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Abstract

Applying numerical optimization methods in the field of aerodynamic design op-
timization normally leads to a huge amount of heterogeneousdesign data. While
usually often only the promising results are investigated and incorporated to drive
further optimizations, general methods for investigatingthe entire design data set
are rare. We propose methods that allow the extraction of comprehensible knowl-
edge from design data represented by discrete unstructuredsurface meshes. The
knowledge is prepared in a way so that it is usable for guidingfurther compu-
tational as well as manual design and optimization processes. A displacement
measure is suggested in order to investigate local differences between designs.
This measure provides information on the amount and direction of surface modi-
fications. Using the displacement data in conjunction with statistical methods and
data mining techniques provides meaningful knowledge fromthe data set at hand.
The theoretical concepts have been applied to a data set of 3Dturbine stator blade
geometries.

1 Introduction

In aerodynamic design optimization the main goal is to find three-dimensional shapes, that are opti-
mal for specific performance measurements, like aerodynamic drag or lift, under specific constraints,
e.g. manufacturing limitations. In general, during the optimization process a large number of de-
signs is generated and evaluated based on different geometric representations and parametrization.
The results are heterogeneous design data sets from which only a very small number of designs are
usually processed further, e.g. in rapid prototyping devices for experiments or for analyzing its de-
tailed design characteristic. However, a lot of information about the process and the problem at hand
is hidden in all of the data and can be condensed into comprehensive rules. We aim at exploiting
this comprehensible knowledge which is contained in large design data sets. In order to be able to
investigate the entire data set an universal representation of the designs is required. We suggest the
use of unstructured surface meshes to represent the surfaceof the designs. In a pre-processing step
the absolute information of the design surface is transformed into displacement data which together
with statistical and data mining methods is used in order to extract meaningful knowledge from the
designs and its performance numbers. The knowledge can be prepared in such a way that it is on
the one hand usable by the engineer and on the other hand by a follow-up computational design and
optimization process.
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2 Universal Design Representation and Displacement Measurement

Different geometric representations make it difficult or even impossible to analyze the whole data
set. Therefore, it is necessary to find an adequate representation that captures all shape variations and
that can be applied to various data mining techniques. We suggest the use of unstructured surface
meshes as a universal representation of the design surface.The unstructured surface meshM is a
partially linear approximation of the contour of the design. Each mesh consists of a list of vertices
V = (~v1, ..., ~vn), a list of polygonsK = {{i1, i2, i3, ..., iµ}k}, k ∈ [1...m] and a list of normal
vectorsN = (~n1, ..., ~nn). A vertex can be seen as a sample point of the contour of the design.
The polygonal faces define the neighborhood relation between the vertices withil being the index
of a vertexl. Each normal vector~ni has a defined direction perpendicular to the surface mesh and
provides local curvature information at the position of vertex~vi. As long as all necessary geometric
representations can be transferred into unstructured surface meshes, this representation allows the
analysis of local shape modifications and their influence on the performance value(s) independent
of the parametric representation that has been used during the design and optimization process. For
instance the majority of the CAD software allows the export of solids into stereo-lithography (STL)
files which describe the designs as triangular unstructuredsurface meshes.

Given the surface mesh representation, the naive approach would be to analyze the absolute coordi-
nates of the vertices in order to extract information on the design modifications. Instead of analyz-
ing the absolute coordinates in this work it is suggested to calculate the displacement measures that
quantify the local deformation between two design. The displacement is calculated between corre-
sponding vertices of two surface meshes. This requires thata good estimation of the corresponding
vertex does exist. More formally the displacement measure is defined as follows:
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of the reference designMr. The absolute value of the displacement measure provides information
on the amount of vertex modification while the sign of the displacement measure in conjunction with
the normal vector of the vertex provides information on the direction of the vertex modification. The
normal vector~nr

i points towards the normal or positive direction of vertex modification.

Calculating the displacement quantities instead of using the absolute coordinates of the vertices pro-
vides certain advantages. One advantage is that the calculation of the displacement values leads to
a reduction in the number of parameters that have to be handled by the knowledge extraction algo-
rithm. Furthermore, because only one parameter value is assigned to each vertex the visualization
and interpretation of the results becomes straightforward. More detailed information on the design
representation, the displacement measurement and its properties can be found in [1,2].

3 Knowledge Extraction from Design Data

The calculated displacement values and the performance differences are the basis for the extraction
of knowledge from the design data. This work provides means for extracting information on the
modifications in the design space, its relation to the performance number(s) and the modeling of
interrelated design modifications and its joint influence onthe performance. To show the feasibility
and the practical relevance, a few results from applying these techniques to a data set of a 3D stator
blade from a Honda gas turbine [3] are presented.

3.1 Investigation of Design Deformations and Sensitivity

Analyzing local modifications in form of vertex displacements helps to gain some insight into the
applied design modifications. Information on the differences between two designs is directly pro-
vided by the displacement measure. Two measures are suggested: First, the relative mean vertex
displacement that provides information on how vertices have been modified by means of analyzing
the displacement for all designs related to one reference design (Eq. 2 ) and second, the overall
displacement variance that identifies the vertices that have been modified most frequently (Eq. 3).
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These quantities provide knowledge about the design space and the explored design modifications.
Potentially, this information can lead the aerodynamic engineer to new search directions and design
concepts.

Figure 1: Illustration of the results of the sensitivity analysis mapped as gray values onto the blade
surface. Left: shows the pressure side; Right: shows the suction side of the blade.

While Eq. 2 and Eq. 3 provide information on the design space,sensitivity analysis is applied to
relate the displacement values to variations of the corresponding performance values. In order to
identify vertices that are sensitive to performance changes based on the whole data set, the Pearson
correlation coefficient is calculated based on all pairwisedesign comparisons:
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whereφr,m = fm − f r is the performance difference between two designsr andm, φ
r

is the
mean value of the performance differences with respect to the reference designr. σ is the standard
deviation of the displacementsδi and φ respectively. Fig. 1 shows the result of the sensitivity
analysis applied to a set of200 blade designs, where the aerodynamic pressure loss defines the
performance of each design. Brighter regions code for a positive correlation coefficient and darker
regions for a negative one. Design regions with a positive (negative) correlation coefficient indicate
that a deformation of this region to the outside of the blade will increase (decrease) the pressure loss
(the normal vectors of the vertices point towards the outside of the blade).

3.2 Modeling and Analyzing Interrelated Deformations

For the calculation of the sensitivity described above, thedisplacement of each vertex is considered
independent of the others. Especially in aerodynamics, theinterrelation between distant vertices or
design regions and their joint influence on the performance play an important role. In this section,
special characteristics for the extraction of knowledge inform of associative rules based on data from
unstructured surface meshes are discussed. The rules describe the relation between the displacement
of distant vertices and their joint influence on the performance criteria.

In general, the number of input parameters must be kept smallfor most modeling techniques in
order to produce a small set of interpretable and manageableassociation rules. Concerning dis-
placement data, the number of inputs equals the number of verticesn, which is large in practice.
Therefore, a reduction of the number of input parameters is strongly required. In order to reduce the
number of parameters it is reasonable to combine neighboring vertices to formnc design regions
wherenc ≪ n. During a design or optimization process, it is unlikely that only single vertices are
modified. Rather entire design regions of a certain extent are considered for shaping new designs.
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Our suggested procedure for dimension reduction by means ofidentifying local design regions is as
follows. In a first step, the vertex sensitivity is calculated (Eq. 4 ). Vertices with a small sensitivity
that do not seem to contribute on the performance are filteredout from the entire set of vertices by
applying a thresholdτ to the sensitivity value. Each of the remaining vertices is assigned to one of
two setsR+ andR−. R+ contains vertices whereRi > +τ while R− contains vertices with a
correlation valueRi < −τ . Finally, in order to form the desired design regions, a KMeans cluster-
ing algorithm is applied to each of the two resulting sets of vertices. The clustering is splitting the
sets into clusters based on a predefined distance measure. Distant vertices are assigned to separate
clusters and neighboring vertices to one and the same cluster. The gap statistic is used to overcome
the problem of selecting an appropriate number of clusters in advance. Once the design regions
have been identified the vertices closest to the cluster centers are considered for modeling and for
the extraction of design rules. Fig. 2 shows the emerged cluster centers after applying the above
algorithm to the blade data set.

Figure 2: Illustration of the results from dimensionality reduction. The vertices closest to the cluster
centers, resulting from the clustering of the filtered vertices are shown on the pressure side (left) and
the suction side (right).

Rule induction is one of the fundamental and most often applied tools in the field of data mining and
machine learning. Rules are easy to interpret by the engineer and hence raise his/her understanding
of the system at hand. In aerodynamics the influence of one region of the design on the perfor-
mance often strongly depends on the shape of the remaining design regions. Our driving force is
to extract knowledge describing the complex relation between design regions and their performance
number(s). It is important that the aerodynamic engineer isable to use the rules for the further de-
velopment of new designs. In the present framework classification tree techniques are applied for
rule extraction. This technique easily allows to control the number and complexity of the design
rules. Design rules that are generated based on displacement data describe the interrelation of ver-
tices and their influence on the performance relative to a predefined reference design. An example
of a relative design rule from the blade data set is as follows:

IF δ
r,m
CC8

> 0 AND δ
r,m
CC7

< 0 THEN φr,m > 0

From this rule it is expected that a modification of the vertex~vCC8 towards its normal direction in
conjunction with a modification of vertex~vCC7 against the direction of the normal vector will result
in an increase of the pressure loss. It can be seen that the identified rules can easily be interpreted
by an aerodynamic engineer.

In [2] the reliability of the extracted knowledge has been proven and this work provides additional
information on the presented algorithms and results.
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