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Filtering environmental sounds using basic audio cues in roboaudition

Tobias Rodemann, Frank Joublin, and Christian Goerick

Abstract—In this article we present an approach for sepa- close to the robot's fans and motors and we operate in a
rating robot-directed speech from environmental sounds for typical noisy, echoic robot lab, sounds can easily distract
applications in robot audition under high noise conditions. We the robot and pull its attention away from the interactore Th

introduce a new framework for audio processing that combines d . t d ived in thi Ki bedded
feature extraction and a grouping process to form what we call Sound processing system described In this work IS émbedde

audio proto objects. These proto objects combine an arbitrary ?nto a larger, interacting system similar to the one outline
number of audio features in a compact representation that in [4].
allows a filtering of environmental sounds using relatively

simple audio cues like signal energy or segment length. We e present a framework for transforming audio signals
demonstrate that our system can be a first step towards a

selective and adaptive auditory attention in real-world robotics {0 @ Compact representation called audio proto objeats. O
scenarios. this representation level, behavior selection (e.g. tteris

or not to listen), can operate in a simple and flexible way.
Audio proto objects combine compressed representations of
. INTRODUCTION basic or higher-level audio features like signal energyrs®

The two main applications in robot audition are probabl)pos't'on' or spectral energy for an audio segment.

sound localization and speech recognition. Especially for o ¢ ¢ s to filt . tal ds that
the latter task the separation of relevant (speech) signals ur system targets lto fiter environmental sounds tha

from background noise, environmental sounds or concurre te irrelevant for the robot's behavior. Typical examples a

speech activity has always been of high concern due to t %otsteps, mouse-clicks, door slamming, or people talking

strong deterioration of performance with increasing nois e background. In conirast, the system should respond to

level. While the removal of stationary background noise i y orienting its gaze towards) callg from pgople dirgcted
relatively straightforward, dealing with concurrent sdan at the robot. We want to avoid using specially designed

is very challenging (see [1] for a review). State of the ar?Ud'o features but rather use simple, basic elements obaudi

methods are capable of separating several concurrenﬂrpactprocessmg' We note explicitly that the target is not just to

speakers and provide a sufficiently clear signal to spee _parate speech fr_om non-s_peech sound_s since one of the
recognition [2]. iggest classes of distractors is people talking with ealero

A prtiem tha i ofen gored in i context s e 1017105 e obot. The slfon et should be
guestion to which sounds the robot should attend. This LL, stems. Certain tg es of mid-level audio featuresplikerpit 9
very important for speech recognition but also for soun Y ' yp . .

or formants were not used in the analysis, because, although

localization. In free audio interaction, i.e. using the ot . . . . -
. . . é)otentlally interesting, they perform badly in scenariathw
microphones instead of a close-talk microphone, all sounds

generated in the environment compete for the robot’s af Ve high noise background. The purpose of the application

tention. A sound localization system can even respond gﬁZiCc:IzZ?aIirrlltz)hgroiglglbejei:?gat:ij fﬁ;ﬁg{gggﬁ?ﬁn;&tgtg&r
whispering or mouse-clicks [3], so that the robot can be. . . .
pernng [3] either background signals or robot directed calls. While the

easily distracted. Applying a threshold on the signal e'y]ergfqrmer class is to be ignored the latter type of sounds should

is a common remedy but this acts on a very low sensory IeV{arI er a gaze chanae of the robot toward the estimated
and is not effective for louder distractor sounds like inmtpac 9ge g g€
gsition of the proto object.

noise. Separating speech from non-speech would also not Ry

sufficient and is furthermore difficult to achieve under feal Figure 1 shows the svstem’s architecture with feature

world conditions on a robot. g . Y . . .
reprocessing, segmentation, audio proto object geparati

The specific scenario we target in this article is a humanofg} coro . o
I%mllanty computation, filtering, and gaze change modules
n

robot (ASIMO) that uses two human-inspired ears mounte the next sections we will first describe the basic system

on the sides of the head to localize sound sources and orient, . .
. o architecture and the audio features that are computed and
its gaze towards them. After turning its head the robot ¢

start interacting with a human partner. Due to the limite fen proceed with a more detailed explanation of the audio

field of view of the robot’s cameras it is essential to direc foto object concept, which is the main contribution of

the robot’s attention to the right position. Since the eaes a his paper. We will ‘hef‘ a_nalyze the pe_rformance of our
concept for sound localization and investigate the paaénti

Honda Research Institute Europe, Carl-Legien Strasse 3 3% 0ffen- of different audio cues for differentiating between the two
bach, GermanyTobi as. Rodemann@wonda-ri . de relevant sound classes (background and calls).
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A. Comparison to Related Work

Sound processing often has a strong focus on two types of
sounds - music and speech. Other types of sounds, although
dominating in natural environments, are rarely invesédat
There have been a few attempts to separate speech from non-
speech signals [5] and to categorize environmental sounds
[6], [7]. Early work of Gaver [8], [9] has even hinted <
that substantial behaviorally relevant information can bgig_ 3
extracted from environmental sounds. All in all, howeverears.
research has been very limited compared to the large body
of speech related work. In the field of robot audition, where
environmental sounds occur abundantly, research on how toln contrast to the work described in [3], [12], where all
deal with non_speech sounds has been very sparse. IID/ITD pairS are mapped |nd|V|dua”y to pOSition Candidﬂ,t

The term audio proto objects is closely related to botRUr proto object-based localization system collects cua-me
audio streams [1], [10] and visual proto objects [11]. Audicurements for the full proto object (i.e. over all frequency
streams are segments in time and frequency space and vfdifinnels and samples) and maps them as a whole toward
suited for speech recognition. But for behavior selection ota@ndidate positions. The mapping is learned in a calibmatio
a robot, they are often too cumbersome since they represd¥ith 10 sounds per position.
audio data as a raw sequence of samples without a temporaound data was recorded on Honda’s ASIMO robot using
grouping. The result is a high-dimensional representatioiy/0 human-inspired ears mounted on the sides of the robot
(typically 100s of samples per second are used) with signiFig. 3). The robot is in a noisy, very echoisg = 810 ms)
ficant noise in individual samples and substantial vanetio &b room of size 12 x 11 x 2.8m. We used a Gammatone
of audio features on a sample-by-sample basis. We propdséterbank (GFB) [13] with 100 frequency channels that span
to use a more flexible and light-weight representation dfe range of 100 - 11000 Hz.

audio signals that facilitates an adaptable categorizatind A. Si
- X . Signal energy, energy slope, and spectral vector
filtering of sounds based on a number of audio cues. g 9y gy slop P

Our humanoid robot ASIMO with custom-made, human-iregpir

After applying the Gammatone filterbank and extracting

Il. SYSTEM CUE PROCESSING ARCHITECTURE the envelope signal for every frequency channel we use

. . . a spectral subtraction (as detailed in [3]) to remove the

The b_a5|c system architecture is based on _the one prsetétionary background noise. The resulting signal at time
sented. in [3] extended by several preprocessing eleme E.sample)s and frequency channal we term A(s,c). The

(see .F'g'. 2) and modu_Ies for the generation, compariso rgnal is low-pass filtered and sub-sampled to 1000 Hz, down

and filtering of proto objects. Sound source localization fofrom 48000 Hz sampling rate at the microphones. The signal

the azimuth position Is ba_sed on the Interaural Intensig)(l nergyA(s) is then derived as the sum over envelope signals
and the Interaural Time Difference (ITD) as cues. A model of all channels:

the precedence effect is used to reduce the impact of echoes
and spectral subtraction is employed to reduce background
noise.
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The signal energy will be used to define segment borders as —
described below. A derived feature is the energy slope, the —

— 2

difference in signal energy between two consecutive sanple ] <= -Segrent |

Ener gy
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This is a simple measure of amplitude modulation in the Mjl M\/

signal. The spectral energy vectﬁ(s) contains the distri- drmnmdemnannand
bution of energies over all frequencies for a specific sample
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Fig. 4. Example of energy-based segmentation (dashed liney two
thresholds (upper threshold in red, lower in green). Theg@neas compu-
ted after stationary background noise was removed by specipéaraction.

1. AuDIlO PROTOOBJECTS
In this section we introduce the concept of audio proto ob-

jects as a high-level compact representation of audio Egnd3. Feature Compression
for linking sounds with other sensory modalities or behavio The feature compression stage integrates over all samples
control in robots. We assume that after sound acquisitieh amind provides a description of the feature over the full segme
preprocessing a number of audio features are computed. Qafgth. The new representation can be a scalar value, like
or more of these features is used for the segmentation [roceserage signal energy, or a vector over different frequency
that defines the borders of a segment. The next processigigannels or positions. In any case, the representation is
stage computes compressed audio features over the whplgependent of the size of the segment. Energy is reprasente
segment and also calculates derived features (start agthlenas the mean value over all samples in the segment (of length
of the segment) based on the segmentation process. Finajly,
compressed audio cues and derived features are combined to L
one entity that we term audio proto object. Penergy= - S;SA(S) _ ©)

A. Segmentation Process We also compute the difference of signal energy over time

One important aspect for the generation of audio protdncrease and decrease of energy) and store this informatio
objects is the definition of segments. In this work we use onlij the response of a set of nodes representing differenesalu
a simple energy-based segmentation process. We assume thdptal 11 nodes are used which respond to slope values of
relevant sounds are sequential, so that a separation in tid8" = [-5-2-1-0.5-0.100.1 0.5 1 2 5]. For every sample
is sufficient. A proto object starts when the signal energ{h€ closest matching node increases its response by one.
exceeds a threshol#y and ends when the energy falls belowThis type of representation offers a constant size indegend
a second threshold,. The advantage of an asymmetricOf segment length while still retaining some information
threshold is that with a high start threshdg audio proto about the distribution oBA values. The current setting of
Objects are not formed during pure noise periodS. S|nd@de centers is hand-crafted but could be learned from the
almost all sound signals have a sharply rising flank, but $tatistics of proto objects.
slowly decaying signal energy toward the segment’s end, the The representation of the source location is the accumu-
asymmetric thresholds allow capturing the rising flank antfted position evidence for all samples:
the tail of the segment, while excluding pure noise elements
The paramete®; depends on the hardware characteristics Poosition(a) = ZSE(CY ;S), (4)
and needs to be adapted to the background noise level. We se
setf, = 0.6- 6. Although there are more refined methods fokwvhere a is the azimuth angle of the source, akda,s)
segmentation, our simple approach turned out to be sufficiethe evidence for azimuth angke in samples. E(a,s) was
for our purposes. Fig. 4 gives an example of the segmentatigntegrated over time with a constamt= 100 ms, see [3].
process. The same approach is employed for the spectral vector:
This approach is currently limited to situations wherePspectral(C) = Y scsA(C,S). An example audio proto object can
speakers alternate without any overlap. Separating cogtaur be seen in Fig. 1.
sounds in real-world applications has been demonstrated be
fore (see e.g. [1], [2]). Our approach is targeted at scesari
where one or more interactors communicate with the robot We were using sounds of two types: environmental sounds
in a cooperative way (similar to the concept of Motheresejike mouse-clicks, footsteps or door slamming, which the
The main challenge in such a scenario is that all types obbot is supposed to ignore, and speech directed to the,robot
environmental sounds may distract the robot from its maito which the robot should orient to. Audio proto objects were
interaction partner, while concurrently active sourcesrast  extracted for both background sounds and directed speech
(yet) a major concern. and feature values for the two sound categories compared.

IV. RESULTS



For each category the sound databases were divided equally Z'I'_tfr mean 87, error| pere. Corectl > 5
into two sets, one for computing mean feature vectors and Top99 5.1° 62.3% 0.6%
codebook vectors, and one for evaluation. The databases igrgg 2; ggiz//o 8-‘312?
contained in total 317.enV|ronrr.1e'ntaI sounds and'82 speech TOESO 330 71:30/2 0;00/3
commands recorded in a realistic scenario. Environmental Top20 2.5° 76.1% 0.0%
sounds were measured by recording sound for approximately Standard 6.2° 72.6% 4.2%
9 min when the robot was turned on and people were working TABLE |

normally in the robot lab - including working on the robot’s
hardware and talklng to eaCh Other. RObOt-direCted Ca”gOCALlZATION PERFORMANCE WITH DIFFERENT SETTINGS OF ENERGY
were recorded from four people at different positions oglli FILTERING (TOPXXUSES ONLY PROTO OBJECTS WITH A SIGNAL ENERGY
the robot’s attention repeatedly. Both recordings represe
realistic, typical cases of audio signals of the two diffdgre
types in our standard setting.

THAT IS WITHIN THE TOP XX PERCENT OF ALL PROTO OBJECTS THE
RESULT IS GIVEN AS MEAN AZIMUTH LOCALIZATION ERROR, THE
PERCENTAGE OF CORRECT LOCALIZATIONWITHIN 10°RECORDING
PRECISION AND TRIALS WITH MORE THAN 30° LOCALIZATION ERROR.

A. Sound localization «10° Length and energy
oF ‘ ;

Our main application scenario of the audio proto objects 18} ]
approach so far is selective sound localization. We thezefo 16 +
investigated the performance of the proto object systenmin a 4 A +
offline localization scenario. We used a database of 29 sound * A
for 19 different relative horizontal positions between a0t 512 M .

-90° recorded with ASIMO’s microphones. The data was & ! + A +
measured by producing sound from a stationary loudspeakel 08t N A A A
and turning the robot’s head. A serious problem is that when 06l Agﬂ+ AAA A

the head turns to the sides, one of the microphones is very oal  #t EAe % |
close to the robot’s fans making sound processing extremely ﬁ_ﬁt—A+ Z g:tl:ll;ground
challenging. Using 14 sounds for training the remaining 15 o7 r ‘ ]
were used for evaluating the precision of the localization. 0 05 lengh 15

Localization in the proto object framework differs from
the conventional approach (as described in [3]) since tHég. 5. Length (in seconds) and energy of audio proto objémtdwo
number and characteristics of the proto objects and thmefotypes of sounds: background sounds and robot directed calls
also the localization precision depends on the segmentatio
Inevitable, some very short proto objects are generatedhwhi
are difficult to localize correctly. In the standard appitoac
other, more salient, parts of the sound dominate the loca- After confirming the good localization performance we
lization response so that the problem could be neglectedow turn to the problem of differentiating between back-
To have a fair comparison we evaluated the proto objegfround and call sounds. A first approach for filtering out
based localization for different settings of an energyebas background events is to analyze the mean segment length
filtering, i.e. responding only to proto objects with a certa and signal energy of proto objects.
minimal energy. As can be seen in Table | with increasing |t turns out that most background sounds are rather short
selectivity the localization precision increases suld&tyn  (mean 0.19 s compared to 0.36 s for calls) and have a low
Taking only the strongest 80% proto object®§8Q this signal energy (mean 26000 compared to 62000 for robot
corresponds to approximately one proto object per sourflrected speech). In Fig. 5 proto object length and energy
file) the mean localization error falls to 4.5°. Consideringare plotted. We used LVQIldarning vector quantization
that we are using only two microphones and operating in @4]) to learn optimal prototypes (background: length =
large lab environment with substantial echo and backgrounglo1 s, energy = 5300; calls: length = 0.4 s, energy = 71000)
noise including the robot’s fan noise, a localization emer and then assigned each proto object to the better matching
low as 4.5° is very good. category. The result was that 94% of the background sound

For comparison our standard approach [3] has a megmoto objects and 78% of the calls were categorized coytectl
azimuth localization error of 6.2°. Due to the high degree of Another obvious cue to separate different sound categories
fan noise at lateral head positions, we occasionally oleservis sound source location. As we have seen, our approach
very large localization errors (up to 160°). The proto objecallows a quite precise localization of sound sources. For
based approach produced fewer localization outliers atid wisome types of sounds the position might actually give a
a setting ofTop50or stricter no localization error larger than hint to the type of sound source. However, with our current
30° is produced. approach, that is limited to the horizontal plane (azimuth)

B. Filtering based on segment length and energy
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It is the explicit purpose of the localization system tocalls ged, 'triangle’) to the mean spectral vectors for background signals
determine the position of the speaker wherever he or sheagd calls.
and turn to the corresponding position. We therefore should

not make any assumptions on the position of the speaker. 0
Similarly, background signals could potentially origi@at
from all positions around the robot. If the sound localiaati .
is extended to elevation direction (as described in [12}) an
distance, source position would actually be a more relevant
cue (e.g. sounds from below are likely to be footsteps and
very unlikely to be a human utterance).
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C. Spectral energy similarity-based filtering

Since not all proto object features are scalar values, V\Fég 8. MeandA node response vector for background sounds (solid, blue
L. . ine) and calls (dashed, red line).
extend our system by a similarity computation, that compare
audio features between two proto objects and returns a
EZ?\Iaa\;iglrmgzlté V\ilsuuiﬂtizzgiig l:/ee?;gé sseplzg;“rg? g:e}gigs tend to have allarger proportion of rising energy slope &lue
; : ) flan most environmental sounds.

proto objects, one for background signals and one for robot
directed calls. Calls concentrate more energy in the middle
frequency range while background sounds have more enelﬁy
in the higher frequencies (a side effect of the GFB). We The combination of all cues into a single decision for
then compute the similarity of spectral vectors from protgelecting which category the current proto object belongs t
objects of the evaluation set to these two reference vectoend therefore the decision whether to attend to the sound or
Similarity is computed as the scalar product of normalizegh ignore it provides an additional improvement compared
spectral energy vectors (zero mean, norm one). The resudt the single cues. Table. Il summarizes the results for
is shown in Fig. 7. Comparing the proto object’s spectrahe individual cues and the combination of filters. Optimal
vector to a reference vector for the two relevant categpriegrototypes vectors were again learned via LVQ using the
we could filter 86% of the background sounds, while keepingaining databases, while evaluation was performed on two
93% of the relevant call proto objects. separate sets of proto objects. Insteaddéf node respon-
ses and spectral energy vectors we used the corresponding
similarities to the representative vectors from the tragni

We also investigated the potential of energy slope valuetatabase. In effect, we compute a 6-dimensional feature
for categorization. Similar to the approach for the spéctravector (length, energ@A similarity to calls and background,
vectors we computed mean energy slope representativgsectral similarity to calls and background). Using LVQ we
for both sound categories (see Fig. 8) and calculated tl®empute prototypical 6-dimensional feature vectors fahbo
similarity for all proto objects in both databases with theclasses and then assign each proto object to the nearer class
two reference vectors. Similarity was again based on thHe total 98% of the call and 91% of the background proto
normalized scalar product. The result is shown in Fig. ®bjects were categorized correctly. Since there is effelti
Based purely on the energy slope distribution, backgroural trade-off between the correctness for background and for
signals are to 74% correctly estimated as background awdlls, different vector quantization algorithms or parsne
robot directed-speech with 95% as calls. The high successeuld probably result in different results along this paret
rate could be partially due to the influence of signal energfront. We also note that the most basic approach, a mean
on the slope values, but we also observed that speech signetergy-based filtering - comparable to an energy threshold

Combination of filters

D. Energy slope as a separating feature
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Audio Feature | background correc{ calls correct
Length 70% 80%
Energy 82% 76%
oA 74% 95%
Spectral 86% 93%
Length+Energy 94% 78%
All 91% 98%
TABLE Il

PERCENTAGE OF CORRECT CATEGORIZATION OF PROTO OBJECTS AS
BACKGROUND OR CALLS WHEN USING DIFFERENT AUDIO FEATURES

distinguish between the two relevant sound categories in
about 80% of the time. We could also show that using
other features like spectral energy or energy slope, 91% of
background signals can be selected out while 98% of the call
proto objects are attended to. Due to the averaging over the
full segment all computed features are quite robust to noise
and echoes.

We plan to extend the concept of audio proto objects in
several ways: segmentation also in the spectral dimension,
addition of new audio features (like spectro-temporalfezg
[15]), an adaptable analysis of proto objects, e.g. by cimang
filter thresholds or learning the characteristics of sound
categories. We also need to unify the representation obaudi
features. It would be beneficial if all features could be
Fepresented in a similar way. A possible solution is to map
scalar values to a population code representation like ke 0
we used for the energy slope. It would then be possible to use
a single approach for representing and comparing all featur
in the proto object. Along this line we also plan to improve
the categorization, which is currently based on a rudinrgnta
LVQ scheme.

In addition to filtering irrelevant sounds the concept can
also be used to group similar proto objects or to integrate
audio and visual proto objects for cross-modal learning or
cue integration.
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