with Steil networks it is set to spec=1.0.  
Both networks are evaluated on real-world movement data 
(see Figure 6). As already mentioned, the movement data 
is available as a trajectory in 3D Cartesian space. These 
3D points are used directly as input for the network 
(labeled “3D” in Figure 6), or they are split into three 1D 
time series, predicted independently with three networks 
(labeled “1D” in Figure 6). 
It is recommended in [9] to initialize all Steil network 
weights to 0.05. Since only weights to the output layer are 
adapted during training process, all other weights stay at 
0.05. Actually, this value could not be confirmed with the 
test on movement data. It could be shown for both network 
versions, that the feedback weights wwwwback must be scaled 
very low (about 10−20) to guarantee stable networks. 
Furthermore, the input weights wwwwin are set to values of 
about 10−5. For all other weights the influence of the 
chosen values is not that significant. 
Steil networks have additional weights to the output layer 
(wwwwdir,wwwwrec). These weights can be included in the learning 
process as it is suggested in [9]. Unfortunately, in our 
experiments this leads to instable networks, so that these 
weights can not be learned for predicting the movement 
data. These weights should be scaled low about 10−20 as 

well, because they have a similar function like the 
feedback weights wwwwback. 
Jaeger [4] suggests to use 50 up to 2000 neurons for the 
reservoir. Because, a higher number of neurons doesn’t 
lead to significant better results, the size of the reservoir is 
set to lie between 25 and 250 neurons. 
Steil [9] advises to apply intrinsic plasticity (adaptation of 
transfer function parameters) for the first 200 time steps to 
improve classification results of the network. Those 
benchmark results in [9] were gained by applying the 
online learning rule. Since only offline learning rule is 
used here, the results could not be confirmed. In both types 
of networks, intrinsic plasticity seems to have only minor 
effects when the offline learning rule is applied. 
Additionally, Steil networks were extended in a TDNN-
like fashion, using more than only the last point of the 
trajectory as input (labeled “Steil 3” in Figure 6). It can be 
observed that this leads to better predictions in the very 
first steps (about 5 steps) but may destabilize the 
prediction in the following steps. Since the quality 
measures sum over 75 prediction steps, no improvement 
can be observed in the results.  

3.2.4 Reduced set of training data 
The evaluation discussed in the previous paragraphs used a 
time horizon of 1000 time steps for training. Towards 
online application, such a long training phase would 
require to observe the moving object for several seconds. 
Since, this is not possible in most cases, the tests depicted 
in Figure 7 are executed with less data. Only 300 time 
steps of the trajectory are used now. For the three left most 
results in Figure 7(a) and Figure 7(b), those 300 points in 
time are subsampled, as it would be the case when using a 
slow tracker. As it can be expected, the prediction quality 
significantly decreases (compared to the three right most 
results in Figure 7(a) and Figure 7(b)). A logical step at 
this point is to use interpolation to fill the missing gaps. 
For the test in Figure 7, a spline interpolation is used to 
gain 300 time steps of training data again. The results can 
be compared to the ones using the original trajectory 
(compare the three midway results in Figure 7(a) and 
Figure 7(b)). 
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Figure 7: The graphs show the STE (a) and LTE (b) plotted for the most promising algorithms of the previous tests (Local 
Average Model (LAM), Local Linear Model (LLM), Echo State Networks ESN) in a similar fashion as in Figure 5. Each 
plot is separated into 3 sections. From left to right, these sections show the results for the test with the subsampled 
trajectory, the interpolated trajectory, and the comparison with the normal trajectory. 



Furthermore, it can be observed in general, that the results 
become worse than tested with a training period of 1000 
points (Figure 5). 

3.2.5 Calculation Time  
For any online application, the calculation time is of high 
importance, since the movement is supposed to be 
predicted before it continues. Since, only MatLab 
implementations were tested on time series with lengths of 
around 1,000 till 2,500 time steps, only a first estimation 
can be given here. 
Autoregressive Models and Echo State Networks with 
lower number of neurons show a calculation time of about 
0.7 to 10 ms per prediction step. This is absolutely 
complying with online requirements. 
Local Models and Cluster Weighted Models need longer 
calculation times between 50 and 250 ms. In the first case 
(Local Models), most calculation time is spend on the 
search for the nearest neighbors in the high number of 
training data. The Cluster Weighted Models are slow 
because of a long optimization time (the EM-algorithm). 
As already said, the calculation times are only intended as 
a first estimation. For example, the nearest neighbor search 
for Local Modeling is implemented straight forward and, 
hence, quite time consuming. Nevertheless, it is clear to 
see, that Echo State Networks deserve further interest. 

4 Conclusions and Future Works 
The intention of this paper was to connect the well-known 
field of time series prediction and movement data handling 
from robotics or from human robot interaction in a 
consistent way. Different behaviors from the tested time 
series analysis algorithms were observed. Generally, it can 
be resumed that movement data behaves different than 
data from periodical and chaotic time series. 
The tested algorithms show very good results in predicting 
several seconds of the movement data. Echo State 
Networks and Local Models pointed out to be suitable 
algorithms for movement prediction 
Autoregressive Models and again Echo State Networks are 
able to predict fast enough for an online application 
without any further adaptation. From the current point of 
view, Echo State Networks are the “winning” approaches 
which are able to solve the problem best.  
Local Models can be a good alternative to Echo State 
Networks if they could be accelerated without loss of 
quality. Besides this, enhanced versions of the 
Autoregressive Models such as ARMA or ARIMA Models 
could be tested. Furthermore, the usage of an irregular 
embedding is imaginable. 
It could be shown that the quality of the prediction results 
strongly depends on the number of training data. On the 
other hand, reducing the number of training points is 
needed to go towards online application. Effort has to be 
spend to provide the approaches with the necessary 
amount of data. This data has to be provided in a smart 
way for not raising calculation time. For example, some 
cluster approaches allow to present the data to the Local 
Model in a way to speed up the nearest neighbor search. 
In the introduction, it was mentioned to support a 
navigation task by the prediction. So, as a next step, it 
should be investigated, how the integration of the 

prediction into the navigation algorithm could be realized. 
One drawback for predicting movement data is the fact 
that human beings may perform unexpected motion. Since 
the discussed algorithms rely on the known characteristics, 
it is possible to use them for detection of such unexpected 
behavior. 
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