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Abstract. Algorithms for correlation-based visual tracking rely to a
great extent on a robust measurement of an object’s location, gained by
comparing a template with the visual input. Robustness against object
appearance transformations requires template adaptation - a technique
that is subject to drift problems due to error integration. Most solutions
to this “drift-problem” fall back on a dominant template that remains
unmodified, preventing a true adaptation to arbitrary large transforma-
tions. In this paper, we present a novel template adaptation approach
that instead of recurring to a master template, makes use of object seg-
mentation as a complementary object support to circumvent the drift
problem. In addition, we introduce a selective update strategy that pre-
vents erroneous adaptation in case of occlusion or segmentation fail-
ure. We show that using our template adaptation approach, we are able
to successfully track a target in sequences containing large appearance
transformations, where standard template adaptation techniques fail.

1 Introduction

Visually tracking arbitrary moving objects in a dynamic real-world environment
is a difficult task. Tracking systems face many challenges like cluttered back-
ground, fluctuating environment conditions, occlusions, large object movements
due to limited processing frame rate and not at least object appearance transfor-
mation. A robust tracking system must be able to cope with all these difficulties,
in order to succeed in real-world applications

Modern Bayesian tracking systems (as e.g. described in [1], [2]) track arbi-
trary moving objects in a way that they estimate the object’s parameters by
first predicting the state and consecutively confirming the predicted state by in-
corporating a measurement of the state. In our case, the measurement of a target
object is gained by comparing a template (as an appearance model) of the tar-
get object with the input image containing the sought object, using template
matching techniques (see e.g. [3]). The quality of the measurement essentially
depends on how up-to-date the template is. In order to make template matching
robust in a sequence of images with changing object appearance, the template
needs to be continuously updated towards the current appearance.
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Under the assumption of small object appearance changes, different approaches
were proposed to update the template towards the current appearance. These ap-
proaches apply parametric transformations depending on the type of assumed ap-
pearance change ([4]), e.g. using a linear appearance transformation (e.g. in [5], [6])
or an active appearance model (e.g. in [7]). Apart from the fact that these methods
are gradient-descent based and therefore not suited for large transformations, they
are not designed to cope with arbitrary appearance transformations.

However, in order to cope with large appearance transformation of arbitrary
type, the most generic way is rather simple. The template is updated using
the current input image at the position where the object is currently found.
Unfortunately, due to small errors in the position estimation, the great drawback
of this naive approach is the risk of a loss of the target by a systematic drift
introduced by the template update process. Previous authors have addressed
this problem (see e.g. [4], [8]), but the solutions are based on falling back on a
master reference template in regular intervals, which is not suitable for large,
irreversible transformations.

To tackle the template drift problem, we propose in this paper a novel method
for template adaptation by cutting out a new template with drift correction. The
drift problem is solved in the way that the drift is first detected by analyzing the
segmented object mask and then the drift is immediately corrected after each
cut-out of the new template. A further update strategy prevents an erroneous
adaptation, e.g. in case of occlusion or segmentation failure. In this paper, we
first present our tracking framework with its three constituting components:
I) multiple-cue based measurement by template matching, II) Bayesian based
dynamic state estimation and III) template adaptation with drift correction.
Then we demonstrate the performance of our tracking system by means of an
experimental evaluation using different template adaptation methods.

2 The General Tracking Framework

2.1 Framework Overview

We want to track an arbitrary object in 2D images by estimating its state vector
Xk = (xk,vk,ak) - comprising position, velocity and acceleration - at time step
k, given all its past and current measurements Zk,Zk−1, ...,Z1.

The general tracking framework can be separated into three main components:
I) The multiple-cue based measurement part for calculating the likelihood, II) the
dynamic state estimation part for obtaining Xk, and III) the template adaptation
part for keeping the template up-to-date in favor of a robust likelihood calculation.

Part I: This part starts with a color image as input. Indicated as step 1
in Fig. 1, the image is then preprocessed into an array Zi,k of N 2D planes
corresponding each to an activity field that indicates the degree of response to a
given cue. In step 2, a tracking template array Ti,k and an object mask Wk are
used to find positions in the 2D planes that indicate a high probability for the
presence of the tracked pattern. This template array consists of the same number
of 2D planes as the preprocessed input after step 1, so that all the different cues
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1. cue extraction 4. state prediction 7. template adaptation
2. likelihood calculation 5. state confirmation 8. mask segmentation
3. cue fusion 6. state estimation 9. drift correction

Fig. 1. Overview of tracking framework: the entire tracking system consists of nine
processing steps within three main components: I) Calculation of measurement likeli-
hood. II) Dynamic state estimation. III) Template adaptation. Details about the steps
are described in sections 2.1-2.4.

are taken into consideration. The result is the likelihoods ρ(Zi,k|Xk) which are
fused in step 3 to an overall likelihood ρ(Zk|Xk) as a single 2D plane.

Part II: The overall likelihood is used for a dynamic estimation of the tracking
state Xk in a Bayesian manner in steps 4, 5 and 6 of Fig. 1.

Part III: Depending on the confidence of the state vector (which mainly de-
pends on the quality of the likelihood and therefore, of the current template),
a decision is made in step 7 whether to adapt the template. In the case that
a new template is extracted, a segmentation of the target object from the new
template provides an up-to-date object mask (step 8 ) which is used to prevent
the drift during the template adaptation (step 9 ).

Steps 1-9 are iterated, so that the state estimation and if necessary also the
template and object mask adapt to changing input. The system has to be initial-
ized with a starting state vector X0, a template Ti,0 and an object mask W0 for
the target object. This is assumed to occur from outside of the system, either by
human interaction or by some higher-level processing centers that communicate
down a hypothesis on which parts of the scene should be tracked.

2.2 Likelihood Calculation

In the evaluations, we used RGB color channels and structure tensors (see e.g. [9])
as cues. This leads to N = 6 cue planes which are correlated with a tem-
plate pattern consisting of N corresponding planes which specifies the particular
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properties of the selected 2D region that is being tracked. We perform a win-
dowed, normalized cross correlation of the cue planes with the template pattern.

We basically assume that the sought object/pattern in the input planes Zi,k

of time step k can be found by comparing the planes with their corresponding
tracking template planes Ti,k, so that

Wk�Ti,k ≈ Wk�Zx
i,k . (1)

Here, Wk is a window operating in the two spatial coordinates that indicates
the approximate limits of the tracked pattern. The contribution of the window
is to suppress background clutter. Zx

i,k are cue planes of the input image which
are centered around the spatial position x which is part of the overall state
vector Xk. Eq. (1) expresses that we expect the pattern of activity of the input
around position x to be approximately matching the tracking template within
the considered window Wk.

We additionally assume that the input may contain a shifted and scaled (in
terms of cue intensity) version of the tracking template, to make the template
comparison and the tracking procedure contrast and brightness invariant. This
means, that instead of Eq. (1), we consider

Wk�Ti,k ≈ λiWk�Zx
i,k − κi Wk + ηi 1 . (2)

Here, λi is a contrast scaling parameter and κi a brightness bias. The factor ηi is
additive Gaussian noise with variance σ2

i . It is important that all the input image
patches Zx

i,k centered around different positions x get scaled to the corresponding
reference template Ti,k, and not the other way round.

The likelihood that the input Zx
i,k centered around position x matches the

tracking template Ti,k within a window Wk can then be expressed as

ρ(Zi,k|Xk) ∼ e
− 1

2σ2
i
||λiWk�Zx

i,k−κi Wk−Wk�Ti,k||2
. (3)

Eq. (3) constitutes an observation model that expresses the similarity between
the real measurements Zi,k and the measurements expected from knowing the
state Xk.

We now proceed to make Eq. (3) independent of λi and κi. For this purpose, we
maximize the likelihood Eq. (3) with respect to the scaling and shift parameters,
λi and κi. This amounts to minimizing the exponent, so that we want to find

{λ∗
i (x), κ∗

i (x)} := argminλi,κi

∣
∣
∣
∣Wk�

(

λi Zx
i,k − κi1− Ti,k

)∣
∣
∣
∣
2

. (4)

This leads to:
λ∗

i (x) =
�Zx

i,k
,Ti,k

· σTi,k

σZx
i,k

and (5)

κ∗
i (x) = λ∗

i (x)µZx
i,k

− µTi,k
with (6)

µA = 〈A〉 :=
1TA�Wk

2©1
1TWk

2©1
, (7)
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σ2
A = 〈A 2©〉 − 〈A〉2 , and (8)

�A,B =
1

σA · σB

〈

(A − µA1)�(B − µB1)
〉

, (9)

where A and B have to be replaced by Zx
i,k and Ti,k, respectively. Here, the op-

erators� and 2© indicate element-wise multiplication and element-wise squaring,
respectively.

Inserting Eqs. (5) and (6) into Eq. (3), so that λi = λ∗
i (x) and κi = κ∗

i (x),
leads to the final likelihood formulation:

ρ(Zi,k|Xk) ∼ e
− 1

2

(
σTi,k

σi

)2(

1−�Zx
i,k

,Ti,k

)

. (10)

For all cues, Eq. (10) is calculated, which basically amounts to the computation of
the normalized, locally windowed correlation �Zx

i,k
,Ti,k

of a cue with its template.
This is done for each pair of cue/template planes separately, and the overall
likelihood ρ(Zk|Xk) is then additively composed of all the planes computed
according to Eq. (10)

ρ(Zk|Xk) ∼
N⊕

i=1

ρ(Zi,k|Xk) . (11)

From Eq. (11) it is expected that, for cues which temporarily characterize the
tracked object to some extent, there will be a pronounced peak at the position
of the tracked object.

2.3 Dynamic State Estimation

The fundamental problem that a tracking system has to solve is that of recursive,
dynamic target state estimation. This means that it has to estimate continuously
the state Xk of the dynamic system

Xk = fk−1(Xk−1) + vk−1 (12)
Zk = hk(Xk) + wk (13)

using a series of measurements Zk,Zk−1, ...,Z1 gained from an observable that
can be put in relation to the state Xk. Here, fk−1(.) and hk(.) are models for state
transition and object observation, respectively, and vk−1 and wk are additive
noise.

Bayesian tracking equations (see e.g. [1], [2], [10]) express this formally in
two stages of the filtering process, usually termed prediction and update stages

ρ(Xk|Zk−1, ...,Z1) =
∫

ρ(Xk|Xk−1)ρ(Xk−1|Zk−1, ...,Z1)dXk−1 (14)

ρ(Xk|Zk, ...,Z1) ∝ ρ(Zk|Xk)ρ(Xk|Zk−1, ...,Z1) (15)

with
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Fig. 2. Template adaptation strategy: a template adaption is only done for small cal-
culated confidences Ck. For each template adaptation an object segmentation mask is
calculated, which is used to correct the drift of target object in the template. A plausi-
bility check between the newly segmented mask and the currently used mask is applied
to prevent a possible wrong segmentation, which can happen e.g. due to occlusion or
if the segmentation algorithm fails.

– ρ(Zk|Xk) as the measurement likelihood expressing the comparison between
measurement and expected measurement (given by Eqs. (10), (11) for our
correlation-based tracker),

– ρ(Xk|Zk, ...,Z1) as the posterior of the state given all past and current mea-
surements, and

– ρ(Xk|Zk−1, ...,Z1) as the prior which is gained from the posterior of the last
step using a state transition model ρ(Xk|Xk−1).

For coping with the six dimensional state space and multimodal distributions of
the posterior, we use a particle filter approach in our framework for the estima-
tion problem, with a linear prediction model for ρ(Xk|Xk−1). The particle filter
produces estimates for Xk from the posterior ρ(Xk|Zk, ...,Z1).

2.4 Template Adaptation

In real-world applications objects may undergo arbitrary types of appearance
transformations. To ensure a robust likelihood calculation ρ(Zk|Xk), the tem-
plate Ti,k and corresponding object mask Wk need to be adapted to the current
object appearance.

The most generic way to do template adaptation for coping with all types of
appearance transformations consists in cutting out the patch at the determined
object position xk which is part of Xk and set it as the new template Ti,k+1.
However, apart from the fact that the object mask Wk+1 must be recalculated
after every template adaptation, the weakness of this method is that the target
may drift from the template in course of time, because of the integration of
small inaccuracies in the object measurement. In order to fix this problem, in
our framework the drift problem is solved in a correction step after each cut-out.

As Fig. 2 illustrates, the first step of our template adaptation strategy is to
check if it is necessary to adapt the template. For high confidences of state vec-
tor Xk there is no need to adapt template, since likelihood calculation works
robustly. A possible confidence is for instance the value of the highest posterior
peak. In the case if the confidence is starting to get worse, the new template
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T̃i,k+1 on position xk is cut out. A segmentation algorithm is applied to the
newly cut-out template patch in order to generate a new object mask W̃k+1. Dif-
ferent segmentation algorithms are suitable for calculating the object mask, here
we have chosen a Level-Set based segmentation algorithm as described in [11].
From the mask, the center of gravity of the object mask xW̃k+1

is calculated.
The distance

dk = xW̃k+1
− xk (16)

is considered as the template drift which is therefore used to recenter the tem-
plate and the mask in order to get the corrected template T̂i,k+1 and mask
Ŵk+1.

As a second criterion for excluding detrimental template adaptations, e.g.
after an object loss, occlusion or failure of the segmentation algorithm, the newly
gained mask Ŵk+1 undergoes a plausibility check, in the way that it must be
similar to the current mask Wk. A possible similarity measure is the correlation
coefficient between Ŵk+1 and Wk. Only in case of high similarity, the new
template and mask are updated, otherwise the current template and mask are
kept for the next frame, according to:

Ti,k+1 = T̂i,k+1 and Wk+1 = Ŵk+1 , if both adaptation criteria fulfilled (17)
Ti,k+1 = Ti,k and Wk+1 = Wk , otherwise (18)

On applying these two criteria during template adaptation, a persistently low
confidence value Ck of state Xk is a strong indication for target object loss, e.g.
because of occlusion. In this case, the second criterion prevents to update the
template T̂i,k+1 in such cases.

3 Evaluation

This section demonstrates the evaluation results of our tracking system with the
template adaptation mechanism as described in section 2.4.

In a sequence of 250 frames (illustrated in Fig. 3) a hand is tracked. As listed in
the table of Fig. 3, this sequence contains four phases of different motions (each
with translation and/or other types of appearance transformations, like 2D/3D
rotation or change of hand shape). The appearance transformation that the
template update system has to adapt to is easiest in phase I and gets increasingly
harder for phases II-IV.

In the evaluation three methods for template adaptation are compared. In
method 1 no template and mask adaptation is applied. The template Ti,0 and
the object mask W0 from the first frame are used throughout the rest of the
sequence. Method 2 adapts template and its object mask as described in sec-
tion 2.4 but without drift correction. That means, if the plausibility check is
fufilled, the cut-out template T̃i,k+1 and its object mask W̃k+1 are used to up-
date template and mask instead of using T̂i,k+1 and Ŵk+1. Method 3 applies the
full template adaptation strategy described in section 2.4 according to Eqs. (17)
and (18) which corresponds to method 2 but with drift correction.
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frame 1 frame 15 frame 30 frame 45 frame 60

frame 65 frame 85 frame 95 frame 105 frame 120

frame 160 frame 185 frame 210 frame 235 entire trajectory

Phase 2D translation 2D rotation 3D rotation change of hand shape

I from the left to the right no no no
II from the lower right to the upper left yes no no
III from the upper left the middle yes yes no
IV from the middle to the left and then

to the right
yes yes between extended hand

and clenched fist

Fig. 3. This figure illustrates selected frames of an evaluation sequence composed of
250 frames. The images are taken with a frame rate of 10Hz and have a size of 256×256
pixels. The sequence can be approximatively separated into four phases with individual
motion types which are described in the table.

The evaluation results are shown in Fig. 4. They reveal that the tracking sys-
tem fails to track the target object in cases using method 1 and method 2. Using
method 1 the object is already lost at around frame 50 when the object starts
to perform 2D rotation, because the correlation based measurement method as
presented in section 2.2 can only cope with 2D translation, scaling intensity and
baseline shift. Using method 2 the object is lost in phase II. In this case, the ob-
ject smoothly drifts away from the template. After a while the template hardly
contains any object parts so that the tracker sticks on the background. This drift
process is illustrated in Fig. 5. Only by using method 3 the object is successfully
tracked throughout all 250 images of the sequence. In no single frame the target
object is lost or misplaced. Template adaptation is mainly triggered in phases
III and IV when object appearance transformation is strongest.

In further evaluations (not shown) this framework was tested during occlu-
sion conditions. In the cases of occlusion, the mask plausibility check failed,
which prevented a template adaptation, although the measurement confidence
was below threshold.
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Fig. 4. Comparison of the three methods from section 3. Method 1 looses the target
when the tracked object starts to perform 2D rotation. Method 2 looses the object in
phase II, after the object more and more drifted out of the template and the tracker
therefore confuses the background with the object. Only method 3 can successfully
track the object throughout the entire sequence. For a more detailed description refer
to section 3.

frame 1 frame 30 frame 60 frame 85 frame 105

Fig. 5. This figures shows the template and its corresponding object mask during the
tracking process in cases without and with drift correction. In the case of no drift
correction (first row) one can see that the target object is lost from the template step
by step, leading to a tracker failure. In the case with drift correction (second row) the
template drift is corrected after every adaptation step using a newly calculated object
mask, keeping the object steadily in the middle of template.

4 Conclusion

In this paper we presented a novel template adaptation approach for robust
template-matching-based object tracking which allows large appearance trans-
formations of arbitrary types. The approach consists of cutting out a new
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template at an estimated object position, where a segmentation algorithm is
then applied to update the mask in order to apply a drift correction to prevent
integration of position errors between template and object. By applying two cri-
teria as conditions for template adaptation, we make sure that it is only applied if
it is necessary and its result is plausible. A large change of mask is considered as
an indication of segmentation failure, occlusion or loss of target. In a comparative
setting using an image sequence containing four phases with different types of
appearance transformations, a template-matching-based particle filter tracking
system is evaluated according to three different template adaptation methods: no
adaptation, adaptation without drift correction and adaptation with drift cor-
rection. The method with drift correction clearly proved to be the most robust
one, allowing continuous tracking despite difficult appearance transformations
whereas the other two methods failed at some point of the test sequence.
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