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a b s t r a c t

Experimental data suggests that a first hypothesis about the content of a complex visual scene is available
as early as 150 ms after stimulus presentation. Other evidence suggests that recognition in the visual
cortex of mammals is a bidirectional, often top-down driven process. Here, we present a spiking neural
networkmodel that demonstrates how the cortex can use both strategies: Facedwith a new stimulus, the
cortex first tries to catch the gist of the scene. The gist is then fed back as global hypothesis to influence
and redirect further bottom-up processing. We propose that these two modes of processing are carried
out in different layers of the cortex. A cortical column may, thus, be primarily defined by the specific
connectivity that links neurons in different layers into a functional circuit. Given an input, our model
generates an initial hypothesis after only a few milliseconds. The first wave of action potentials traveling
up the hierarchy activates representations of features and feature combinations. In most cases, the
correct feature representation is activated strongest and precedes all other candidates with millisecond
precision. Thus, our model codes the reliability of a response in the relative latency of spikes. In the
subsequent refinement stagewhere high-level activitymodulates lower stages, this activation dominance
is propagated back, influencing its own afferent activity to establish a unique decision. Thus, top-down
influence de-activates representations that have contributed to the initial hypothesis about the current
stimulus, comparable to predictive coding. Features that do not match the top-down prediction trigger
an error signal that can be the basis for learning new representations.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Our various brain functions are localized in different regions
of the cerebral cortex, the so-called areas. Although cortex areas
differ in the details of their cytoarchitecture (Brodmann, 1909), it
is generally assumed that they share the same general organization
principles.
The cerebral cortex is a thin sheet of tissue with up to six

horizontal layers (Peters & Jones, 1984; White, 1989), each with a
specific cellular composition and connectivity. Vertically, neurons
from all six layers connect to small microcircuits, called columns,
which are spread over the cortical sheet (Britten, 1998; Hübener,
Shoham, Grinvald, & Bonhoeffer, 1997; Mountcastle, 1997). These
compartments are visible in many species, not only anatomically
(Lorente de No, 1949; Von Economo & Koskinas, 1925), but
also electrophysiologically (Mountcastle, 1957). This has lead
researchers to the conclusion that columns are the elementary
units of the cortex (Mountcastle, 2003, 1997; Rockland & Ichinohe,
2004).

∗ Corresponding author. Tel.: +49 69 89011 786; fax: +49 69 89011 749.
E-mail address: sven.schrader@honda-ri.de (S. Schrader).

Columns may differ in their neuron types and numbers, but
they all share the same basic connections within and between
the cortical layers. Starting from the available anatomical and
physiological data about the cortex, we can try to infer which
algorithm or function is embodied in the columnar architecture.
We can then develop amodel that links this architecture to sensory
processing.
Clearly, such an endeavor is only possible with additional

constraints about the functional and dynamical properties of
cortical processing. Additional constraints can be found by looking
at how the brain processes sensory stimuli, and we will use vision
as our example.
When analyzing a visual scene, our brain faces a combinatorial

explosion of possible interpretations. Generally, our sensory
environment is complex and ambiguous. Lighting conditions,
occlusions, and scene context render a unique interpretation of a
given object at least difficult. But even under controlled conditions
with well defined contrast and homogeneous lighting conditions,
simple visual stimuli lead to a plethora of possible interpretations.
These result from the many and often contradicting ways in
which low-level features, such as lines and object borders, can be
combined to larger features or object parts. And the finer (spatially)
the input is analyzed, the more interpretations are possible.

0893-6080/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.neunet.2009.07.021
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Often, these local ambiguities can only be resolved if knowledge
from several distant parts of the scene are taken into account.
This suggests that local ambiguities must be resolved by global
information which can only be supplied through feedback from
higher areas. Such a global hypothesis is also needed to resolve
the ambiguities in a realistic scene with occlusions, clutter and
inhomogeneous lighting.
Experimental data suggests that a first hypothesis about the

content of a complex visual scene is available as early as 150 ms
after stimulus presentation (Thorpe, Fize, & Marlot, 1996; Thorpe,
1990). If we consider all involved areas, their response latencies,
and also the response properties of cortical neurons, this means
that each area cannot contribute more that one spike per neuron.
Thus, a single wave of spikes, traveling from the retina through the
ventral visual pathway to the highest associative areasmust suffice
to generate this coarse initial hypothesis about the stimulus.
Based on this reasoning, Delorme and Thorpe (2001) and

Van Rullen and Thorpe (2002) presented a model for rapid face
detection, where each neuron contributes only one spike. The
authors argue that a spike based latency code is best to convey
the required information from one processing stage to the next.
Unfortunately, these models are strictly feed-forward and do not
explain how processing continues beyond the first spike and
beyond the first hypothesis.
There is, however, convincing experimental evidence that

recognition in the visual cortex ofmammals is a bidirectional, often
top-down driven process (Bullier, 2001). Bidirectional models
of sensory processing try to iteratively reduce the number of
possible interpretations, using top-down prediction. A plausible
mechanism of how prediction could improve the interpretation of
a scene is the removal of already recognized parts from the input.
Interpretation may then proceed with the residual parts (Barlow,
1994; Mumford, 1994).
This strategy is called predictive coding and is implemented in

some models of visual processing (Koerner, Tsujino, & Masutani,
1997; Rao & Ballard, 1999). Indeed, these models could explain
a number of experimentally observed phenomena, like various
extra-classical receptive field effects (Rao & Ballard, 1999). But
since predictive coding requires an initial hypothesis (prediction)
to be available, it fails to explain how an initial stimulus hypothesis
can be rapidly established.
In our view, the first hypothesis must be generated using only

the fast forward connections and before feedback from higher
levels arrives at the lower processing levels. Iterative refinement
or predictive coding may then support discrimination within a
recognized object class. We therefore suggest that the cortex
uses two strategies to analyze sensory inputs: Faced with a new
stimulus, the cortex first tries to catch the gist of the scene as
quickly as possible. Only local decisions, that are with a high
probability correct, are transmitted in a rapid feed-forward system.
The gist is then fed back as a global hypothesis. A delayed feed-
forward system transmits more ambiguous local decisions only if
this feedback provides the bias towards a proper local decision
within the context of the global hypothesis (Koerner, Gewaltig,
Koerner, Richter, & Rodemann, 1999).
Since function and structure are not independent, the cortical

architecture should reflect these two processing modes. There
must also be mechanisms that determine which of the two modes
is used at a given point in time. We propose that the clearly visible
cortical layers implement the different processing modes.
The fast feed-forward system, which generates a first coarse

hypothesis, may be in layers IV and lower layer III, and the
slower refinement system in layers II/III (Koerner et al., 1999). The
connections between layers bring these steps into the right order.
In our view, a cortical column is, thus, primarily defined by the
specific connectivity that links neurons in different layers into a

functional circuit. This differs from the traditional view thatmerely
see columns as a vertical array of neurons (e.g. Casanova, 2005).
Based on this reasoning, we present a model of cortical

processing (Cortext) that assigns specific computational roles
to the layers and columns in each area. Cortext extends an
earlier proposal (Koerner et al., 1999) that did not provide an
implementation as well as a recent model (Kupper, Knoblauch,
Gewaltig, Koerner, & Koerner, 2007) which was based on rate-
coded neurons, rather than on spiking neurons.
Although we use the visual cortex as an example, we try to

capture the essential elements of sensory processing in neocortex
that apply to all sensory modalities. With our model we want to
address the following questions:

1. Given anewstimulus, how is a fast hypothesis established along
the forward connections in a representation hierarchy?

2. How does the established global initial hypothesis help to
support further processing of the stimulus?

3. Considering the very short duration of neuronal spikes, how can
bottom-up and top-down signals, each encoded in a wave of
spikes, be integrated without missing each other?

4. How reliable is recognition of known stimuli and how does the
global hypothesis improve recognition of noisy or incomplete
stimuli?

In the next section, we will describe our model of cortical
processing in detail. We will then present simulation results,
showing how a stimulus quickly triggers a first hypothesis on
the stimulus. This hypothesis is then fed back to the previous
processing stages to confirm or reject the local decisions. Unknown
or noisy stimuli will cause specific activity which can be used to
learn new stimuli, based on the previously stored information (not
shown). Finally, we summarize the main results of our study and
discuss them in the context of other models of cortical processing.

2. Model

In this section, we describe ourmodel Cortext in detail. We start
with the main assumptions on which Cortext is founded. We then
describe the model parts, connections, and stimuli. The details of
Cortext are summarized in Tables 1–6. The arguments supporting
our model are given in the discussion and in Table 4. This
separation of model description and model justification follows
the recommendations of Nordlie, Gewaltig and Plesser (2009) for
a good model description practice.

2.1. Overview

We assume that the areas along a sensory pathway (e.g.
ventral path) implement a representation hierarchy. The first area
represents a stimulus in terms of basic features, e.g. lines. The
next area transforms this representation into a new one, based
on common combinations of low-level features. This continues in
each area, until the stimulus is represented as an abstract symbol
at the highest area.
Each area is an array of identical feature detecting circuits called

macrocolumns with adjacent receptive fields. Macrocolumns are
composed of columns, each tuned to one of the features that could
occur in the macrocolumn’s receptive field. Columns respond to
stimuli in their receptive field by generating spikes. The closer the
stimulus is to the preferred feature of the column, the sooner it
will respond. Thus, a short spike latency signals that the feature
was detected with high confidence (Van Rullen & Thorpe, 2002).
Columns that respond fastest also carry the most reliable signal.
Forward inhibition suppresses the less confident columns that
respond later. Thus, only the most reliably detected features reach
the next area.
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Table 1
Components of Cortext.

A: Model summary

Populations Three areas, V1, V2, IT, and retina
Topology 1D retina
Connectivity Feed-Forward, feedback, lateral, recurrent
Neuron model Leaky integrate-and-fire, fixed voltage threshold, fixed absolute refractory time (voltage clamp)
Synapse model α-currents
Measurements Spike activity, parameters of spike volleys

B: Populations

Name Elements Size/Number

Area Macrocolumn 3 (V1,V2,IT)
Macrocolumn Minicolumn 9 (retinal positions)
Minicolumn Sub-system m, number of local feature
Sub-system Neuron population E, I 3 (A1, A2, B)
E Iaf Neuron 40
I Iaf Neuron 10
Next Poisson generator for each neuron (184050)
TH1 Spike generator 1
TH2 Poisson generator for each neuron in V1-A1 (10350)

Table 2
Connections of Cortext, part 1. Divergent patterns, symbolized by 1→ N , denote that each neuron froma source sub-systemprojects toN neurons from the target sub-system.
‘Random’’ means that the N target neurons are chosen randomly from the target sub-system.

C: Connectivity 1 — overview

Name Source Target Pattern Figure Remark

NOISE Next All neurons
STIM1 TH1 A1-V1 1(a)
STIM2 TH1 A1-V1 1(a)
FF1 A1 A2 Divergent, 1→ 40 1(a), (b); 2(a) For all excitatory pools (E) for areas V1, V2, IT
FF2 A1 B Divergent, 1→ 40 1(a), (b); 2(a) For all excitatory pools (E) for areas V1, V2, IT

V1-A2 V2-A1
FF3 V2-A2 IT-A1 Random divergent, 1→ 12 1(a); 3

V1-B V2-B
FF4 V2-B IT-B Random divergent, 1→ 12 1(a); 3

IT-B V2-B
FB1 V2-B V1-B Divergent, 1→ 40 1(a); 3(e)
FB2 B A2 Divergent, 1→ 40 1(a); 3(b) For areas V1, V2, IT
RC1 E E Random divergent, 1→ 4 1(d); 3(d) For all sub-systems
RC2 E I Random divergent, 1→ 1 1(d); 3(d) For all sub-systems
RC3 I E Random divergent, 1→ 4 1(d); 3(d) For all sub-systems
RC4 I I Random divergent, 1→ 1 1(d); 3(d) For all sub-systems
LAT Random divergent, 1→ 1 3(c) For all sub-systems

Table 3
Connections of Cortext, part 2. Synaptic weights in mV denote the amplitude of the
post-synaptic potential (see Appendix).

D: Connectivity 2 — parameters

Name Weight Delay Remark

NOISE 0.1 mV 1.0 ms 6670 Hz Poisson process
STIM1 0.35 mV 1.0 ms Three synchronous spikes
STIM2 0.35 mV 1.0 ms 300 Hz
FF1 0.35 mV 1.0 ms
FF2 0.01 mV 3.0 ms Up-modulated, maximal weight 0.35 mV
FF3 0.35 mV 3.0 ms
FF4 0.01 mV 3.0 ms Up-modulated, maximal weight 0.35 mV
FB1 2.0 mV 5.0 ms
FB2 −2.0 mV 1.0 ms
RC1 0.1 mV 0.5 ms
RC2 0.1 mV 0.5 ms
RC3 −0.2 mV 0.5 ms
RC4 −0.2 mV 0.5 ms
LAT −0.2 mV 0.5 ms

Once a global initial hypothesis is established in the highest
area, it is fed back to the next lower area to switch-off all features
that are part of the global hypothesis, such that the only more
abstract description remains. This continues top-down until the
stimulus is only represented at the highest level. Any residual
activity in lower-level areas, thus, represents parts that could not

be described by higher-level areas. Since the fastest and most
reliable features are now suppressed, less reliable decisions may
reach the next level to refine or correct the global hypothesis. We
refer to this process as switching-off. It is consistent with the idea
of predictive coding, discussed above.
Cortical columns host and coordinate the two parallel process-

ing systems. Each of the two systems is embodied in distinct cortex
layers:

1. A fast feed-forward system quickly generates a coarse, but
reliable hypothesis, based on the fastest (and, thus, most
reliable features). We call this the A-System. It is embodied by
layers IV and III.

2. A delayed feedback-mediated feed-forward system iteratively
refines the coarse hypothesis by resolving local ambiguities,
using the global hypothesis, and by adding detail, using less
reliable decisions. We call this the B-System. It is embodied in
layers II/III.

2.2. Model composition

Cortext has a retina and three cortical areas, V1, V2 and IT, each
representing a step in visual processing. The general architecture
of Cortext is shown in Fig. 1(a).
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Table 4
Connections of Cortext, part 3.

E: Connectivity 3 — functional interpretation

Name Anatomical counterpart Functional interpretation Reference

STIM1 Thalamic input Phasic stimulus part (Blasdel & Lund, 1983; Steriade et al., 1997; Wang et al., 2006)
STIM2 Thalamic input Tonic stimulus part (Blasdel & Lund, 1983; Steriade et al., 1997; Wang et al., 2006)
NOISE Embedding into network Membrane potential below threshold (Calvin & Stevens, 1968)
FF1 IV→ III Fast feed-forward (A) (Callaway &Wiser, 1996; Fitzpatrick et al., 1985)
FF2 IV→ II/III Up-modulated feed-forward (A) (Callaway &Wiser, 1996; Fitzpatrick et al., 1985)
FF3 II→ IV of higher area Feed-forward between areas (Hirsch & Martinez, 2006; Nassi & Callaway, 2007; Van Essen et al., 1986; Wang &

Burkhalter, 2007)
FF4 II/III→ II/III of higher area Modulated feed-forward (Lorente de No, 1949; MacLeod & Laurent, 1996; Sawatari & Callaway, 2000)
FB1 II/III→ II/III of lower area Modulatory feedback (Eckhorn et al., 1990; Kiebel et al., 2008; Rockland & Van Hoesen, 1994; Rockland

& Virga, 1989; Sherman, 2007; Shmuel et al., 2005)
FB2 II/III→ III of same area Inhibitory feedback
RC1-RC4 Recurrent connectivity
LAT Lateral inhibition Winner-take-all inhibition (Markram et al., 2004)

text-stimulus

a

b c d

Fig. 1. The Cortext model. (a) Shown from left to right are the different areas of the
Cortextmodel, V1, V2 and IT, togetherwith an overviewof their connections. Double
lines depict connections between areas. They define the receptive field profiles of
the target columns. Arrow-heads indicate excitatory connections, and round-heads
depict modulating connections. They define two pathways: A fast forward pathway
connects the three areas by their respective A- (black arrows) and B-systems
(gray arrows). This defines the forward processing system. The second pathway
connects the B-systems in a recurrent loop (gray round-heads). This defines the
modulatory feedback system. (b) An area is divided into macrocolumns, each
receiving stimuli from a single retinal position. Arrow-heads indicate excitatory
connections, flat-heads indicate inhibitory connections and round-heads depict
modulating connections. (c) Macrocolumns are again grouped into minicolumns.
Within each minicolumn, the three sub-systems, A1, A2, and B interact via
excitatory feed-forward (A1→ A2 and A1→ B) and inhibitory feedback (B a A2)
projections. (d) Sub-systems are each implemented by a recurrent network of 40
excitatory and 10 inhibitory neurons, denoted by triangles and circles, respectively.
The arrows denoting the connectivity are again shown together with references to
Fig. 3 and abbreviations used in Tables 2–4.

Feature hierarchy and stimuli
The feature hierarchy of Cortext consists of letters, syllables,

and words. These serve as a simplified metaphor for the much
more higher-dimensional and also unknown, features of the visual
system (see Discussion). Each level in this feature hierarchy is
represented by one area. The first area V1, can recognize an
alphabet of 23 letters. The second area V2 can distinguish 80
syllables with three letters each. The third area IT represents
300 words, composed of three syllables or nine letters. The task
of Cortext is to recognize words from the sequence of letters

Table 5
Neuron model and data analysis.

F: Neuron and synapse model
Name Iaf neuron
Type Leaky integrate-and-fire, α-current input

Subthreshold dynamics

τm
dV (t)
dt
− V (t)+ V0 + Rm · Isyn(t) if t > t∗ + τrp

V (t) = V0 else
Isyn(t) =

∑
i

∑
s∈Si
Ji · α(t − s− δi)

α(t) = t · e/τsyn exp(−t/τsyn) ·H(t)

If V↑(t) ≥ θ (threshold crossing from below)
Spiking 1. Set t∗ = t

2. Emit spike with time-stamp t∗

Modulation
J(t) = J0 × (1+ µ(t)),
µ(t) = fmod

∑
i
∑
s∈Si
exp (−t−s−δ)

τmod
,

Parameters V0 = 0.0 mV, Vθ = 20.0 mV, τm = 20 ms, tref =
2.0 ms, τsyn = 0.5 ms, τmod = 50.0 ms, fmod = 2.0

G: Measurements
Spike activity as raster plots
Parametrization of spike volleys: number of spikes (a), time (mean, µ), temporal
spread (standard deviation of spikes, σ )

Table 6
Stimuli in Cortext. Letter sub-systems in V1-A1 are stimulated according to their
overlap with the stimulus letter. An example where a single retina position is
stimulated with the letter A (line 1) is shown. The overlap between the preferred
stimulus (second row, gray) and the stimulus is illustrated in the third row and the
common pixels in the forth row. For every preferred stimulus (line 2), similarity is
expressed by the pixel-correlation ci between stimulus and preferred stimulus (Eq.
(9)). The synaptic weights are calculated by potentiating the correlations, pi = c3i
(fourth row) followed by a normalization such that the sum of all weights is a
constant. To this end, we multiply pi by a factor C = w0/

∑
pi such that

∑
wi =

const.

presented to the retina. The complete set of letters, syllables and
words is shown in the Appendix.
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Fig. 2. Features in columns of V1. The receptive field templates for minicolumns in
V1 are binary bitmaps of 8 × 8 pixels, forming 23 letters (gray). A stimulus occurs
by determining the pixel-wise overlap between the input image (black) and the
respective template. Features in V2 are syllables, 3× 1 arrays of letters. Features in
IT are 3× 1 arrays of syllables, defining words.

Retina
The retina is modeled as a grid of 72 × 8 receptors, divided

into 9 non-overlapping positions of 8 × 8 receptors. Letters are
presented as 8 × 8 bitmaps to one of the positions on the retina.
This is illustrated in Fig. 2.

Areas
The retina projects to the first area V1. From there activity

can propagate via a fast forward pathway (double-lined arrows in
Fig. 1) over area V2 to the highest area IT. Activity can be fed back
to lower areas via the connections depicted with round-endings in
Fig. 1.
All the areas have the same basic structure. They are one-

dimensional arrays of macrocolumns (Fig. 1(b)) with a re-
ceptive field in the respective lower-level area. Neighboring
macrocolumns have neighboring receptive fields.
Macrocolumns in V1 observe one position on the retina.

Receptive fields in V2 cover three adjacent V1 macrocolumns,
corresponding to three adjacent retina positions. Finally, the
receptive fields in IT cover three positions in V2 or nine positions
on the retina. Thus, from V1, over V2 to IT, the receptive field size
on the retina increases.

Columns and sub-systems
Each column is selective to one of the features of its level

(Fig. 1(c)). Macrocolumns group all columns that have the same
receptive field and contain one column for each feature. For
example, a macrocolumn in V2 contains 80 columns, one for each
syllable. Columns within a macrocolumn compete, such that only
the fastest responding columns can send their output to the next
level.
Within a column, there are three sub-systems (Fig. 1(d)) that

we call A1, A2, and B. Input from the previous level enters in
A1 and is further propagated via feed-forward connections to A2
(black arrows in Fig. 1(a), (b)). A2 is the primary output system
of a column and is connected to the A1-system of columns in the
next area. The B-system implements feedback between andwithin
columns as well as feed-forward connections to the next higher
area (gray lines in Fig. 1(a)).
Each sub-system ismodeled as a sparsely connected network of

40 excitatory and 10 inhibitory neurons as illustrated in Fig. 1(d).

Neurons
Neurons are modeled as integrate-and-fire neurons (Tuckwell,

1988) whose membrane potential is described by the following
differential equation:

τm
dV (t)
dt
= −V (t)+ V0 + Rm · Isyn(t) (1)

where τm denotes themembrane time constant, Rm themembrane
resistance, and Isyn the total synaptic current. The membrane ca-
pacitance Cm is equal to τm/Rm. When Vm reaches a fixed thresh-
old Vθ , a spike is emitted and the membrane potential is reset to
the resting potential V0 for the time of the refractory period tref.
Cortext has three types of synaptic connections between and

within populations: excitatory, inhibitory, and modulating.

Only spikes at excitatory and inhibitory synapses affect the
neuron’s membrane potential, by producing excitatory (EPSC) or
inhibitory (IPSC) post-synaptic currents.
Post-synaptic currents (PSCs) are modeled as α-functions (Jack,

Redman, & Wong, 1981)
α(t) = t · e/τsyn exp(−t/τsyn) ·H(t) (2)
whereH(t) is the Heaviside function.
We then write the total synaptic current Isyn(t) as:

Isyn(t) =
∑
i

∑
s∈Si

Ji · α(t − s− δi), (3)

where i runs over all pre-synaptic neurons and s over all spike
times Si of a pre-synaptic neuron i. The amplitude and the synaptic
delay of the connection to the pre-synaptic neuron i are denoted as
Ji and δi, respectively.
Modulating synapses enhance the excitatory post-synaptic

potentials from other pre-synaptic neurons. This is done by scaling
the synaptic weight amplitude J by a factor that exponentially
decays to one (Eckhorn, Reitboeck, Arndt, & Dicke, 1990):
J(t) = J0 · (1+ µ(t)), (4)
where

µ(t) = fmod
∑
i

∑
s∈Si

exp
(−t − s− δ)

τmod
, (5)

and Si are the spike times of pre-synaptic neurons that are
connected with modulatory synapses (round-headed arrows in
Figs. 1 and 3(e)).
The weights of modulated excitatory synapses are chosen

such that an EPSP cannot bring the neuron threshold without
an additional modulating input. In Fig. 1, modulated excitatory
connections are denoted by gray arrows.
Synaptic weights and delays are different for connections

within and between columns and areas. For each synaptic weight,
we choose J such that the amplitude of the post-synaptic potential
(PSP) has a desired value in mV (see Appendix).
To avoid an unstable feedback loop, modulated synaptic

weights are clipped such that they cannot exceed the weights of
the static excitatory connections. Tables 3 and 5 summarize the
values used in our model.

Surrounding network
We assume that all neurons receive input from the surrounding

cortical network. The rate and the synaptic weight of this
background activity are chosen such that the membrane potential
of all neurons fluctuates at a value 5 mV below firing threshold.
The required rate of the Poisson process can be determined, using
Campbell’s Theorem (Papoulis, 1991) which states that the mean
membrane potential µ, caused by a shot-noise process with rate
λnoise is given by:

µ = λnoise

∫
∞

0
PSP(t)dt, (6)

where PSP(t) is the time-course of the post-synaptic potential,
obtained by convolving the post-synaptic current α(t) with the
membrane’s impulse response 1/Cm exp(−t/τm). Using the closed
expression of the integral∫
∞

0
PSP(t) = Jτsyneτm/Cm, (7)

and substituting the parameters with values given in the Tables 3
and 5, we arrive at a population firing rate of λnoise = 6 670 Hz.

Stimulation
The strength of an input to a V1 column is defined by the

amplitude of its post-synaptic potential, which is determined by
the inner product between the column’s receptive field profile
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and the stimulated pixels in its receptive field. For example, if the
letter E is presented, the column representing this letter will be
stimulatedmaximally. Other columns, representing similar letters,
in this case F and L, will receive a stimulus that is correspondingly
weaker.
Sincewe know the receptive field profiles of all V1 columns and

also the set of possible stimuli, we can pre-compute the all possible
inputs to a V1 column. Thus, we do not need to model the retina
explicitly.
The time course of the stimulus mimics the response of LGN

relay cells to visual stimulation. It usually has two parts. First, a
sharp transient peak at stimulus onset, followed by a weaker tonic
part. We model the initial transient by a number of synchronous
spikes. The tonic response ismodeled by 250ms of randomPoisson
spikeswith a constant rate of 300Hz. Note that this population rate
comprises the spikes of all neurons in the column’s receptive field.

2.3. Connectivity

We now describe the connections between the model compo-
nents of Cortext. The general connectivity is shown in Figs. 1 and
3. The details, functional interpretation, as well as the biological
justification of the connectivity are given in Tables 2–4.

Overview
There are two routes alongwhich spikes can propagate from the

retina to the highest area IT. First, via fast connections that connect
the sub-systems A1 to A2 in one area to the A1-system of the next
area, as illustrated by the black arrows in Fig. 1(a).
The second route leads from A1- to the B-system. From there,

the connections lead from one B-system to the next, up to IT,
depicted by the gray arrows in Fig. 1(a). The forward connections
from one B-system to the next are too weak to trigger activity
in the respective B-system. Rather, they depend on input from
the modulatory connections that arrive from the B-system of the
next level. These follow the same route, only top-down. Thus,
modulating connections start at the highest-level IT and connect
the B-systems down to V1.
At the highest area IT, all B-systems receive unspecific

modulating input (µ = 2.0). Thus, once excitatory input arrives in
IT-A1, IT-B will become active as the first B-system in the network.
IT-B will then enable lower B-systems to be activated.
Once activated, the inhibitory neurons of the B-system will

inhibit the A2 neurons of the same column. These connections
switch-off of those columns that have contributed to an active
column at the next level.

Preferred stimuli and receptive field
The forward connections to the A1-system of a column define

the receptive field as well as the stimulus preference of the entire
column. The forward connections from A1 to A2 and B relay these
properties to the other sub-systems in the column (Fig. 3).
The stimulus preference is implemented by excitatory connec-

tions from the A2-systems of several lower-level features to the
A1-systemof one higher-level column. This is illustrated in Fig. 3(e)
with the example of the word ANYANY. Columns in V1 receive in-
put from one retina position. Columns in V2 and IT receive input
from 3 columns in the respective lower level.
From each macrocolumn, only the column whose feature is

best activated should signal its decision to the next processing
level (area). This requires competition between the columns of
a macrocolumn. Cortext has two mechanisms to select the best
matching column: forward inhibition and lateral inhibition.

Forward inhibition
Forward inhibition is implemented by connections between

adjacent areas. These emanate from the same A2 neurons as
above, but target inhibitory neurons (in A1) of those columns

a b c
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e

Fig. 3. Connections in the Cortext model. Arrows refer to connections symbolized
in Fig. 1. (a) feed-forward connections. Each neuron from the excitatory source
sub-system (triangles) projects to all neurons of the target sub-system (only few
synapses are shown, for clarity). Both the source and target neurons represent the
same feature (gray letters). (b) inhibitory feedback within one area. Interneurons
(circles) project back to the excitatory target population. Again, synapses fully
connect two sub-systems with the same feature representation. (c) lateral
inhibition in all systems. Each representation inhibits all others by projecting
inhibitory synapses from the sub-system’s interneurons to five percent excitatory
neurons from all other sub-systems (randomly chosen). (d) recurrent connectivity
is implemented within and across excitatory and inhibitory neurons of each sub-
system. The connection probability for each case is 10%. (e) explanation of the
inter-area connections, denoted by double-lined arrows in Fig. 1. Sub-systems that
represent features at a particular position on the retina are connected according
to the word composition into syllables and letters. The connectivity for the word
anyany is shown. The feed-forward and feedback connections are separately shown
for the two syllables, for clarity, but apply to any syllable. Neurons from a sub-
system of one level project to neurons in a target sub-system (black arrows). The
probability that two neurons are connected is 0.3. Conversely, modulatory synapses
project back to all neurons from the source sub-system (round-headed arrows).
Connections are established for every word, however, multiple connections are
excluded.Words were chosen to have a similarity (correlation coefficient) less than
0.85 to one another. In addition, each sub-system sends excitatory projections to the
interneurons of other sub-systems (dotted arrow), whose features have a particular
similarity to the feature represented by the target sub-system (see text). The retinal
width in our model is nine features, shown is a width of six, for clarity. (a–d) shows
examples for V1 where the local features are letters, but apply to each area.

that represent similar features. In Cortext, this forward inhibition
is restricted to the ten percent most similar features. This is
illustrated by the dashed arrow in Fig. 3(e).

Lateral inhibition
The columns within a macrocolumn inhibit each other through

connections from the inhibitory neurons of all sub-systems
(A1, A2, and B) in a column to the excitatory neurons of the
corresponding sub-system in all other columns. Thus, the column
which is activated first, will suppress all competing columns in its
macrocolumn.

Modulating feedback
The feedback connections between the B-systems connect the

same columns as the forward connections that define the preferred
stimulus, but in opposite direction. Thus, they start at the higher-
level column and target several lower-level columns.
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Recurrent connections
Finally, neuronswithin sub-systems have recurrent connections

(Fig. 3(d)), such that each neuron receives random connections
from 10% of the excitatory and inhibitory neurons. In this random
selection multiple occurrences are possible. (See Figs. 1(d) and
3(d)).

2.4. Methods

In total, Cortext consists of 27 macrocolumns (three areas
with 9 retinal positions each). Depending on the number of local
features, each macrocolumn comprises between 3000 and 45000
neurons. Each of the 1227minicolumns has 150 neurons. Thus, the
entire network comprises about 190000 neurons and 26000000
synaptic connections.
We simulated Cortext with the neural simulation tool NEST

(Gewaltig & Diesmann, 2007), using its Python interface PyNEST
(Eppler, Helias, Muller, Diesmann, & Gewaltig, 2008). The simu-
lation data was recorded to disk and analyzed off-line using the
Python libraries NumPy/SciPy (www.scipy.org).
Further details and the simulation parameters are given in

Tables 1–6 and in the Appendix.

3. Results

In this section, we investigate how Cortext responds to
sequences of letters, presented to the input system V1-A1. Fig. 4(a)
sketches the time-course of the stimulus. It starts with a number
of synchronous spikes at T = 0 ms, followed by a tonic phase of
asynchronous input (spikes drawn from a Poissonian distribution)
and lasts 250 ms. Fig. 4(b) shows the response of neurons in the
input systemV1-A1 to the stimulusHADFERSIM. A dot in the raster
plot represents the time of spike of one neuron.
Each row in the plot shows the spikes of all neurons from the

V1-A1 sub-systemof a particular column, observing the first retinal
position and with a preferred stimulus that is shown to the left of
the row. For example, neurons in the first row respond maximally
to the letter H, neurons in the second row prefer letter A, and so on.
All shown neurons increase their firing rate, corresponding to

the degree of match between the stimulus and their receptive field
profile. The stimulus perfectly matches the receptive field profile
of the neurons shown in the top-row of Fig. 4(b) (black dots). These
neurons respond strongest to the stimulus. The neurons in the
other rows respond weaker (gray dots), since the stimulus only
partially matches their preferred stimulus.
Fig. 4(c) shows the mean firing of neurons whose preferred

stimulus is perfectly matched (black curve) and of the A1 neurons
in other columns that responded with at least 10 spikes (gray
curve). The optimally stimulated neurons fire around 41 Hz, while
the sub-optimally stimulated neurons fire only at about 21 Hz.
Moreover, the optimally stimulated sub-system responds to the
initial transient of the stimulus with a sharp volley of spikes. We
will see below that such spike volleys define the dynamics of the
entire network.
We can characterize a spike volley by its time of occurrence,

its number of spikes and its temporal precision, as illustrated in
Fig. 4(d). The number of spikesmeasures the strength of the volley.
In our analysis, we require that a volley contains more than ten
spikeswithin a 5ms time interval. Oncewe have identified a volley
with this criterion, we collect all spikes within a 10 ms window
around that time. Themean of all spike times in this 20mswindow
defines the precise time of a volley and their standard deviation the
temporal precision (Gewaltig, Diesmann, & Aertsen, 2001).
Fig. 4(f) shows the response volleys of all columns in V1 in the

two-dimensional space, defined by their times of occurrence and
their temporal spread. Black circles represent volleys in response

to a preferred stimulus (black) while gray circles represent volleys
in response to a non-preferred stimulus. We observe that the
response to the preferred stimulus (correct response) occurs on
average after 2.5 ms, while responses to non-preferred stimuli
(incorrect responses) occur 2.9ms later (at 5.4ms).We also observe
that volleys representing correct responses carry more spikes and
are also more precise (in terms of their standard deviation).
Correct volleys contain on average 40 spikes with a standard

deviation of 0.8 ms. Hence, all excitatory neurons respond almost
at the same time. By contrast, the average incorrect volley contains
only 29 spikes with a standard deviation of 2.2 ms.
In the following, we shall call a response correct if the first

and strongest volley originates from a column whose receptive
field profile matches the stimulus. Thus, the response shown in
Fig. 4(b) is correct, because the neurons which represent the letter
H also respond strongest to the stimulus H. Correct responses in V2
will originate from columns that represent syllables formed by the
presented letter combinations. Finally, a correct response in IT will
be from the column that represents the word which is formed by
the stimulated letters.
If the stimulus is unambiguous, responses in V1 will always

be correct, because of their direct input from the retina. In
other areas, however, columns integrate activity from neighboring
macrocolumns and the top-down signals.

3.1. Initial hypothesis

Fig. 5 shows the spiking activity in areas V1 (bottom), V2
(middle), and IT (top) during the first 25 ms. Each box represents
a cluster of columnar sub-systems repeating the features at the
respective retinal position (numbers on the left). The represented
feature is also shown on the left of each row. Note that the rows
correspond to the ‘‘retinal’’ positions indicated by the number.
First, we investigate whether the network is able to generate

a fast hypothesis about the stimulus. To this end, we look at the
response of those columns which actually represent the stimulus
during the first 25 ms after stimulus onset (Fig. 4).
According to the inter- and intra-areal connections (Figs. 1

and 3), the signals generated in the input system of V1 (Fig. 4)
propagate to subsequent sub-systems and areas. Fig. 5 indeed
shows how a volley travels through all nine sub-systems (three per
area). The following sub-systems respond with increasing delays.
As in the input system of V1 (Fig. 4(b)) the other sub-systems
respond with synchronous volleys of spikes.
Responses of columns that were initially dispersed in time are

sharpened at each stage along the forward path, until in area
IT, columns respond only with sharp volleys at around 20 ms.
Columns that do not match the stimulated word (or its syllables
and letters) also respond with volleys to the stimulus, albeit
weaker (not shown in Fig. 5).
System B of areas V1 and V2 are almost silent. IT-B responds

only with volleys, they are shown, along with incorrect responses,
in Fig. 6.
Fig. 5 shows that in the column that represents the stimulated

word (black), IT-B responds at around 21 ms with 40 spikes and a
precision of 0.15 ms. This response is maximal, since all excitatory
neurons participate in the volley.
In addition to the correct column, three other columns (gray)

respond with volleys. This is shown in Fig. 6. We refer to the entire
set of feature responses (correct and wrong) as initial candidate
list which represents the first hypothesis of the network. In this
example, the candidate list comprises 1.3% of the vocabulary of 300
words.
The volleys of the incorrect responses are also maximal (40

spikes) with a standard deviation only slightly larger than that of
the correct response (0.19 ms). However, the correct response is
fastest, occurring on average 1.5 ms earlier than the remaining
responses.
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Fig. 4. Stimulus responses in V1-A1. (a) Time course of the stimulus. After applying three synchronous spikes at t = 0, the stimulus continues at a fixed rate for 250 ms.
(b) raster plot of sub-system responses in V1-A1 for the first retinal position. The stimulus forms the word HADFERSIM. Each row (separated by horizontal lines) represents
the excitatory V1-A1 neurons of a column observing the first retina position. Their preferred stimulus is indicated on the left. The preferred stimulus of the top row (black)
corresponds to the stimulated letter, the remaining rows to the spike activity in columnswith similar, but different preferred stimuli. The remaining columns did not respond
significantly to the stimulus. (c) average population activity (in spikes/s) for the correct (black) and the incorrect (gray) letters. (d) characterization of the initial volley by
determining the mean t = µ, the standard deviation, std, of the spike times and the number of spikes, a, in a volley. (d) Each volley can be represented by a point in a
coordinate system spanned by the occurrence time t (x-axis) and the precision std of a volley (y-axis). For each volley, we draw a circle with a diameter that corresponds to
the number of spikes in the volley. (f) summary of all initial volleys of correct (black) and incorrect (gray) responses, if present. The volleys are obtained from all nine retinal
locations. In each plot, the x-axis denotes the time (in ms) relative to stimulus onset.

Fig. 5. Activity propagates through the systems. Each row (separated by gray lines)
shows a raster plot of one sub-system representing the highlighted feature at the
respective retinal position. Only responses of correct sub-systems are shown. The
stimulus word is the same as in Fig. 4. Note that V1-A1 resumes firing after a pause
(at 15 ms), while other responses consist of one volley only.

To assess how the network generates its initial hypothesis
on average, we ran simulations for 100 different and randomly
chosen stimulus words. The responses are summarized in Fig. 7.
In each case, the correct word and a small list of candidates is
activated in IT-B, around 20 ms after stimulus onset. On average,
the initial candidate list contains 4 words (1.33% of all learned
words), always including the correct word. Correct sub-systems
respond on average at 21 ms, while the wrong responses occur
at 30 ms. Thus, the average correct response is ahead of their
incorrect counterparts by 9 ms. The number of spikes in a volley
is larger (40.0 spikes versus 38.2 spikes), and the widths of the

Fig. 6. List of initial candidates in IT-B. Dots depict the occurrence times (x-
axis) and temporal precisions (y-axis) of volleys in sub-system B of area IT after
stimulating the letters that form the artificial word HADFERSIM. Marked in black is
the volley from the correct word-representing sub-system, while wrong volleys are
plotted in gray. Time is shown relative to stimulus onset. The stimulus is the same
as in Fig. 4.

correct responses are more narrow (0.18 ms standard deviation
versus 0.30 ms). Thus, in all cases, the correct words responses are
earlier, stronger, andmore precise than their incorrect alternatives.

3.2. Refinement

We now consider the network response to the remaining
250 ms of stimulation. During that period, the stimulus consists
of asynchronous Poisson spikes whose weight corresponds to the
overlap between the stimulated letter and the neuron’s receptive
field profile.
The response to the initial stimulus transient is propagated

only by the feed-forward connections between the A-systems of
each area. After about 20 ms, this activity reaches the B-system of
the highest area IT. All neurons in IT-B receive modulating input
(round-headed arrow to IT-B in Fig. 1) and, thus, the forward
activation is able to trigger activity in these neurons. Now, activity
can propagate backwards along the feedback connections. We call
this period refinement phase, the network response is shown in
Fig. 8.
During refinement, volleys in IT-B are propagated back via

modulatory synapses (round-headed arrows in Fig. 1) to V2-B.
Thus, activation in IT-B that represents a word modulates the
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Fig. 7. Early feature activity in IT-B. The occurrence times (x-axis) andprecisions (y-
axis) of word-representing volleys for 100 recognition trials are shown in the upper
panel. Each point denotes a different volley occurrence. The strength of the volleys
(number of spikes) is denoted in the point diameter, the positions on the x-axis
correspond to their occurrence time, and the position on the y-axis the temporal
spreads. Correct words are emphasized in black, wrong words are gray. Time is
shown relative to stimulus onset. The lower panel summarizes the occurrence times
of the volleys in two histograms, correct (black) and wrong (gray) volleys. The bin
width in the lower panel is 0.2 ms.

Fig. 8. Sub-System responses during refinement. As in Fig. 5, rows denote raster
plots of sub-systems. Shown are the responses that are generated during the entire
stimulus duration. The initial volley in IT-B enables responses first in V2-B, then
in V1-B. For all areas, A2-activity stops at the onset of B-activity. Activity in the
A1-system of areas V2 and IT stops after offset of the underlying A2-activity. V1-
A1 remains active during the whole stimulus duration. Note that, apart from the
network’s input system (V1-A1), activations occur only in the B-systems.

synaptic weights to the three columns in V2-B that code for the
syllables of the word. Responses occurring in V2-A1 can now
reach the sub-systems in V2-B. They elicit spike volleys at around

Fig. 9. Word representation. Raster plot of responses in four sub-systems in IT-B
that respond with high activity. Marked in black is the correct activity (the sub-
system representing the stimulated word), gray shows incorrect activity. After
removal of the stimulus, the entire network becomes inactive. The network was
simulated for 400 ms.

60 ms (Fig. 8) which are in turn propagated back to V1-B to
modulate its afferents: columnar sub-systems in V1-A1. Finally, at
around 70ms, each columnar sub-systemwithin the B-system that
represents the feature at the retinal input has started to generate
volleys.
Due to the strong feedback inhibitionwithin each area (B a A2),

responses in the A2-systems are switched-off at the onset of B-
activation. Therefore, volleys are no longer propagated via the
A-A path, but rather via the modulated B-B connections. Apart
from V1-A1, all other A-systems are silent for the rest of the
stimulation, and volleys remain propagated between B-systems.
Note that Fig. 8 contains only columns that represent the stimulus,
wrong activations are not shown.
We now investigate responses in the word-representing

system, IT-B. Fig. 9 shows raster plots of columns that respondmost
strongly. After the initial hypothesis, many of the neurons spike
little or not at all. Only one column, the correct one (black), remains
active, and its neurons fire synchronously. After the stimulus stops
at 250 ms, the entire network becomes silent. Fig. 10(a) shows the
responses of IT-B in terms of the volleys that were generated by
the sub-systems. The initial wave of volleys at 20 ms is identical to
Fig. 7. After the first wave at 20 ms, volley activity is resumed at
about 60 ms after stimulus onset.
The occurrence time of the volleys is summarized in two

histograms in Fig. 10(b), for the correct (black), and the incorrect
(gray) responses. The volleys cluster around four times (22.3 ms,
59.7 ms, 117.8 ms and 147.1 ms, dashed lines in Fig. 10(a), (b)).
Thus, during stimulation, area IT responds with waves of volleys
that are 30–60 ms apart.
The second wave at 60 ms shows also volleys which we define

as a second candidate list. While the first candidate list has many
wrong responses, the secondwave contains almost only the correct
feature.
The amount of cases where the correct volley failed to reoccur

is 3%, in 2% of the trials was IT-B activity uniquely but wrongly
sustained.
Discernible peaks in the histogram of Fig. 10(b) enable us to

define a reference time for volleys: As the two first waves do
not overlap, we can use in both cases the first volley time as
reference and measure subsequent volleys relative to this first
volley.We do this, irrespective of whether the first volley is correct
or wrong. Afterwards, the relative occurrence times can again be
separated into correct and wrong responses. Fig. 10 shows the
two histograms for the first (c) and the second (d) peak of the
distribution in (b). The ordinate is the fraction of volleys from 100
trials. The origin (t = 0) corresponds to the time of the first volley.
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Fig. 10. Volley activity in IT-B. (a) volley symbolized by dots as in Fig. 7, showing
the entire simulation duration. After the initial volleys at 20 ms, volleys occur in
three further clusters (dotted lines). (b) histogram of correct (black) and wrong
(gray) volley times. (c, d) histograms of correct (black) and wrong (gray) volley
times, relative to the first volley occurrence. (c) shows the relative latencies of
the initial cluster at 22 ms. A value of one for the correct (black) responses at
t = 0 denotes that all sub-systems that responded at first were correct. Thus, all
subsequent responses are false-positives (gray) (d) relative time histogram for the
second cluster at around 60 ms.

t > 0 denotes volleys that occurred t milliseconds after the first
volley. Therefore, if a wrong volley occurs at t > 0, it must have
been preceded by a correct one at t = 0. Conversely, if a correct
volley occurs at t > 0, it must have followed a wrong one at t = 0.
By definition, the relative amount of correct and wrong volleys at
t = 0 adds up to one.
For the first wave of volleys, a correct volley is the first to occur

in all trials (p = 1, Fig. 10(c)). Consequently, all subsequent volleys
are wrong responses (gray bars at t > 0).
The majority of the earliest volleys during the second wave is

still correct (p = 0.95) (Fig. 10(d)), the remaining 5% did not occur
or followed a wrong response. Only a small fraction (0.06%) of the
first volleys is wrong, or occurs more than 7 ms later (1.33%).
At t = 0, Fig. 10(c), (d) define an error rate, given that only the

first volley is considered. In the first case, the error is 0%, in the
second case 5%. Moreover, the relative amount of false-positives

Fig. 11. Activity in V1-A2 for a ‘‘wrong’’ feature at position two. Shown in the upper
panel are spikes that are generated in system A2 of area V1 after stimulation of the
wrongwordHZDFERSIM that contains an error at the second position as opposed to
the known word HADFERSIM. The second retinal position shows strong responses
for the sub-system representing the allegedly correct letter Z (black), together with
a weaker activation of another sub-system, representing a similar letter, E (gray).
The sub-system representing the actually correct letter, A, is not active. The lower
panel shows the volleys as dots in the two-dimensional space. (Fig. 4(d), (e)).

(number of wrong versus correct volleys) is reduced in the second
wave (from 34% to 16%).

3.3. Recognition stability and error signals

Due to the B a A2 inhibitory feedback (Fig. 3(b)), strong activity
in the B-systems is able to suppress A2-activity. If the network is
stimulated with complete and known stimuli, the activity in the B-
systems is largely correct and inhibits the underlying A2-activity.
If, however, one of the B-systems is not activated, e.g. because of
an error in the stimulus, the according neurons in A2 will not be
inhibited and therefore remain active.
Fig. 11 demonstrates that an error in the word stimulus indeed

results in a strong activation of the respective V1-A2-sub-system
at the corresponding position. In V1-B, however, this ‘‘wrong’’ sub-
system is not activated, whereas here the correct sub-system is
activated instead (letter A, not shown). Thus, incomplete stimuli
can be completed by the predictive feedback from higher stages.
If a random word is presented to the network (an unknown

word that cannot be segmented into known syllables), all B-
systems remain silent whereas the according sub-systems in V1-
A2 remain strongly activated during stimulation (not shown).
Realistic stimuli will only rarely be complete and correct. Thus,

reliable recognition must also proceed in the presence of noise.
To demonstrate the recognition stability of Cortext, we present
incomplete stimuli. To this end, we randomly remove pixels from
each stimulus letter with a particular probability p. This is done for
fifty recognition trials.
Fig. 12 shows the relative amount of candidates for the first

(dashed line) and the second (continuous line) wave of volleys
versus the letter ‘completeness’ 1−p. The number of candidates is
constant down to a completeness of 0.5 (i.e. 50% of the pixels are
missing), then decreases for smaller values. During the refinement
phase, the amount of wrong responses is decreased for all letter
dilutions.
At a completeness of 0.5, the first pulse to occur is the correct

one in 95% of the cases (for both waves, not shown).

3.4. Resolution of ambiguity

The previous results demonstrate how a set of candidate
representations are activated, followed by a reduction to a single
activation. However, it appeared up to now that the unique
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Fig. 12. Average amount of word-candidates in relation to random pixel dilution.
All letters from the stimulus word were diluted by randomly removing pixels
with a probability p. Shown on the x-axis is the letter ‘completeness’ (1 − p). The
letter bitmaps below are examples of stimuli, their dilution corresponds to their
respective x-axis location. The y-axes indicate either the absolute number (left axis)
or the relative amount of candidates (in percent, right axis), averaged from fifty
simulation trials. The dashed line shows candidates that originated in the first wave
of volleys, the continuous line refers to the candidates of the second wave.

activation of representations in IT-B is just predetermined by the
order inwhich the initial hypothesis arrives: The earliest activation
is the one that becomes sustained during the refinement phase.
On the other hand, refinement of an initial hypothesis should also
include error correction, going beyond a mere disambiguation of
responses.
To test whether Cortext can correct a previously wrong

hypothesis, we activated the columns in V1-A1 with noisy stimuli
where a fraction of pixels was randomly chosen (60% of all pixels
are chosen to be black or white with 50% probability). In order to
allow a larger set of initial hypotheses, feedback inhibition (from B
to A2) was reduced to−0.2 mV.
Simulations with 100 randomly chosen known words revealed

that Cortext still generated a correct initial hypothesis in 87% of
the trials. In 10% of the trials, the initial hypothesis was incorrect
(activation of the correct word-representation did not occur with
the smallest latency) but was later on corrected by sustaining
correct activation (not shown). Thus, our model is indeed capable
of correcting previously wrong stimulus hypotheses.

4. Discussion

In this contribution, we have presented Cortext, a columnar
model that demonstrates the formation of a fast initial stimulus
hypothesis, and its subsequent refinement by inter-columnar
communication.

4.1. Recognition dynamics
The activation dynamics within the hierarchy of Cortext is

summarized in Fig. 13. Panel (a) depicts the feed-forward path.
Panels (b) through (d) illustrate how the global hypothesis,
activated in IT-B propagates down and switches-off all A2-systems
in lower levels whichmatch the global hypothesis. Panel (d) shows
the self-enforcing loop between the B-systemswhich stabilizes the
percept at the highest level. Residual activity in any A2 hints at a
mismatch between the global hypothesis and the local response.

Forward processing
Input from the retina enters the network in V1-A1. At stimulus

onset, target sub-systems in V1-A1 respond with synchronous
spikes (spike volleys) that aremore or less pronounced, depending
on the match between receptive field template and stimulus. A
sub-system whose receptive field does hardly match the given
stimulus shows only weak or no activity., i.e. no volleys are
generated. In contrast, sub-systems that match the stimulus better
respond with strong and precise volleys. The sub-system with the
best match (whose receptive field is congruent with the stimulus)
shows the strongest and earliest response (Fig. 4(b), (c)). Firing
threshold is reached earlier due to the finite rise time τsyn of the
post-synaptic current Eq. (1), (Gewaltig et al., 2001).
Thereafter, the volleys propagate via strong connections to the

next system (V1-A2) which in turn elicit spike volleys. At this
stage, the activity in A2 is a delayed copy of the spikes in A1. The
macrocolumns in V1 have generated a response which we call a
local decision on the stimulus, or a local hypothesis— an activation
that translates the match with local features in strength and timing
of responses. The local features in V1 are letters, therefore its local
decision contains information on which letters may have been
stimulated.
Responses are propagated to the next area from V1-A2 (the

output system of V1) and arrive at V2-A1. The sub-systems
again respond according to the match between stimulus and their
receptive field profile which here represent syllables. The match
is now determined by the converging connections that originate
from V1. These connections implement learned knowledge about
how low-level features (letters) contribute to high-level features
(syllables). Sub-systems in V2-A1 that code for a correct syllable
receive more volleys from V1-A2 than other columns. In addition
those volleys arrive also earlier. Columns that do not match at all
remain silent. Hence, the responses in V2 represent local decisions
on which syllables could be composed from the stimulated letters.
Again, correct responses occur earlier than incorrect ones.
Local decisions of V2 are finally propagated to IT-A1, whose

responses in turn code for the probability of words that may
have been formed from the stimulus. IT-B is the first B-system
to respond with spike volleys (Fig. 13(b)) because unlike the
other B-systems, it receives unspecific modulation (Fig. 1(a)). This
unspecificmodulationmimics the effect of top-downattention (Itti
& Koch, 2001) induced by the appearance of a new word.
At this stage, each area has made a decision on what local

feature represents the stimulus best, in terms of letters (V1),
syllables (V2), andwords (IT). The local decision in IT stands for the
few words that come into question, given the stimulated letters.
This candidate list comprises about 1% of all learned words and
represents a fast coarse estimate, sharing a high amount of overlap
(cf. similar words in Fig. 9).

Forward inhibition and lateral inhibition
Fig. 13 does not show the two inhibitory mechanisms which

sharpen the response properties of individual columns. Lateral
inhibition acts between all columns of a macrocolumn and
reduces the number of columns that respond to a stimulus to
only the strongest (winner takes all). Forward inhibition reduces
the input to those columns whose preferred stimulus is not
perfectly matched. Experimental results provide evidence for both
mechanisms (see e.g. (Ferster & Lindström, 1983; Porter, Johnson,
& Agmon, 2001).

Feedback-mediated processing
Once activated, sub-systems in IT-B inhibit neurons in A2 and

modulate the lower level’s B-system (V2-B). Modulation amplifies
all connections that enter V2-B: from V2-A1 and connections from
V1-B. At first glance, this modulation seems to have no effect, as
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a b c d

Fig. 13. Sequence of activations in the Cortext model. This schematic illustrates how sub-systems (denoted by boxes) are activated (emphasized in gray). To illustrate the
general flow of activity, we neglect the feature specificity of each area and emphasize a box in gray, if the sub-system is activated in at least one column. Arrows are the
connections (cf. Fig. 1), a connection which transmits activation is emphasized in black. (a) Initial activity propagates via the strong A–A connections up to IT-A2. Since the
A1-B connections are weak, the B-systems at each level cannot be activated yet. (b) The B-system of IT receives unspecific modulation. This increases the A1-B connections
sufficiently to trigger activity in IT-B, activating the interneurons in IT-B (small box) as well as modulatory feedback down to V2-B. (c) Switching-off starts in area IT, where
the A2-systems are inhibited, followed by V2, where activity that has reached B de-activates V2-A2. (d) Final state after refinement. Apart from the input system, activity is
only present in the B-systems.

V2-A1 has already responded with volleys. However, the stimulus
remains active and neurons in V1-A1 resume firing after a short
pause (Fig. 4(b)). Reoccurring volleys are now propagated to V2-
B because their afferents have been selectively up-modulated by
IT-B.
At this stage, volleys to IT are triggered directly by V2-B because

the connections are modulated and activity in V2-A2 has been
switched-off by the volleys in V2-B. Thus, the path along which
responses are propagated has changed from one that is mediated
by theA-systems, to one that is implemented by the B-systems. The
same switch occurs in V2 with the first volleys in the sub-systems
of V2-B at 60ms and in V1 at 70ms. Finally, volleys are propagated
via the now strengthened connections between B-systems, and the
primary feed-forward path becomes unused.

4.2. Stimulation without initial synchrony

It may be argued that the synchronization of responses in our
Cortext model may depend on the initial transient of the stimulus.
However, as Fig. 8 suggests, volleys can still occur during the
second phase of the stimuluswhere the rate is constant. Responses
are sharpened along areas, leading to more pronounced volleys.
Indeed, control experiments without initial synchrony showed

a very similar network response, activating precise volleys after
stimulus onset. Initial volleys occur on average 5.5 ms later if
the stimulus consists only of Poissonian noise (not shown). The
strength and precision of the initial volleys are, however, the same.
We conclude therefore that an initial transient in the stimulus is
not required to obtain a latency code. The sharp transient merely
aids in shaping an earlier hypothesis.

4.3. Visual hierarchy and areas

Cortext foots on the assumption that the brain recognizes
complex objects in a hierarchy of areas, each processing a specific
class of stimulus features. This interpretation has a long history
that dates back to the work of Sherrington (1941) and was
eloquently summarized by Barlow’s Neuron Doctrine (Barlow,
1972).
Work by Felleman and Van Essen (1991) showed that the

visual system is indeed a highly interconnected graph of areas.

Other authors have tried to extend the traditional view on visual
processing by adding top-down driven processing (Hochstein &
Ahissar, 2002) or by interpreting the visual system as a dynamic
rather than a hard-wired hierarchy (Bullier, 2001).
Most models of visual processing build on the earlier ideas and

interpret the visual system as essentially feed-forward (Delorme &
Thorpe, 2001; Riesenhuber & Poggio, 1999).

4.4. Feature hierarchy

It has been suggested that systems processing visual informa-
tionmay use a visual alphabet along with a visual grammar accord-
ing to which a stimulus is parsed (Watt & Phillips, 2000; Zhu &
Mumford, 2006). Yet the details of such a feature hierarchy are still
unknown. In our hierarchy, letters are the simplest features, next
are syllables, formed by three letters, and finally, three syllables
form words.
Many authors have tried to extract realistic features from the

statistical properties of natural scenes (Olshausen, Anderson, & van
Essen, 1993). However, this approach cannot be used beyond the
first visual area.
By contrast, our approach starts from the essential properties

of a visual feature hierarchy: (i) an infinite number of stimuli can
be generated from a finite set of features, and (ii) features at a low
level can be used to express the features at the next higher level.
Clearly, the visual areas V1, V2, and IT do not host the

representations of written or spoken words. Rather, we want to
illustrate principles of cortical processing by means of this well-
defined, generative feature hierarchy.

4.5. Columns

Mountcastle (1997) was the first to propose columns as the
general organization principle of the cortex. Since then, the idea
has been under constant debate (Horton & Adams, 2005; Rockland
& Ichinohe, 2004).
Recent work by Rakic (2008), however, emphasized both

aspects thatwe consider important for columnar circuits: Columns
not only vertically connect the cortical layers, but also share their
extrinsic connectivity. They may thus be the basic functional units
not only of sensory, but also of motor, and association areas.
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4.6. Relation to other models

Riesenhuber and Poggio (1999) summarized much of what
is known about hierarchical models of object recognition. They,
and others (e.g. Wersing & Körner, 2003), demonstrated how
objects can be recognized in a converging hierarchy of areas, each
detecting and then pooling more and more complex features.
Delorme and Thorpe (2001) and Van Rullen and Thorpe (2002)
presented amodel for rapid face detection, where neurons on each
level contributes only one spike. The authors argued that a spike
based latency code is best to convey the required information from
one processing stage to the next (Thorpe, Delorme, & Van Rullen,
2001). Our Cortext model extends these models by introducing
a feedback driven phase in which a rapidly generated initial
hypothesis can be refined or even corrected (Section 3.4). Cortext
also uses spike-latencies to encode information. For neurons, this
code is easier to interpret than the Rank Order Code proposed by
(Delorme & Thorpe, 2001; Van Rullen & Thorpe, 2002).
Grossberg and Versace (2008) recently proposed a spike based

extension of the older LAMINART model of learning and attention
(Grossberg & Raizada, 2000; Raizada & Grossberg, 2003), called
SMART. They demonstrated how neurons can enter a resonant
state, grouping low-level features in terms of spike coherence.
There are two differences that distinguish our Cortext model from
SMART. First, our Cortext model generates the first hypothesis in
one rapid feed-forward sweep, using one spike per neuron, thus, no
resonant state is necessary to establish an hypothesis at the highest
level. Second, the resonant state of SMART emphasizes low-level
features that are confirmed by the higher levels. By contrast, our
Cortext model emphasizes the difference between two adjacent
levels. The residual activity will then become important in two
ways: first, it is a signal that a stimulus could not be completely
explained. Second, it can be the trigger and basis for learning
new representations, based on available representations and their
difference to the stimulus (the residuals).

4.7. Relation to predictive coding

The mechanism of switching-off is very similar to predictive
coding, as proposed by Rao and Ballard (1999), with one difference.
In Rao’s model, the difference between prediction and stimulus
is passed from one processing level to the next. For the visual
cortex this would mean that V2 would have to interpret an error
signal generated by V1. This is not plausible for two reasons: First,
receptive fields in V2 are larger than in V1. Second, in a feature
hierarchy, a higher area would not be able to represent the error
signal with its own abstract features. For example, in our Cortex
model, residuals in V1 will be arbitrary combinations of letters.
Since only some letters make up syllables of the next level, V2 will
not be able to see the error signal of V1. By contrast, in the Cortext
model, the error signals remain in the area where they naturally
occur. As mentioned above, they can then be used in several ways,
e.g. to raise attention or to drive learning.

4.8. Time code and reliability

Adrian (1928) was among the first to demonstrate that the
discharge rate of a neuron corresponds strength of a sensory
stimulus. In particular, for the early visual system it was assumed
that information is encoded in the firing rate of neurons (e.g. Hubel
& Wiesel, 1968). However, Thorpe et al. (1996) pointed out that
the rate-coding hypothesis is not consistent with the high speed of
visual processing.
Latency code, as we propose it, requires that neurons can

produce action potentials with high temporal precision. Recent
evidence by Butts et al. (2007) indeed suggests that in the visual

system the timing of action potentials can be precise down to
the millisecond. This leaves the question whether other timing
differences could be detrimental to the latency code proposed
here. One source of such differences could be the off -response
of neurons, e.g. at the end of a fixation period. However, the off-
response would occur 250–300 ms after stimulus onset, when the
initial hypothesis has already been established. The off-response
would also mark the end of a fixation and the beginning of a
new saccade. Thus, the effects of the off-response will probably
be masked by saccadic suppression. A system tuned to temporal
signals may also use the temporally coherent off-response to
refresh the temporal reference of the latency code.
The delayed responses of lagged cells (Saul, 2008), observed in

the LGNmay also be detrimental to a code based on spike latencies.
However, these cells seem to be primarily involved in motion
processing, which is not the domain of the model presented here.
Our model also links the response latency of a neuron to the

reliability of its firing. This is supported by experimental evidence
showing that neurons are most reliable and have the shortest
response latency if they are stimulated optimally, both in the
sensory periphery (Johansson & Birznieks, 2004), and in sensory
areas (Heil, 1997; Osborne, Bialek, & Lisberger, 2004).

4.9. Experimental predictions

Our hypotheses regarding the roles of different cortical layers
suggest a vertical heterogeneity of activity during recognition. Ex-
tracellular radial recordings of awake behaving animals through
layers II–IV in areas V1/V2 may be able to find a differentiated
stimulus-evoked response. However, there are very few experi-
mental papers that distinguish at all between recordings in layers
II and III (Gur & Snodderly, 2008). To verify our predictions, the an-
imal should not see well-known moving bars but complex objects
that need several levels of hierarchy for recognition.
Moreover, our A2-system suggests that activity in layer III

should decrease following correct object recognition. A recent
fMRI study found indeed elevated activity in the lateral occipital
complex (LOC), accompanied with a decrease of activity in V1
during object recognition (Murray, Kersten, Olshausen, Schrater,
& Woods, 2002). Later studies also observed reduced activity if
predictions from higher areas matched the stimulus (Furl, van
Rijsbergen, Treves, Friston, & Dolan, 2007; Harrison, Stephan, Rees,
& Friston, 2007). Unfortunately, the measurements did not have a
vertical resolution.
Selective inactivation of cortical layers (e.g. by careful cooling)

may contribute to our knowledge about the function of layer II/III
(B-system). Inactivation of layers II/III in IT should leave intact
the generation of an initial hypothesis (measurable by reaction
times), however impair more detailed recognition of noisy objects.
In a comparable work, Lomber and Payne (2000) demonstrated
the different functions of superficial and infragranular layers
in motion-selective cortex of cats. He could indeed show that
detection performancewas left intactwhen only upper layerswere
disabled.
As each neuron contributes at most one spike to a volley, cells

in higher visual areas may be shown to fire at most once upon
stimulation, even in the presence of high population activity (e.g.
LFP data recorded in parallel). This would indicate, but do not
prove, the generation of volleys. Such binary spiking has already
been detected in auditory cortex (DeWeese, Wehr, & Zador, 2003).
Alternatively, reoccurring spike volleys may be unambiguously
detected with single unit data (Schrader, Grün, Diesmann, &
Gerstein, 2008), however requiring massively parallel recordings.
Our model predicts a difference between the initial phase of

recognition, when an initial hypothesis must be established and
the later phase of recognition, when a hypothesis was established
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and is refined. Evidence for these two modes may be found in
experiments with free-viewing animals. After saccades within an
object, activity in the B-system, i.e. layers II/III, should be higher
than after saccades to a new object.

4.10. Summary of results

The Cortext model successfully implements our hypothesized
A- and B-systems with spiking neurons, thereby extending a study
using analog neurons (Kupper et al., 2007). In the original concept
(Koerner et al., 1999) the two infragranular layers V and VI are
defined as a C-System that provides main output to subcortical
structures, but also generates feedback to cortical areas (especially
far reaching feedback over several hierarchy levels). Aswe use only
short-range feedback to the next lower cortical area, we did not
introduce the C-system in the current simulations. A non-spiking
variant of the A-, B- and C-systems has been shown by a model by
Kupper, Gewaltig, Knoblauch, Körner, and Körner (2008), we are
currently incorporating the C-system into Cortext.
Our model is biologically grounded and demonstrates how

an initial hypothesis is quickly generated via the feed-forward
projections. This hypothesis is then fed back as prediction to
the lower levels. During the feedback-mediated processing phase,
the initial hypothesis can be refined or corrected. This works by
switching-off those columns in lower levels that contribute to the
hypothesis at the highest level. In this stage, columns which were
previously suppressed by either lateral or forward inhibition have
a chance to send their decisions to the next levels.
All processing phases in our Cortext model rely on spike times.

During the feed-forward phase, a spike wave travels the hierarchy
upwards. During the feedback-mediated phase, there is activity
traveling in both directions. The feedback connections are either
modulating (between areas) or inhibitory (between layers). This
helps to sharpen the neuronal responses in time with the result
that the spike-latency code ismaintained also during the feedback-
mediated phase.
The principal information carrier in our model is the relative

response latency.While Delorme and Thorpe (2001) demonstrated
how an object hypothesis can be generated with one spike
per neuron, our Cortext model demonstrates how spike based
processing can proceed beyond the first hypothesis.
The Cortextmodel, thus, provides a consistent interpretation for

rapid recognition on the one hand and the abundance of feedback
between areas on the other hand. Themodel also links the concept
of cortical columnswith the clearly visible cortical layers. Different
processing modes are located in different cortical layers which are
meaningfully arranged by vertical connections — the column. Each
column thus implements a simple but powerful processing unit
whose computing principle is repeated over the whole cortical
surface.
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Appendix

Since Eq. (1) defines a linear model, the PSC amplitude J can
be obtained by multiplying the amplitude of the desired PSP by a

constant factor. Those are 165.44 pA/mV for excitatory PSCs and
26.6 pA/mV for inhibitory PSCs. These factors were obtained by
numerically determining themaximumof a single PSP,whose time
course is explicitly given by

PSP(t) =
eJ

Cmτsyn

×

[
−t exp(−t/τsyn)
1/τsyn − 1/τm

+
exp(−t/τm)− exp(−t/τsyn)

(1/τsyn − 1/τm)2

]
. (8)

We use the correlation coefficient between the receptive field
profiles to determine the overlap between all features (Table 5).

cL1,L2 =

n∑
i=1
(L1,i − µL1)(L2,i − µL2)√

n∑
i=1
(L1,i − µL1)2 ·

√
n∑
i=1
(L2,i − µL2)2

(9)

where L1 and L2 are {0, 1}-vectors, representing the two letters,µL1
andµL2 their mean pixel values. n denotes the length of the vector.
It is 64 for a single letter, and m · 64 for a word of length m. Word
similarity is defined by the average letter similarity and is used for
lateral inhibition. As LGN relay cells are excitatory, correlation is
clipped below zero.
Note that the correlation coefficient does not depend on the

number of pixels in a letter. It will reach its maximum of 1 if the
two letters are identical. As a result of the correlation coefficient
between similar letters still being large (e.g. 0.82 between E and
F), we potentiate the correlations by 3 in order to reach a steeper
tuning characteristics of receptors, yielding pi in Table 6. As we
are also using diluted stimuli where pixels are randomly removed,
the lack of pixels and therefore the decreased correlation must
be compensated for. To this end, we normalize the correlation
coefficients between the stimulus image and all receptor templates
(23 coefficients total) such that the sum of all coefficients in
a macrocolumn yields 1. We obtain the synaptic weight (PSP
amplitude) by multiplying by a factor such that the sum of all
weights is constant for all retinal positions (Table 6). Thus, the
total charge that comes from any retina position in V1 is constant.
The sum of all amplitudes of the resulting post-synaptic potentials
that enter the sub-system of one retinal position is 8 mV. Words
were generated by randomly selecting 80 three-letter syllables
from English text. Therefore not all 26 letters were captured by
this procedure. Syllables were then randomly arranged to form
artificial words, each containing three syllables and nine letters.
Words were chosen to have a correlation less than 0.85 to one
another. The features in our model are listed as follows.
Letters: A, B, C, D, E, F, G, H, I, K, L, M, N, O,
P, R, S, T, U, V, W, Y, Z

Syllables: AGE, AGO, AIR, ALL, AND, ANY, ART, BAM,
BET, BOY, CAN, CRI, CUS, DEN, DIO, DON, ERN, ERS,
FER, FOR, FRO, GAR, GAZ, GIV, HAD, HIM, HOW, LAU,
LED, LIC, LID, LIT, LOW, MAK, MAS, MER, MET, MOD,
MUR, NER, NEV, NIS, NOT, ODD, OUT, OWN, PAL, PAR,
PEN, PEO, PLE, PLY, PRE, PUB, PUT, REL, RID, ROS,
RUN, SAW, SAY, SIL, SIM, SON, SOR, SPO, STU, SUM,
TEN, TER, THE, TLE, TOM, TOO, TRY, VAS, VEY, VUL,
WHO, WHY

Words: AGEDENBET, AGEFROSON, AGESAWTLE,
AGETOMLIC, AGOMAKNIS, AGOMODTRY, AIRERNPAL,
AIRMODTEN, AIRPLYNIS, AIRPRESUM, AIRVASTOM,
ALLBOYPUB, ALLGARPRE, ALLGIVGAR, ALLTERBAM,
ANDHIMLOW, ANDMAKFOR, ANDNISMAS, ANDPUTPUT,
ANDSONPUB, ANDSONSAW, ANYBETCRI, ANYBETPLY,
ANYERNSUM, ANYFORMAK, ANYHADHAD, ANYHADTLE,
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ANYMURPUT, ARTNERPAR, ARTPALNER, ARTPARTLE,
ARTPLYTOM, ARTSAWPUT, ARTTENRUN, BAMCANSON,
BAMLEDLOW, BAMRIDPEO, BETBOYMUR, BETGARROS,
BETMETNIS, BETPRETLE, BETSILDIO, BETTRYGAR,
BOYBETTOO, BOYCRIWHO, BOYHADPAR, CANFERDON,
CANPLEHOW, CANRIDVEY, CRIBETCAN, CUSDENERN,
CUSNERART, CUSPEOHOW, CUSVASSAY, DENHOWBAM,
DENMASSUM, DENPUBSPO, DENPUBTHE, DENSILWHY,
DENSONTEN, DONAGESPO, DONALLMUR, DONFERNOT,
DONHOWDEN, DONMAKLED, DONMODTLE, DONNISSPO,
DONNOTMET, ERNBAMFOR, ERNPALGAZ, ERNPENODD,
ERNVEYPUB, ERNWHYHOW, ERSMAKVAS, FERANYHOW,
FERHIMMUR, FERMAKSAW, FEROWNPAL, FERPUTLOW,
FERSILCRI, FERSTUOUT, FORAGEDON, FORBOYPUT,
FORRUNCAN, FRONISTER, FROPREMOD, GARERNODD,
GAZDONODD, GIVDENSOR, GIVMODODD, HADFERSIM,
HADNOTMOD, HADOWNPEN, HADSAWPAR, HIMDONGAR,
HIMNEVPAR, HOWCANFER, LEDLOWPAL, LEDMODPEN,
LEDNISFRO, LEDPLYCAN, LICDONVEY, LICPLYTOM,
LICSAYHAD, LICSILGAZ, LIDBOYERN, LIDCRIFOR,
LIDDONTOM, LIDNISTLE, LIDPENNIS, LIDPRETOM,
LIDVULSUM, LITMODDEN, LITPALMAS, LITPLEBOY,
LITSAWDIO, LITTERLAU, LITTOMPLE, LOWERNTHE,
MAKERNMAK, MAKFORMUR, MAKPLEOWN, MAKTHEAND,
MASMERHIM, MASSORSPO, MERAGOSON, MERARTFOR,
MERLIDPEN, MERMASMAS, MEROUTMAS, MERPARVEY,
MERPUBPAR, MERSONRID, METPUTBOY, METTLEBET,
MODERNERN, MODLIDSPO, MODPLYERN, MODVULTOM,
MURFORSAY, NERHADMAS, NERMASMOD, NERMERLAU,
NERMODNER, NERMURRID, NERPLETOM, NERSONAGE,
NEVDIOTLE, NEVERSDEN, NEVPALMET, NISGIVSOR,
NISSTUTOO, NOTPUBPLE, NOTTHESIL, ODDFERFRO,
ODDLOWBAM, ODDMAKSTU, ODDOUTGIV, ODDVEYHIM,
OUTCANPUB, OUTNISLOW, OUTPLYERN, OWNBOYDON,
OWNDENERN, OWNMAKGIV, OWNTENSPO, PALBETSAY,
PALBOYTOM, PALHIMPLE, PALNERMAK, PALNEVGAR,
PALTRYLOW, PARBAMPLY, PARMODPUT, PARSORPAR,
PENCUSSOR, PENPLEOWN, PENPLYGAR, PENSORSUM,
PENVASDON, PEOHADMER, PEOPLYBET, PLEHADWHY,
PLEWHYGAR, PLYSAWPAL, PLYWHOERN, PREALLGIV,
PREHADNER, PREHADSON, PRELICPAL, PREMAKTLE,
PREPLEBOY, PREVASDEN, PREVEYDON, PUBBAMLIC,
PUBCANSON, PUBMURNIS, PUBNERERS, PUBNEVPAR,
PUBRIDDON, PUBRUNPLY, PUBSPOVAS, PUBTRYSUM,
PUTFERLIT, PUTPREHOW, RELCUSPUT, RELHOWCRI,
RELSAWMUR, RIDBETSAW, RIDLAUTHE, RIDLOWPAL,
RIDNISMET, RIDPREHAD, RIDSUMNIS, RIDWHYVAS,
ROSBOYPAL, ROSMERDEN, ROSNERCUS, ROSTOOGIV,
RUNHADMET, RUNPALVAS, RUNSILBAM, SAWDONHOW,
SAWDONPUT, SAWPENVUL, SAWPLYSUM, SAYERSBET,
SAYHIMLIC, SAYPALREL, SAYPUBVUL, SAYVASNIS,
SILPALSAW, SILPALSPO, SIMBETDEN, SIMCUSDIO,
SIMMURWHY, SIMRUNMUR, SIMSAWPLY, SONPENBAM,
SONROSNER, SONSORREL, SONSORSAW, SONTHEFER,
SONTHEHOW, SONTOMPRE, SORMAKOUT, SORPLEPLE,
SORSONAIR, SPOFORMOD, SPOHIMLID, STUAGEWHY,
STUARTTLE, STUFORVEY, STUPLYBAM, SUMDENGAR,
SUMNISSTU, SUMSORCUS, TENERNBET, TENFORCRI,
TENFORPLY, TENMASMET, TENNOTMOD, TENPRESUM,
TENROSSAW, TENSILNIS, TENSIMFRO, TENTHEVUL,
TERDENMUR, TERGARNEV, TERGARROS, TERMETNER,
THEMERPLE, THESORPUT, TLEBOYGAR, TLECANLAU,
TLEHADPAR, TLEMAKFER, TLEMURCUS, TLEOUTTOM,
TLEWHOSON, TOMLEDSIL, TOMLIDBAM, TOMSIMDON,
TRYDONFOR, TRYGARSOR, TRYLOWPEN, TRYTHELID,
TRYVASTEN, VASMAKFRO, VASMERPUB, VEYBETBAM,
VEYDENPUB, VEYHOWPUT, VEYLAUMAS, VULHADPAL,
VULLITLOW, VULNISAGE, WHOERNMER, WHOTOMSUM,
WHYBETFOR
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