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Abstract

This paper examines the interdependency of population level adaptation (evolution) and individ-
ual level adaptation (learning). More specifically, we assume a trade-off between the two means
of adaptation, i.e., a higher individual level adaptation can only be achieved by reducing the pop-
ulation level adaptation and vice versa. This trade-off is apparent in computational evolutionary
systems, and there is also evidence that it exists in nature. As we show, despite this considered
trade-off, there exist environments in which a combined adaptation scheme is optimal. Further-
more, we show that it depends on the environmental dynamics what particular distribution of
population and individual level adaptation produces the optimal adaptive behavior. Finally, we
show that the optimal balance (i.e., an optimal learning effort) can emerge from evolution.

Keywords: Evolution, Learning, Changing Environments, Second-Order-Selection, Adaptation
Strategy
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1 Introduction

In nature species are faced with changing environmental conditions and evolution has found a vari-
ety of adaptation mechanisms that seem to be tailored for the particular environmental conditions.
The distinction between individual level and population level adaptation is often used to catego-
rize natural adaptation mechanisms (Ancel & Bull, 2002). Individual level adaptation includes all
forms of individual phenotypic changes during an individual’s lifetime, such as development and
learning. Population level adaptation represents the evolutionary cycle of selection and genetic
variations. We use the terms population and individual level adaptation rather than evolution and
learning, because we want to investigate the coupling of two very similar trial-and-error adaptation
mechanism that only differ from each other in that one is applied on the population and the other
on the individual.

While in some species population level adaptation is the dominant adaptation mechanisms (e.g.,
bacteria), adaptation in other species relies much more on individual level adaptation. It seems that
in nature there exists a trade-off between individual and population level adaption. Interestingly
this trade-off does not only exist between but also within species, such as, e.g., the well-known
trade-off between reproduction (population level adaptation) and survival/longevity (individual
level adaptation), see e.g. Levins (1968); Sibly and Calow (1984); Stearns (1989); Mukhopadhyay
and Tissenbaum (2007). This trade-off follows from the assumption that organisms have a limited
amount of energy which can be spent for the achievement of distinct goals, such as reproduction or
survival. Such a trade-off could be visualized as in Figure 1. Notice that the figure is a qualitative
sketch of such a trade-off and does not refer to particularly measured data.

In evolutionary computation there exists another trade-off between individual and population
level adaptation. When coupling an evolutionary algorithm with a local learning procedure it needs
to be decided what amount of computational resources are assigned to the local learning procedure.
Thus, if the overall amount of computational effort is constant, such a trade-off exists. A high level
of local learning (individual level adaptation) implies a low level of evolutionary search (population
level adaptation), and vice versa. See Figure 2 for an illustration of this trade-off. There, with 0
individual learning steps, i.e., only 1 evaluation is applied to an individual, 100 pecent population
adaptation takes place. An increase of individual learning steps from 0 to 1, thus 2 instead of 1
calls to the evaluation function are now needed, reduces the relative number of genetic mutations
by 50 percent. If the number of learning steps increases further, the relative number of genetic
mutations with respect to the case of 0 individual learning steps, is reduced further. This relative
number of genetic mutations can be interpreted as the intensity of population level adaptation.

In this paper we ask under what conditions a mixed adaptation strategy that couples population
and individual level adaptation, i.e., an intermediate point on the trade-off curve, produces an
adaptational advantage over population or individual level adaptation alone. In particular we
consider the coupling of two similar trial-and-error adaptation mechanism on the population and
individual level. After briefly reviewing the related work in Section 2, we introduce a simulation
model in which adaptation effort can be distributed between population and individual levels
while the overall adaptation effort is kept constant (Section 3). Thus, the cost of individual level
adaptation is fully accounted for. We will show how the distribution of population and individual
level adaptation influence exploration and exploitation (Section 4). Referring to Figures 1 and 2 we
ask under what environmental conditions an intermediate point on the trade-off curves (not on the
borders) produces an adaptational advantage. We will demonstrate that such cases exist, however
such effects can only be observed in changing environments (Section 5). In nature the realized
balance of population and individual level adaptation is probably partly determined by natural
constraints and partly a result of higher-order adaptation process. We will demonstrate under
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Figure 1: A qualitative sketch of possible trade-
offs between reproduction and survival as can
be found similarly in many species in nature.
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Figure 2: A trade-off between individual and
population level adaptation that can be found
in evolutionary computation when the overall
computational budget is constant.

what constraints an evolutionary (second-order) adaptation of the balance between population and
individual level adaptation can take place that leads to a near-optimal adaptation strategy (Section
6). We conclude with a summary and a discussion of the results (Section 7).

2 Related Work

In research fields related to the interaction of population and individual level adaptation by far,
most efforts have been made to investigate how individual level adaptation influences the population
dynamics. A review of the related literature can be found in Paenke, Sendhoff, and Kawecki (2007)
and a collection of papers in Belew and Mitchell (1996) and Weber and Depew (2003). In the
following, we only briefly summarize the main findings reported in the literature.

There exists an obvious influence of individual level adaptation on the population dynamics un-
der Lamarckian inheritance (Lamarck, 1809) which assumes that the result of individual lifetime
adaptation can be directly transferred from parent to offspring. Although some Lamarckian-like in-
heritance mechanisms exist (Paenke, Sendhoff, Rowe, & Fernando, 2007), the theory of Lamarckian
inheritance is rejected in evolutionary biology, e.g., Crick (1970).

However, even in the absence of Lamarckian inheritance, individual level adaptation may change
the evolutionary pathways. This effect has first been formulated by Baldwin (1896) and was
later named the Baldwin effect by G. Simpson (1953). The seminal work by Hinton and Nowlan
(1987) demonstrated that the Baldwin effect can indeed guide evolution towards a global fitness
optimum. A recently published mathematical framework, called the gain function, explains under
what conditions individual level adaptation accelerates or decelerates evolution (Paenke, Sendhoff,
& Kawecki, 2007; Paenke, Kawecki, & Sendhoff, 2007). The gain function framework is limited to
monotonic parts of the fitness landscape, and the main idea is to determine whether individual level
adaptation enlarges or reduces fitness difference between fit and unfit individuals. The reduction
of fitness differences caused by individual level adaptation has first been mentioned in the biology
literature (Johnston, 1982), and was later termed Hiding effect by Mayley (1997). Though in
Mayley (1997) the hiding effect is associated with a decrease of the rate of genetic evolution towards
the optimum, this relationship does not hold in general. It has been demonstrated empirically on
a bi-modal fitness landscape (Mills & Watson, 2006), and mathematically based on random walk
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theory (Borenstein, Meilijson, & Ruppin, 2006) that the Hiding effect may accelerate evolution on
a multi-modal fitness landscape, since individual level adaptation tends to smooth fitness valleys.
The presence of the Hiding effect may also explain the results of a paper recently published in
this journal (Curran & O’Riordan, 2006), where the addition of cultural learning to a genetically
evolving population increased diversity. Through cultural or any other form of learning, individuals
with genetic differences can achieve a similar fitness which results in a higher diversity in the
population than in the absence of learning. In another paper (Curran & O’Riordan, 2005), it
has been shown that the addition of cultural learning lead to a better adaptation behavior under
dynamic environments. An intuitive explanation for this may also be the increased level of diversity
induced by the Hiding effect.

When investigating under what conditions a coupling of population and individual level adap-
tation produces an adaptational advantage, the influence of individual adaptation on population
adaptation is an important factor. Though the above work provides some insights into this ques-
tion, no attempt has been made to fully account for the cost of individual level adaptation, to the
best of authors’ knowledge. A few exceptions are in (e.g. Mayley, 1997), where a cost for individual
level adaptation is explicitly included in the fitness function which reduces the fitness.

A closer investigation on how to distribute adaptation (or search) effort between population and
individual levels has been made in the field of evolutionary optimization, in particular in designing
memetic algorithms that couple evolution and local search algorithms. In these algorithms, it has
been found that a proper distribution of computational effort between evolution and local search
is a critical issue (Hart, 1994; Hüsken & Igel, 2002; Hart, William, Krasnogor, & Smith, 2005;
Krasnogor & Smith, 2005). The main argument in favor of memetic algorithms over conventional
evolutionary algorithms is that two-level search allows to employ two distinct search techniques,
one for coarse-grained (population) search and the other for fine-grained (individual) search, where
each technique is particularly well suited for the search space characteristics in which they are
applied. Since the techniques used for coarse-grained search are usually very different from those
employed for fine-grained, it is difficult to distinguish to what extent the performance improve-
ment arises from simply employing two instead of one search level and to what extent from the
specialization of the techniques. Furthermore, memetic algorithms are commonly applied to sta-
tionary optimization problems together with a Lamarckian inheritance scheme. Therefore, findings
in memetic algorithms cannot be used to answer the question of the present paper which considers
a dynamic environment and the coupling of two very similar adaptation mechanisms.

Most observations made from coupling population and individual level adaptation stem from
models with a stationary environment. The derived principles are believed to be, more or less,
applicable to dynamic environments as well. In this paper, we will, however, demonstrate some
principles that can not be observed under stationary conditions but only in changing environments.

In a preliminary study (Paenke, Branke, & Jin, 2007), we have used a simulation model sim-
ilar to the one used in this paper to investigate how phenotypic adaptation influences genotypic
diversity. There we have arrived at a similar conclusion as in Curran and O’Riordan (2006) that
phenotypic adaptation influences genotypic diversity. Notice, however, that a higher degree of
diversity is not always favorable. Whether diversity leads to an adaptational advantage can be as-
sessed only from the perspective of what level of diversity is most appropriate for a given dynamic
environment with regard to exploration and exploitation capability of the population.



4

Population adaptation
genotype level

Individual adaptation
phenotype level

Determine perished
from all individuals

Select parents
for reproduction

from all individuals

Mutate
offspring

Genotype-phenotype-mapping     
offspring

Modify phenotype
all individuals except 
new-born individuals

Evaluate new
phenotype
all individuals 

Select phenotype
all individuals except 
new-born individuals

1

2

34

5

6

Figure 3: Adaptation loop that takes place every time unit in the analysis model of coupled
individual and population level adaptation.

3 The Model

A population is composed of n individuals, each represented by a 3-tuple

I = (x, z, tb) , (1)

where x is a one-dimensional real-valued genotype, z is a (variable) one-dimensional real-valued
phenotype, tb is the time when the individual is born. How well an individual’s phenotype z is
adapted to the environment at time t is specified by its adaptive value which is given by a time-
dependent environment function f(z, t). Selection is based on the adaptive values of the individuals
and takes place every time step1.

Figure 3 shows the loop of individual and population level adaptation, representing one time step
in the discrete time model. Adaptation steps 1 to 3 represent population level adaptation (right-
hand side of the figure), whereas adaptation steps 4 to 6 represent individual level adaptation
(left-hand side of the figure). The genotype-phenotype-mapping represents the transition from
individual to population level adaptation. In the following the adaptation steps are described in
detail.

3.1 Population Adaptation

Determine perished (Step 1): Individuals have a limited lifetime which is specified by the
model parameter L. Based on all individual’s time of birth tb, lifetime L, and the current time t

1Notice that in evolutionary optimization, f is commonly called fitness. In such algorithms individuals represent
solutions to an optimization problem and fitness indicates the corresponding performance. We use the term adaptive
value instead of fitness for the following reason: In biology an individual’s fitness indicates the number of its off-
spring. Thus, it is the result of a lifetime process and can strictly speaking only be assessed posthumously. In most
evolutionary optimization algorithms, individuals either do not have a lifetime and its performance indeed correlates
with the expected number of offspring, or where they have lifetime (so called memetic algorithms with individual
local search) fitness assessment and selection is only applied after local search. The usage of the term fitness is in
both cases consistent with the biological concept. In the model of this paper, however, selection is applied during the
individual’s lifetime, and the usage of fitness as reference to the “temporary basis of selection” would be inconsistent
with the biological lifetime concept of fitness.
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the number of individuals that reach the end of their life is determined (condition t− tb = L). Let
m be the number of perished individuals in one evolutionary cycle.
Select parents for reproduction (Step 2): Based on the individual’s current adaptive value
f(z, t), m individuals are selected to produce offspring to replace the m perished ones. The se-
lection probability is linearly proportional to the current adaptive value. This selection scheme is
implemented by the stochastic universal sampling algorithm proposed by Baker (1987). The union
of the original population with the m perished individuals removed, and the m new offspring forms
the new population, such that the population size is constant over time.
Mutate (Step 3): The genotype of the new offspring is mutated by adding a random number
sampled from a normal distribution Xφ(0,σG) with mean µ = 0 and standard deviation σ = σG to
the original (parent’s) genotype x. Formally

x′ = x + Xφ(0,σG) , (2)

where x′ is the genotype of the offspring.

3.2 Genotype-Phenotype-Mapping

This step is only applied to offspring (new-born individuals). Their innate phenotype is developed
by applying the identity function to their genotype value, i.e., the innate phenotype equals the
genotype value.

Using the formal definition of an individual of Equation 1, the whole process of (asexual)
reproduction of an offspring I ′ from a parent I at time t is given by

(I, t) = ((x, z, tb), t) 7→ (x′, x′, t) = I ′ , (3)

where x′ is calculated according to Equation 2. The offspring’s lifetime L is equal to its parent’s
lifetime L and the time of birth is set to the current time.

3.3 Individual Adaptation

All individuals (except the new-born offspring2) try to increase the adaptive value using a sim-
ple (individual) adaptation algorithm based on a rudimentary lifetime memory that stores the
best phenotype found so far and the corresponding adaptive value that has been achieved at the
time when the phenotype value was explored. The individual adaptation procedure comprises the
following three steps.
Modify phenotype (Step 4): Individuals modify their current phenotype by adding a random
number sampled from a normal distribution with mean µ = 0 and standard deviation σ = σP .
Formally,

zt = zt−1 + Xφ(0,σP ) , (4)

where zt denotes the phenotype in time t.
Evaluate new phenotype (Step 5): The new phenotype (for new-born individuals the innate
phenotype) of each individual is evaluated in its current environment. An environment is specified
by a time-dependent adaptive value function, i.e., the adaptive value becomes f(zt, t). In this
paper we study four different environments, as illustrated in Figures 6, 7, 11, and 12. In addition
to the mapping from phenotype z to the adaptive value f the time dimension (t) is included for

2This exception allows a precise distribution of adaptive value function calls between individual and population
level; during the first lifetime unit, only the innate phenotype is evaluated and no modification of it takes place
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visualization of the environmental dynamics. This adaptive value becomes the selection criterion
for this timestep regardless of whether it is kept or not in the next step.
Select phenotype (Step 6): The adaptive value of the new phenotype of each individual is
compared to its adaptive value at time t−1. If the new adaptive value is lower than the memorized
one, the memorized phenotype remains the current phenotype.

3.4 Remarks

The implementation of this kind of individual level adaptation can be seen as a (1+1)-Evolutionary
Algorithm (Schwefel, 1993) and is very similar to the population adaptation mechanism. Notice
that in both levels of adaptation the same adaptation step-size is chosen, i.e., σG = σP , which
is intended to avoid a methodological bias towards a particular adaptation mechanism. In all
simulation studies of this paper we set σG = σP = 0.01. The default population size is 1000 in this
paper.

The model allows to distribute the adaptation effort between individual and population level
by setting the lifetime parameter L. With population size n, the average generation turnover, i.e.,
the number of individuals that perish and are replaced, is n

L . E.g., with n = 1000 individuals,
L = 20 causes an average generation turnover of 50 individuals per time unit, i.e., 5 percent of all
adaptation steps are genetic mutations and 95 percent are individual learning steps. Setting L = 1
would cause an average generation-turnover of 1000 individuals per time unit, i.e., 100 percent of
all adaptation steps are population adaptation steps. The case of L = 1 represents the special case
of pure population level adaptation, the case of L = 10 represents a case of coupled individual and
population level adaptation.

4 Influence of Lifetime on Population Dynamics

The balance between exploration and exploitation is the key issue for adaptive systems (Holland,
1992; Eiben & Schippers, 1998). In this section we investigate how a change in the central model
parameters lifetime L (that adjusts the distribution of individual and population level adaptation)
influences population dynamics with a focus on the exploration-exploitation balance. There exist
two obvious effects of increasing lifetime.

First, as mentioned earlier, a increase in lifetime L reduces the average generation-turnover.
Formally, the average generation turnover of a population of n individuals is n

L .
Secondly, an increase in lifetime L smoothes the effective fitness landscape. Individual adap-

tation influences the average adaptive value over an individual’s lifetime. We will here call the
mapping from genotype to its average adaptive value effective fitness. In principle, an increase of
individual adaptation intensity can either increase or decrease selection pressure (Paenke, Kawecki,
& Sendhoff, 2007; Paenke, Sendhoff, & Kawecki, 2007), however there exist only rare cases where
the selection pressure is actually increased. The model of Hinton and Nowlan (1987) is such an
example. Borenstein et al. (2006) refer to such scenarios as extreme fitness landscapes. In all other
cases, an increase in individual adaptation intensity decreases selection pressure, and an increase
in L smoothes the effective fitness landscape.

It is accepted wisdom that the exploration and exploitation ability is strongly influenced by the
degree of diversity. A second important concept for this paper is the quasi-species. In the following
we briefly introduce both concepts, diversity and quasi-species, before we present simulation studies.
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Diversity

In Magurran (2005) diversity is described as the variety and abundance of organisms at a given
place and time. However, it is less clear how to measure it (Cousins, 1991; Magurran, 2005).
Numerous diversity indices have been suggested in the biology literature, but it was shown in
Routledge (1979) that no single index is universally superior. In artificial life and evolutionary
computation, diversity has been studied, too (Morrison & Jong, 2001; Mattiussi, Waibel, &
Floreano, 2004). Every diversity index reflects at least one of the two aspects, namely, richness
and evenness. By richness, it is meant how many different elements exist in an element set,
e.g., how many species in the ecosystem or how many different genotypes or phenotypes in a
species or a local population. Evenness refers to the distribution of a given set of elements with
respect to certain element properties. A uniform distribution produces the maximum evenness.
Some diversity indices focus on either of the two properties, e.g. the Hurlberts Probability of
Interspecific Encounter (Hurlbert, 1971) quantifies evenness. Most indices aggregate both aspects,
such as the Shannon entropy (Shannon, 1948; Pielou, 1966) and the Simpson’s index (E. Simpson,
1949). In this paper, we decided to adopt the intuitive and widely used Simpson index (E. Simpson,
1949) for measuring diversity, as recommended in Routledge (1979). The Simpson index reflects
the probability for two randomly sampled individuals to fall into the same partition class of a
partitioned continuous space and is defined as

H = 1−
m∑

i=1

ni

n
, (5)

where n is the population size, and ni the number of individuals in partition class i (out of m
partition classes). H increases with both evenness and richness which is a desired property. For all
studies, we have also used Shannon-Eveness, Hurlberts Probability of Interspecific Encounter, the
standard richness measure, and the average Euclidean distance as diversity measures with which
we obtained, without exception, qualitatively equal results.

The Quasi-Species

Here, we briefly introduce the concept of the quasi-species, and refer to Eigen (1971); Eigen and
Schuster (1979); Bull, Ancel-Meyers, and Lachmann (2005) for a detailed description of this con-
cept.

If the environment is static for a sufficiently long time, the population moves to a local or global
optimum where the selection pressure is usually decreasing and the loss of diversity is slowed down.
At the same time, mutation keeps introducing new (non-optimal) genotypes to the population. At
some point in time the two forces selection and mutation that reduce and increase diversity at the
same time are equally strong and cancel each other out. This well-known phenomenon has been
termed mutation-selection balance in Haldane (1937); Crow and Kimura (1964). Under mutation-
selection balance the population forms a “cloud” of genotypes around the so-called wild-type. This
genotype cloud at mutation-selection balance is called quasi-species (Eigen, 1971; Eigen & Schuster,
1979).

The following illustration is inspired by the description of the quasi-species in Bull et al. (2005).
Assume that there exist only two genotypes, an optimal and a non-optimal one. x denotes the
fraction of optimal genotypes in the population, implying that (1− x) is the fraction non-optimal
genotypes. h denotes the fitness of the optimal genotype in multiples of the non-optimal genotype’s
fitness, i.e., h indicates the degree of selection pressure. p denotes the probability that a non-optimal
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Figure 4: The fraction of optimal genotypes in a simple evo-
lution model over time (Eq. 7). Mutation p and selection
pressure h determine the mutation-selection-balance (quasi-
species formation). Generation turnover λ has no influence
in the long run.
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Figure 5: An increase in lifetime
causes a decrease in the rate of di-
versity loss and an increase in quasi-
species diversity.

genotype mutates to the optimal one, and the same for back-mutation. If reproduction is linear-
proportional to fitness, evolutionary dynamics are described by a difference equation, that predicts
the increase of the fraction of optimal genotypes over time,

xt+1 = (1− p)
hxt

hxt + (1− xt)
+ p

1− xt

hxt + (1− xt)
=

(1− p)hxt + p(1− xt)
hxt + (1− xt)

. (6)

In absence of mutation (p = 0) only the current fraction of optimal genotypes (x) and the selection
pressure h determine the composition in the next time step. However, with mutation (p > 0)
genotypes mutate to and away from the optimum. Now we include the effect of a reduced generation
turnover in the difference equation. If λ denotes the relative generation turnover (the percentage
of individuals that are replaced, i.e., in our model λ = 1/L), we obtain

xt+1 = (1− λ)xt + λ
(1− p)hxt + p(1− xt)

hxt + (1− xt)
. (7)

Figure 4 shows how, according to Equation 7, the fraction of optimal genotypes evolves over time for
different parameters. A lower generation turnover λ leads to a slowed convergence, i.e., slower loss
of diversity and later formation of the quasi-species, but has no influence on the mutation-selection-
balance. Only mutation p and selection pressure h determine the mutation-selection-balance. A
low fraction of optimal genotypes x after formation of the quasi-species can be intepreted as higher
diversity, thus a small h (a smooth fitness landscape), leads to a higher quasi-species diversity. The
conclusion that follow from this analysis are summarized in Figure 5. Notice that this model does
not account for finite population effects.

Both concepts, diversity and quasi-species, play an important role in the analysis of the following
simulation studies.

4.1 Influence of Individual Adaptation on Diversity (Environment 1)

We investigate the influence of lifetime on diversity with a simulation study in Environment 1
which is visualized in Figure 6 and can be formally defined as

f1(z, t) = e−z2
. (8)
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Figure 7: Environment 2: A uni-modal Gaus-
sian function, where the optimum moves from
0 to 1 at time 1000.

f1 is a Gaussian function centered at z = 0. Environment 1 is stationary, i.e., the mapping from
z to f is independent of t. In the following simulations the population is initially distributed
uniformly on [−2; 2]. Figure 8 shows the population dynamics of typical evolutionary runs. Each
of the thick black dots represents the genotype of one individual at a time, each of the thin gray
dots represents a phenotype. Notice that for this visualization we reduced the population size to
100.

With a lifetime of L = 1, i.e., pure population adaptation, the population quickly converges to
a stable state which is known as quasi-species. With a lifetime of L = 1, the quasi-species formation
takes only about 5 time units. In case of L = 20, i.e., coupled population-individual adaptation,
it takes far longer and the quasi-species is less stable. After 500 time units the diversity seems
to be slightly higher with coupled population-individual adaptation than with pure population
adaptation. From these observations we derive the following hypotheses:

1. Higher lifetime slows the speed of genotypic diversity loss.

2. Higher lifetime increases quasi-species diversity.

A second simulation study confirms these hypotheses. Figure 9 shows how (Simpson) diversity3

averaged over 500 independent evolutionary runs evolves over time. The thin black line shows the
average genotype (equals phenotype) diversity in case of pure population adaptation (L = 1).
The case of coupled population-individual adaptation (L = 20) is denoted with a thick black
line showing the average genotype and a thick gray line showing the average phenotype diversity,
respectively. The trajectory resulting from an additional experiment is shown as dashed line. In this
additional experiment, all individuals had a lifetime of L = 20 but individual lifetime adaptation
was disabled, thereby avoiding the smoothing of the effective fitness landscape (Hiding effect).
Thus, an individual’s phenotype value was equal to its genotype throughout its lifetime. This
additional experiment allows to separate the influence of reduced generation turnover and fitness
landscape smoothing (cf. beginning of this Section).

From Figure 9, we can see that with a higher lifetime (L = 20), the rate of genotypic diversity
loss is indeed lower than with pure population adaptation (compare the slopes of the thin and
the thick black lines). The extent to which this is caused by the reduced generation turnover is

3cf. Equation 5. Notice that for the Simpson index (H) the space is discretized into partition classes
(−∞;−3], (−3;−2.75], (−2.75, 2.5], . . . , (2.75; 3], (3;+∞).
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Figure 8: Adaptational dynamics of a typical evolutionary run in Environment 1 in case of pure
population adaptation (lifetime L = 1, top panel) and coupled population-individual adaptation
(lifetime L = 20, bottom panel). Each of thick black dots represents the genotype of one individual
(out of a population of 100 individuals) at a time, each of the thin gray dots represents a phenotype.
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Figure 9: Evolution in Environment 1. Left panel: Comparing the average diversity evolution in
environment 1 in case of pure population adaptation (L = 1) and coupled population-individual
adaptation (L = 20). Coupling population and individual adaptation causes a slower genotypic
diversity loss (compared to pure population adaptation). Coupled population-individual adapta-
tion also results in a higher genotypic quasi-species diversity and a lower phenotypic quasi-species
diversity than pure population level adaptation. Right panel: Mean distance to the optimum. Af-
ter formation of the quasi-species, the population with coupled population-individual adaptation
has on average a smaller phenotype distance to the optimum but a larger genotypic distance.
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represented by the difference between the thin black line and the dashed line. The extent to which
the increased rate of genotypic diversity loss is caused by the smoothing of the effective fitness
landscape is represented by the difference between the slopes of the dashed line and the thick black
line.

Meanwhile, we notice that a higher lifetime (L = 20) leads to a more diverse quasi-species
(the average time of the formation of a quasi-species - all curves remain more or less constant
- is around 15 in case of L = 1 and 300 in case of L = 20). The explanation for the higher
quasi-species diversity is that L causes a smoothing of the effective fitness landscape that shifts the
mutation-selection balance.

Although the phenotype is strongly dependent on the genotype, phenotypic diversity is much
lower here. An explanation for this finding is that genetically different individuals may adapt
to a similar phenotype during lifetime which directly reduces phenotypic quasi-species diversity.
The latter argument is further supported by additional simulation results presented on the right
panel of Figure 9, where the population mean distance, again averaged over 1000 independent
simulation runs, to the genotypic and phenotypic optima, respectively, is shown. The population
with coupled population-individual adaptation has on average a smaller phenotype distance to the
optimum despite a larger genotypic distance.

Contrary to this findings, the experimental results in (Curran & O’Riordan, 2006) showed that
a population with individual level adaptation (cultural learning) can have a higher phenotypic di-
versity than a population that does not employ individual level adaptation. However, Curran and
O’Riordan (2006) come to the same conclusion as our study, with regard to genotypic diversity,
namely, that a population employing coupled population and indivdiual level adaptation maintains
a higher genotypic diversity than one with pure population level adaptation. Thus, it is likely, that
in the simulation model of (Curran & O’Riordan, 2006) individual adaptation (cultural learn-
ing), reduces the genotypic (respectively innate) diversity of a population less than in our model.
Furthermore, since in (Curran & O’Riordan, 2006) genotype and phenotype were represented in
different domains, the authors had to employ different diversity indices for genotype and phenotype
level which prohibits a direct comparison of genotypic and phenotypic diversity.

To summarize, an increase in the degree of individual level adaptation (L), a) slows down the
loss of genotypic diversity, and b) causes a higher genotypic quasi-species diversity, but a lower
phenotypic quasi-species diversity.

With regard to exploration, a high diversity is desired, however, with regard to exploitation a
high adaptation velocity (loss of diversity) is desired. The following section shows how exploration
and exploitation are affected by an increase in individual level adaptation.

4.2 Influence of Individual Adaptation on Exploration and Exploitation (Envi-
ronment 2)

Figure 7 shows Environment 2 which is defined by the time-dependent adaptive value function f2,

f2(z, t) = h e
−

“
z−zopt(t)

σopt

”2

+ e
−

“
z−(1−zopt(t))

0.25

”2

, with h > 1 ,

and zopt(t) =

{
0 , if t < 10000
1 , else ,

(9)

where h is a height factor that determines the difference of relative adaptive value between local and
global optima. For instance, h = 2 means the global optimum is twice as high as the local optimum.
This environment is designed in such a way that the basins of attraction of the two optima have
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Figure 10: Evolutionary dynamics in Environment 2. The discovery time is an indicator for
exploration, where transition time indicates exploitation ability. The discovery time, and the
transition time, averaged over 1000 evolutionary runs, suggest that there exists a non-trivial optimal
lifetime with regard to the exploration-exploitation balance.

an equal size between the optima, i.e., in the interval [0; 1]. This is realized by adjusting σopt with
respect to h. The respective σopt can be derived numerically (we omit the technical details here).
In this environment the adaptive value function changes only a single time in t = 10000. Then,
the global optimum changes from 0 to 1 where it remains for the rest of the simulation time. The
population is expected to form a quasi-species state around the optimum 0 well before t = 10000.
The evolutionary dynamics immediately after the change at t = 10000 provides insights into how
the balance between population and individual level adaptation affects exploration and exploitation
in this model.

The population dynamics in Environment 2 is investigated with the following experiment. For
a range of constant lifetime settings, evolution was run for 1000 times and in each evolutionary run
we measured the following two performance indicators:

• Discovery time: The time the population needs to reach the interval [0.5; 1.5] with at least one
individual after the environmental change, i.e., the time needed to discover the neighborhood
of the global optimum. The discovery time can be seen as an indicator for the exploration
ability.

• Transition time: The time the population needed to populate the neighborhood of the global
optimum (interval [0.5; 1.5]) after the discovery with at least 50 percent of the population.
The transition time can be seen as an indicator for the exploitation ability.

Figure 10 shows the two properties for the tested range of lifetime settings.
The discovery time is first decreasing with an increasing lifetime. This is due to an increase in

genotypic quasi-species diversity (cf. Section 4.1). The larger the diversity, the more likely it is to
discover a neighboring optimum. When the lifetime increases further, the discovery time starts to
increase at some point. This phenomenon can be explained as follows: Despite a further increase in
genotypic quasi-species diversity, the generation-turnover decreases with increasing lifetime, thus
reducing the number of “trials” to find the new optimum. The latter effect seems to be stronger
than the former for large lifetimes and vice versa. The discovery time is an indicator for exploration.



13

−1 0 1 2 3

0

0.5

1

time t

Env.3: uni−modal, directed optimum movement

phenotype z

ad
ap

tiv
e 

va
lu

e 
f
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Figure 12: Environment 4: The mapping from
phenotype to adaptive value at a time is iden-
tical to Environment 2, however, in Environ-
ment 4 the optimum changes periodically with
an expected change interval of length T .

The transition time increases monotonically with the lifetime. This is due to the decreasing
generation-turnover, i.e., the less individuals are replaced the longer it takes to populate the new
optimum. The transition time is a measure for exploitation.

If the environment changes periodically, the interplay between discovery (exploration) and tran-
sition (exploitation) determines the overall adaptation success of the population, as the following
section will show.

5 Existence of An Optimal Balance

In this section, we present simulation results of the model in Environments 3 and 4. We show
that for Environment 3, the optimal adaptation is achieved when no individual level adaptation
is included. An increasing degree of individual level adaptation which consequently decreases the
population level adaptation, deteriorates the whole adaptation capability of the population. In
contrast, we show that for Environment 4, increasing individual level adaptation at the expense
of population level adaptation first brings about an adaptational advantage. However, with too
much individual level adaptation, this advantage vanishes which means that there exists an optimal
balance between population and individual level adaptation.

5.1 Pure Population Level Adaptation is Optimal (Environment 3)

Figure 11 shows Environment 3, that is defined by the time-dependent adaptive value function f3,

f3(z, t) = e−(z−zopt(t))2 with zopt(t) = 0.2bt/T c . (10)

The uni-modal function that maps phenotype to adaptive value moves gradually in positive z
direction where T (the length of the change interval) determines the velocity of this movement.

The following experiment demonstrates that pure population adaptation is the best adaptation
strategy in Environment 3. For three different settings of the change interval, T ∈ {1, 10, 100}, rep-
resenting rapidly changing, moderately changing, and slowly changing environments, we compare
the two different settings L = 1, representing pure population adaptation, and L = 20, represent-
ing coupled population-individual-level adaptation. Figure 13 shows the population mean adaptive
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Figure 13: Evolution of the population mean adaptive value in Environment 3 for selected settings.
If the environment is changing too quickly (T = 1), neither of the populations (with L = 1 and
L = 20) can maintain a high mean adaptive value. However, for an intermediate change rate
(T = 10), the population with pure population adaptation (L = 1) has an advantage.

value, averaged over 100 independent simulation runs, for the first 400 time units of evolution. In
the rapidly changing environment where the change interval equals 1, the population mean adap-
tive value is going down to zero quickly in both settings L = 1 and L = 20, although slower in case
of L = 1. On the contrary, in the slowly changing environment with change interval 100 a high
mean adaptive value level of the population is maintained for both L = 1 and L = 20. However,
in the environment with an intermediate change velocity (change interval 10) the population mean
adaptive value is decreasing in case of coupled population-individual-level adaptation with L = 20
while it remains at a high level with pure population adaptation at L = 1.

The explanation is straight-forward: If the environment changes slowly (T = 100, bottom panel
in Figure 13) both adaptation strategies (pure population adaptation with L = 1 and coupled
population-individual level adaptation with L = 20) allow to follow the monotonic movement of
the optimum, although small differences in the rate of adaptation to the population with L = 1
produces a slightly better adaptive behavior. In the environment with an intermediate change
velocity (change interval 10, middle panel in Figure 13) the population mean adaptive value is
decreasing in case of coupled population-individual-level adaptation with L = 20 while it remains
at a high level with pure population adaptation at L = 1. This means, that at some change
velocity above T = 10, the coupled population-individual level adaptations strategy fails, i.e., the
population can not follow the moving optimum. If the dynamics are monotonic as in this example,
pure population adaptation is the best adaptation strategy. A higher degree of (lifetime-induded)
diversity is not needed for adaptation, and is actually detrimental because of its negative side-
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effects on the exploitation of a new optimum. If the environment changes even quicker as in case of
T = 1 (top panel in Figure 13) neither of the two adaptation strategy allows to follow the optimum,
although with pure population adaptation, the optimum is lost later.

5.2 Intermediate Degree of Individual Adaptation is Optimal (Environm. 4)

Figure 12 shows Environment 4 which is defined by the time-dependent adaptive value function
f4,

f4(z, t) = h e
−

“
z−zopt(t)

σopt

”2

+ e
−

“
z−(1−zopt(t))

0.25

”2

, with h > 1 ,

and zopt(t) =


0 , if

(
zopt(t− 1) = 1 ∧ XUni[0;1] < 1

T

)
∨(

zopt(t− 1) = 0 ∧ XUni[0;1] ≥ 1
T

)
1 , else ,

(11)

where XUni[0;1] is a random number drawn from a uniform probability distribution on the interval
[0; 1]. In Environment 4, the mapping from phenotype to adaptive value at a time is identical to En-
vironment 2, however, in Environment 4 the optimum changes periodically with an expected change
interval of length T . The actual time between changes is uniformly, stochastically distributed and
can vary strongly.

The following experiment investigates the evolutionary dynamics in this environment for a
height factor of h=2 and a height factor of h = 5 with a range of constant lifetimes for the environ-
mental change intervals 20, 50, 100, 200. The genotype population is initially distributed uniformly
on [−0.5; 1.5]. The overall adaptation quality is assessed by measuring the mean population fitness
over time and over 200 independent evolutionary runs. The results are shown in Figure 14.

From these results, we see that the slower the environmental change, the higher is the mean
adaptive value for the population. For a height factor of 2 (left panel), the optimal lifetime is around
L = 75 for an expected change interval of T = 200, however, for change intervals lower than that
(T ∈ {20, 50, 100}), the optimal lifetime is at the boundary of the tested range (L = 1000). There
seems to be a threshold for the rate of environmental change below which an intermediate lifetime
is optimal. For a height factor of 5 (right panel), this threshold lies between an expected change
interval of 20 and 50. For a change interval of T = 20, a maximally high lifetime L > 1000 is
optimal, for slower changing environment L = 25 (in case of T = 50) and L = 30 (in case of
T = 100 and T = 200) is optimal. The existence of a threshold for the rate of environment change
below which an intermediate lifetime is optimal has been confirmed in several other settings of h.

Figure 15 shows the population dynamics of typical runs in Environment 4 for the non-trivial
optimal balance between population and individual level adaptation. As an example, we study the
case when the height factor equals 5 and the change interval is set to 200, corresponding to the
dotted line in the right panel of Figure 14. Figure 15 shows four different degrees of individual level
adaptation for this setting, a low degree of individual level adaptation (L = 1) which produces a
rather low mean adaptive value, an intermediate degree of individual level adaptation (L = 30)
which produces approximately the maximum mean adaptive value and high degrees of individual
level adaptation (L = 200 and L = 1000) which produce rather low mean adaptive values. The
thick gray line shows the trajectory of the global optimum, the thick black dots shows the genotype
values, and the smaller gray dots show the phenotype values present in the population at a time.

With L = 1 (pure population adaptation) the population quickly converges to the global op-
timum. The population maintains diversity with mutation-selection balance, however, this degree
of diversity is not sufficient to discover another global optimum. This shows that the discovery
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Figure 14: Mean adaptive value for different constant lifetimes in Environment 4 for change
intervals T ∈ {20, 50, 100, 200} and height factors 2 (left panel) and 5 (right panel), respectively.
There exists an optimal lifetime that depends environmental dynamics and height differences
between local and global optimum.

Figure 15: Typical evolutionary runs in Environment 4. The thick gray line shows the global
optimum, the thick black dots shows the genotype values, and the smaller gray dots show the
phenotype values present in the population at a time. With L = 1 (pure population adaptation)
the population only occasionally discovers a new global optimum. For long lifetimes L = 200
and L = 1000 the population is not flexible enough to move the majority of individuals to the
current global optimum before the next environmental change. Only in the intermediate case of
L = 30, a good balance between exploration and exploitation is achieved, and as a consequence,
the population follows the environmental dynamics.
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time is too long for the given dynamics. In some other evolutionary runs, a population transition
occurred occasionally. Next, we consider the cases L = 200 and L = 1000.

With a high degree of individual level adaptation (L = 200), population adaptation has only
weak influence on the overall adaptation process. The genotypes (black dots) remain relatively
wide-spread in genotype space and individuals are able to adapt to one of the two optima during
the lifetime. Due to the high degree of diversity maintained throughout the simulation time,
discovery time is very short. The transition time, however, is too long to move the majority of
individuals to the current global optimum before the next environmental change. With L = 1000
this is even more evident: Because of the extremely low generation turnover, selection takes place
rarely in this case, and population adaptation is practically disabled.

However, in the intermediate case of L = 30, the population follows the environmental dynamics
successfully. Individual and population level adaptation is well balanced. As a result, it is possible
for the population to discover a new optimum after an environmental change and to transit to
the new optimum in a relatively short period of time. This gives the population an adaptational
advantage over the populations with a too low or too high degree of individual level adaptation.

The example of Environment 4 has shown that there exist dynamic environments in which
adding individual level adaptation to the population can result in better overall population adap-
tation. However, too much or too little individual level adaptation results in worse population
adaptation.

5.3 Summary

Shifting the balance between population and individual adaptation influences the exploration-
exploitation balance. What balance between exploration and exploitation is optimal depends on
the type of environmental dynamics and the frequency of environmental change.

In Environment 3 which is an example of monotonic dynamics, pure population adaptation is
the best adaptation strategy. In such environments, diversity is not needed for adaptation, and
actually, diversity is detrimental because of its negative side-effects on the exploitation of a new
optimum.

In Environment 4 which is an example of an environment where fitness valleys need to be
crossed, however, a coupling of population and individual level adaptation produced an adapta-
tional advantage. An intermediate degree of individual adaptation was optimal here in the case
of moderate environmental change rate. The intermediate degree of individual level adaptation
allowed to maintain a sufficiently high degree of diversity, but the transition to a new optimum
was still possible in a reasonable time. If Environment 4 changes too quickly to allow discovery of
a new optimum and transition to it, a large lifetime is the optimal adaptation strategy.

6 Evolution of the Optimal Degree of Individual Adaptation

The previous Section has shown that there is a potential advantage of coupling population and
individual level adaptation in dynamic environments even if the cost of individual adaption is fully
accounted for. Unlike the Baldwin effect, the positive coupling effects observed here can only be
found in dynamic environments. In nature this balance can not be set externally, instead it is either
constrained by natural laws, an emergent property of the evolution, or a mix of both. Similarly, in
computational evolution the optimal balance between population and individual levels may not be
known in advance and it is then desired that the right balance is found in a self-organizing way. In
the following, we will show under what conditions a near-optimal overall adaptation behavior can
evolve. Note that this requires a second-order adaptation process.
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6.1 Extension of the Analysis Model

The analysis model used in this section is an extended version of the one introduced in Section 3,
where an individual was formally defined in Equations 1 to 4. Individual lifetime L is the central
parameter that determines the distribution of population and individual level adaptation. In the
extended model L is now individually encoded in the genotype. Thus the 3-tuple in Equation 1
becomes the 4-tuple I = (x, z, tb, L) and the process of (asexual) reproduction of an offspring I ′

from a parent I at time t

(I, t) = ((x, z, tb, L), t) 7→ (x′, x′, t, L′) = I ′ , (12)

where x′ is calculated according to Equation 2, and the offspring’s lifetime L′ is calculated as

L′ =


L + 1 , if 0.00 ≤ XUni[0;1] < 0.05
L− 1 , if 0.05 ≤ XUni[0;1] < 0.10 ∧ L > 1
L , else

, (13)

where XUni[0;1] is a random number drawn from a uniform probability distribution on the interval
[0; 1]. Thus, individual’s lifetime L is now subject to mutation and selection, and evolution can
select on the trade-off between population and individual level adaptation.

6.2 An Initial Experiment of Lifetime Evolution

We apply the extended model to Environment 4 as defined in Equation 11 with a change interval of
T = 200. Adaptation step-sizes are again set to σG = σP = 0.01. Recall that the optimal balance
between population and individual level adaptation has been found to be a lifetime around L = 30.

According to the formal definition in Section 6.1 the lifetime is encoded in the genotype of each
individual. In the initial population the lifetimes are assigned randomly to the individuals with
respect to a uniform probability distribution over [1; 5], lifetime mutation is realized according to
Equation 13.

Figure 16 shows the result of the first 100000 time-steps of 30 independent simulation runs.
The left panel shows the evolution of population mean lifetime, averaged over the 30 simulation
runs with error-bars. The right panel shows the corresponding standard deviation of the lifetime
within the population, again averaged over the 30 simulation runs with error bars. The mean
lifetime increases to a value far beyond the optimal lifetime of 30 and seems to grow infinitely. The
variation of lifetime within the population is relatively small (see right panel).

Apparently, the optimal lifetime does not evolve in a higher-order adaptation process. How can
the infinite growth of lifetime be explained?

To answer this question, we assume in the following that a population of n individuals with
genotypes {xi}i=1...n and lifetimes {Li}i=1...n is given whose corresponding phenotype (that changes
over time) has on average an adaptive value of w(xi); L̄ denotes the mean lifetime of all individuals
in the population. The average number of perished individuals is n/L̄, and the average expected
number of offspring of individual xi at a time, r(xi), can be calculated as

r(xi) =
n

L̄

w(xi)∑n
j=1 w(xj)

=
n

L̄

w(xi)
nw̄(x)

=
w(xi)
L̄w̄(x)

, (14)

where w̄ is the mean adaptive value of the population. The expected number of offspring of
individual xi over its entire lifetime, R(xi), is given by

R(xi) =
Li

L̄

w(xi)
w̄(x)

. (15)
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Figure 16: Evolution of lifetime in Environment 4 with expected change interval 200 and height
factor 5. The optimal lifetime with respect to mean population adaptive value is around 30 for
this setting. Simply encoding lifetime parameter L leads to an unbounded increase of the average
lifetime.

This equation shows that the expected number of offspring increases with the lifetime. In other
words, individuals with a longer lifetime have an implicit reproductive advantage, because they
have more opportunities to produce offspring. Thus, in a long run individuals with extremely
long lifetimes overwhelm. Extremely long lifetimes are not only biologically infeasible but are also
disadvantageous with respect to overall population adaptation, as we have shown earlier.

The evolution of a very long lifetime can be attributed to the fact that there exists no indivdiual
trade-off between average reproduction probability and the lifetime of individuals. In nature such
a trade-off does exist as discussed in the Introduction. In the following, we show how a trade-
off between reproduction and lifetime can be implemented in our simulation model and how this
trade-off influences the evolution of lifetime.

6.3 Lifetime Evolution with a Trade-Off between Reproduction and Lifetime

In the previous section we have shown that the reproductive advantage increases with lifetime in
absence of a negative effect of lifetime on reproduction (Equation 15). In order to neutralize this
undesired effect we introduce a trade-off between average reproduction probability and lifetime.
Lifetime Li reduces the probability to reproduce as follows,

wL(xi) =
w(xi)

Li
, (16)

where wL is the new basis of selection. The corresponding expected number of offspring, RL,
becomes

RL(xi) =
Li

L̄

wL(xi)
w̄L(x)

=
w(xi)

L̄w̄L(x)
, (17)

where w̄L(x) denotes the population mean with respect to wL(x). Equation 17 shows that the
expected number of offspring is independent of the individual lifetime Li.

Evolution of the Optimal Lifetime in Environment 4

With this model modification, simulated evolution was run once again for Environment 4 under
otherwise identical conditions as in Section 6.2. The result is presented in the top-row panels of
Figure 17. Now, an average lifetime between 30 and 35 evolves which is close to the optimal lifetime
of 30 as found in the experiment with Environment 4 (Section 5.2) where the lifetime was predefined
and kept constant during evolution. In a follow-up experiment the population starts to evolve with
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Figure 17: Evolution of lifetime in Environment 4 with a trade-off between reproduction and
lifetime. A near-optimal lifetime evolves in a higher-order adaptation process (around 30 in the
settings that correspond to the panels in the two top rows) independent on the distribution
of lifetimes in the initial population. Also, if the optimal lifetime is very large as in the case
that corresponds to the bottom-row panels, the population evolves a mean lifetime towards the
optimum (at a change interval of 20, cf Figure 14).
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Figure 18: Evolution of lifetime in Environment 3 with an expected change interval 10 and a
height factor 5. The optimal lifetime with respect to mean population adaptive value is L = 1 for
this setting, i.e., pure population adaptation. A near-optimal lifetime indeed evolves.
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lifetime randomly initialized on [30; 70] (according to a uniform probability distribution, i.e., with
an average lifetime of 50). The result is shown in the middle-row panels of Figure 17. Again, the
population evolves a near-optimal lifetime.

In the third experiment with the model that incorporates the trade-off, the population is again
initialized with lifetimes uniformly distributed on [1; 5], however, now the environment changes on
average every 20 time units. The result is presented in the bottom-row panels of Figure 17. Now,
the average population evolves a lifetime of 100 during the first 100000 time steps of evolution and
even longer lifetimes in succeeding time steps (not shown). This corresponds to the findings of
Section 5.2 where a very long lifetime turned out to be optimal if the environment changes with
an expected change interval of 20.

For all experiments we also show the variation of the lifetime present in the population (mea-
sured as standard deviation, see panels in the right column of Figure 17). The variation is low in all
experiments, indicating that there is a stable population movement towards the optimal lifetime,
and that the population mean lifetime (shown in the panels of the left column) do not “average
out” the actual population dynamics.

Evolution of the Optimal Lifetime in Environment 3

Finally, we look at the evolution of lifetime in Environment 3. There, the adaptational challenge
was to follow a quickly moving optimum. We found that population adaptation alone, i.e., L = 1
is the best adaptation strategy for this dynamics (cf. Figure 13). Figure 18 shows the evolution of
lifetime in Environment 3 with an environmental change interval of 10. We see that in this example
as well, evolution finds a near-optimal degree of population-level adaptation (near L = 1).

7 Summary and Discussion

A trade-off between population and individual level adaptation, where the cost of individual level
adaptation is taken into account, is evident not only in biological but also in computational evo-
lutionary systems. In this paper, we presented a simulation model that allows to distribute a
given amount of adaptation effort between individual and population level adaptation. Shifting
the balance between population and individual adaptation influences the exploration-exploitation
balance.

Using computer simulations we have shown that in an environment with monotonic dynamics
(Environment 3), pure population adaptation is the best adaptation strategy. In such environments
diversity is not needed for adaptation and can actually be detrimental because of its negative side-
effects on the exploitation of a new optimum.

In contrast, in another environment (Environment 4), where the population has to cross fitness
valleys repeatedly, we have shown that increasing the degree of individual level adaptation, thereby
allowing the maintenance of a higher degree of diversity necessary for exploration, is of adaptational
advantage. If, however, the degree of individual level adaptation increased further which further
increases the diversity, exploitation capability will be weakened. In this case, the population is
able to discover a new optimum, but is not able to exploit it before the environment changes again.
Thus, an intermediate degree of individual level adaptation which allows for a balance between
exploration and exploitation of a new optimum, is the optimal adaptation strategy. We believe
that this finding is not limited to environments in which the global optimum switches between only
two values, because in the case where an intermediate lifetime was optimal, the transition from
the old to the new optimum occured mostly after quasi-species formation, i.e., at a time when the
population has completely moved to one optimum and has “forgotten” the old one.
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To investigate if the optimal balance between individual and population level of adaptation
evolves, we extended the simulation model, where the lifetime was also genetically encoded, al-
lowing evolution to self-organize the distribution of population and individual level adaptation.
However, without considering an individual’s trade-off between lifetime and reproduction, an in-
finitely increasing lifetime evolved. We then revised our model further to incorporate an individual
trade-off between lifetime and reproduction which is biologically more plausible. With this revised
model, we could observe the (second-order) evolution of a near optimal distribution of population
and individual level adaptation.

Our study has investigated the evolution of a distribution of population and individual level
adaptation purely from the adaptational advantage point of view, though in nature, other factors
and constraints may also play a role. Nevertheless, we believe that our findings are inspiring in un-
derstanding natural evolution, as well as in inspiring new ideas in the field of artificial evolutionary
systems, where the adaptation of the exploration-exploitation balance to changing conditions is of
crucial importance.
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