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Filtering environmental sounds using basic audio cues in robotaudition

Tobias Rodemann, Frank Joublin, and Christian Goerick

Abstract— In this article we present an approach for sepa-
rating robot-directed speech from environmental sounds for
applications in robot audition under high noise conditions. We
introduce a new framework for audio processing that combines
feature extraction and a grouping process to form what we call
audio proto objects. These proto objects combine an arbitrary
number of audio features in a compact representation that
allows a filtering of environmental sounds using relatively
simple audio cues like signal energy or segment length. We
demonstrate that our system can be a first step towards a
selective and adaptive auditory attention in real-world robotics
scenarios.

Accepted for ICAR 2009, June 22 – 26, 2009 in Munich, Germany

I. I NTRODUCTION

The two main applications in robot audition are probably
sound localization and speech recognition. Especially for
the latter task the separation of relevant (speech) signals
from background noise, environmental sounds or concurrent
speech activity has always been of high concern due to the
strong deterioration of performance with increasing noise
level. While the removal of stationary background noise is
relatively straightforward, dealing with concurrent sounds
is very challenging (see [1] for a review). State of the art
methods are capable of separating several concurrently active
speakers and provide a sufficiently clear signal to speech
recognition [2].

A problem that is often ignored in this context is the
question to which sounds the robot should attend. This is
very important for speech recognition but also for sound
localization. In free audio interaction, i.e. using the robot’s
microphones instead of a close-talk microphone, all sounds
generated in the environment compete for the robot’s at-
tention. A sound localization system can even respond to
whispering or mouse-clicks [3], so that the robot can be
easily distracted. Applying a threshold on the signal energy
is a common remedy but this acts on a very low sensory level
and is not effective for louder distractor sounds like impact
noise. Separating speech from non-speech would also not be
sufficient and is furthermore difficult to achieve under real-
world conditions on a robot.

The specific scenario we target in this article is a humanoid
robot (ASIMO) that uses two human-inspired ears mounted
on the sides of the head to localize sound sources and orient
its gaze towards them. After turning its head the robot can
start interacting with a human partner. Due to the limited
field of view of the robot’s cameras it is essential to direct
the robot’s attention to the right position. Since the ears are
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close to the robot’s fans and motors and we operate in a
typical noisy, echoic robot lab, sounds can easily distract
the robot and pull its attention away from the interactor. The
sound processing system described in this work is embedded
into a larger, interacting system similar to the one outlined
in [4].

We present a framework for transforming audio signals
into a compact representation called audio proto objects. On
this representation level, behavior selection (e.g. to listen
or not to listen), can operate in a simple and flexible way.
Audio proto objects combine compressed representations of
basic or higher-level audio features like signal energy, source
position, or spectral energy for an audio segment.

Our system targets to filter environmental sounds that
are irrelevant for the robot’s behavior. Typical examples are
footsteps, mouse-clicks, door slamming, or people talkingin
the background. In contrast, the system should respond to
(by orienting its gaze towards) calls from people directed
at the robot. We want to avoid using specially designed
audio features but rather use simple, basic elements of audio
processing. We note explicitly that the target is not just to
separate speech from non-speech sounds since one of the
biggest classes of distractors is people talking with each other
but not towards the robot. The solution we aim at should be
flexible and on a higher level than standard sound processing
systems. Certain types of mid-level audio features like pitch
or formants were not used in the analysis, because, although
potentially interesting, they perform badly in scenarios with
a very high noise background. The purpose of the application
described in this article can be summarized as turning raw
audio data into proto objects and then categorizing them to be
either background signals or robot directed calls. While the
former class is to be ignored the latter type of sounds should
trigger a gaze change of the robot toward the estimated
position of the proto object.

Figure 1 shows the system’s architecture with feature
preprocessing, segmentation, audio proto object generation,
similarity computation, filtering, and gaze change modules.
In the next sections we will first describe the basic system
architecture and the audio features that are computed and
then proceed with a more detailed explanation of the audio
proto object concept, which is the main contribution of
this paper. We will then analyze the performance of our
concept for sound localization and investigate the potential
of different audio cues for differentiating between the two
relevant sound classes (background and calls).



Fig. 1. System architecture (the preprocessing module is described in more
detail in Fig. 2).

A. Comparison to Related Work

Sound processing often has a strong focus on two types of
sounds - music and speech. Other types of sounds, although
dominating in natural environments, are rarely investigated.
There have been a few attempts to separate speech from non-
speech signals [5] and to categorize environmental sounds
[6], [7]. Early work of Gaver [8], [9] has even hinted
that substantial behaviorally relevant information can be
extracted from environmental sounds. All in all, however,
research has been very limited compared to the large body
of speech related work. In the field of robot audition, where
environmental sounds occur abundantly, research on how to
deal with non-speech sounds has been very sparse.

The term audio proto objects is closely related to both
audio streams [1], [10] and visual proto objects [11]. Audio
streams are segments in time and frequency space and well
suited for speech recognition. But for behavior selection on
a robot, they are often too cumbersome since they represent
audio data as a raw sequence of samples without a temporal
grouping. The result is a high-dimensional representation
(typically 100s of samples per second are used) with signi-
ficant noise in individual samples and substantial variations
of audio features on a sample-by-sample basis. We propose
to use a more flexible and light-weight representation of
audio signals that facilitates an adaptable categorization and
filtering of sounds based on a number of audio cues.

II. SYSTEM CUE PROCESSING ARCHITECTURE

The basic system architecture is based on the one pre-
sented in [3] extended by several preprocessing elements
(see Fig. 2) and modules for the generation, comparison,
and filtering of proto objects. Sound source localization for
the azimuth position is based on the Interaural Intensity (IID)
and the Interaural Time Difference (ITD) as cues. A model of
the precedence effect is used to reduce the impact of echoes
and spectral subtraction is employed to reduce background
noise.

Fig. 2. Sketch of the system’s preprocessing architecture.

Fig. 3. Our humanoid robot ASIMO with custom-made, human-inspired
ears.

In contrast to the work described in [3], [12], where all
IID/ITD pairs are mapped individually to position candidates,
our proto object-based localization system collects cue mea-
surements for the full proto object (i.e. over all frequency
channels and samples) and maps them as a whole toward
candidate positions. The mapping is learned in a calibration
with 10 sounds per position.

Sound data was recorded on Honda’s ASIMO robot using
two human-inspired ears mounted on the sides of the robot
(Fig. 3). The robot is in a noisy, very echoic (T60 = 810 ms)
lab room of size 12 x 11 x 2.8m. We used a Gammatone
Filterbank (GFB) [13] with 100 frequency channels that span
the range of 100 - 11000 Hz.

A. Signal energy, energy slope, and spectral vector

After applying the Gammatone filterbank and extracting
the envelope signal for every frequency channel we use
a spectral subtraction (as detailed in [3]) to remove the
stationary background noise. The resulting signal at time
(sample)s and frequency channelc we term A(s,c). The
signal is low-pass filtered and sub-sampled to 1000 Hz, down
from 48000 Hz sampling rate at the microphones. The signal
energyA(s) is then derived as the sum over envelope signals
in all channels:

A(s) = ∑
c

A(s,c) . (1)



The signal energy will be used to define segment borders as
described below. A derived feature is the energy slope, the
difference in signal energy between two consecutive samples:

δA(s) = A(s)−A(s−1) . (2)

This is a simple measure of amplitude modulation in the
signal. The spectral energy vector~A(s) contains the distri-
bution of energies over all frequencies for a specific sample
s.

III. A UDIO PROTO OBJECTS

In this section we introduce the concept of audio proto ob-
jects as a high-level compact representation of audio signals
for linking sounds with other sensory modalities or behavior
control in robots. We assume that after sound acquisition and
preprocessing a number of audio features are computed. One
or more of these features is used for the segmentation process
that defines the borders of a segment. The next processing
stage computes compressed audio features over the whole
segment and also calculates derived features (start and length
of the segment) based on the segmentation process. Finally,
compressed audio cues and derived features are combined to
one entity that we term audio proto object.

A. Segmentation Process

One important aspect for the generation of audio proto
objects is the definition of segments. In this work we use only
a simple energy-based segmentation process. We assume that
relevant sounds are sequential, so that a separation in time
is sufficient. A proto object starts when the signal energy
exceeds a thresholdθ1 and ends when the energy falls below
a second thresholdθ2. The advantage of an asymmetric
threshold is that with a high start thresholdθ1 audio proto
objects are not formed during pure noise periods. Since
almost all sound signals have a sharply rising flank, but a
slowly decaying signal energy toward the segment’s end, the
asymmetric thresholds allow capturing the rising flank and
the tail of the segment, while excluding pure noise elements.
The parameterθ1 depends on the hardware characteristics
and needs to be adapted to the background noise level. We
setθ2 = 0.6·θ1. Although there are more refined methods for
segmentation, our simple approach turned out to be sufficient
for our purposes. Fig. 4 gives an example of the segmentation
process.

This approach is currently limited to situations where
speakers alternate without any overlap. Separating concurrent
sounds in real-world applications has been demonstrated be-
fore (see e.g. [1], [2]). Our approach is targeted at scenarios
where one or more interactors communicate with the robot
in a cooperative way (similar to the concept of Motherese).
The main challenge in such a scenario is that all types of
environmental sounds may distract the robot from its main
interaction partner, while concurrently active sources are not
(yet) a major concern.
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Fig. 4. Example of energy-based segmentation (dashed line) using two
thresholds (upper threshold in red, lower in green). The energy was compu-
ted after stationary background noise was removed by spectral subtraction.

B. Feature Compression

The feature compression stage integrates over all samples
and provides a description of the feature over the full segment
length. The new representation can be a scalar value, like
average signal energy, or a vector over different frequency
channels or positions. In any case, the representation is
independent of the size of the segment. Energy is represented
as the mean value over all samples in the segment (of length
L).

Penergy=
1
L ∑

s∈S

A(s) . (3)

We also compute the difference of signal energy over time
(increase and decrease of energy) and store this information
in the response of a set of nodes representing different values.
In total 11 nodes are used which respond to slope values of
δAr = [-5 -2 -1 -0.5 -0.1 0 0.1 0.5 1 2 5]. For every sample
the closest matching node increases its response by one.
This type of representation offers a constant size independent
of segment length while still retaining some information
about the distribution ofδA values. The current setting of
node centers is hand-crafted but could be learned from the
statistics of proto objects.

The representation of the source location is the accumu-
lated position evidence for all samples:

Pposition(α) = ∑
s∈S

E(α,s), (4)

where α is the azimuth angle of the source, andE(α,s)
the evidence for azimuth angleα in samples. E(α,s) was
integrated over time with a constantτ = 100 ms, see [3].
The same approach is employed for the spectral vector:
Pspectral(c) = ∑s∈SA(c,s). An example audio proto object can
be seen in Fig. 1.

IV. RESULTS

We were using sounds of two types: environmental sounds
like mouse-clicks, footsteps or door slamming, which the
robot is supposed to ignore, and speech directed to the robot,
to which the robot should orient to. Audio proto objects were
extracted for both background sounds and directed speech
and feature values for the two sound categories compared.



For each category the sound databases were divided equally
into two sets, one for computing mean feature vectors and
codebook vectors, and one for evaluation. The databases
contained in total 317 environmental sounds and 82 speech
commands recorded in a realistic scenario. Environmental
sounds were measured by recording sound for approximately
9 min when the robot was turned on and people were working
normally in the robot lab - including working on the robot’s
hardware and talking to each other. Robot-directed calls
were recorded from four people at different positions calling
the robot’s attention repeatedly. Both recordings represent
realistic, typical cases of audio signals of the two different
types in our standard setting.

A. Sound localization

Our main application scenario of the audio proto objects
approach so far is selective sound localization. We therefore
investigated the performance of the proto object system in an
offline localization scenario. We used a database of 29 sounds
for 19 different relative horizontal positions between 90°and
-90° recorded with ASIMO’s microphones. The data was
measured by producing sound from a stationary loudspeaker
and turning the robot’s head. A serious problem is that when
the head turns to the sides, one of the microphones is very
close to the robot’s fans making sound processing extremely
challenging. Using 14 sounds for training the remaining 15
were used for evaluating the precision of the localization.

Localization in the proto object framework differs from
the conventional approach (as described in [3]) since the
number and characteristics of the proto objects and therefore
also the localization precision depends on the segmentation.
Inevitable, some very short proto objects are generated which
are difficult to localize correctly. In the standard approach
other, more salient, parts of the sound dominate the loca-
lization response so that the problem could be neglected.
To have a fair comparison we evaluated the proto object
based localization for different settings of an energy-based
filtering, i.e. responding only to proto objects with a certain
minimal energy. As can be seen in Table I with increasing
selectivity the localization precision increases substantially.
Taking only the strongest 80% proto objects (Top80, this
corresponds to approximately one proto object per sound
file) the mean localization error falls to 4.5°. Considering
that we are using only two microphones and operating in a
large lab environment with substantial echo and background
noise including the robot’s fan noise, a localization erroras
low as 4.5° is very good.

For comparison our standard approach [3] has a mean
azimuth localization error of 6.2°. Due to the high degree of
fan noise at lateral head positions, we occasionally observed
very large localization errors (up to 160°). The proto object
based approach produced fewer localization outliers and with
a setting ofTop50or stricter no localization error larger than
30° is produced.

Filter mean azi. error perc. correct > 30°
ALL 5.4° 61.7% 1.2%
Top99 5.1° 62.3% 0.6%
Top90 4.7° 63.1% 0.3%
Top80 4.5° 65.1% 0.4%
Top50 3.3° 71.3% 0.0%
Top20 2.5° 76.1% 0.0%
Standard 6.2° 72.6% 4.2%

TABLE I

LOCALIZATION PERFORMANCE WITH DIFFERENT SETTINGS OF ENERGY

FILTERING (TopXXUSES ONLY PROTO OBJECTS WITH A SIGNAL ENERGY

THAT IS WITHIN THE TOP XX PERCENT OF ALL PROTO OBJECTS). THE

RESULT IS GIVEN AS MEAN AZIMUTH LOCALIZATION ERROR, THE

PERCENTAGE OF CORRECT LOCALIZATION(WITHIN 10° RECORDING

PRECISION) AND TRIALS WITH MORE THAN 30° LOCALIZATION ERROR.
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Fig. 5. Length (in seconds) and energy of audio proto objectsfor two
types of sounds: background sounds and robot directed calls.

B. Filtering based on segment length and energy

After confirming the good localization performance we
now turn to the problem of differentiating between back-
ground and call sounds. A first approach for filtering out
background events is to analyze the mean segment length
and signal energy of proto objects.

It turns out that most background sounds are rather short
(mean 0.19 s compared to 0.36 s for calls) and have a low
signal energy (mean 26000 compared to 62000 for robot
directed speech). In Fig. 5 proto object length and energy
are plotted. We used LVQ (learning vector quantization
[14]) to learn optimal prototypes (background: length =
0.01 s, energy = 5300; calls: length = 0.4 s, energy = 71000)
and then assigned each proto object to the better matching
category. The result was that 94% of the background sound
proto objects and 78% of the calls were categorized correctly.

Another obvious cue to separate different sound categories
is sound source location. As we have seen, our approach
allows a quite precise localization of sound sources. For
some types of sounds the position might actually give a
hint to the type of sound source. However, with our current
approach, that is limited to the horizontal plane (azimuth),
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the position-related category information is not very high.
It is the explicit purpose of the localization system to
determine the position of the speaker wherever he or she is
and turn to the corresponding position. We therefore should
not make any assumptions on the position of the speaker.
Similarly, background signals could potentially originate
from all positions around the robot. If the sound localization
is extended to elevation direction (as described in [12]) and
distance, source position would actually be a more relevant
cue (e.g. sounds from below are likely to be footsteps and
very unlikely to be a human utterance).

C. Spectral energy similarity-based filtering

Since not all proto object features are scalar values, we
extend our system by a similarity computation, that compares
audio features between two proto objects and returns a
scalar similarity value that can used for selecting the proper
behavior. Fig. 6 visualizes the average spectral energies of
proto objects, one for background signals and one for robot
directed calls. Calls concentrate more energy in the middle
frequency range while background sounds have more energy
in the higher frequencies (a side effect of the GFB). We
then compute the similarity of spectral vectors from proto
objects of the evaluation set to these two reference vectors.
Similarity is computed as the scalar product of normalized
spectral energy vectors (zero mean, norm one). The result
is shown in Fig. 7. Comparing the proto object’s spectral
vector to a reference vector for the two relevant categories,
we could filter 86% of the background sounds, while keeping
93% of the relevant call proto objects.

D. Energy slope as a separating feature

We also investigated the potential of energy slope values
for categorization. Similar to the approach for the spectral
vectors we computed mean energy slope representatives
for both sound categories (see Fig. 8) and calculated the
similarity for all proto objects in both databases with the
two reference vectors. Similarity was again based on the
normalized scalar product. The result is shown in Fig. 9.
Based purely on the energy slope distribution, background
signals are to 74% correctly estimated as background and
robot directed-speech with 95% as calls. The high success-
rate could be partially due to the influence of signal energy
on the slope values, but we also observed that speech signals
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tend to have a larger proportion of rising energy slope values
than most environmental sounds.

E. Combination of filters

The combination of all cues into a single decision for
selecting which category the current proto object belongs to
and therefore the decision whether to attend to the sound or
to ignore it provides an additional improvement compared
to the single cues. Table. II summarizes the results for
the individual cues and the combination of filters. Optimal
prototypes vectors were again learned via LVQ using the
training databases, while evaluation was performed on two
separate sets of proto objects. Instead ofδA node respon-
ses and spectral energy vectors we used the corresponding
similarities to the representative vectors from the training
database. In effect, we compute a 6-dimensional feature
vector (length, energy,δA similarity to calls and background,
spectral similarity to calls and background). Using LVQ we
compute prototypical 6-dimensional feature vectors for both
classes and then assign each proto object to the nearer class.
In total 98% of the call and 91% of the background proto
objects were categorized correctly. Since there is effectively
a trade-off between the correctness for background and for
calls, different vector quantization algorithms or parameters
would probably result in different results along this pareto-
front. We also note that the most basic approach, a mean
energy-based filtering - comparable to an energy threshold
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Audio Feature background correct calls correct
Length 70% 80%
Energy 82% 76%
δA 74% 95%
Spectral 86% 93%
Length+Energy 94% 78%
All 91% 98%

TABLE II

PERCENTAGE OF CORRECT CATEGORIZATION OF PROTO OBJECTS AS

BACKGROUND OR CALLS WHEN USING DIFFERENT AUDIO FEATURES.

operation, is on average 15% points worse than the combi-
nation of all filters.

F. Online system

We have successfully implemented the environmental
sound filtering mechanism on our ASIMO robot as part of a
larger integrated system similar to [4]. We are currently using
only the filtering based on segment length and mean signal
energy, but plan to extend the system to include all features
as described above. As a result of the filtering operation,
the robot almost exclusively responds to humans calling the
robot, ignoring most of the background noise. This was
reached without any speech-specific features, instead relying
on relatively simple but robust audio cues. The selection of
the proper behavior, i.e. to turn to the measured position
of the current proto object or to ignore it, is made on the
level of proto objects where filtering characteristics are easily
adaptable. The complete sound processing system runs on a
single standard multi-core machine in real-time.

V. SUMMARY AND OUTLOOK

The contribution we have made in this work is twofold:
Firstly we have proposed a new concept for linking sound
processing and behavior selection based on audio proto
objects. These are formed by a segmentation process and
combine a number of audio features into a compact represen-
tation that can be easily handled in higher processing stages.
Secondly we demonstrated that very low-level features like
mean signal energy and segment length can successfully

distinguish between the two relevant sound categories in
about 80% of the time. We could also show that using
other features like spectral energy or energy slope, 91% of
background signals can be selected out while 98% of the call
proto objects are attended to. Due to the averaging over the
full segment all computed features are quite robust to noise
and echoes.

We plan to extend the concept of audio proto objects in
several ways: segmentation also in the spectral dimension,
addition of new audio features (like spectro-temporal features
[15]), an adaptable analysis of proto objects, e.g. by changing
filter thresholds or learning the characteristics of sound
categories. We also need to unify the representation of audio
features. It would be beneficial if all features could be
represented in a similar way. A possible solution is to map
scalar values to a population code representation like the one
we used for the energy slope. It would then be possible to use
a single approach for representing and comparing all features
in the proto object. Along this line we also plan to improve
the categorization, which is currently based on a rudimentary
LVQ scheme.

In addition to filtering irrelevant sounds the concept can
also be used to group similar proto objects or to integrate
audio and visual proto objects for cross-modal learning or
cue integration.
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