
Honda Research Institute Europe GmbH
https://www.honda-ri.de/

Experimental evaluation of approaches for long-
term prediction of human movement trajectories

Sven Hellbach, Julian Eggert, Edgar Körner, Horst-
Michael Groß

2009

Preprint:

This is an accepted article published in Australian Journal of Intelligent
Information Processing Systems. The final authenticated version is available
online at: https://doi.org/[DOI not available]

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

Experimental Evaluation of Approaches for Long Term
Prediction of Human Movement Trajectories

Sven Hellbach 1, Julian P. Eggert 2, Edgar Körner 2, and Horst-Michael Gross 1

1 Ilmenau University of Technology, Neuroinformatics and Cognitive Robotics Labs,
POB 10 05 65, 98684 Ilmenau, Germany

sven.hellbach@tu-ilmenau.de
2 Honda Research Institute Europe GmbH, Carl-Legien-Strasse 30,

63073 Offenbach/Main, Germany
julian.eggert@honda-ri.de

Abstract. This paper’s intention is to adapt prediction
algorithms well known in the field of time series analysis
to problems being faced in the field of mobile robotics and
Human-Robot-Interaction (HRI). The idea is to predict
movement data by understanding it as time series. The
prediction takes place with a black box model, which
means that no further knowledge on motion dynamics is
used then the past of the trajectory itself. This means, the
suggested approaches are able to adapt to different
situations. Several state-of-the-art algorithms such as
Local Modeling, Cluster Weighted Modeling, Echo State
Networks and Autoregressive Models are evaluated and
compared. For experiments, real movement trajectories of
a human are used. Since mobile robots highly depend on
real-time application, computing time is also considered.
Experiments show that Echo State Networks and Local
Models show impressive results for long term motion
prediction with a prediction horizon of up to eight seconds.

1 Introduction
For autonomous social robots, like SCITOS [3], it is
important to predict their own movement as well as the
motion of people and other robots in their environment, for
example to avoid collisions or to interact with moving
people. Hence, further actions can be planned more
efficiently. Most approaches in this field focus on optimal
navigation strategies [6], [5]. This paper suggests spending
more effort into prediction of the motion of the moving
objects instead. Often, only linear approximations or linear
combinations are used to solve this problem.
First of all, to be able to perform an adequate navigation, it
is necessary to know the past motion trajectories of the
surrounding dynamic objects. For simplification, a tracker
is assumed, which is able to provide such trajectories in
real-time. Scheidig [7] , for example, presents a person
tracker, which provides the person’s position and her
motion trajectory projected onto the ground plane.
Furthermore, it is possible to use a system tracking each of
the person’s limbs. This results in a complex trajectory in
3D space as it is shown in Figure 2. In both cases, the
given trajectory of the motion can be interpreted as a time
series T with values ssssi for time steps i=0,1,...,n-1: T =
(ssss0,ssss1,…,ssssn-1).
For predicting the data coming from the tracker, an
assortment of time series analysis algorithms has been
implemented and comparatively tested.

For applying these approaches with the described scenario,
it is necessary that the algorithms fulfill some constraints
for online application. First of all, calculation time is an
important criterion. But, since most of the approaches rely
on the trajectories’ past, it has also to be considered, how
much data is needed to generate a useful prediction.
Observing a person for several seconds before being able
to predict her motion, doesn’t seem to be applicable. This
problem is also discussed in the experiments, but the focus
is to the prediction qualitiy.
The next section introduces our time series analysis
approach to mobile robotics and HRI. Furthermore, the
techniques are discussed, which are chosen to be tested.
Section 2.1 discusses Echo State networks, which build
their prediction by use of a randomly connected hidden
layer, which is iteratively fed by the past trajectory points.
Autoregressive Models from section 2.2 assume a linear
relation in the time series which means that any time series
value can be determined by using a linear combination of p
previous values. Local Models try to find similar states of
the observed trajectory (see Section 2.4). Similar to Local
Models are Cluster Weighted Models (Section 2.5).
However, for this approach the state space is clustered. In
section 3 the comparing experiments with their conditions
and results are presented, while the paper is concluded in
Section 4.

2 Time Series Prediction
Our approach aims at the interpretation of movement data
as time series to perform a long-term prediction. Within
the field of time series analysis, a variety of algorithms

Figure 1: The observed trajectory (green) is to be
predicted (red) for up to 500 time steps (about 8.3 sec. at
60 Hz). This is achieved only by exploiting the past
trajectory's characteristics using a window (yellow) of D
points equally spaced with interval T.

does exist, coming from multiple applications with
different backgrounds. Their fields of application reach
from prediction of economic data to climate and biologic
data, such as neural activities [1]. To provide a significant
survey, state-of-the-art neural networks, probabilistic and
deterministic approaches are selected for evaluation
The algorithms presented in this paper are intended to be
used for motion prediction to enable a mobile robot a more
anticipative navigation in dynamic environment. In such
an environment the robots has to avoid collision with
moving objects (humans, balls) or has to interact with
them. For this purpose, the robot needs to predict the
future movement of these dynamic objects. Basically, for
all presented algorithms the prediction for each future
point on the trajectory is done iteratively for up to 500
time steps (this corresponds to about 8.3 seconds of motion
if using a sampling frequency of 60 Hz) (Figure 1). This is
far beyond the abilities of a usual motion tracker, which
only has to gap missing frames or deal with noisy sensor
data.
The prediction in general takes place with the so-called
black box model which means that no further background
information is used than the past trajectory itself. The
aspired prediction shall follow the trajectory’s
characteristics, which can be found in their past.
Furthermore, no explicit trajectory models are given, to be
able to freely adapt to completely new situations.
The output of the tracker is given as described in section 1.
Hence, the ssssi can be assumed as the tracked object’s
position, e.g. in a three dimensional Cartesian state space
ssssi=(xi,yi,zi)

T (see Figure 2)

2.1 Echo State Networks
It is commonly known, that Neural Networks are well
suited for function approximation tasks. For the specific
task of predicting time series, Echo State Networks (ESNs)
are often used in the recent years [4], [9].

2.1.1 Basic Idea
ESNs have some specific features which differ from
“standard” neural networks: The hidden layer consists of
neurons which are randomly connected (see Figure 3). If
the connectivity is low, this layer provides independent
output trajectories. For this reason, the hidden layer is also
called reservoir. Furthermore, there are neurons which are
connected to circles in the reservoir, so that past states

“echo” in the reservoir. That is the reason why only the
current time series value ssssn is needed as input.
The weights of the reservoir determine the matrix rW . In
[4], it is mentioned that the spectral radius spec of this
matrix1 is an important parameter and must not have
values above 1.0 to guarantee stable networks. The
randomly initialized reservoir matrix rW can easily be
adapted to a matrix with a desired spectral radius.
However, [9] argued that networks with a spectral radius
close or slightly above 1.0 may lead to better results. Both
possibilities are evaluated for their suitability for motion
prediction.
Furthermore, the sparseness of the reservoir matrix plays
an important role. A sparse reservoir matrix means that
most of the weights in the reservoir are set to zero. This
can be interpreted as the reservoir being decomposed into
subsets, which are responsible for basic signals being
overlaid by the output layer. As suggested in [4] and [9],
about 80% of the weights are set to zero.
Another characteristic of ESNs is that only the output
weights wwwwout are adapted and learned. All other weights
(input, reservoir, feedback) are chosen randomly and stay
static.

2.1.2 Training and Application
For training, the network is initialized randomly, and the
training time series is used as network input step by step.
The internal states rrrrn are calculated by using the following
recursive equation:

rrrrn describes the internal state at time step n. rW stand for
the reservoir matrix, while wwwwin and wwwwback are the weights at
the respective edges (see Figure 3), while f is the transfer
function of the reservoir neurons, which can be the Fermi-
function or the hyperbolic tangent.
From a predefined starting point, the internal states rrrrn can
be combined to a matrix RRRR. The adaptation step for the
output weights wwwwout is a linear regression using this matrix
and the vector of the related output values oooo:

After weight adaptation, the network can be applied for
prediction. Thereto, the network is fed again with the
whole trajectory data as input, this time step by step. If the

1 The spectral radius of a matrix equals to the largest Eigenvalue.

Figure 2: Example of movement data from the University of Glasgow. Shown are the body points from which data is
available (a) and an exemplary trajectory of the movement of the left ankle while walking in circles (b).

prediction is taking place (i.e. reaching the last known
point in time) the output is fed back to the input. So, the
last network output is used as the next input to be able to
generate more than one prediction step. In our
experiments, up to 800 prediction steps are generated.

2.1.3 Enhancements
In [9] a few additional Echo State Network features are
introduced, like an online adapting rule and a plasticity
rule to adapt the Fermi transfer function parameters in the
reservoir (intrinsic plasticity). Furthermore, additional
weights such as a direct input-output (wwwwdir) weight and a
loop at the output neuron (wwwwrec) are suggested. Apart from
the online rule, all other of those enhancements were
evaluated and tested.
Intrinsic plasticity is performed online. It helps to adjust
the reservoir transfer functions for better adapting to the
current prediction task. It takes place before starting the
learning of the output weights and shouldn’t last longer
than 200 time steps, otherwise predictions could get
instable. Unfortunately, intrinsic plasticity has the effect
that the eigenvalues and thus the spectral radius of the
reservoir matrix increases.
Since in Echo State Networks a huge number of
parameters can be adjusted, a more automated process
would be reasonable, especially, for those network
weights, which are not changed during the regular training
process, i. e. the wwwwin, wwwwback, and rW . We suggest to use
multiple instances of the network, as a kind of simple
stochastical search in the parameter space. All instances
are trained using the same input data after initializing the
fixed weights differently (in a random manner). During the
training process, the output of each network is compared
with the corresponding values of the training trajectory.
The network showing the best prediction results for the yet
unknown training data is then selected for further
application.

2.2 Autoregressive Models
The next type of time series analysis algorithms introduced
here are Autoregressive Models (AR). These models
assume a linear relation in the time series which means
that any time series value can be determined by using a

linear combination of p previous values. The parameter p
is the only one that needs to be defined. The general
equation for calculation is as follows:

The vi are the AR coefficients of the previous values and
have to be calculated to predict future values. There are
several possibilities to determine these coefficients. Three
of them are discussed in the following.

2.2.1 Wiener Filter
The Wiener Filter simply does a linear regression with all
points in the training time series [10]. In the literature
usually the last p points are used. A matrix EEEE with all
points of the training time series and a vector oooo with the
output values for each embedding point are generated. The
AR coefficients arise from the linear regression:

Unlike as it is suggested in [10] to use only the last p
values, the embedding discussed in section 2.3 is presented
as input for the Wiener Filter. Experiments show that using
the embedding leads to better results.
Note that this algorithm has similarities to the Local
Modeling described in section 2.4 with the used regular
embedding. However, the nearest neighbor search, needed
for the Local Modeling algorithm, does not take place
here.

2.2.2 Durbin-Levinson
This algorithm is based on the autocorrelation function
(ACF) ρ(h) which has to be determined before [8]. The
ACF describes to some extend the self similarity of the
given time series, by specifying the correlation of all
possible delays between points on the time series. Then the
AR coefficients can be calculated recursively to a defined
AR depth p. Values around p=100 often lead to the best
results.

In recursion step n the n-th coefficient n

nv is computed.
The upper index stands for the recursion step, while the
lower specifies the coefficient.

All existing coefficients 1n
1n

1n
1 ,v,v −

−
−
K from the last

recursion step are adapted as follows:

2.2.3 Yule-Walker
The last method for determining the coefficients uses the
Yule-Walker equations [8]. For this approach, the ACF is
needed again, but this time in its unnormalized version, as
auto-covariance function γ(h). Afterwards, the following
equation system can be solved to get the AR coefficients:

Figure 3: The design of Echo State Networks has some
characteristic features. In addition to the randomly
connected reservoir rn, the training algorithm is pretty
simple for neural networks: Only the output weights wout
are adapted.

Unlike the Durbin-Levinson algorithm, now all
coefficients are determined at once.

2.3 Embedding Space
For applying the approaches introduced in sections 2.4 and
2.5, an embedding in a higher dimensional space is
necessary. The resulting trajectory can not be directly used
as input for most of the discussed algorithms. Therefore, it
has to undergo several preprocessing steps.
On the one hand, time series literature states that the mean
has to be removed from the time series, and, therefore,
from the trajectories. On the other hand, a higher
dimensional embedding for the time series is generated.
The well known sliding window approach can also be
regarded an embedding. An observation window with size
T ·D is put on the trajectory (Figure 1). From this window,
each T-th time step is used to generate the embedding.
This kind of embedding is called regular embedding and
two parameters are needed: the embedding delay T and the
embedding dimension D. Such an embedding can be
generated for each point of the trajectory from time step T
·D on. The following equation shows the regular
embedding eeeet at time step t for time series values ssssi.

So, the time series is transformed into a D-dimensional
space – the embedding space. To each embedding belongs
an output oooot, which stands for the successor sssst+1 of the
selected window.
The two introduced parameters T and D don’t need to be
defined by hand. Time series analysis offers techniques to
automatically determine these parameters. For the
calculation of the embedding delay T, the average mutual
information function I(T) is typically used. It is sufficient
to search the first minimum in this function and to choose
the right value for T as embedding delay [1].

Discretized histograms from the observed time series are
needed to calculate the probabilities P(st,st−T), P(st), and
P(st−T). Proper values for the number of histogram bins
are between 15 and 30. In most cases, the smaller value is
used to keep the calculation time low.
For the calculation of the embedding dimension D the
embedding delay T is needed. Afterwards, so called true
and false neighbors in embedding space need to be found.
The idea behind the approaches for prediction is to find
parts of the trajectory in their past, which are similar to the
one from which prediction needs to approximated. Hence,
a true neighbor is a real state space neighbor and qualified
for a prediction. False neighbors only seem to be neighbors
because of a too low embedding dimension. If the
dimension is increased, what is equivalent with a further
look into the past, different behavior will be observed from
such false neighbors. To speed up the whole embedding
procedure, not every embedding point is used for the

classification in true and false neighbors, but a random
selection of around 5% to 10% of the time series
embedding points.
To find neighbors, in general a distance measure is
necessary. In this paper, the Euclidian distance is used to
separate true and false neighbors. The embedding
dimension D is increased step by step starting with D=1.
If a significant difference in a point’s distance between D
and D + 1 is observed, then this point is detected as a
false neighbor. Otherwise this point seems to be a true
neighbor. If the proportion of false neighbors falls below a
certain value, then the associated value of D is used as
embedding dimension.
To avoid this extensive search for parameters T and D,
we, furthermore, used genetic algorithms instead. During
the training phase, the best combinations of embedding
dimension and embedding delay at a time are mutated. The
prediction results from the subsequent algorithm (Local
Modeling or Cluster Weighted Modeling) are used to
determine which mutation works best.

2.4 Local Modeling
Local Modeling [2] is based on the aforementioned regular
embedding. The principle idea is a simple nearest neighbor
search in the embedding space of the last point in the time
series eeeen−1 for which the prediction needs to be calculated.
With the found nearest neighbors eeeei and their
corresponding outputs ooooi the prediction is generated.
“Near” means again a low distance in Euclidean space, but
also other distance measures are possible.
In the general case, a polynomial is estimated for the
prediction describing the relationship between embedding
eeeei and output ooooi. The nearest neighbors are used to define
the polynomial’s coefficients v applying linear regression.
The influence of each neighbor can be controlled by a
weight wwwwi depending on the distance to the embedding of
the last point in time eeeen−1:

Though, the weighted polynomial for each neighbor is
represented in matrix PPPPW by putting the polynomial’s
monomials2 into the matrix elements. ooooW is the weighted
vector of the neighbors outputs.
In practice, the polynomial degree g is usually low. Often
its enough to use g=0 (Local Averaging Model) or g=1
(Local Linear Model).
In the first case, the polynomial simplifies to a constant
and the linear regression to a weighted mean of the
neighbors outputs:

Where pred
ns is the prediction in time step n. The weights

of the neighbors wwwwi can be determined in manifold ways.
One example can be found in [2]. The basic idea is to rank
the neighbors according to their distance. This means, that
neighbors, which are far away, i.e. which belong to a less
similar trajectory, have less influence.

2 elementary part of the polynomial, consisting of only one term

If the Local Linear Model is used, then the matrix PPPP is
filled with the embeddings of all N neighbors and with
ones in the first column for the constant part of the
polynomials. The polynomial is now a linear function
depending on the embedding.

After determining the coefficients v the prediction is
calculated as follows:

Here v0 stands for the constant of the polynomial.
To get good prediction results, it is crucial to choose
proper parameters, such as the embedding parameters T
and D and the number of the nearest neighbors N.
Especially with higher polynomial degrees, the algorithm
is extremely sensitive to the choice of these parameters.
Therefore, an evolutionary algorithm was implemented
which often leads to good results as recommended in [2].

2.5 Cluster Weighted Modeling
The Cluster Weighted Modeling, which is described also
in [2], is operating in the embedding space, too. The
viewpoint lies not on single embedding points like in the
Local Modeling. Now the embedding space is clustered
and covered with Gaussian representation. Each cluster cm
has a Gaussian representation P(eeee|ccccm) in the embedding
space and another one in the output space P(oooo|eeee,cm).
The so-called Input Domain P(eeee|cm) specifies the
membership from each cluster to the embedding for the
last point in the time series which is to be predicted.

Note that the dimensions assumed to be independent to
simplify the equation given above especially in high-

dimensional spaces. Otherwise, a covariance matrix would
be necessary [2].
The output terms P(oooo|eeee,cm) determine the membership in
the output space which is assumed to be one-dimensional,
i.e. the next time step of the time series.

The so called cluster function f(eeee,βm) represents the mean
of the Gaussians. This function can be understood as
similar to the polynomial in the Local Modeling (see
section 2.4).
The following fraction can be understood as a weighted
mean of the cluster function values f(eeeen,βm) of all clusters.
The weighting takes place with the product from Input
Domain P(eeeen|cm) and the general cluster weight P(cm).

In these equations a lot of parameters need to be chosen:
For each cluster, the mean and variance for the Gaussians
in embedding space and output space is needed.
Furthermore, the cluster function f(eeeen,βm) and the cluster
weight P(cm) must be determined.
Typically an Expectation-Maximation-algorithm (EM-
algorithm) is used to optimize most of the algorithm’s
parameters. This subroutine calculates in the E-step a a-
posteriori distribution P(cm|oooo,eeee) of the existing data as
follows:

In the following M-step the parameters are updated. The
algorithm can be found in detail in [2]. After several
iterations, the EM-algorithm leads to a local minimum in
the parameter space.
Only the number of clusters and the cluster function
remain to be chosen manually. All other parameters are
initialized randomly and adapted using the EM-algorithm.
As cluster function, similar functions like the Local

0 200 400 600 800 1000 1200 1400 1600−100

−50

0

50

100

0 200 400 600 800 1000 1200 1400 1600−100

−50

0

50

0 200 400 600 800 1000 1200 1400 16004

6

8

10

12

−60
−40

−20
0

20
40

60

−100
−80

−60
−40

−20
0

20
40
4

5

6

7

8

9

10

11

12

(a) (b)

Figure 4: Prediction of the 3D movement trajectory from Figure 2 using Local Average Model. The prediction starts at
time step 1000 and is calculated for 500 steps. No information about the actual trajectory is provided to the prediction
algorithm from time step 1000 on. On the left side (a), the three dimensions are plotted over time. The right plot (b) shows
a visualization in 3D space. The original trajectory is plotted in blue, while the prediction is in red color.

Modeling polynomials can be used. Since, calculation time
strongly depends on the number of clusters, the value of
these parameter should not be too high for an online
application.

3 Motion Prediction
The algorithms presented in this paper are intended to be
used for motion prediction to enable a mobile robot to
navigate and to interact with humans in a dynamic
environment. To be comparable and reproducible,
movement data taken from the University of Glasgow3 is
used. This benchmark data is available as 3D coordinate
representation for each limb of a human performing a
certain action, e.g. walking (see Figure 2). Using this data
is even more challenging, because several basic motions
are combined (i.e. intrinsic movement, e.g. of the foot
combined with the walking direction). The data set
consists of 25 trajectories containing 1,500 up to 2,500
sampled points in Cartesian space. An example of a
prediction of the 3D movement data using Local Linear
Models (see Section 2.4), is shown in Figure 4.

3 http://paco.psy.gla.ac.uk/data ptd.php

Besides the movement data coming from the University of
Glasgow, periodical and “standard” chaotic time series are
used. As chaotic time series the Lorenz-Attractor is used.
It is a simple system of differential equations where the
single dimensions are not independent. This time series is
a typically chaotic one, so small changes in a state leads to
huge differences after a short time period.
The periodical trajectories consist of up to three added sine
waves, where each dimension is independent from the
others.

3.1 Test Conditions
The movement data has a resolution of 60 time steps per
second, so that an average prediction horizon of about 500
steps corresponds to a prediction of 8.3 seconds into the
future. Most movement prediction techniques, as they are
used for tracking, are designed to predict an objects
position for the next time frame or at least to gap a loss of
the object during a only a few frames.

3.1.1 Quality Measures
For comparing the prediction results, some kind of quality
measures for comparison are necessary. The used quality
measures are based on the normalized mean square error

−4

−3

−2

−1

0

1

2

C
lu

st
er

 W
ei

gh
te

d
M

od
el

in
g

E
ch

o
S

ta
te

 N
et

w
or

ks

A
ut

or
eg

re
ss

iv
e

M
od

el
s

D
ur

bi
n−

Le
vi

ns
on

Lo
ca

l L
in

ea
r

M
od

el

A
ut

or
eg

re
ss

iv
e

M
od

el
s

W
ie

ne
r

F
ilt

er

 −7

−6

−5

−4

−3

−2

−1

0

1

C
lu

st
er

 W
ei

gh
te

d
M

od
el

in
g

E
ch

o
S

ta
te

 N
et

w
or

ks

A
ut

or
eg

re
ss

iv
e

M
od

el
s

D
ur

bi
n−

Le
vi

ns
on

Lo
ca

l L
in

ea
r

M
od

el

A
ut

or
eg

re
ss

iv
e

M
od

el
s

W
ie

ne
r

F
ilt

er

(a) (b)

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

Lo
ca

l L
in

ea
r

M
od

el

E
ch

o
S

ta
te

 N
et

w
or

ks

A
ut

or
eg

re
ss

iv
e

M
od

el
s

D
ur

bi
n−

Le
vi

ns
on

Lo
ca

l A
ve

ra
ge

 M
od

el

A
ut

or
eg

re
ss

iv
e

M
od

el
s

W
ie

ne
r

F
ilt

er

 −0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Lo
ca

l L
in

ea
r

M
od

el

C
lu

st
er

 W
ei

gh
te

d
M

od
el

in
g

A
ut

or
eg

re
ss

iv
e

M
od

el
s

D
ur

bi
n−

Le
vi

ns
on

Lo
ca

l A
ve

ra
ge

 M
od

el

E
ch

o
S

ta
te

 N
et

w
or

ks

(c) (d)

Figure 5: The graphs shows the STE (a), (c) and LTE (b), (d) plotted for each of the investigated algorithms tested with
sine (a). Lorenz-attractor (b), and movement data (c), (d). The ordinate is scaled logarithmically. Hence, lower values mean
a better prediction. The error bars represent the standard deviation from the mean. For the STE, all results lie relatively
close together while the simple reference algorithm (red line), which is explained in section 3.1.2, can only be beaten
clearly by the Echo State Networks. Longer predictions show more differences in the results of the algorithms. Also the
mean errors are higher than STE, as being expected in longer predictions. The reference is beaten more clearly in general.
Local Average Models (LAM) and Echo State Networks show the best results.

NMSE. Hence, the standard mean square error is
normalized using the variance σ2 of the time series.

Since the trajectories are three-dimensional and
dimensions with greater difference are supposed to be
more important, the highest variance of all dimensions is
used as normalization.
Two different kinds of the defined measure are used. The
first one, the short term error (STE), is responsible for
evaluating a short period of the prediction. It uses the first
N = 75 prediction steps (which means 1.25 sec) with a
weighting of 1/f of the f-th prediction step. On the other
hand, the performance is evaluated using the long term
error LTE, which uses all prediction steps with a weighting
of f1 , since some of the algorithm show the tendency to
drift away

3.1.2 Reference Algorithms
Additional simple reference algorithms were used which
should be outperformed clearly to get a useful prediction.
The first algorithm is a simple repetition of the last time
series value. Also a linear approximation is used as
reference, which simply does a linear approximation using
the last two points of the time series. Both algorithms are
tested on each data set. For a clear presentation of the
experimental results in Figure 5 and Figure 6 the reference
algorithm performing best is plotted as reference.

3.2 Results and Comparison
The following tests show the advantages and
disadvantages of the different algorithms presented here.
For the application, a number of parameters had to be
decided to be able to apply the algorithms. The values used
are chosen after extensive tests, which are not discussed
here in detail.
The results for the experiments on the sine and Lorenz-
Attractor data set are discussed at first. The purpose of
these tests is the intention to stay comparable with time

series analysis literature. Afterwards the results from the
motion data set are presented.

3.2.1 Sine and Lorenz-Attractor trajectories
In the prediction of sine trajectories, the Wiener Filter
shows the best results in the mean for STE and LTE (see
Figure 5(a)). Note that Autoregressive Models can build
up to high values, so that the standard deviation in this
case is very high.
With worse mean errors the standard deviation is also
lower. The Local Model and Echo State Networks lead
also to quite good prediction results, while the reference is
beaten clearly by all prediction algorithms, as expected.
Predicting the chaotic Lorenz-Attractor (see Figure 5(b))
the Local Linear Models leads to the best results. Echo
State Networks perform also well – especially with higher
numbers of neurons. Here, the reference algorithms are
outperformed clearly, as well. The standard deviation in
the prediction quality is relatively high.

3.2.2 Real-world movement data
In the prediction of movement data, the Echo State
Networks lead to the best results for the STE as it is shown
in Figure 5(c), while for long term prediction Local
Models have slightly better results (Figure 5(d)). The
Autoregressive Models perform barely better than the
reference. Here the Durbin-Levinson algorithm achieves
the best prediction quality. Cluster Weighted Models show
the worst performance and their mean errors stay even
behind the simple reference algorithms. The best
algorithms still beat the simple references clearly and are
able to predict movements for several seconds (about 100
prediction steps) very well.
In general, the difference between each of the algorithms
and the reference is much smaller than for the predictions
of the sine or Lorenz-Attractor trajectories. Nevertheless,
the best algorithms still beat the simple references clearly
and are able to predict movements for several seconds
(about 100 prediction steps) very well.
It can be assumed that the prediction of movement data is
a harder problem than predicting standard chaotic
trajectories, such as the Lorenz-Attractor. This is caused
by unique unexpected and unpredictable behavior, which

−2

−1.5

−1

−0.5

0

0.5

Ja
eg

er
 1

 (
1D

)

Ja
eg

er
 1

 (
3D

)

Ja
eg

er
 2

 (
1D

)

Ja
eg

er
 2

 (
3D

)

S
te

il
1

(1
D

)

S
te

il
2

(1
D

)

S
te

il
2

(3
D

)

S
te

il
3

(1
D

)

−0.5

0

0.5

1

1.5

2

Ja
eg

er
 1

 (
1D

)

Ja
eg

er
 1

 (
3D

)

Ja
eg

er
 2

 (
1D

)

Ja
ge

r
2

(3
D

)

S
te

il
1

(1
D

)

S
te

il
2

(1
D

)

S
te

il
2

(3
D

)

S
te

il
3

(1
D

)

(a) (b)

Figure 6: The graphs show the STE (a) and LTE (b) plotted for each of the Echo State Network version tested on 1D and
3D movement data. The ordinate uses a logarithmic scale. Hence, lower values mean a better prediction. The error bars
represent the standard deviation from the mean. The different tests are labeled with “Jaeger” and “Steil” using the networks
presented in [4] and [9] respectively. For Jaeger networks, two versions are tested. On the one hand, parameters, like
number of neurons, spectral radius, and sparseness of the reservoir, where set to fixed values. On the other hand, those
parameters are obtained randomly. For Steil networks, the number of neurons is increased (25, 100, 250). Additionally,
version 3 of Steil network uses input sn−1 and sn−2 as input (not only sn−1 as for all other tests)

can be observed in the movement data. Therefore, the
choice of the number of neurons in the Echo State
Network reservoir for example has only a minor effect. In
tests the difference in the prediction results of movement
data between 25 and 250 neurons were insignificant. It can
be presumed that the structure of the movement data does
not allow a higher accuracy in the prediction unlike other
chaotic time series [4].

3.2.3 A closer look on Echo State Networks
Since, Echo State Networks performed as one of the best
algorithms for motion prediction, this section provides a
closer look at different versions. The literature provides
slightly different variants of Echo State Networks, two
different ones are evaluated here. On the one hand,
networks with a structure from [4], called in the following
Jaeger networks and on the other hand, networks with a
structure from [9] (Steil networks). For both networks, the
spectral radius is set differently. While Jaeger [4] uses
spec=0.8, with Steil networks it is set to spec=1.0.
Both networks are evaluated on real-world movement data
(see Figure 6). As already mentioned, the movement data
is available as a trajectory in 3D Cartesian space. These
3D points are used directly as input for the network
(labeled “3D” in Figure 6), or they are split into three 1D
time series, predicted independently with three networks
(labeled “1D” in Figure 6).
It is recommended in [9] to initialize all Steil network
weights to 0.05. Since only weights to the output layer are
adapted during training process, all other weights stay at
0.05. Actually, this value could not be confirmed with the
test on movement data. It could be shown for both network
versions, that the feedback weights wwwwback must be scaled
very low (about 10−20) to guarantee stable networks.
Furthermore, the input weights wwwwin are set to values of
about 10−5. For all other weights the influence of the
chosen values is not that significant.
Steil networks have additional weights to the output layer
(wwwwdir,wwwwrec). These weights can be included in the learning
process as it is suggested in [9]. Unfortunately, in our
experiments this leads to instable networks, so that these
weights can not be learned for predicting the movement
data. These weights should be scaled low about 10−20 as

well, because they have a similar function like the
feedback weights wwwwback.
Jaeger [4] suggests to use 50 up to 2000 neurons for the
reservoir. Because, a higher number of neurons doesn’t
lead to significant better results, the size of the reservoir is
set to lie between 25 and 250 neurons.
Steil [9] advises to apply intrinsic plasticity (adaptation of
transfer function parameters) for the first 200 time steps to
improve classification results of the network. Those
benchmark results in [9] were gained by applying the
online learning rule. Since only offline learning rule is
used here, the results could not be confirmed. In both types
of networks, intrinsic plasticity seems to have only minor
effects when the offline learning rule is applied.
Additionally, Steil networks were extended in a TDNN-
like fashion, using more than only the last point of the
trajectory as input (labeled “Steil 3” in Figure 6). It can be
observed that this leads to better predictions in the very
first steps (about 5 steps) but may destabilize the
prediction in the following steps. Since the quality
measures sum over 75 prediction steps, no improvement
can be observed in the results.

3.2.4 Reduced set of training data
The evaluation discussed in the previous paragraphs used a
time horizon of 1000 time steps for training. Towards
online application, such a long training phase would
require to observe the moving object for several seconds.
Since, this is not possible in most cases, the tests depicted
in Figure 7 are executed with less data. Only 300 time
steps of the trajectory are used now. For the three left most
results in Figure 7(a) and Figure 7(b), those 300 points in
time are subsampled, as it would be the case when using a
slow tracker. As it can be expected, the prediction quality
significantly decreases (compared to the three right most
results in Figure 7(a) and Figure 7(b)). A logical step at
this point is to use interpolation to fill the missing gaps.
For the test in Figure 7, a spline interpolation is used to
gain 300 time steps of training data again. The results can
be compared to the ones using the original trajectory
(compare the three midway results in Figure 7(a) and
Figure 7(b)).

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

LA
M

LL
M

E
S

N

LA
M

LL
M

E
S

N

LA
M

LL
M

E
S

N

 0.2

0.4

0.6

0.8

1

1.2

1.4

LA
M

LL
M

E
S

N

LA
M

LL
M

E
S

N

LA
M

LL
M

E
S

N

(a) (b)

Figure 7: The graphs show the STE (a) and LTE (b) plotted for the most promising algorithms of the previous tests (Local
Average Model (LAM), Local Linear Model (LLM), Echo State Networks ESN) in a similar fashion as in Figure 5. Each
plot is separated into 3 sections. From left to right, these sections show the results for the test with the subsampled
trajectory, the interpolated trajectory, and the comparison with the normal trajectory.

Furthermore, it can be observed in general, that the results
become worse than tested with a training period of 1000
points (Figure 5).

3.2.5 Calculation Time
For any online application, the calculation time is of high
importance, since the movement is supposed to be
predicted before it continues. Since, only MatLab
implementations were tested on time series with lengths of
around 1,000 till 2,500 time steps, only a first estimation
can be given here.
Autoregressive Models and Echo State Networks with
lower number of neurons show a calculation time of about
0.7 to 10 ms per prediction step. This is absolutely
complying with online requirements.
Local Models and Cluster Weighted Models need longer
calculation times between 50 and 250 ms. In the first case
(Local Models), most calculation time is spend on the
search for the nearest neighbors in the high number of
training data. The Cluster Weighted Models are slow
because of a long optimization time (the EM-algorithm).
As already said, the calculation times are only intended as
a first estimation. For example, the nearest neighbor search
for Local Modeling is implemented straight forward and,
hence, quite time consuming. Nevertheless, it is clear to
see, that Echo State Networks deserve further interest.

4 Conclusions and Future Works
The intention of this paper was to connect the well-known
field of time series prediction and movement data handling
from robotics or from human robot interaction in a
consistent way. Different behaviors from the tested time
series analysis algorithms were observed. Generally, it can
be resumed that movement data behaves different than
data from periodical and chaotic time series.
The tested algorithms show very good results in predicting
several seconds of the movement data. Echo State
Networks and Local Models pointed out to be suitable
algorithms for movement prediction
Autoregressive Models and again Echo State Networks are
able to predict fast enough for an online application
without any further adaptation. From the current point of
view, Echo State Networks are the “winning” approaches
which are able to solve the problem best.
Local Models can be a good alternative to Echo State
Networks if they could be accelerated without loss of
quality. Besides this, enhanced versions of the
Autoregressive Models such as ARMA or ARIMA Models
could be tested. Furthermore, the usage of an irregular
embedding is imaginable.
It could be shown that the quality of the prediction results
strongly depends on the number of training data. On the
other hand, reducing the number of training points is
needed to go towards online application. Effort has to be
spend to provide the approaches with the necessary
amount of data. This data has to be provided in a smart
way for not raising calculation time. For example, some
cluster approaches allow to present the data to the Local
Model in a way to speed up the nearest neighbor search.
In the introduction, it was mentioned to support a
navigation task by the prediction. So, as a next step, it
should be investigated, how the integration of the

prediction into the navigation algorithm could be realized.
One drawback for predicting movement data is the fact
that human beings may perform unexpected motion. Since
the discussed algorithms rely on the known characteristics,
it is possible to use them for detection of such unexpected
behavior.

5 Acknowledgments
Thanks to our students Sören Strauß and Sandra Helsper
for doing the evaluation work and contributing helpful
ideas.

6 References
[1] Abarbanel, H., Parlitz, U., “Nonlinear Analysis of

Time Series Data”, In: Handbook of Time Series
Analysis, WILEY-VCH, pp. 1 – 37, 2006

[2] Engster, D., Parlitz, U., “Local and Cluster Weighted
Modeling for Time Serie Prediction”, In: Handbook of
Time Series Analysis, WILEY-VCH, pp. 38 – 65,
2006

[3] Gross, H.M., Böhme, H.J., Schröter, C., Müller, S.,
König, A., Martin, C., Merten, M., Bley, A.,
“Shopbot: Progress in developing an interactive
mobile shopping assistant for everyday use” In: Proc.
IEEE Internat. Conf. on Systems, Man and
Cybernetics (IEEE-SMC), pp. 3471-3478, 2008

[4] Jaeger, H., Haas, H., “Harnessing nonlinearity:
predicting chaotic systems and saving energy in
wireless telecommunication”, Science, pp. 78 – 80,
April 2004

[5] Owen, E., Montano, L., “Motion planning in dynamic
environments using the velocity space” In: Proc. of
RJS/IEEE IROS, pp. 997 – 1002, 2005

[6] Pett, S., Fraichard, T., “Safe navigation of a car-like
robot within a dynamic environment” In: Proc. of
European Conf. on Mobile Robots, pp. 116 – 121,
2005

[7] Scheidig, A., Müller, S., Martin, C., Gross, H.M.,
“Generating person’s movement trajectories on a
mobile robot”, In: Proc. of International Symposium
on Robots and Human Interactive Communications
(RO-MAN), pp. 747 – 752, 2006

[8] Shumway, R.H., Stoffer, D.S., “Time Series Analysis
and Its Applications”, Springer Texts in Statistics,
2000

[9] Steil, J.J., “Online reservoir adaptation by intrinsic
plasticity for backpropagation-decorrelation and echo
state learning”, Neural Networks 20, pp. 353 – 364,
2007

[10] Wiener:, N., “Extrapolation, Interpolation, and
Smoothing of Stationary Time Series”, Wiley, 1949

7 Biography
Sven Hellbach is Ph.D. student at the
Neuroinformatics and Cognitive
Robotics Lab at Ilmenau Technical
University since 2005. His research
focus is set to motion analysis in the
field of mobile robotics. The project, he
is working for, is closely affiliated with

the Honda Research Institute Europe GmbH. He studied
Computer Science at Ilmenau Technical University from
2000 to 2005.

Julian Eggert studied physics at the
Technical University of Munich,
Germany, where he also received his
Ph.D degree in theoretical biophysics
(Prof. van Hemmen) in 2000. In 1999,
he joined the Honda Research Institute
in Offenbach, Germany, concentrating
on biophysically realistic large-scale
models for vision systems. Since 2003,

he worked as a Senior Research Scientist and since 2007
as a Chief Scientist heading a research division at the
Honda Research Institute (HRI) Europe GmbH at
Offenbach, Germany. His interests include probabilistic
modeling of cognitive systems, perception models for
dynamic scene interpretation and gating in hierarchical
neural networks via feedback and attention.

Edgar Körner received his Dr-Ing in
1977 in the field of biomedical
engineering, and his Dr. of Science
(habilitation) in 1984 in the field of
biocybernetics, both from the Technical
University Ilmenau, Germany, where he
became full professor and head of the
department of neurocomputing and
cognitive systems in 1988. From 1992 –

97 he was a chief scientist at Honda R&D Co. Wako,
Japan. In 1997 he moved to Honda R&D Europe
(Germany) to establish the “Future Technology Research
Division”, and since 2003 he serves as the president of
Honda Research Institute Europe GmbH at Offenbach,
Germany. Since October 2007, he additionally serves as a
co-director of the Research Institute for Cognition and
Robotics at the University of Bielefeld. His research
interest covers brain-like intelligence, with a special focus
on self-referential control architectures, self-organization
of knowledge representation, and autonomous robots.

Horst-Michael Gross is full professor of
Neuroinformatics and head of the
Neuroinformatics and Cognitive
Robotics Lab at the Ilmenau University
of Technology. He received his doctoral
degree in Computer Science in 1989
from the Ilmenau University of

Technology. Among his current research interests are
neural computing, cognitive robotics, and multi-modal
human-robot interaction in real world enviroments.

